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Abstract

Pruning is a widely used technique for reducing the size
of deep neural networks while maintaining their perfor-
mance. However, such a technique, despite being able to
massively compress deep models, is hardly able to remove
entire layers from a model (even when structured): is this an
addressable task? In this study, we introduce EGP, an inno-
vative Entropy Guided Pruning algorithm aimed at reduc-
ing the size of deep neural networks while preserving their
performance. The key focus of EGP is to prioritize pruning
connections in layers with low entropy, ultimately leading
to their complete removal. Through extensive experiments
conducted on popular models like ResNet-18 and Swin-T,
our findings demonstrate that EGP effectively compresses
deep neural networks while maintaining competitive perfor-
mance levels. Our results not only shed light on the underly-
ing mechanism behind the advantages of unstructured prun-
ing, but also pave the way for further investigations into the
intricate relationship between entropy, pruning techniques,
and deep learning performance. The EGP algorithm and
its insights hold great promise for advancing the field of
network compression and optimization.

1. Introduction
Deep neural networks have become a cornerstone of arti-

ficial intelligence and machine learning, achieving remark-

able success in a wide range of applications, from video

recognition [1] and natural language processing [25] to

robotics [21] and autonomous driving [2]. However, the

large size of these models poses significant challenges in

terms of storage, memory, and computational requirements.

To address these issues, researchers have developed vari-

ous techniques to reduce the size of neural networks with-

out sacrificing their performance, including quantization [9,

26], compression [6, 24], and pruning [10, 11, 15, 16, 23].

Pruning, in particular, has emerged as a popular and ef-

fective method for reducing the number of parameters in

a neural network [3, 15, 20]. The idea behind pruning

is to selectively remove weights, neurons, or entire layers
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Figure 1: Effect of unstructured pruning in ReLU-activated

models: some neurons are always OFF (yellow) and others

are consistently in the linear region (red). These can be re-

moved with no impact on the performance.

based on their magnitude or other criteria [7, 17, 27]. The

pruned model can then be fine-tuned to recover its original

performance, resulting in a smaller and more efficient net-

work. Pruning is particularly effective for deep neural net-

works, which tend to be over-parameterized and therefore

have many redundant or irrelevant weights.

Despite the widespread use of pruning, its underlying

mechanism and the factors that contribute to its benefits

are not well understood. Previous work has investigated

the effects of pruning on the sparsity and connectivity pat-

terns of neural networks [4, 5, 8], as well as its impact on

the generalization performance of the pruned models [10].

Nowadays, indeed, massive study around this subject is be-

ing conducted [14, 22]. Although some works used entropy

to drive pruning mechanisms [13], to the best of our knowl-

edge, no previous work has explored the relationship be-

tween pruning and the entropy of activations in the network.

In this work, we investigate the impact of unstructured

pruning on the entropy of activations in the network. In

the context of neural networks, entropy can provide in-

sights into the complexity and diversity of the representa-

tions learned by the model. Leveraging this measure, we

propose EGP, a strategy to drive the unstructured pruning

mechanism to prune layers exhibiting low entropy. Our ex-

periments show that unstructured pruning reduces the en-

tropy of activations in the network (Fig. 1). This reduction

in entropy suggests that pruning results in a more structured

activation pattern, which may as well improve the ability
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of the network to generalize to new data. Interestingly, this

approach overcomes the limits of structured pruning, which

removes neurons persistently OFF.

Our work provides a new perspective on the mecha-

nism behind the benefits of unstructured pruning and sheds

light on the relationship between entropy, pruning, and deep

learning performance. These findings open up avenues for

further exploration. We have also developed an entropy-

based iterative pruning technology that shows promise in

compressing neural networks more effectively.

