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Abstract

By simply incorporating demonstrations into001
the context, in-context learning (ICL) enables002
large language models (LLMs) to yield awe-003
some performance on many tasks. In this study,004
we focus on passage-level long-context ICL005
for generation tasks and find that LLMs can-006
not learn the intrinsic relationship between the007
demonstration passage and the generation out-008
put. We conduct experiments with different009
LLMs on two typical generation tasks includ-010
ing single-document question answering and011
distractor generation, demonstrating that even a012
completely meaningless demonstration passage013
with 1/4 length achieves much better perfor-014
mance than the original full passage. Analysis015
via attention and information flow reveals that016
LLMs pay little attention to passages compared017
to other components in the prompt and little018
information flows from the passage to other019
parts of the demonstration, which further con-020
firms our finding. Additionally, experiments021
on context compression indicate that compres-022
sion approaches proven effective on other long-023
context tasks are not suitable for passage-level024
ICL, since simply using shorter meaningless025
demonstration passages already achieves com-026
petitive performance.027

1 Introduction028

With recent advancements in prompting strategies,029

in-context learning (ICL) has become an effec-030

tive approach to enhancing large language models031

(LLMs). Instead of updating millions of model032

parameters, simply incorporating demonstrations033

into the context enables the model to learn more034

effectively, achieving better performance than in035

the zero-shot setting across various tasks. However,036

few studies on ICL focus on generation tasks, and037

existing research aimed at explaining the underly-038

ing mechanism of ICL primarily concentrates on039

tasks such as sentiment analysis or text classifica-040

tion (Wang et al., 2023; Min et al., 2022).041

Different from classification, generation tasks, 042

such as question answering (QA) tasks, inherently 043

require long contexts for both query and demonstra- 044

tions, making it challenging to fit the ICL prompts 045

into model’s context window. In recent years, with 046

advancements in computing hardware, training data 047

and model architecture, the context window of 048

LLMs has been expanded to 8K, 32K and even 049

millions of tokens, allowing researchers to study 050

ICL from the perspective of generation tasks. 051

However, in this study, we observe a significant 052

phenomenon in passage-level ICL for generation 053

tasks: LLMs cannot capture the intrinsic relation- 054

ship between the demonstration passage and the 055

corresponding generation target and thus passage- 056

level ICL does not necessarily need a regular well- 057

formed "Passage". Specifically, we adopt Mistral- 058

7B (Jiang et al., 2023a) and Llama2-13B (Touvron 059

et al., 2023; Chen et al., 2024) models to con- 060

duct experiments on two generation tasks: single- 061

document QA and sentence-level distractor gen- 062

eration (DG). For each task, we experiment with 063

randomly generated passages and randomly sam- 064

pled passages for demonstration. Results show that 065

LLMs are insensitive to demonstration passages 066

in ICL. Even completely meaningless passages in 067

demonstrations do not significantly impact perfor- 068

mance. In some cases, they even outperform set- 069

tings with full-length real passages. 070

Based on the finding of prior experiments, we 071

validate the hypothesis via attention and informa- 072

tion flow analysis. First, we compute the atten- 073

tion scores of the first generated token received 074

from different prompt components and those trans- 075

ferred between the passage and other components 076

within each demonstration. Then, we compute the 077

saliency score matrix and evaluate the significance 078

of information flow between components of demon- 079

stration. Results shows that the attention scores 080

LLMs receive from the passage are significantly 081

lower than those from other components, the at- 082
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tention score exchanging within the demonstration083

is minimal, and only little information flows from084

passage to generation target. These confirm that085

LLMs cannot capture the relationship between the086

demonstration passage and the generation output.087

Further, based on the prior experiments, we ex-088

plore context compression for ICL. Compressing089

long contexts into compact texts while minimizing090

performance degradation has become a crucial ap-091

proach to handling long-context tasks for effective092

ICL. Most compression methods deal with long093

texts rather than on ICL, where the long context094

contains information relevant to the query, and the095

main point is to retain key information while fil-096

tering out irrelevant content. However, in ICL, the097

demonstrations themselves do not explicitly con-098

tain information related to the query. To investi-099

gate the effectiveness of compression methods for100

ICL, we perform compressio experiments on prior101

passage-level tasks, and the results on both tasks102

indicate that, under similar compression rates, the103

existing compression methods fail to outperform104

randomly generated or sampled passages.105

To sum up, 0we conduct random perturbation ex-106

periments and attention analysis on two ICL tasks.107

Our results confirm that passage-level ICL does108

not necessarily need a regular "Passage". Further109

experiments of context compression show that con-110

ventional compression approaches do not provide111

superior performance to passage-level ICL, since112

simply using random shorter passages already per-113

forms competitively. We hope this work could in-114

spire further research on the explanation for inner115

mechanism of ICL and demonstration compression116

in the passage-level ICL.117

2 Single-document Question Answering118

To examine whether LLMs really comprehend the119

intrinsic relationship between the passage content120

and its generation targets during ICL for passage-121

level generation tasks, we conduct experiments on122

TriviaQA (Joshi et al., 2017) from Longbench (Bai123

et al., 2024), which is a single-document QA124

dataset designed for English reading comprehen-125

sion. We introduce various random perturbations126

to the demonstrations in the context of ICL and127

measure the effect on model performance.128

2.1 Experimental Setup129

Task Description In the QA task for reading130

comprehension of a single document, each test in-131

Figure 1: Prompt we use for Single-document QA and
Distractor Generation. The left column displays the
overall prompt template, with the detailed structures of
the demonstration block and query block shown in the
other two columns. The middle column presents the
blocks used for Single-document QA task, while the
right column shows the blocks used for the Distractor
Generation task.

