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Abstract— When discharged, hospitalized patients could fall
into a worse functional state, even if the primary pathology has
been resolved. Often the main drawback is associated with the
walking capabilities, mainly caused by the inactivity during
hospitalization. It has been proven that early interventions
consisting of exercises such as passive mobilization improve
the functional state and prevent physical and cognitive decline.
However, many patients are excluded from such treatments due
to the limited availability of qualified medical personnel. The
aim of our work is the design of a system that guides the
patient in the autonomous execution of the exercises, without
the assistance of qualified personnel. We propose the usage of
an Augmented Reality device in which the patient visualizes the
instructions on the exercises and the feedback on the execution.
The patient’s movements during the exercise are monitored by
means of a set of wearable sensors fixed to the patient’s limbs.
The prototypal version of our system has been tested on a group
of healthy people.

I. INTRODUCTION

Currently, rehabilitation exercises for hospitalized bedrid-
den patients are of paramount importance to ensure the
quick resumption of all the activities of daily living once
they return home [1]. Indeed, being bedridden for a long
period results in motor problems for patients due to reduced
bone mineral density and muscle mass, as well as physi-
cal impairment. At the end of hospitalization, despite the
resolution of the condition for which they were admitted,
frail patients are typically discharged in a worse functional
status. It has been demonstrated that the muscle strength of
elderly people gradually decreases at a rate of 1.5 to 3.5%
per year, and if confined to bed for a long period, this loss
occurs only one day after the discharge from the hospital.
Among patients that are bedridden, only one in four says
that he/she is satisfied with his/her current life [2]. Many
patients, who were previously ambulatory, spend the majority
of their time (83%) in a supine position. This inactivity,
attributed to insufficient staff, efforts to prevent accidental
falls, the prevailing culture of bed rest, and even the hospital
architecture itself [3], [4], [5], is the primary contributor to
the decline of patients’ functional capacity.

As a result, 50% of such patients do not regain their pre-
admission level of functional capacity within one year [3],
[6], [7], and complete inactivity during this period can be
associated with a wide range of adverse outcomes, including
an increased risk of falls and extended hospital stays [8],
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[9], [10]. Early interventions to maintain physical function
through exercise, including walking or passive mobilization,
conducted during hospitalization, have proven effective in
preventing physical and cognitive decline in patients, as well
as reducing the length of hospitalization and the associated
costs [11].

Unfortunately, the majority of patients, especially the
frailest elderly individuals, are excluded from these reha-
bilitative treatments due to the aforementioned barriers, the
high number of hospitalized individuals, and the limited
availability of human resources to administer them [3], [11],
[12].

This paper proposes the development of an integrated
system that enables the independent execution of active
exercises for the mobilization of bedridden patients without
the assistance of dedicated healthcare personnel. This is
achieved through the use of an Augmented Reality (AR)
headset and wearable sensors. The exercises follow protocols
involving flexion–extension and rotational movements of the
upper and lower limbs, aimed at maintaining muscle tone,
trophism, and joint mobility. Augmented reality systems for
rehabilitation are increasingly being used in medicine to help
patients regain full health as soon as possible [13]. Such
systems are mainly used for shoulder rehabilitation on the
upper limb and generally for hip and knee rehabilitation on
the lower limb.

In this work, we propose a rehabilitation intervention for
frail patients during their hospital stay, which is supported
by augmented reality. Over the past few years, and in
part accelerated by the recent COVID pandemic, there has
been an increasing interest in the development, utilization,
and dissemination of digital technologies [14]. Specifically,
devices for AR, through the use of suitable headsets, allow
for the integration of virtual content into the real world by
projecting three-dimensional holograms visible within the
headset. This creates a highly immersive experience for the
user and facilitates the intuitive and simplified interaction
with real-world objects and tools. Noteworthy applications
have been proposed for education [15] and medicine [16],
[17], [13].

We exploited these technologies to enable bedridden pa-
tients to independently perform mobilization exercises. The
proposed framework consists of:

• Two wearable sensors connected to the ankles to acquire
biometric and motion data from the patient, which
enable the real-time analysis of the exercise execution;

• The AR application that guides the patients in the exe-
cution of a set of rehabilitation exercises, by projecting



a virtual avatar showing the movements to perform and
providing real-time feedback on the execution of the
current exercise.

