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Abstract

Enhancing the generalisation abilities of neural networks (NNs) through integrating noise
such as MixUp or Dropout during training has emerged as a powerful and adaptable tech-
nique. Despite the proven efficacy of noise in NN training, there is no consensus regarding
which noise sources, types and placements yield maximal benefits in generalisation and con-
fidence calibration. This study thoroughly explores diverse noise modalities to evaluate their
impacts on NN’s generalisation and calibration under in-distribution or out-of-distribution
settings, paired with experiments investigating the metric landscapes of the learnt repre-
sentations, across a spectrum of NN architectures, tasks, and datasets. Our study shows
that AugMix and weak augmentation exhibit cross-task effectiveness in computer vision,
emphasising the need to tailor noise to specific domains. Our findings emphasise the ef-
ficacy of combining noises and successful hyperparameter transfer within a single domain
but the difficulties in transferring the benefits to other domains. Furthermore, the study
underscores the complexity of simultaneously optimising for both generalisation and cali-
bration, emphasising the need for practitioners to carefully consider noise combinations and
hyperparameter tuning for optimal performance in specific tasks and datasets.

1 Introduction

Neural networks (NNs) have demonstrated remarkable capabilities across various tasks, yet they often grapple
with overfitting to training data, resulting in suboptimal generalisation performance on unseen samples (Sri-
vastava et al., 2014} Bishopl 1995} Sietsma & Dow, |1991)). Addressing this issue, conventional techniques such
as weight decay (Krogh & Hertzl [1991)) and early stopping (Prechelt, 2002|) have been employed to regularise
NN training. Alongside these methods, the introduction of noise during the NN’s training has emerged as a
potent strategy to enhance generalisation (Sietsma & Dow, [1991; Neelakantan et al.l [2017; |Camuto, 2021;
Kukacka et all [2017). Diverging from weight decay and early stopping that modulate the model’s search
within the hypothesis space, noise injections embrace randomness during training, fostering exploration of
a broader array of representations (He et al., |2019). The appeal of noise injections extends further due to
their versatile applicability across diverse tasks, datasets, and NN architectures. These attributes establish
noise injections as a convenient approach for enhancing NN’s algorithmic performance.

Various noise injection methodologies have been proposed, encompassing activation techniques such as
Dropout (Srivastava et al.l [2014; (Gal & Ghahramanil, [2016) and Gaussian Dropout (Kingma et al., 2015)),
weight noises such as DropConnect (Wan et al., [2013)) or additive Gaussian noise (Blundell et al., 2015)),
target methods such as label smoothing (Szegedy et al.l 2016]), input-target strategies exemplified by
MixUp (Zhang et al. 2018]), input modifications such as AugMix (Hendrycks et al., [2020) or the standard
horizontal flipping and center cropping (Krizhevsky et al., [2009), model approaches including weight per-
turbation (Ash & Adams| 2020)), and gradient perturbations involving Gaussian noise (Neelakantan et al.|
2017). Despite the diversity of these techniques, comprehensive and fair comparisons are scarce, leaving a
gap in understanding which approach is helpful for specific datasets, tasks and models. This study aspires
to bridge this gap by presenting:
1. The first systematic empirical investigation into the impact of noise injections on NN generalisation and
calibration across diverse datasets, tasks and NN architectures. Our exploration extends to evaluation
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under in-distribution (ID) and out-of-distribution (OOD) scenarios and their transferability across archi-
tectures and datasets.

2. A methodological framework for simultaneously combining various noise injection approaches.

3. Visualisation of the learnt representation landscape across noises, jointly comparing calibration and gen-
eralisation performance.

The findings show that AugMix, weak augmentation, and Gaussian noise prove effective across diverse tasks,
emphasising their versatility. Task-specific nuances in noise effectiveness, such as AugMix’s superiority
in computer vision (CV) and Output Diversified Sampling (ODS) in natural language processing (NLP),
highlight the need for tailored approaches. Combining noises, careful hyperparameter tuning, and task-
specific considerations are crucial for optimising NN’s performance.