stance consists of a passage and a question, where 132

the relevant information for the question can be 133

retrieved from the passage. LLMs are required to 134

generate the corresponding answer based on the 135

passage and the question. Evaluation metrics in- 136

clude F1 score, which is used in Longbench, and 137

exact match (EM). 138

LLMs We use Mistral-7B-Instruct-v0.2 (Jiang 139

et al., 2023a) as our primary LLM. It is an 140

instruction-tuned variant of Mistral-7B, which sup- 141

ports a maximum context length of 32K tokens, 142

making it well suited for long-context tasks. Fur- 143

thermore, we conduct experiments on the Lon- 144

gLoRA fine-tuned variant of the Llama2-13B (Tou- 145

vron et al., 2023) model: Llama2-13b-longlora- 146

32k-ft (Chen et al., 2024). The LongLoRA fine- 147

tuning extends the context length of Llama2-13B 148

to 32K tokens. All experiments were conducted on 149

a single NVIDIA A100 GPU. 150

Prompt Our prompt design adheres to the basic 151

format of TriviaQA and Qu et al. (2024). Figure 152

1 shows the structure of our prompt and detailed 153

prompt example can be seen in Appendix A. While 154

preserving the original prompt structure of Trivi- 155

aQA, we incorporate task-specific instructions be- 156

fore both the demonstrations and the query. 157

Passage Perturbation In our systematic pertur- 158

bation analysis, we mainly employ two methods to 159

perturb the passages in the demonstrations: sam- 160

pling and generation. For sampling-based perturba- 161

tion, we randomly sample and reorder tokens from 162

the original passage, ensuring that all the tokens 163

come from the original text. For generation-based 164

perturbation, we randomly generate a list of num- 165

bers as new input_ids sequences, ensuring that 166
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the perturbed results are completely independent.167

Our goal is to validate the importance of the orig-168

inal passage tokens in the context of ICL through169

the comparison of these two methods.170

Our experiments contain 4-shot and full-shot set-171

tings. We apply perturbation ratios of 1/81, 1/4,172

1/2, 3/4 for all 4-shot settings to the two demon-173

stration passage perturbation methods, evaluating174

their effects with different LLMs. For full-shot175

settings, we apply perturbation ratios of 1/8, 1/4,176

and 3/10 2 . Due to computational resource con-177

straints, full-shot experiments with complete pas-178

sages are infeasible. For comparison, we include179

full-shot setting without any passage (i.e., experi-180

ments where the passages in the demonstrations for181

ICL are entirely removed). For TriviaQA dataset,182

the full-shot setting means that we use all demon-183

strations in context for each input from the test data.184

Each input in the test data contains a different num-185

ber of demonstrations, ranging from a minimum of186

2 to a maximum of 25, with an average of 13.75187

and a median of 14.188

2.2 Results and Discussion189

Experimental results of 4-shot and full-shot settings190

are presented in Table 1 and 2 respectively. The191

results for both models indicate that LLMs fail192

to capture the intrinsic relationship between the193

passages and their corresponding generation targets194

in the demonstrations of ICL, and they look like195

"lost in the passage".196

All ICL results show significant improvement197

compared to the zero-shot setting, indicating that198

ICL is effective. However, both models demon-199

strate strong insensitivity to passage perturbations200

in passage-level ICL, with all results of passage201

perturbation exceeding the full passage settings.202

On Mistral-7B, the F1 and EM scores show an av-203

erage improvement of 3.37 points and 4.75 points204

compared to the full passage setting respectively.205

On Llama2-13B-longlora-32k-ft, the F1 and EM206

scores achieve an average gain of 2.85 points and207

2.81 points respectively. The 4-shot setting with208

1/8 generated passage even reduce the average209

prompt length from 2780.90 to 909.64 (shortening210

the length by 67%) while maintaining the perfor-211

mance, indicating that a significant portion of the212

context makes no contribution while consuming213

1“ratios of 1/8” means randomly generating / sampling
tokens with 1/8 length of original passage.

23/10 is used because we cannot apply 1/2 due to limited
memory.