The design of our system and the experiments have been
formerly described in [18].

II. WEARABLES: HARDWARE AND ALGORITHMS

A. Hardware

Currently, wearable devices are used to capture data on
the health and habits of human beings, and their usage is
increasingly accepted by users [19], [20]. In this work, we
propose two different wearable sensors for monitoring the
physical activity of the involved subjects. The first one is
the EmotiBit Bundle (EmotiBit, Reno, NV, United States).
Among alternative devices such as commercial smartwatches
or fitness trackers such as the Fitbit Flex, Garmin Vivoactive,
and Misfit Shine [21], we chose the EmotiBit because it
is a development-oriented wearable sensor kit for captur-
ing movement and physiological data [22]. Furthermore,
it provides fully open-source software, unlike the above-
mentioned alternatives, which do not expose the API for
custom programming. Moreover, it is a scientifically vali-
dated system that enables wireless streaming of raw data
throughout the UDP protocol. When the subjects carried out
the exercises, the EmotiBit was worn on the ankle through
a case with a strap, designed to add protection while still
allowing physiological data to be taken from the body. It is
worth noting that such a wearable allows the acquisition of
other data in addition to movement data, which can be useful
for further developments of our application, i.e., emotional
and physiological data. The EmotiBit sensor set includes
a Photoplethysmography (PPG) sensor for monitoring the
heart rate, oxygen saturation, and respiration and a humid-
ity/temperature sensor for monitoring dermal perspiration
and the body temperature.

The second wearable used in our framework is a custom-
made IMU platform already experimented on in previous in-
dustrial research activities [23]. The main sensor was a Bosch
Sensortec BNO055 Inertial Measurement Unit (IMU) sensor
connected to an Adafruit Feather HUZZAH ESP8266, a very
popular chip for Internet of Things (IoT) applications [24].
The selection of the components in our custom-made IMU
boards was driven by the need to measure motion data, of
multiple rigid bodies, including acceleration, velocity, and
orientation. It was desirable for these devices to be easily
interconnected through the implementation of various trans-
mission protocols such as UDP, MQTT, or TCP, which had
been previously tested in a different project [23]. The usage
of a low-cost custom-made IMU wearable boards allowed us
to reduce the overall hardware costs of our system. The cost
of a single unit of our custom-made board was under USD
50, while the EmotiBit bundle’s cost is about USD 700. The
BNO055 device incorporates three-axis sensors measuring:
tangential acceleration through the accelerometer, rotational
velocity through the gyroscope, and local magnetic field
strength via the magnetometer. The sensor requires initial

calibration, and once the offsets are determined, they must
be stored within non-volatile memory, namely EEPROM,
ensuring that the sensor is immediately ready for use upon
subsequent power-ups. The entire device can be controlled
by an external or internal microprocessor within the sensor.
In the latter case, a 32 bit Cortex M0+ core executes a pro-
prietary fusion algorithm, allowing the data to be requested
in different formats by the users. In addition to the three
inertial sensors, the chip also features an interrupt, which
can alert an external microcontroller in the event of a change
in orientation, sudden acceleration, or other movements. The
entire system is enclosed in a 28-pin Land Grid Array (LGA)
package. The operating voltage ranges from 2.4 V to 3.6 V.
It supports various communication protocols, including I2C,
UART, and HID. To ensure the I2C communication with the
Adafruit ESP8266-based board, the PS0 and PS1 pins were
connected to the ground using 10 KΩ resistors. The Adafruit
Feather HUZZAH is an ESP8266 WiFi development board
variant, incorporating a battery management and recharging
circuit for Li-Po cells, enabling its wearability. The ESP8266
WiFi module operates at an 80 MHz clock frequency, sup-
plied at 3.3 V. Because of the two SDA and SCL ports,
the HUZZAH ESP8266 is compatible with the I2C protocol,
enabling seamless communication with the BNO055 sensor,
which conforms to the same protocol. The Address (ADDR)
pin serves as the internal counterpart to the BNO055 COM3
pin, crucial for I2C communication address selection. In
its default configuration, the BNO055 sensor’s address is
represented as 0x29 in hexadecimal format (0101001 in
binary), with the COM3 pin linked to the GND via a pull-
down resistor, thereby establishing the 0x28 hexadecimal
address (0101000 in binary). The INT pin functions as
a hardware interrupt signal emitter, generating 3 V under
specific event conditions. Additionally, it serves as an output
signal relay from the BNO055. The V bat

in pin directs the
battery voltage to a resistive voltage divider input, facilitating
ESP8266 power supply. The output of the voltage divider
is then channeled to a buffer input, effectively preventing
signal attenuation, resulting in an output signal governed by
the formula:

V bat
out = V bat

in
R2

R1 +R2
(1)

The V bat
out pin is linked to the Analog-to-Digital Con-

verter (ADC) input on the ESP8266. Employing a dedi-
cated software algorithm, battery charge metrics are derived
and presented in milliampere-hours (mAh) based on the
corresponding voltage reading. The ESP8266’s ADC pin
accommodates a voltage range from 0 V to 1 V, necessitating
an appropriately configured voltage divider to scale the
maximum 3.7 V Li-Po battery voltage down to 1 V. Figure 1
shows the two different wearable sensors. Specifically, our
custom wearable IMU was associated with the reference
system s1, and the EmotiBit was paired with the reference
system s2.



Fig. 1: (A) Our custom wearable IMU platform with the
associated reference system s1 and (B) the EmotiBit with
the associated reference system s2. The x-axis is red, the
y-axis is green and the z-axis is blue.

B. Comparative Analysis

In this section, we address the comparison between the
two utilized devices, the EmotiBit and the custom-made IMU
wearable, through the execution of specific experiments.

The first experiment involved placing both devices on the
same rigid body (i.e., an upper limb), so as to maintain
the identical orientation while the user performs rotational
movements along one axis. Our aim was to observe the
different dynamical reconstructions of the orientation on
the basis of the time-synchronized acquisition of the IMU
sensors. The aim was to ascertain whether both devices
exhibit similar responses under the same conditions. In
reference to the provided Figure 2, it was observed that both
devices demonstrated analogous responses, indicating their
suitability for the intended application.

The second experiment involved employing a parallel
robot, specifically a ‘Stewart platform’, to ensure that both
boards possessed identical inclinations in reference to the
gravity vector. This assessment aimed to analyze the static
behavior of the accelerometers, which can highlight differ-
ences in the calibration and captured noise. More specifically,
as illustrated in Figure 3, the Stewart platform is a parallel
robotic mechanism characterized by its ability to provide
multi-axis movement and precise positioning by employing a
set of six linear actuators arranged in a parallel configuration.
This arrangement enables the platform to be tilted at will
inside the considered workspace. It consists of a fixed base
and a movable platform connected by several extendable legs
or struts. In this experiment, both devices were mounted on
the platform, which was not aligned with the gravity vector,
but slightly inclined.

The second experiment, as shown in Figure 4, shows the
comparison of the static measurements of the acceleration
acquired from the two devices. It is worth noting that the two

Fig. 2: Comparison of Euler’s angle acquisition during
specific movements between the EmotiBit and custom-made
IMU.

Fig. 3: The EmotiBit and the custom-made IMU board on
the Stewart platform.

devices exhibited offsets due to different factory calibration
values. However, for the purposes of our application, such
a variation did not significantly affect the elaboration of the
orientation, as demonstrated in the previous experiment.

As a result, both devices demonstrated highly similar
comparative results regarding our current application, as
demonstrated in Figures 2 and 4. Two primary differences
existed between the two boards. Firstly, there was a sig-
nificant cost disparity, with the custom-made board being
substantially more affordable than the EmotiBit. Secondly,
the EmotiBit offers a more-extensive array of functionalities.
However, for this application’s requirements, the usage of
two or more of our custom-made boards alone would suffice.
In a prospective application, the EmotiBit could complement
the custom-made board, providing additional functionalities,
when required, like heart rate monitoring, anxiety state detec-



Fig. 4: x, y, and z components of acceleration acquired in
static conditions from the two devices.

tion, and blood oxygen level measurement. These capabilities
are absent in our custom-made boards.

C. Algorithms

Raw motion data were acquired using the three-axis
accelerometer, gyroscope, and magnetometer built into the
EmotiBit and the BNO055-based custom device, which
worked in a synchronized manner with a sampling rate of 25
Hz. Then, the data were appropriately filtered in MATLAB,
version R2022a, to extrapolate the data of interest, such as
the estimation of the orientation and the number of repeti-
tions of the movement performed over the entire exercise.