2 Related Work

The concept of noise injections in this study refers to the deliberate introduction of perturbations into
different aspects of NN training — including input data, targets, activations, weights, gradients, and
model parameters. These perturbations aim to enhance the generalisation performance of NNs without
presupposing any particular data or model characteristics, focusing solely on the underlying task, be it
classification or regression. Under these conditions, we review several different noise injection strategies.

Input Noise: Pioneering work by [Sietsma & Dow] (1991)) demonstrated the benefits of training with added
input Gaussian noise, while [Bishop| (1995|) established its linkage to regularisation in the least squares prob-
lems. Variants of MixUp have exhibited efficacy in augmenting both generalisation and calibration (Zhang
et al.l [2018} [Miiller et al., 2019; |Guo et all [2019; [Yao et all [2022; |Guo et al., 2017). MixUp linearly
blends two samples and their label classification, with CMixUp expanding this approach to regression prob-
lems. AugMix, domain-specific to CV, extends the concept by applying a sequence of image processing
operations to the input, bolstering robustness in OOD settings. From the adversarial robustness domain,
ODS augments inputs with random noise to diversify the inputs (Tashiro et al., [2020). Target Noise:
Employed extensively, label smoothing (Pereyra et al., [2017), MixUp and CMixUp through target interpo-
lation (Zhang et al.l |2018; [Yao et al., 2022)) emerge as key target noise strategies. Label smoothing replaces
one-hot targets with softened counterparts, effectively improving NN’s robustness in classification (Miiller
et all [2019). Activation Noise: Widespread activation noise includes Dropout or Gaussian noise injec-
tions. Dropout (Srivastava et al.,|2014; Noh et al.l |2017) randomly deactivates activations through randomly
sampled 0-1 noise, while Gaussian noise injections add noise to activations (Kingma et al.| |2015; DeVries &
Taylor, |2017). Bayesian NNs (Gal & Ghahramani, 2016) incorporate these injections during training and
evaluation, in contrast to our work’s focus solely on their application in training. Weight Noise: Unlike
Dropout, DropConnect (Wan et al., |2013) randomly deactivates weights or connections between neurons,
while Gaussian noise injections add noise to weights (Blundell et al.l |2015)). Note that we do not model the
variance of the Gaussian noise through learnable parameters, as in (Blundell et al., [2015), but rather fix
it through a searchable hyperparameter. We do this to ensure a fair comparison with other noise injection
approaches, such as Dropout, which do not have learnable parameters and would require changing the model
architecture to accommodate them. Gradient Noise: Annealed Gaussian noise added to gradients during
training has demonstrated its efficacy in improving NN generalisation |Neelakantan et al.| (2017)); Welling &
Teh| (2011); |Zhou et al| (2019); |Chaudhari & Soatto| (2015); Wu et al.| (2020). Model Noise: A recent
contribution, Gaussian noise injection through periodic weight shrinking and perturbation |Ash & Adams
(2020), improves retraining generalisation.

In previous work, the impact of noise per injection type was studied. [Poole et al.| (2014]) show that inject-
ing noise at different layers of autoencoders implements various regularisation techniques and can improve
feature learning and classification performance. |Cohen et al. (2019) show that smoothing classifiers with
Gaussian noise naturally induces robustness in the L2 norm. [Wei et al.| (2020)) disentangle and analytically
characterise the explicit regularisation effect from modifying the expected training objective and the implicit
regularisation effect from the stochasticity of Dropout noise in NNs. |Camuto| (2021)); Camuto et al.| (2020)
show that training NNs with Gaussian noise injections on inputs and activations regularises them to learn
lower frequency functions, improves generalisation and calibration on unseen data but also confers robustness
to perturbation. |Jang et al|(2021) show that training NNs on noisy images can improve their robustness
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and match human behavioural and neural responses. Lastly, |Kukacka et al.| (2017) provided a taxonomy
of regularisation in NNs, covering multiple noise-based approaches. Past work has studied noise injection
techniques in isolation, mainly focused on generalisation alone, lacked comprehensive hyperparameter opti-
misation, and rarely evaluated the robustness of distribution shift. For example, only MixUp, AugMix and
label smoothing have been studied in terms of calibration (Guo et al.l [2017; Miiller et al.l 2019; |Guo et al.|
2019; [Yao et al., [2022).