computational resources. In contrast, as presented 214

at the bottom of Table 1, when we try to perturb 215

the question and answer in demonstrations, it leads 216

to a greater performance degradation than perturb- 217

ing the passage, indicating that, unlike passages, 218

questions and answers in demonstrations are rather 219

important for passage-level ICL. 220

Figure 2 presents two examples of random pas- 221

sage we use in perturbation experiments. The pas- 222

sage on the left presents the random generated pas- 223

sage, which is completely unreadable and meaning- 224

less. The random generated words are more diverse, 225

and it even contains words in other languages. On 226

the contrary, the sampled passage on the right is 227

more reasonable than the left passage, whose words 228

are sampled from the original passage. 229

The comparison between generation and sam- 230

pling perturbation methods reveals that the settings 231

with randomly generated, completely meaningless 232

passages achieve comparable performance, some- 233

times even better, to that of sample settings. This 234

indicates that the token sequences sampled from 235

the original passages do not bring improvements. 236

Meanwhile, except for the 4-shot experiment on 237

Mistral-7B, in experiments involving passage con- 238

tent, the performance surpasses that of no passage 239

settings, even when the generated tokens are en- 240

tirely meaningless. This demonstrates that, in most 241

cases, the presence of content in the passage po- 242

sition is more critical than better content in the 243

passage position. 244

We also conduct a detailed ablation study on 245

demonstration selection and Q & A perturbation. 246

The results can be seen in Appendix B. 247

3 Sentence-level Distractor Generation 248

Given that LLMs cannot learn the intrinsic rela- 249

tionship between the demonstration passage and 250

its corresponding demonstration target in single- 251

document QA tasks such as TriviaQA, we further 252

study whether similar trends can be observed in 253

other passage-level ICL scenarios. To this end, we 254

conduct experiments on RACE (Lai et al., 2017), 255

a commonly used dataset sourced from the educa- 256

tional domain and annotated by professional teach- 257

ers on the DG task, which is more complex than 258

single-document QA. 259

3.1 Experimental Setup 260

Task Description In the DG task, each instance 261

consists of a document, a question, a correct answer 262
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Mistral-7B-Instruct-v0.2 Llama2-13B-longlora-32k-ft
Settings F1 Exact Match Avg Prompt Length F1 Exact Match Avg Prompt Length
zero-shot 47.95 27.0 580.83 74.43 66.5 590.83
4-shot + no passage 73.52 63.0 669.50 71.21 67.5 669.50
4-shot + full passage 68.52 56.0 2780.90 85.00 80.5 2780.90
4-shot + generate 1/8 passage 73.60 62.5 909.64 88.32 83.0 914.97
4-shot + sample 1/8 passage 71.11 59.5 925.39 86.59 82.0 926.02
4-shot + generate 1/4 passage 74.46 63.5 1147.31 88.99 84.5 1160.67
4-shot + sample 1/4 passage 70.24 59.5 1193.07 86.87 82.5 1193.48
4-shot + generate 1/2 passage 72.83 61.5 1627.15 88.15 83.5 1649.72
4-shot + sample 1/2 passage 72.15 60.5 1721.07 88.70 84.5 1722.80
4-shot + generate 3/4 passage 71.97 61.0 2108.30 87.30 82.5 2138.39
4-shot + sample 3/4 passage 68.76 58.0 2239.56 87.89 84.0 2240.77
4-shot + generate question 63.51 49.5 2776.65 80.70 77.0 2777.59
4-shot + generate answer 64.18 50.0 2785.83 7.29 7.0 2785.46

Table 1: 4-shot results on TriviaQA. The best result in each column is marked in bold.

Mistral-7B-Instruct-v0.2 Llama2-13B-longlora-32k-ft
Settings F1 Exact Match Avg Prompt Length F1 Exact Match Avg Prompt Length
full-shot + full passage - - 8299.95 - - 8299.95
full-shot + no passage 75.31 64.5 853.30 75.29 71.5 853.30
full-shot + generate 1/8 passage 78.98 67.5 1701.51 88.90 84.5 1719.44
full-shot + sample 1/8 passage 79.35 68.0 1761.71 87.44 82.0 1765.19
full-shot + generate 1/4 passage 78.87 67.5 2543.09 88.51 83.5 2584.77
full-shot + sample 1/4 passage 78.97 67.5 2701.92 87.06 82.0 2705.60
full-shot + generate 3/10 passage 77.64 65.0 2881.74 87.51 82.5 2931.16
full-shot + sample 3/10 passage 77.76 66.5 3075.57 88.92 84.5 3080.37

Table 2: Full shot results on the TriviaQA dataset. The best result in each column is marked in bold.

to the question and several distractors designed263

to mislead the solver. In our experiments, LLMs264

are required to generate three distinct distractors.265

Our evaluation metrics include average BLEU and266

Pairwise BLEU. The former assesses the quality267

of the generated content, while the latter evalu-268

ates the diversity of the generated distractors, with269

lower values indicating better diversity. Consid-270

ering that RACE lacks pre-existing input context,271

we randomly select three sets of examples from272

the training set and use the same ICL demonstra-273

tion examples for each test instance. We report the274

average metrics over three sets of experiments.275

LLMs Since the prompt length is relatively short,276

we further include Llama2-13B-Chat alongside277

the two previously used LLMs, aiming to explore278

whether LLMs with extended context windows uti-279

lize contextual information more effectively.280

Prompt Our prompt format aligns with Qu et al.281

(2024), whose structure can be seen in Figure 1.282

We conduct 1, 2, 4, and 8-shot experiments.283

Passage Perturbation The method for perturb-284

ing documents remains consistent with the experi-285

ments on TriviaQA. For each few-shot experiment, 286

we configure perturbation ratios of 1/2 and 1/4, 287

with each ratio incorporating both generation-based 288

and sampling-based perturbation methods. 289

3.2 Results and Discussion 290

The results are presented in Table 3, from which 291

we can summarize the following findings. 292

LLMs exhibit a similar trend in the DG task, 293

showing insensitivity to the demonstration pas- 294

sages in ICL. Across different models and numbers 295

of shots, the perturbation settings achieve compa- 296

rable and sometimes even better performance than 297

those with full passages, while requiring a much 298

smaller context window. 299

Compared to previous experiments, the no- 300

passage settings do not always lead to the worst 301

performance. In contrary, 1-shot setting without 302

passage on Llama2-13B-Chat and 4 & 8-shot set- 303

tings without passage on longlora model achieve 304

the highest average BLEU among same settings, 305

and they have avg BLEU of 4.12, 8.58, 8.12 respec- 306

tively. Additionally, one observation is that settings 307

without passage on the two Llama models have 308

the highest pairwise BLEU, with the highest PB 309
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Figure 2: Example of random perturbation passage in demonstration. The passage on the left is random generated
passage, and passage on the right is random sampled passage.