More in detail, the number of repetitions was computed as
follows: The three components of the acceleration along the
three Cartesian axis, i.e., ax, ay , and az , acquired from the
starting time to the current time were filtered through a 3rd-
order band-pass Butterworth filter with cut-off frequencies
of 0.1 Hz, to eliminate the DC component, and 1.5 Hz,
to remove the high-frequency components of the noise. At
this point, only one of the three components was selected,
depending on the exercise task. The filtered signal, which
took a repeatable oscillatory form over time, was normalized
between 0 and 1. Finally, our algorithm highlighted whether
a peak was present through the exceeding of a set threshold
value in height and width. When a peak was found, the
movement repetition count increased.

Also, the orientation estimation was processed on the
basis of the raw measurements of the acceleration data,
but including also gyroscope and magnetometer data. In
particular, we used the sensor fusion algorithm known as
the Attitude and Heading Reference System (AHRS) filter,
which provided an online estimation of the orientation in
the form of the rotation matrix wRs of the sensor (subscript
s) with reference to its inertial reference system (subscript
w). For the purposes of our application, the orientation was
always relative to the initial position of the sensor, which was
supposed to be fixed to the upper part of the ankle with the

x-axis of the sensor directed towards the foot. The orientation
at the kth sample step was then computed as follows:

s,0Rs,k = (wRs,0)
TwRs,k (2)

where the subscript T indicates the transpose operator.
The current rotation matrix was then converted into Euler

angles, namely α, β, and γ, to have a more-intuitive rep-
resentation of the orientation, which allowed the definition
of the thresholds for the evaluation of the correctness of the
posture during the exercise, as described in Section IV.

Further noteworthy information that can be processed and
that will be integrated in future developments is the speed
of the movements. The speed was calculated as follows.
Firstly, the three components of the acceleration, i.e., the
ax, ay , and az signals, were filtered through a 3rd-order
low-pass Butterworth filter with a cut-off frequency of 5
Hz to eliminate the high-frequency components of the noise.
Then, cumulative trapezoidal numerical integration, i.e., the
cumtrapz MATLAB function, was applied on the acceleration
signals to find the three components of the velocity, i.e., the
vx, vy , and vz signals. Once we had obtained the velocity
signals, the speed of movement throughout the exercise was
calculated as the mean value of the velocity magnitude:

s =
√
v2x + v2y + v2z (3)

III. AUGMENTED REALITY APPLICATION

In this work, the adopted AR headset was the Microsoft
Hololens2, a device that has undergone an increasing dif-
fusion in applications for medicine [25]. For the scope of
our application, it was fundamental to use AR instead of
Virtual Reality (VR), which can be implemented by means
of alternative devices such as the Meta Quest 2 or PlayStation
PS VR, because of the need for the user to maintain the view
of the real world, so as to not cause undue discomfort.

Furthermore, free software platforms such as Unity
3D [26] and Microsoft Visual Studio can be used to im-
plement, build, and deploy a custom AR application on
the Hololens2.

The software architecture of the application was designed
to be flexible for future changes, also allowing for possible
customization of the session based on the patient’s needs.
The exercise abstract class was defined. This class exposes
the common base parameters of every exercise, such as
the number of repetitions, the frequency at which they are
performed, and the seconds of rest after the exercise. This
class is then specialized in the various exercises, exposing
specific parameters for the movements to be performed.
A second script was responsible for establishing a TCP/IP
socket connection with MATLAB. Furthermore, it will notify
the application manager in case of a detected repetition or
incorrect position. The Graphical User Interface (GUI) was
event-driven, decoupling the logic of the software from its
appearance.

The target users of our framework include people with
possibly no previous experience in the usage of AR, so
the GUI was designed taking into account the need for



having simplified interactions between the user and the holo-
graphic elements. Furthermore, the immersive AR scenario
was designed to enhance the level of concentration of the
user without completely alienating him/her from the outside.
Figure 5A depicts the design of the GUI. There were two
main hologram elements, namely the avatar and the control
window. The former was a 3D animation showing the correct
way to execute the selected exercise respecting the target
execution timing fixed by the medical personnel, while the
latter mainly consisted of a panel containing the title and the
description of the current exercise and further information
based on the feedback of the wearable data, i.e., the number
of remaining repetitions and the warning message if the
wrong posture has been detected. Further buttons allowed
the user to disable the exercise panel, so as to have a better
view of the avatar, and to stop the application. Figure 5B
shows the final visualization on the headset of the holograms
projected in the real environment.