Despite other works proposing entropy-based ap-

proaches to drive pruning [13, 18, 19], to the best of our

knowledge, EGP is the very first entropy-driven approach

that can effectively reduce the depth of a deep neural net-

work model without harming its performance. Different

from previous entropy-based pruning methods which tried

to remove a certain amount of parameters or neurons inside

layers, EGP tries to remove whole layers. EGP is tested

on popular models for computer vision, like ResNet-18 and

Swin-T, and opens the roads to a new class of pruning algo-

rithms.

2. Entropy Guided Pruning

In this section, we will provide details on how we com-

pute the entropy of the activations inside the neural net-

work model and develop our entropy-based iterative prun-

ing. Fig. 2 proposes an overview of the proposed entropy

computing and pruning method. First, we introduce the

entropy calculation method (Sec. 2.1), showing also how

to handle critical cases (Sec. 2.2), and then we provide

an overview of the entropy-based iterative pruning method

(Sec. 2.3).

2.1. Derivation

Let us extract the output yξ
l,i of the i-th neuron in the l-th

layer (where Nl is the number of neurons in the l-th layer),

given as input the ξ-th sample. Let us assume the activation

function φn(·) for the l-th layer is ReLU. Toward this end,

we can write

yξ
l,i = ReLU

(
zξ
l,i

)
, (1)

where zl,i is the post-synaptic potential for the i-th neuron

in the l-th layer. Please note that in convolutional layers

the dimensionality for yξ
l,i is not necessarily unitary, but is

proportional to the input’s size Ml = K1,l × K2,l, where

K1,l and K2,l are the dimensions for the generated feature

map. We assume, for the sake of simplicity, that the size

of every ξ is the same for the whole dataset Ξ. We know

that ReLU-activated neurons have essentially two working

regions:

• an ON region, for zl,i,j > 0;

• an OFF region, for zl,i,j ≤ 0.
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Figure 2: Overview of the EGP approach.

These working regions will be our possible “states”. To

identify the state sl,i,j for the j-th feature extracted by the

i-th neuron, we can apply the one-step function H(·) to the

post-synaptic potential, obtaining sξl,i,j = H(zξl,i,j). At this

point, we can obtain the frequency of the i-th neuron to be

in the ON state, simply through

pON(l, i|Ξ) = 1

‖Ξ‖0 ·Ml

∑
ξ∈Ξ

∑
j

(sξl,i,j), (2)

where ‖Ξ‖0 is the cardinality of the dataset. Evidently, we

know that in this case pOFF(l, i|Ξ) = 1−pON(l, i|Ξ). At this

point, we can use the definition in (2) to write the entropy

H(l, i|Ξ):

H(l, i|Ξ) =− 1

log(2)

{
pON(l, i|Ξ) log [pON(l, i|Ξ)]+

+pOFF(l, i|Ξ) log [pOFF(l, i|Ξ)]} . (3)

2.2. When the entropy goes to zero

The evaluation of the entropy proposed in (3) is not in-

tended as a measure of information flowing through the

given layer, but it gives us an important indication of the ef-

fective use of the ReLU non-linearity. More specifically, for

the i-th neuron in the l-th layer, we will have H(l, i|Ξ) = 0
in two possible cases.

sξl,i,j = 0, ∀j, ξ. This case is achieved in three possible

ways: either all the parameters wl,i of the i-th neuron are

zero, or the input yξ
l−1 is zero ∀ξ, or again zξl,i,j ≤ 0, ∀j, ξ.

In these cases, the neuron’s output will always be zero, and

the entire neuron can be removed/pruned from the model,

with no performance loss.

sξl,i,j = 1, ∀j, ξ. This case is achieved if zξl,i,j > 0, ∀j, ξ.

In this state, the i-th neuron in the l-th layer uses only the

linear region, becoming a linear neuron: its contribution can

be “absorbed” by the next layer (as the neuron and the next

layer are a linear combination), evidencing a collapse in the

neural network’s depth.
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In this work we will be looking for both: while the first is

expected, and known to rise in high pruning regimes [3, 23],

the second one is more surprising, but can potentially lead to

similar gains as those obtained with pruning. It is possible

to extend the proposed formulation to other activations, like

the sigmoid and GeLU (we will test on Swin-T in Sec. 3).