Llama2-13B-Chat Llama2-13B-longlora-32k-ft Mistral-7B-Instruct-v0.2
Shot Settings AB PB(↓) Avg Length AB PB(↓) Avg Length AB PB(↓) Avg Length
zero-shot - 4.32 38.52 507.69 8.06 86.18 507.69 6.46 25.28 507.69
1-shot full 2.94 23.49 977.36 4.96 37.42 977.36 4.90 21.41 977.36

no passage 4.12 26.25 546.03 3.88 45.68 546.03 4.75 22.62 546.03
generate 1/2 4.02 23.57 682.65 4.69 37.19 682.30 4.93 25.46 676.94
generate 1/4 3.72 24.87 613.56 4.58 37.11 613.58 4.79 25.13 610.46
sample 1/2 3.05 23.87 764.85 4.08 30.40 764.85 4.83 23.15 763.47
sample 1/4 3.15 23.05 655.87 4.48 37.25 655.87 4.92 24.65 654.81

2-shot full 4.90 20.78 1376.03 6.69 51.13 1376.03 6.08 25.41 1376.03
no passage 4.46 27.73 583.03 6.39 80.48 583.03 4.47 29.23 583.03
generate 1/2 5.07 22.24 835.08 6.19 38.58 834.83 5.24 28.05 825.36
generate 1/4 5.17 24.98 706.92 6.32 45.67 707.43 5.12 28.15 702.14
sample 1/2 5.00 23.59 978.29 7.61 57.64 978.27 5.37 27.48 976.76
sample 1/4 4.94 25.54 782.93 7.10 59.9 782.94 4.99 28.92 781.46

4-shot full 6.01 19.95 2052.36 5.93 37.35 2052.36 6.10 24.41 2052.36
no passage 4.75 28.49 666.69 8.58 91.68 666.69 4.49 31.54 666.69
generate 1/2 5.35 25.03 1106.37 6.50 42.00 1105.79 4.81 29.5 1089.84
generate 1/4 5.47 27.36 882.83 7.33 53.34 882.79 4.96 30.24 873.92
sample 1/2 5.32 25.46 1344.98 6.18 42.96 1344.99 5.46 26.65 1342.76
sample 1/4 5.29 25.87 1002.72 7.91 64.08 1002.97 5.38 28.23 1001.16

8-shot full - - 3759.03 - - 3759.03 - - 3759.03
no passage 4.85 29.15 797.03 8.12 89.98 797.03 4.74 33.01 797.03
generate 1/2 5.23 22.32 1740.42 5.98 38.89 1741.50 5.10 31.01 1704.15
generate 1/4 5.59 25.63 1261.58 6.69 47.34 1260.66 5.30 31.31 1244.09
sample 1/2 5.40 22.73 2246.78 6.42 42.25 2246.75 5.63 27.64 2246.18
sample 1/4 5.38 23.93 1506.84 7.16 53.22 1506.97 5.96 29.37 1505.06

Table 3: Experimental results with three LLMs on RACE dataset with different settings. AB, PB and Avg Length
refer to average BLEU, pairwise BLEU, and average prompt length respectively.

reaching 91.68. This suggests that retaining some310

content in the passage position, even if it is entirely311

meaningless text, can enhance the diversity of the312

content produced through generation by LLMs.313

LLM with context windows extended (Llama2-314

13B-longlora-32k-ft) achieves better general per-315

formance, while is poorer at output diversity and316

stability. The longlora model has a much higher317

Avg BLEU score, but it suffers from low diversity,318

with the highest Pairwise BLEU reaching 91.68,319

which means that the three distractors are almost320

the same. Moreover, the stability of the model is321

worse than others, as shown by the drastic fluctua-322

tions in both Avg BLEU and Pairwise BLEU.323

It is noteworthy that the relative orders of Q &324

A & P in the prompt for two tasks are different. As325

shown in Figure 1, the passage is at the beginning 326

in TriviaQA’s prompt, while in that of RACE, it is 327

at the end. However, models show insensitivity to 328

passages in both tasks, indicating that the finding 329

of previous experiments is universal, and the insen- 330

sitivity of the model to passage is not due to the 331

order of Q & A & P, but rather to the model itself. 332

Detailed results of ablation study on DG can be 333

seen in Appendix C. 334

4 Why Are LLMs Insensitive to Passages? 335

In this section, from the aspect of attention and in- 336

formation flow, we provide a deeper confirmation 337

to our hypothesis extracted from former experi- 338

ments H: In passage-level ICL, LLMs are in fact 339

unable to capture the intrinsic relationship between 340
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Figure 3: Attention scores of components in prompt on
TriviaQA. The horizontal axis index from left to right
is Passage, Question, Answer, Instruction, Passage of
Query, Question of Query, respectively.

demonstration passage and its generation target.341

4.1 Attention Analysis342

We compute the average attention scores received343

by the first generated token from different compo-344

nents of the prompt across five hidden layers during345

inference. This analysis, to some extent, reflects the346

influence of the prompt’s components on the gen-347

eration. Considering that returning the attention348

matrix will consume more computing resources349

than usual, we experiment with two settings for350

each task. On Trivia QA, we use a 2-shot + full351

passage prompt and a random half-shot3 + gener-352

ate 1/4 passage. On RACE, we use 2-shot + full353

passage prompt and 2-shot + random generate 3/4354

passage prompt. The partial results on TriviaQA355

are in Figure 3 (full results in Appendix D.1), and356

those on RACE are in Appendix E.357

In the first hidden layer, the attention scores re-358

ceived from different parts of the demonstrations359

remain approximately equal, indicating that the360

model does not exhibit a significant preference for361

any part during the early inference stage. However,362

in other layers, the attention scores for demonstra-363

tion passages decrease significantly, falling behind364

those of other components in the demonstrations.365

This is consistent across both the full passage and366

randomly generated passage settings, suggesting367

that LLMs in fact pay little attention to the demon-368

3"half-shot" means randomly selecting half of the demon-
strations.