IV. SYSTEM INTEGRATION AND EXPERIMENTS

We propose the integration of all of the system compo-
nents as depicted in the block diagram in Figure 6. We ex-
ploited MATLAB (version 2022a), running on a laptop (Intel
Core i5-1230u, 16 GB RAM LPDDR5) as the middleware
between the wearables and the AR app on the Microsoft
Hololens2 headset. More in detail, the EmotiBit and the
custom wearable IMU platform send motion data via UDP
to MATLAB, at a fixed rate of 0.04 s (25 Hz). Then, a
MATLAB script is in charge of processing the acquired
data to provide the computation of the repetitions and the
estimation of the current leg orientation, as described in Sec-
tion II. Furthermore, the same MATLAB script establishes
a TCP/IP socket connection towards the AR app running on
the Hololens, so as to provide, with negligible delay, the
processed data. Figure 7 shows the experimental setup in
which the user is executing a mobilization exercise while
wearing the AR headset, the EmotiBit on the right leg and
our custom wearable IMU platform on the left leg.

The mobilization exercise used for our test consisted of
the flexion of the target thigh (3 series of 5 repetitions with
40 s of rests) maintaining the leg along the longitudinal axis
of the body, i.e., the axis that connects the human body
from the top of the head to the heels. As depicted by the
graph in Figure 8, our algorithm was able to detect all of the
repetitions by monitoring the peaks of the filtered signal of
the acceleration measured by the wearable along the vertical
axis (z-axis). After filtering the acceleration as described
in Section II, the number of peaks in the waveform that
locally exceeded the defined thresholds in the amplitude and
width corresponded to the number of executed repetitions.
Furthermore, we monitored the orientation of the leg during
the motion. In our test during the second repetition, the leg
became misaligned with the longitudinal axis of the body.
Our method detected a value of the Euler α angle that
exceeded the threshold of 20◦. This event triggered a warning
holographic message that allowed the user to autonomously
recover from such an error in the next repetitions. Figure 9

Fig. 5: (A) The design of the GUI with (1) the animation of
the avatar showing the correct way to execute the exercise,
(2) the exercise panel, (3) the enable/disable panel button,
(4) the repetition count, and (5) the stop button. (B) The
visualization of the holograms on the AR headset.

Fig. 6: The block diagram of the system integration.



Fig. 7: The experimental setup. (A) the AR headset; (B) the
EmotiBit on the right leg; (C) our custom wearable IMU
platform on the left leg; (D) the user interacting with the
holograms while performing the exercise.

shows the monitored orientation of the ankle during the
exercise, highlighting the detection of the wrong alignment.

The correct way to execute the selected mobilization
exercise was achieved by maintaining the orientation of
the leg along the longitudinal axis of the body. Performing
the exercise with the wrong posture can cause unexpected
injury. Our system can detect if the user is performing the
exercise correctly and notify about such an event in the
graphical interface of the AR application so that the user can
autonomously rectify the position by observing the virtual
avatar’s movements without the need for a medical operator.
The error message from the virtual interface warns the users
to adjust his/her posture, thereby resuming the exercises
aligning appropriately with his/her rehabilitation task.

V. VALIDATION

We invited a group of 10 healthy volunteers to execute
three exercises using our framework. The age of the vol-
unteers varied between 23 and 55 years old, and they had
different levels of expertise in the usage of AR devices. At
the end of the session, we asked each of them to fill out
the following anonymous questionnaire. The questionnaire
is reported in Table I. This was split into 6 categories,

Fig. 8: The computation of the repetitions

Fig. 9: The estimation of the ankle orientation during the
exercise, with the detection of misalignment with the longi-
tudinal body axis.

namely expertise, workload, usability, design, instructions,
and satisfaction. The total number of questions was 11, and
each of them had a score from 1 (lowest) to 5 (highest).
Moreover, We report 2 different tables for discussing the
results. In Table II, each question is associated with the
number of responses obtained based on voting.