While promising, these methods require further unified analysis to determine their relationships across
datasets, tasks and architectures. Our work addresses these gaps by 1.) studying the impact across datasets,
tasks and architectures; 2.) benchmarking the impact of noise injections’ hyperparameters on transferability
between datasets and architectures; 3.) studying confidence-calibration in addition to generalisation; 4.)
performing a comprehensive hyperparameter search with fair comparisons; 5.) evaluating robustness to
distribution shift; 6.) providing a methodological framework for combining and tuning various noise injection
approaches across categories; and lastly 7.) visualising the learnt representation or learning landscape
across noise injections in 1D or 2D (Goodfellow et all 2014} |Li et al.| 2018) across both generalisation and
calibration.

3 Methodology

We establish a structured methodology
to investigate noise injections’ effects on
NNs. The noise types are divided into
input, input-target, target, activa-
tion, weight, gradient and model, and
we enable their conditional deployment
through probabilities {pi;..}7, in the

Algorithm 1 Training of a Neural Network with Noise

Require: Training dataset D = {(x,yp)},, L batches, num-
ber of epochs E, network depth D, weights W = {W9}L_ |
hidden states z{, activations {¢?(-)}2_,, weighted operations
{fe(-, WL |, S noise types, probabilities of applying noise
to a batch {p! ...}, Noise hyperparameters (HPs) {5?}5_;.

range 0 < pi .. < 1, where § de- I Initialise W randomly

notes the number of noises. The training 2 for e = 1to E do

allows simultaneous consideration of § 3 forb=1to L do

noise types, each associated with specific % Randomly select a batch (2, ) from D

hyperparameters {6'}5_ ;. The hyperpa- for i=1to S do

rameter ranges for all noise types are out- Sample € ~ U(0,1)

lined in the Appendix. The probabilities if € <Pploise .thgn ) ,

{pi ... }5_, allow us to tune the frequency & En.able noise ¢ with hyperparameters ¢* for b

of applying each noise type, while the hy- end if

perparameters {§°}5_, will enable us to 1% end for

adjust the magnitude of each noise type. 1L 0

This enables us to tune both the mag- 1% 2y = Tb

nitude and frequency of noise injections, 13

unlike, for example, Dropout (Srivastava] 1% for d=1to D do

et al|[2014), which only allows the tuning 15 ) J drdet tod

of the magnitude, and it is applied every 1 Compute hidden state 2, = f*(h;, ", W*)
17:

batch: | | i o = ()

Algorithm [I] provides a comprehensive g end for

overview of the training process, ex- 9. Assign predictions g, = Zg

ecuted throughout £ epochs with L o, Compute loss £(§*,y") and gradients Vy L

batches processed per epoch. For ev- oo

ery batch, input and target data (zp,ys) 93 Update weights W

are randomly drawn from the training o4. end for

dataset D = {(xp, yp) }_,. For each noise 5.  if then

in S, we sample a uniform random vari- 9.

able e ~ U(0,1), and if € < pl, ;5. We €D~ o7,  end if
able noise ¢ with hyperparameters 6* for 55, end for
the current batch b. The enabled noises
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are applied in the order: 1.) input, input-target, 2.) target, 3.) weights, 4.) activations, 5.) gradients and
6.) model, denoted by . The are implemented as for-loops and if-statements, which
iterate over the noise types and apply the noise if the noise is enabled. If multiple noises are in the same
category, the user specifies their order. For example, suppose MixUp, label smoothing and Dropout are
all enabled. In that case, the MixUp is applied to the input-target followed by label smoothing applied to
the target, and Dropout is applied to the activations for the current batch b. Our approach accounts for
networks of depth D, denoted by {f%(-, W9)}L_,, involving weights together with biases W = {W?}2_ and
activations {¢?(-)}2_, to produce hidden states {z}2_,. 25 corresponds to the input x}, while 22 represents
the output prediction gp.