stration passage. Additionally, an interesting find- 369

ing is that, apart from the query components, task 370

instruction contributes the most attention to the 371

model. This observation partially explains why 372

modifying instructions can lead to substantial per- 373

formance changes in certain scenarios. 374

We also compute the attention scores between 375

different demonstration parts. The results are in 376

Appendix D, which also align with our finding. 377

4.2 Information Flow Analysis 378

We further confirm our hypothesis from the per- 379

spective of information flow based on saliency 380

scores (Simonyan et al., 2014). We follow the 381

common practice of computing the saliency score 382

matrix using Taylor expansion (Michel et al., 2019; 383

Wang et al., 2023). The saliency score matrix at 384

the l-th layer Il is: 385

Il =

∣∣∣∣∣∑
h

Ah
l ⊙

∂L(x)
∂Ah

l

∣∣∣∣∣, (1) 386

where Ah
l represents the attention matrix of the h- 387

th head at the l-th layer, and L(x) denotes the loss 388

function (cross-entropy loss for generation tasks 389

in our experiments). The element Il(i, j) repre- 390

sents the significance of information flow from the 391

the j-th token to the i-th token. Then, we define 392

several metrics to measure the significance of infor- 393

mation flow between components of demonstration. 394

Taking the P2A metric, which measures the infor- 395

mation flow between the passage and the answer in 396

demonstration, as an example, we denote N as the 397

number of shots, pki and akj as the i-th and j-th to- 398

ken of the k-th demonstration passage and answer: 399

Sl
P2A =

∑
(i,j)∈TP2Q

Il(i, j)

|TP2Q|
,

TP2A = {(pki , akj ) : k ∈ [1, N ]}.
(2) 400

Calculation of other metrics such as Sl
P2Q and 401

Sl
Q2A all resemble Equation 2. Due to compu- 402

tational resource constraints, we conduct exper- 403

iments only on Mistral-7B for both tasks, with 404

"1-shot full passage" and "2-shot 1/2 generated 405

passage" settings. The results of TriviaQA are in 406

Figure 4 and those of RACE are in Appendix F. 407

In both settings and tasks, the saliency scores 408

between demonstration passage and generation tar- 409

get are relative low. Specifically, across all layers 410

of the model on TriviaQA, SP2A is significantly 411

lower than SQ2A, and is comparable to SP2Q. Both 412
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Figure 4: Saliency scores between components of demonstration on TriviaQA.

settings exhibit such trend, indicating that settings413

with full passage cannot benefit the model, in line414

with our results in Section 2 and 3. This suggests415

that the information primarily flows from the ques-416

tion to the answer, independent of the passage.417

Similar trend can be found in RACE experiments,418

which indicates that information mainly flows from419

question to the distractors. These demonstrate the420

model cannot learn the intrinsic relationship be-421

tween the passage and the generation target, as422

both tasks require the model to extract information423

from the passage, yet the model fails to do so.424

5 Passage Compression in ICL425

In this section, we explore whether compression426

algorithms can preserve the most important parts427

of passages in ICL and achieve better performance428

than random generation and sampling.429

5.1 Experimental Setup430

We perform two types of compression methods:431

retrieval-based and perplexity-based.432

In retrieval-based compression (Jiang et al.,433

2024), we use the question from each ICL demon-434

stration as the retrieval key. After segmenting the435

passage into sentences, we retrieve the top 5 sen-436

tences that are most similar to the question. Ad-437

ditionally, we include a comparison with retrieval438

re-ranking, where the retrieved sentences are re-439

ordered based on the retrieval model’s score rather440

than retaining their original order in the passage.441

For perplexity-based compression, we employ442

LLMLingua (Jiang et al., 2023b) and LongLLM-443

lingua (Jiang et al., 2024), two methods exhibit-444

ing strong performance on multiple long-document445

tasks and have been proven to effectively preserve446

key information. However, in passage-level ICL,447

the demonstration passages do not directly relate to448

the query. Our focus is on whether shorter, poten-449

tially better passages can help LLMs capture the450

Method F1 EM Avg Length
Our Best 79.35 68.0 1761.71
Our Avg 78.60 67.0 2444.26
LLMLingua 71.36 59.5 2246.68
LongLingua 71.33 58.5 3508.65
BM25 Rerank 67.73 56.5 2670.90

+Random Half Shot 68.07 58.0 1602.99
BM25 67.80 56.5 2670.90

+Random Half Shot 68.03 58.0 1602.99
Rouge Rerank 66.87 55.0 2332.38

+Random Half Shot 67.42 56.5 1443.69
Rouge 68.03 57.0 2332.38

+Random Half Shot 67.41 57.5 1443.69

Table 4: Results of TriviaQA compression experiments
with Mistral-7B-Instruct-v0.2. Our Best and Our Avg
refer to the best and average results from all random
perturbation settings. We mark the results of the best
setting and our prior best in bold.

intrinsic relationship between the passage and its 451

corresponding generation target. 452

5.2 Results and Analysis 453

Table 4 shows the results of our compression exper- 454

iments using Mistral-7B-Instruct-v0.2 on TriviaQA. 455

The results indicate that the performance of all com- 456

pression methods is inferior to that of random gen- 457

eration and sampling. The Lingua series methods 458

outperform retrieval-based compression methods, 459

but their performance is still 7 points lower than 460

the average performance of random perturbation 461

experiments. Furthermore, whether re-ranking or 462

randomly selecting demonstrations has a minimal 463

impact on performance, indicating that, in ICL of 464

single-document QA tasks, the presence of content 465

in the passage position is more critical than better 466

content in the passage position. 467

Table 5 presents the results using Llama2-13B- 468

Chat on RACE. Compared to the previous exper- 469

iments on TriviaQA, the performance of all com- 470

pression methods is similar, with little performance 471

fluctuations. Notably, although the performance of 472
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Shot Settings AB PB(↓) Avg Length
1-shot Our Best 4.12 26.25 546.03

Our Avg 3.61 24.32 652.59
Rouge Rerank 3.45 28.52 646.69
BM25 Rerank 3.10 25.24 651.36
Rouge 3.44 27.24 646.69
BM25 3.14 24.67 651.36
LLMLingua 2.97 26.80 676.03
LongLingua 3.32 21.14 734.69