The statistical results of the questionnaire are reported
in Table II. Most of them had no previous experience in
the usage of an AR device (Q1 had a mean score of 2.2).
This fact conditioned the rate of the usability section of the
questionnaire; indeed, some users felt unsatisfied with the
interaction with AR elements (Q4 and Q5 had a mean score
of around 3 with a standard deviation higher than 1). On
the basis of such feedback, future releases of the app will
further reduce the required interaction with the user. In terms
of workload, the user perceived no relevant discomfort in
wearing the headset or the sensors or in immersing into the
AR environment (Q2 and Q3 received a score higher than



Categories Questions

Level of expertise (Q1) previous experience in using virtual/augmented reality devices.

Workload (Q2) Evaluate the comfort of wearing the headset and wearable sensors
during the exercise.

(Q3) Rate the perceived well-being while using the AR app, i.e., lack of
sensations of nausea, discomfort, or unease.

App usability (Q4) Rate the usability of the APP.

(Q5) Assess the interaction with AR element in the app.

(Q6) Were the AR element easy to understand?

(Q7) Evaluate the system performance in guiding the exercises.

Design (Q8) Evaluate the AR app user interface design.

(Q9) Evaluate the clarity of the feedback and notifications in the
execution of the exercise.

Need for Instruction (Q10) Did you require instructions or tutorials to use the app?

Overall satisfaction (Q11) Rate your overall satisfaction with the proposed framework.

TABLE I: Questionnaire filled out by 10 volunteers, including 11 questions divided into 6 categories.

TABLE II: Score distribution for each question and free feedback comments by the volunteers.

Questions

E
va

lu
at

io
ns

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
1 4 0 0 0 0 0 0 0 0 0 0
2 3 0 1 3 5 0 0 0 0 2 0
3 0 1 0 3 1 0 4 0 2 0 2
4 3 8 2 3 2 4 6 8 4 3 7
5 0 1 7 1 2 6 0 2 4 5 1

Comments and Suggestions
(1) Improve the graphical interface;
(2) Improve the repetition counter;
(3) Improve the position of the avatar;
(4) Making text larger for people with vision problems.

4). The intuitiveness of the user interface was appreciated
(Q8 and Q9 had a score higher than 4), and just a few users
needed further instructions from the operator to complete
the exercises (Q10 had a standard deviation higher than
1). Finally, Q11 on the overall satisfaction in executing the
exercises with the support of our framework received a mean
score of 3.9. We also made further considerations about the
age of the volunteers. There were 3 individuals aged between
24 and 26, 4 older volunteers aged between 48 and 55, and
3 middle-aged individuals aged between 30 and 35. The first
and third groups, despite having little prior experience with
an AR headset, showed a higher level of expertise in using
such devices and learning more quickly. However, these
two groups proved to be more demanding in terms of the
graphical interface, requiring a more-sophisticated one, as
we can understand by their free feedback comments reported
in Table II. Furthermore, we did not observe a substantial
difference in terms of age regarding the overall usability
assessment and user satisfaction with the application.

VI. CONCLUSIONS

In this paper, we presented a framework for the execution
of mobilization exercises supported by Augmented Reality
(AR), with the aim of implementing a system that enables the
autonomous execution of rehabilitation, without the need for
the assistance of qualified medical personnel. We proposed
the usage of an AR headset to project a virtual avatar
showing the correct way to perform the mobilization exercise
and providing also feedback on the current execution. By
means of wearable sensors, fixed to the patient’s ankles,
we could acquire and process the movement data to com-
pute the number of executed repetitions and estimate the
orientation of the leg, so as to detect the wrong posture
during the exercise. We tested our framework in preliminary
experiments, which demonstrated the feasibility of our setup.
Further validation tests were conducted by inviting a group of
healthy volunteers to execute a set of mobilization exercises
using our framework.

The use of this application could be fundamental in
alleviating the workload in hospital settings for physicians
and physiotherapists, who are increasingly understaffed and
may find themselves in situations with a higher level of



priority. However, this application is not confined to hospital
use, but could also be useful at the household level, where
situations might arise making it difficult for patients to reach
hospitals or physiotherapy centers, both due to logistical im-
possibilities and health-related reasons. Future developments
can involve the implementation of methods to monitor the
emotional and stress data from the patients to regulate the
execution of the exercise. Additionally, we will aim to extend
the application field of our system by implementing AR
applications supported by wearable devices for guiding the
fitness activity of healthy people.
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