For input noise, we explore AugMix, ODS, weak augmentation: random cropping and horizontal flipping,
and additive Gaussian noise injections (Hendrycks et al.l |2020; Tashiro et al.l |2020; [Sietsma & Dowl, [1991)).
For input-target we explore MixUp and CMixUp (Zhang et al.| [2018; [Yao et al., [2022)). For target noise,
we consider label smoothing, and the target noise also inherently involves MixUp and CMixUp (Zhang et al.,
2018; [Yao et al.), 2022 Miiller et al., [2019). The activation noise examines Dropout and additive Gaussian
noise (Srivastava et al., 2014; [Kingma et al.| 2015 prior to activations for all linear or convolutional layers,
except the last layer. For weight noise, we consider Gaussian noise added to the weights (Blundell et al.)
2015) or DropConnect (Wan et al., [2013) for all linear or convolutional layers, except the last layer. We
consider gradient Gaussian noise added to all gradients of the loss function (Neelakantan et al.l 2017). After
the update of the weights, the model noise is applied to the weights, for which we consider shrinking the
weights and adding Gaussian noise (Ash & Adams| [2020)), but not in the last 25% of the training epochs. Out
of these noises, label smoothing, MixUp and ODS are exclusive to classification, and CMixUp is applicable
only in regression. AugMix and weak augmentation are exclusive to the CV data. The other noises are
broadly applicable across tasks.

4 Experiments

Next, we present the concrete datasets, tasks and architectures used in our experiments, followed by exper-
iments on ID data in Section [£.1] OOD data in Section [£:2] combined noises in Section [I.3] transferability
in Section [4.4) and lastly the metric landscape visualisations in Section

Tasks, Architectures and Datasets: We consider various setups, including computer vision (CV) clas-
sification and regression, tabular data classification and regression, and natural language processing (NLP)
classification. For CV classification we include datasets such as CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009), SVHN (Netzer et al., [2011)), and TinyImageNet (Le & Yang, [2015]), along with neural architectures
such as a fully-connected (FC) net and ResNet (He et al. [2016). For CV regression, we introduce a rotated
version of CIFAR-100 to predict the rotation angle, and we also use the WikiFace dataset, where the aim
is to predict the age based on the image of the face. We use the ResNet model in both cases. In the realm
of tabular data classification and regression, we use an FC network and evaluate noises on diverse datasets,
including Wine, Toxicity, Abalone, Students, Adult for classification and Concrete, Energy, Boston, Wine,
Yacht for regression (Asuncion & Newman, [2007). We explore NLP classification using the NewsGroup
dataset (Lang] [1995) paired with global pooling convolutional NN (Kim, 2014) and a transformer (Vaswani
et al.l |2017)). The Appendix details the datasets, architectures, and gives the complete numerical results.

Metrics: To assess the effectiveness of the noise injection methods in classification, we measure their
performance using three metrics: Error (], %), Expected Calibration Error (ECE) (Guo et al.l [2017)) (], %)
with 10 bins and the categorical Negative Log-Likelihood (NLL) ({). For regression, we use the Mean Squared
Error (MSE) (}) and the Gaussian NLL (). We test the generalisation of the models by evaluating their
performance on the ID test set. For CV classification and regression, we test the robustness of the models
by assessing their performance on an OOD test set by applying corruptions (Hendrycks & Dietterich} [2019)
to the ID test set. These corruptions include, for example, adding snow or fog to the image, changing the
brightness or saturation of the image or blurring the image across 5 intensities. We created the OOD test
set for tabular data by adding or multiplying the inputs with Gaussian or Uniform noise or by zeroing some
of the input features with Bernoulli noise, similarly across 5 intensities. To summarise the results, we collect
the results for each approach for each dataset and metric and rank them relative to the no noise baseline.
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(e) NLP classification.

Figure 1: In-domain evaluation of the differences in rankings compared to not using any noise.

For example, -1 means that the approach is one rank better than the no noise baseline, and 1 means that
the approach is one rank worse than the no noise baseline. We then average the ranks across the datasets
for each task and metric.