2-shot Our Best 5.17 24.98 706.92
Our Avg 4.93 24.82 777.25
Rouge Rerank 5.29 24.39 753.69
BM25 Rerank 5.24 24.08 768.69
Rouge 5.18 24.57 753.69
BM25 5.40 23.19 768.69
LLMLingua 5.23 24.60 806.69
LongLingua 5.28 24.75 884.03

4-shot Our Best 5.47 27.36 882.83
Our Avg 5.24 26.44 1000.72
Rouge Rerank 5.53 24.32 990.69
BM25 Rerank 5.76 23.63 1037.36
Rouge 5.62 24.49 990.69
BM25 5.67 22.56 1037.36
LLMLingua 5.92 23.72 1204.03
LongLingua 5.52 25.55 1284.69

8-shot Our Best 5.59 25.63 1261.58
Our Avg 5.29 24.75 1510.53
Rouge Rerank 6.19 24.31 1433.69
BM25 Rerank 6.43 24.86 1531.36
Rouge 6.19 23.89 1433.69
BM25 6.31 24.52 1531.36
LLMLingua 5.98 23.48 1898.03
LongLingua 5.89 23.49 2098.69

Table 5: Results of RACE compression experiments
with Llama2-13B-Chat.

compression methods in the 4-shot and 8-shot set-473

tings is slightly higher than that of random pertur-474

bation experiments (improving by approximately475

0.5 points), we consider this marginal performance476

gain insufficient to conclude that compression al-477

gorithms allow LLMs to capture the intrinsic rela-478

tionship between passages and generation targets.479

6 Related Work480

6.1 How Do LLMs Utilize the Context?481

Numerous previous studies have explored, from482

various perspectives, how LLMs utilize context and483

derive certain insights from ICL. From the perspec-484

tive of context perturbation, Min et al. (2022) pro-485

poses that ground truth demonstrations are not es-486

sential. Instead, the label space, the distribution of487

the input text, and the input format play a more im-488

portant role in ICL. Furthermore, Liu et al. (2023)489

finds that the position of key information within490

the context significantly impacts performance, with491

key information appearing in the middle position 492

leading to worse performance. Another perspective 493

explains the underlying mechanism of ICL, such 494

as implicit gradient descent during ICL (Dai et al., 495

2023; von Oswald et al., 2023) and considering 496

label words as anchors in ICL (Wang et al., 2023). 497

6.2 Compression Methods for LLMs 498

In general, prior work on compression methods can 499

be divided into three categories: extractive method, 500

abstractive method, and soft prompt method. 501

The extractive method selects some tokens from 502

the original context, ensuring that the compressed 503

results are completely derived from the original 504

context. Representative works include selective 505

context (Li et al., 2023), LLMLingua (Jiang et al., 506

2023b), LongLLMLingua (Jiang et al., 2024), 507

LLMLingua2 (Pan et al., 2024) and the ReCOMP 508

extractive compressor (Xu et al., 2023). 509

The abstractive method aims to generate contex- 510

tual summaries through language models, ensur- 511

ing the coherence and fluency of the compression 512

results. including ReCOMP abstractive compres- 513

sor (Xu et al., 2023), Nano-Capsulator (Chuang 514

et al., 2024), ComPact (Yoon et al., 2024), and 515

semantic compression (Fei et al., 2023). 516

The soft prompt method compresses the natural 517

language context into soft prompts, aiming to ag- 518

gregate the key information. Representative works 519

include query-guided compressor (Cao et al., 2024) 520

and Dodo (Qin et al., 2024). 521

7 Conclusion 522

In this study, we find that LLMs are unable to 523

capture the intrinsic relationship between the pas- 524

sage and its corresponding generation targets in 525

passage-level ICL. Through experiments on single- 526

document QA and sentence-level DG, we find that 527

randomly perturbing the passage in the demonstra- 528

tions has minimal impact on performance. Based 529

on above experiments, we conduct attention and in- 530

formation flow analysis. The results consistently in- 531

dicate that LLMs are insensitive to passage during 532

inference. Finally, we introduce compression meth- 533

ods and experimentally show that these methods, 534

while performing well in other long-context tasks, 535

do not provide significant advantages in passage- 536

level ICL. All these results shows that passage-level 537

ICL does not necessarily need a regular "Passage". 538

We hope our finding could inspire future work on 539

explaining the inner mechanisms of ICL. 540

8



Limitations541

First, due to resource limitations, we only study542

open-source LLMs no larger than 13B and the543

passage-level ICL performance on larger models,544

especially powerful models that are extremely good545

at processing very long context or perturbed con-546

tent, remains under-explored. Second, we focus547

on traditional ICL paradigm and use a common548

prompt template only. The performance is not549

validated under other paradigms such as chain-of-550

thought (Wei et al., 2022) and different prompt551

templates. Furthermore, although we have shown552

that random perturbation can achieve competitive553

results with shorter context length compared to rep-554

resentative context compression approaches, how555

to effectively compress the context for passage-556

level ICL while keeping stable performance is still557

unclear and requires future exploration. A promis-558

ing future direction is combining perturbation and559

compression since they are orthotropic.560
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A Prompt Example 707