2.3. Entropy-based iterative pruning

As our target is to reduce the depth of deep neural net-

works by removing zero-entropy layers, we implement iter-

ative pruning based on the entropy of different layers to get

more layers with entropy zero.

Let us set the percentage of parameters to be pruned at

each pruning iteration as ζ, and the total weight parameters

of the considered L layers in the model as ‖θ‖0. Then, in

each pruning iteration, the number of weight parameters to

be pruned ‖θ‖pruned
0 is given by

‖θ‖pruned
0 = ζ · ‖θ‖0. (4)

After calculating the entropy of each neuron belonging to

the l-th layer, we can calculate an average entropy for it,

simply through

Ĥ(l|Ξ) = 1

Nl

∑
i

H(l, i|Ξ). (5)

We would like to route the magnitude pruning algorithm

towards removing more parameters in layers where the en-

tropy is low. This is because manifesting a low entropy

is a symptom of not necessarily requiring a non-linear ac-

tivation in these layers, and for such reason, these layers

are the most promising to remove. However, we know

that H(l, i|Ξ) ≥ 0∀l, i,Ξ: this means that, when having

Ĥ(l|Ξ) = 0 ⇔ H(l, i|Ξ) = 0∀i. When this happens, we

know that we are able to completely remove such a layer,

and we no longer need to prune it.

In order to increase the number of layers with zero en-

tropy, more pruning should be applied to layers with lower

entropy (more likely to reach zero entropy). Simultane-

ously, to minimize the impact on model performance, more

pruning should be done on smaller magnitude weights. To

achieve both goals, we propose a pruning irrelevance meter

Il for the l-th layer

Il = Ĥ(l|Ξ) · 1

‖θl‖0
∑
i

|θl,i|, (6)

where ‖θl‖0 is the cardinality of the non-zero weights in

the l-th layer. Effectively, the larger this value is, the least

we are interested in removing parameters from it. However,

we are very interested in removing parameters from layers

having very low pruning irrelevance: for such reason, we
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Figure 3: Distributions of neuron states per layer for

ResNet-18 trained on CIFAR-10 with 98.4% of pruned pa-

rameters for EGP. In blue neurons having non-zero entropy,

in orange always OFF, and in red always ON.

define the complementary measure of pruning relevance

Rl =

{ ∑
j Ij

Il
Il �= 0

0 Il = 0.
(7)

Finally, in order to assess the exact amount of parame-

ters to be removed at the l-th layer we resort to a softmax

smoothening, according to

‖θl‖pruned
0 = ‖θ‖pruned

0 · exp[Rl −maxk(Rk)]∑
j exp[Rj −maxk(Rk)]

. (8)

If the number of parameters pruned assigned to a specific

layer exceeds its remaining parameter count, then prune all

parameters of that layer. Afterward, distribute the remain-

ing number of pruning parameters to other layers following

the methods outlined in (6) and (8).

3. Experiments
In this section, we present our empirical results obtained

on three different very common setups. We have performed

our experiments on an NVIDIA GeForce RTX 2080 GPU

and developed the code using PyTorch 1.13.1.1

Setup. We present results for ResNet-18 and Swin-

T trained on CIFAR-10 and Tiny-ImageNet (Tint-INet).

While for ResNet-18 ReLU is the non-linearity for the lay-

ers, in Swin-T the non-linear activation adopted is GELU.

We adopt the same baseline training strategy as in [12].

Specifically for Swin-T, we prune just the GELU-activated

layers (which are, for this model, 12). For all the sparse

configurations, we set ζ = 0.5.2

Results. The main results are reported in Table 1. Here,

we compare a vanilla iterative magnitude pruning strategy

1The code is publicly available at https://github.com/ZhuLIAO001/

Unstructured Relu Pruning Reduce Depth.git.
2We acknowledge this choice is computationally extensive and unnec-

essary with optimal hyper-parameter optimization: our objective here is

not to be efficient at train time but to highlight neurons with zero entropy.
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Table 1: Performance (Top-1) and number of layers re-

moved (Lay. rem.) for different architecture/datasets.