Hyperparameter Optimisation: We first tune the learning rate and L2 regularisation of a no noise
network, which are reused when tuning the HPs of each noise injection method. By tuning the learning
rate and L2 regularisation, we wanted to simulate a realistic scenario where the practitioner seeks to add
noise to their existing model and does not want to jointly tune the model’s hyperparameters and the noise
injection method. The tuning was performed with 1 seed, and the winning hyperparameters were retrained
3 times with different seeds. 10% of the training data was used as the validation set to select the best model,
with validation NLL used as the selection objective to combine both generalisation and calibration. The
tuning is performed using model-based Tree-structured Parzen Estimator method (Bergstra et al., 2011) with
successive halving pruning strategy (Jamieson & Talwalkar| [2016). We evaluate 50 trials for each setting,
which allows us to manage the trade-off between compute costs and a reasonable number of trials.

4.1 In-Domain Evaluation

In Figure [I} we show the in-domain (ID) performance of NNs trained with various noise injection methods
across CV classification and regression, tabular data classification and regression, and NLP classification.
Overall, we observe that the noise injection methods significantly improve the generalisation and calibration
in many cases, but different noise types are needed for various tasks. In CV classification, almost all noises
improve the error rate, with many simultaneously improving calibration. The most beneficial noises are
AugMix, weak augmentation and Dropout. MixUp and label smoothing are a surprise to a certain extent as
they improved generalisation but not calibration. In CV regression, improving generalisation was challenging,
with no improvement. However, NLL has been improved by several noises, with the best balance given by
AugMix, weak augmentation and Dropout. These results suggest that image augmentation broadly benefits
CV, confirming expectations.

In tabular data classification, several noises have improved the error rate to a smaller extent or kept it at a
similar level. In contrast, almost all noises have improved ECE and NLL. The improvements were particularly
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Figure 2: Detailed in-domain performance of NNs trained with various noises across the five tasks.

impactful in several cases, with model noise, Dropout, and label smoothing being the best. While ODS is
designed to improve adversarial robustness, it improved ECE and NLL while keeping similar error rates. All
noises improve NLL for tabular regression, and some significantly improve MSE. Gaussian noise applied to
the weights or the inputs and DropConnect are the most useful types of noise and improve both metrics. In
NLP classification, almost all noises improve error, with some also improving calibration simultaneously. The
best noises are ODS, Gaussian added to the input, and label smoothing, which differs from what was best
for CV. These noises significantly lowered error and NLL, while MixUp and model noise were particularly
useful for reducing ECE. ODS was beneficial for improving error and marginally calibration, which can be
a surprise as this technique was not previously considered for improving generalisation or calibration.

In Figure 2] we show detailed results for selecting representative datasets across the 5 tasks. We see the
improvements in error can be large for CIFAR-10, for example, halving it in some of the best cases —
weak augmentation and AugMix, with Dropout also leading to a few percentage point improvements. The
situation is similar for ECE, where weak augmentation and AugMix make the ECE one-half or one-third.
Many errors are slightly better, with certain noises making the calibration worse, e.g. MixUp, label smoothing
or Gaussian noise added to the activations. For WikiFace, there are more minor improvements in error from
weak augmentation and AugMix with overall similar MSE across different noises. Still, the differences in
calibration as measured using NLL can be considerable, with most noises improving the NLL significantly.

Moving the focus to tabular data, all noises in the Adult classification dataset improve the error marginally. In
contrast, many improve ECE significantly, with the best ones being Dropout, model noise and DropConnect.
Most noises have significantly improved MSE for the Yacht regression dataset, but CMixUp and model
noise led to significant increases. The best ones have been gradient Gaussian and Gaussian noise added to
the weights. NLL has been improved in several cases, including gradient Gaussian and weight Gaussian,
demonstrating solid MSE improvements. The errors stay similar for NLP classification on NewsGroup using
the global pooling CNN model. ODS leads to the best improvement and a few generalising worse, specifically,
Dropout, gradient Gaussian and model noise. ODS and label smoothing have improved ECE.
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Figure 3: OOD evaluation of the differences in rankings compared to not using any noise.

Metric SVHN CIFAR-10 CIFAR-100 TinylImageNet Average Metric Rotated CIFAR-100 WikiFace Average
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(a) CV classification. (b) CV regression.
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(c) Tabular data classification. (d) Tabular data regression.