We design two different prompt formats for the 708

TriviaQA and RACE datasets, as shown in Table 709

6. The prompts for both tasks consist of the fol- 710

lowing components: instructions, demonstrations, 711

task description, and the query-related information. 712

However, there are some differences in the prompts 713

for the two tasks. For TriviaQA, since the ques- 714

tions and answers are typically limited to a single 715

line, the different sections of the prompt are sepa- 716

rated by only the newline character ’\n’. In contrast, 717

the RACE dataset features multiple distractors for 718

the same question and several newline characters 719

within the single passage, which makes it difficult 720

to distinguish different parts with only a single ’\n’. 721

As a result, we decide to choose the ’<>’ as a more 722

precise and efficient symbol to locate the corre- 723

sponding content. In addition, the instructions and 724

task descriptions are designed differently for the 725

two different tasks. This tailored design enables 726

both tasks to achieve strong performance. 727

When we look closely at the prompts for the two 728

tasks, we can see that the instruction in TriviaQA 729

primarily guides the model to focus on answering 730

QA-type tasks. In contrast, the instruction for the 731

RACE dataset requires the model to generate dis- 732

tractors that align with the relationship between the 733

question and answer. At the same time, both tasks 734

require the model to produce answers in a specified 735

format. 736

B Ablation Study on single-document QA 737

Task 738

We conduct ablation studies on Mistral-7B. We 739

introduce random demonstration selection, where 740

we randomly select half of the context demonstra- 741

tions, and random generation of question and an- 742

swer in demonstrations. Experimental results are 743

presented in Table 7. The results show that ran- 744

domly selecting half of the ICL examples causes 745

a slight decline in performance, which perhaps re- 746

sults from the reduction of QA pairs. However, per- 747

turbing the question-answer pairs exhibits a more 748

substantial impact on model performance. This 749

effect becomes particularly pronounced when both 750

components are altered simultaneously, resulting in 751

significantly decreased F1 and EM scores. And this 752
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TriviaQA RACE
You are a helpful AI educational assistant that help students
in educational field. You are required to generate answer to
the question with the given passage. Next I will propose you
several examples.
Passage: D_Passage
Question: D_Question
Answer: D_Answer
Now according to the following document, question, gener-
ate answer for the question. There are some requirements
for you: 1. The returned result can be an incomplete sub-
sentence because the grammar structure of the question may
be incomplete, but if the return result is incomplete, the com-
bined question-result sentence must have complete grammar
structure. 2. Do not generate any irrelvant words.
Passage: Q_Passage
Question: Q_Question
Answer: Q_Answer

You are a helpful AI educational assistant that help teach-
ers in educational field. You are required to generate three
distractors with the given document, question and answer.
Distractors are incorrect answers to the question according to
the input document, which are opposite to the answers. The
three distractors should be returned in three lines and each
line should begin with "<result>" and end with "</result>".
Next I will propose you several examples.
<question> D_Question </question>
<answer> D_Answer </answer>
<document> D_Passage </document>
<result> D_Distractor </result>
Now according to the following document, question and an-
swer, generate three distractors. There are some requirements
for you: 1. The returned result can be an incomplete sub-
sentence because the grammar structure of the question may
be incomplete, but if the return result is incomplete, the com-
bined question-result sentence must have complete grammar
structure. 2. The three generated results should be returned
in three lines. Each line should begin with ’<result>’ and end
with ’</result>’ The three distractors can be: <result>
<question> Q_Question </question>
<answer> Q_Answer </answer>
<document> Q_Passage </document>

Table 6: Prompt for TriviaQA and RACE dataset. D refers to components in demonstrations. Q refers to components
in query.

Settings F1 Exact Match Avg prompt length
Half-shot + generate 1/2 passage 72.23 62.0 2351.52
Half-shot + generate 1/4 passage 71.99 60.5 1528.64
Half-shot + generate 1/8 passage 74.97 63.5 1123.49
Half-shot + generate 1/8 passage + random question 69.48 56.5 1124.42
Half-shot + generate 1/8 passage + random answer 69.57 55.0 1137.71
Half-shot + generate 1/8 passage + random question & answer 66.68 52.0 1132.24

Table 7: Results of TriviaQA ablation study about question & answer perturbation on Mistral-7B-Instruct-v0.2

further confirms the finding that instead of captur-753

ing the intrinsic relationship from demonstrations,754

LLMs tend to mimic the generation target and then755

generate output based on query (Min et al., 2022).756

C Ablation Study on DG Task757

We also conduct ablation study on perturbations758

of the question, answer, and distractor within the759

context of ICL demonstrations. In previous ex-760

periments, each demonstration contains only one761

question and answer. In the ablation experiments,762

we incorporate multiple questions, answers, and763

distractors from the given dataset into the demon-764

stration in a list format, while keeping the query765

and other components unchanged. Compared to766

the perturbation of q& a & d in section 2.2, a more767

regular perturbation will present a credible result .768

By introducing perturbations to the format of ques-769

tions, answers, and distractors in demonstrations,770

we can more clearly observe that perturbing parts771

more closely related to the generation target has a 772

greater impact on the model than perturbing pas- 773

sages. The experimental results are presented in 774

Table 8. 775

It is observed that this modification leads to a sig- 776

nificant performance degradation. Avg BLEU of al- 777

most each setting drops below 3.00, while the Pair- 778

wise BLEU remains the same trend. Through case 779

studies, we find that the model’s outputs mimic 780

the list format in the demonstrations. The mere 781

introduction of a list format for questions, answers, 782

and distractors results in such a substantial change, 783

whereas completely random generation of passages 784

even improves overall performance in some set- 785

tings. This reveals the model’s insensitivity to the 786

content of the passages. 787
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list q&a&d
shot num Settings AB PB(↓) Avg length
1-shot Our best 4.12 26.25 546.03

full 2.27 24.17 1018.69
no passage 2.27 28.08 587.36
generate 1/2 2.41 26.43 723.66
generate 1/4 2.31 27.39 654.98
sample 1/2 2.26 26.20 806.16
sample 1/4 2.26 26.98 697.20

2-shot Our best 5.17 24.98 706.92
full 2.44 20.50 1489.03
no passage 2.69 26.28 696.03
generate 1/2 2.76 24.55 948.59
generate 1/4 2.75 24.83 820.36
sample 1/2 2.61 23.90 1091.31
sample 1/4 2.76 25.29 895.92

4-shot Our best 5.47 27.36 882.83
full 2.72 23.60 2288.03
no passage 2.76 26.77 902.36
generate 1/2 2.81 28.40 1340.86
generate 1/4 2.72 28.26 1118.43
sample 1/2 2.66 27.55 1580.63
sample 1/4 2.81 28.03 1238.44

8-shot Our best 5.59 25.63 1261.58
full - - -
no passage 2.62 27.64 1317.36
generate 1/2 2.14 35.20 2260.99
generate 1/4 2.97 26.84 1782.64
sample 1/2 2.76 24.72 2767.14
sample 1/4 3.16 27.12 2027.31

Table 8: Ablation study results of Llama2-13B-Chat on
RACE dataset. The prior best refers to the best result
from all random perturbation settings under the same
shot.