Model Dataset Sparsity EGP Lay. rem. Top-1

Resnet-18

CIFAR-10

0.0 0/17 92.10

50.0
0/17 92.56

� 1/17 92.36

75.0
0/17 93.00

� 1/17 92.81

93.8
0/17 93.03

� 3/17 92.93

98.4
0/17 92.73

� 3/17 93.12

Tiny-INet

0.0 0/17 41.88

50.0
0/17 41.70

� 2/17 38.96

75.0
0/17 41.24

� 4/17 39.50

93.8
0/17 41.86

� 4/17 39.80

98.4
0/17 36.50

� 5/17 37.44

Swin-T

CIFAR-10

0.0 0/12 92.11

50.0
0/12 91.64

� 1/12 92.08

75.0
0/12 89.04

� 4/12 92.11

93.8
0/12 84.02

� 5/12 91.01

98.4
0/12 90.42

� 7/12 90.10

Tiny-INet

0.0 0/12 75.38

50.0
0/12 74.06

� 1/12 71.48

75.0
0/12 72.02

� 2/12 70.28

93.8
0/12 67.58

� 3/12 66.58

98.4
0/12 63.46

� 6/12 62.30

with EGP. It appears evident that plugging EGP as a scal-

ing factor to drive the pruning process effectively removes

entire layers from the model. Evidently, with a higher spar-

sity, a performance drop naturally occurs; however, the gap

in performance between vanilla pruning and EGP (for the

same sparsity) remains consistently narrow. We provide,

in Fig. 3, a visualization of the activation distributions for

CIFAR-10 at 98.4% sparsity for EGP. Interestingly, we ob-

serve that one layer only (#12) can be removed with tradi-

tional pruning approaches, while others (like #14), having

Table 2: Performance of entropy-based pruned model and

reinitialized model.

Model Dataset Lay. rem. Method Top-1

Resnet-18

CIFAR-10 5/17
from scratch 91.10

EGP 92.18

Tiny-ImageNet 4/17
from scratch 37.72

EGP 39.80

Swin-T

CIFAR-10 5/12
from scratch 61.00

EGP 90.41

Tiny-ImageNet 1/12
from scratch 0.50

EGP 71.48

also neurons in the ON state, would be overlooked: this

shows the effectiveness of EGP and potentially opens the

road to a new class of pruning algorithms.

Ablation study. We propose here an ablation study on

the effectiveness of EGP. Table 2 compares training from

scratch a model with some layers removed to the same fol-

lowing EGP: we observe that in all cases EGP exhibits bet-

ter Top-1 performance. Especially for Swin-T trained on

Tiny-ImageNet, this architecture/dataset combination does

not provide good results as the smaller model should be also

pre-trained on a large dataset like the vanilla one. This phe-

nomenon suggests that EGP enhances accessibility to rare,

compressed states of the deep model.

4. Conclusion

In this work, we have investigated the impact of un-

structured pruning on the entropy of activations in DNNs.

Our preliminary experiments on ReLU and GELU-activated

models show that our pruning strategy, EGP, drives a con-

sistent part of the neurons in the model to either ON or OFF

regions. Unstructured pruning can provide a structured ac-

tivation pattern and yes, it can reduce the model’s depth!

Our results provide new insights into the mechanisms be-

hind the benefits of pruning and open avenues for further

exploration into the relationship between entropy, pruning,

and deep learning performance.

Future work can explore the applicability of our findings to

other activation functions and architectures as well as the

design of a regularization function explicitly enforcing low

entropy to favor the model’s compressibility. Exploring the

impact of pruning on the dynamics of the optimization pro-

cess and the interpretability of the resulting models could

lead to a better understanding of the mechanisms behind

the benefits of pruning.
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