Table 1: Kendall Tau correlation between ID and OOD rankings of different noise types for various tasks.

Main Observations: The noises are effective across various tasks and datasets. The shortlist of the most
effective methods is AugMix and weak augmentation in CV, model noise, and Gaussian noise added to
weights for tabular data and ODS in NLP. Different task types benefit from different types of noise.

4.2 Out-of-Domain Evaluation

We evaluate the performance on the ID test set and an augmented OOD set, including an average over
visual corruptions across 19 categories and 5 severities (Hendrycks & Dietterichl [2019). Likewise, we average
the performance across 5 categories and 5 severities for tabular data. The summary of the results is in
Figure [3] with analysis of correlations between ID and OOD rankings via Kendall Tau score in Table[I] For
CV classification, we observe that the generalisation improvements also remain for OOD, but calibration in
terms of ECE turns out to be much more challenging to improve. The overall ranking of the best noises
remains similar, with AugMix and weak augmentation remaining the best. MixUp rose to prominence thanks
to the best OOD calibration and improved errors and NLL. Analysis of Kendall Tau correlation in Table [Ta]
shows that ID and OOD rankings are strongly correlated for error and NLL, while only moderately for ECE.
CV regression is similar to classification ranking the best noises, with only AugMix leading to improvements
in OOD generalisation. However, calibration is improved by most noises, with AugMix excelling. Only a
minor correlation exists between ID and OOD rankings for MSE and NLL metrics. For tabular classification,
the noises generally improve all metrics under OOD settings, with Dropout, DropConnect, and model noise
being the best. This suggests that model noise and Dropout are among the best noises for both ID and OOD.
ID and OOD rankings show a moderate correlation overall. Several noises improve OOD generalisation and
calibration for tabular regression, with CMixUp, Dropout and input, and Gaussian added to the activations
noises, leading to the best overall improvements. The ID and OOD ranking Kendall Tau correlation is low
or negative in this case.
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Figure 4: Detailed OOD performance of NNs trained with various noises across the four tasks.

We study selected representative datasets regarding OOD performance in Figure[d OOD results on CIFAR-
10 show that AugMix significantly improves both error and ECE, making ECE one-third of the no noise
equivalent. MixUp leads to similarly considerable improvements in ECE and more minor yet significant
improvements in error. Several noises, e.g., Dropout and Gaussian noise, added to activations or weights lead
to a few percentages worse ECE. On WikiFace, most OOD MSE values are similar, but OOD calibration
in NLL is improved significantly for several noises, including AugMix, weak augmentation or Dropout.
Improvements in generalisation for the Adult tabular classification dataset are minor, but the improvements
in calibration can be significant, for example, Dropout and model noise halving the OOD ECE value. For
the Yacht tabular regression dataset, the improvements in generalisation have been more critical, with the
same being true for calibration measured in terms of OOD NLL.

Main Observations: We see consistent improvements in OOD generalisation and calibration for tabular
data. For CV classification, errors and NLL are improved, but calibration is generally not improved when
measured via ECE. CV regression sees improvements in OOD NLL only. The best ID noise types have often
remained the best OOD, but overall, the correlations between ID and OOD rankings were lower, especially
for tabular data. MixUp, or CMixUp for regression, showed surprising behaviour as it was much more helpful
for improving OOD calibration than ID calibration.

4.3 Combination of Noises

Next, we evaluate the combination of noises. We construct them from empirical combinations of the Top
2 or 3 noises from the ID evaluation for each task, based on average rank across respective datasets and
metrics. We consider two cases: 1.) the found hyperparameters of the noises are directly applied, and 2.)
the hyperparameters of the noises are jointly tuned. We utilise the same 50-trial budget to tune the selected
noises jointly. The results are already in Figures[T] [2] [B]and [4 and denoted as Top-2 Direct, Top-3 Direct for
1.), Top-2 Optimised and Top-3 Optimised for 2.). The combinations for Top-2 and Top-3 are in Table
To simplify the analysis of how effective the different combinations of noises are, we compute their average
rank improvement compared to no noise and report it in Table [3] Notice that when we choose a combination
of noises to involve noises from the same category, for example, ODS and input Gaussian are both input
noises, these are applied sequentially.