D Attention Analysis between Passage788

and Other Components of789

Demonstration790

In this section, we directly compute the average at-791

tention scores between different parts of the demon-792

stration, such as the question, receive from or con-793

tribute to the passage, determined by their relative794

positions in the prompt. Since we only focus on795

the relative attention scores, we compute the scores796

on all hidden layers. The results for TriviaQA are797

presented in Figure 5, while the results for RACE798

can be found in Appendix E.799

As shown in Figure 5, the attention passed from800

the demonstration passage to its corresponding an-801

swer is lower than that of the question, indicating802

models’ relative insensitivity between the passage803

and the target. Apart from that, the scores drop af-804

ter the first layer, and remain at a low level below 6.805

This aligns with the observation from the previous806

section, which indicates that the model exhibits no807
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Figure 5: Relative attention scores on TriviaQA with
prompts of two settings.

preference for any part of demonstrations during 808

the early stages of inference and pays almost no 809

attention to the passage after the first layer. Results 810

on RACE also reveal this trend. 811

D.1 Full Attention Results on TriviaQA 812

As previously stated in Section 4.1, the full atten- 813

tion results of TriviaQA can be seen in Figure 6. As 814

shown in Figure 6 that in other layers including the 815

1/4 & 1/2 layer, the attention scores for demonstra- 816

tion passages decrease significantly, falling behind 817

those of other components in the demonstrations, 818

which is consistent across both the full passage 819

and randomly generated passage settings. Figure 6 820

more comprehensively confirms our finding. 821

E Attention Results on Distractor 822

Generation 823

To investigate the underlying reasons for this phe- 824

nomenon, we visualize the attention scores of the 825

LLM and perform a comparative analysis. The re- 826

sults of RACE are shown in Figure 7 and Figure 827

8. 828

Figure 7 illustrates the impact of two different 829

settings on attention scores: the position of dif- 830

ferent model layer and different components of 831

prompts. As mentioned in the previous section, the 832

attention score distribution of an input sequence un- 833

dergoes relatively significant changes as it passes 834

through deeper layers of the model. Initially, the 835

distribution is relatively uniform, but in the mid- 836

dle layers, attention shifts primarily to three parts: 837

the output section within the demonstration, the 838

instruction, and the query. In the attention distri- 839

bution of the last layer, a trend similar to that of 840

the middle layers can be observed. However, the 841

model shows increased attention to the demonstra- 842

tion compared to the middle layer, probably due to 843

its increased information on overall information in 844

12
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Figure 6: Attention scores of components in prompt on TriviaQA. The horizontal axis index from left to right is
Passage, Question, Answer, Instruction, Passage of Query, Question of Query , respectively.

the final layer. Meanwhile, the concentrated atten-845

tion on the instruction and query sections remains846

consistent with previous findings. Additionally, the847

attention distributions in different layers are highly848

similar between the full Original Passage and the849

3/4 Generated Passage.850

Figure 8 reveals a similar trend to the previous851

finding. The experimental setup is similar to that of852

TriviaQA, However, since the question and the cor-853

responding answer appear before the passage in the854

demonstration, while the distractors are positioned855

after the passage. Since the decoder-only architec-856

ture only access tokens preceding the current token,857

the relative attention scores are categorized into858

three types: Question2Passage, Answer2Passage,859

and Passage2Distractors. The trend of relative at-860

tention scores across layers under both settings861

is similar to that observed in the QA task. The862

P2D score is significantly lower than the Q2P and863

A2P scores, indicating that the connection between864

the passage and the corresponding target is much865

weaker than other parts’ connection with the pas-866

sage. When the number of the layers is less than867

six, the overall attention scores are low, correspond-868

ing to a flat attention distribution at the beginning.869

In deeper layers, the relative attention score and the870

attention distribution become more directional and871

focused. Although the trends of the three relative872

attention scores are generally similar under two873

settings, the overall relative attention scores for the874

random generated passage in deeper hidden layers875

are significantly lower than those for the full pas- 876

sage. This may be because the randomly generated 877

passage has a weaker semantic connection to the 878

corresponding question, answer, and distractors. 879

F Information Flow Results on Distractor 880

Generation 881

In this section, we conduct saliency scoring ex- 882

periments on RACE, with complete results shown 883

in Figure 9. The SP2D&SA2D metrics in Figure 884

9 follow the same definitions as in Section 4.2, 885

except that the answer is replaced by distractors. 886

As observed in Figure 9, although SP2D reaches 887

relatively higher scores compared to SP2A on Triv- 888

iaQA, it remains significantly lower than the other 889

metric. This indicates that information primarily 890

flows from answers to distractors, which aligns 891

with our previous findings. 892

G License 893

Artifacts License
RACE CMU
TriviaQA Apache-2.0
sacreBLEU Apache-2.0
nltk Apache-2.0
Mistral-7B-Instruct-v0.2 Apache-2.0
Llama2-13B-longlora-32k-ft Apache-2.0
Llama2-13B-Chat Meta
gensim LGPL-2.1

Table 9: Licenses of scientific artifacts we use.
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