We can draw several observations from Table 1.) Given our budget for optimising hyperparameters,
combining two noises and optimising their hyperparameters was helpful, rather than directly combining
their hyperparameters. However, the budget was insufficient for combining three noises, and the found
hyperparameters did not perform as well as using fewer noises or directly combining the hyperparameters.
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Task Top-2 Third Method
CV classification Input AugMix, Input Weak Augmentation Activation Dropout
NLP classification Input ODS, Input Gaussian Target Label Smoothing
Tabular classification = Model, Activation Dropout Target Label Smoothing
CV regression Input AugMix, Input Weak Augmentation Activation Dropout
Tabular regression Weight Gaussian, Input Gaussian Weight DropConnect

Table 2: Top task and noise combinations. Underlined methods are from the same type.

Scenario Top-2 Direct Top-3 Direct Top-2 Optimised Top-3 Optimised

1D -4.48 -4.61 -4.57 -3.89
OOD -5.84 -5.87 -6.08 -4.45

Table 3: Average rank improvement over no noise for the different combination strategies.

2.) The combination of three noises performs better if we directly combine their hyperparameters but not
when we optimise their hyperparameters, as a significantly larger budget would be needed. 3.) Considering
the relative differences, directly combining the top three noises is a reasonable strategy.

Commenting on the overall performance of the combinations of noises, the combinations are typically better
for classification tasks than the individual noises. Still, the opposite may be true for regression. As observed
in Figures and [I] the combinations are consistently ranked lowest in comparison to using no noise
for classification, showing the effectiveness of the combinations. However, Figures [Ib] and [Id] show that
regression can benefit from only using one noise at a time. OOD analysis in Figure [3] confirms the benefits
of combinations of noises for classification tasks, and it also shows that it can be beneficial for regression,
contrary to the ID behaviour. The combinations are generally ranked lower and can improve calibration and
generalisation, as seen in lower MSE, NLL, or error and ECE simultaneously.

Main Observations: In general, combining noises is better than individual noises, directly using 3 noises
is better than 2 noises, and directly combining noises with their hyperparameters is reasonable. The combi-
nation of noises can improve both calibration and generalisation simultaneously.

4.4 Transferability of Hyperparameters Across Datasets and Models

Furthermore, we evaluate the transferability of the hyperparameters across datasets and models. We consider
two cases: the transfer of hyperparameters to a new dataset and the transfer of hyperparameters to a
new architecture. For the dataset transfer, we consider the following combinations: SVHN to CIFAR-10,
CIFAR-10 to CIFAR-100, CIFAR-100 to TinylmageNet, and 3 tabular regression datasets combinations,
Concrete to Energy, Boston to Wine, Yacht to Concrete. We consider the following combinations for the
architecture transfer: FC to ResNet-18 for SVHN and ResNet-18 to ResNet-34 for CIFAR-10, CIFAR-100
and TinyImageNet. We use a NN with an additional layer for tabular data, i.e., five layers instead of four.

4.4.1 Dataset Transfer

Figures [ba] and [5d show the dataset transfer results for ID settings, with OOD settings shown in Figures [8a
and [Bd in the Appendix. We observe generally good transferability of hyperparameters across datasets for
CV classification in ID and OOD settings. In particular, weak augmentation, AugMix and Dropout lead
to solid improvements in the ID setting. AugMix also excels in OOD scenarios under dataset transfer, but
weak augmentation and Dropout are not as strong in calibration measured using ECE. Certain noises are
less transferable, including Gaussian noise added to the input and DropConnect. Hyperparameters for noise
in tabular regression are less transferable because of worse generalisation measured using MSE.

Main Observations: The transfer of hyperparameters from dataset to dataset generally works well for
CV classification. However, caution is advised as it is not the case for all noise types. For tabular data
regression, tuning of hyperparameters is recommended.
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(d) ID tabular regression in architecture transfer

Figure 5: Transfer of hyperparameters on in-domain (ID) data.

4.4.2 Architecture Transfer

10

-10

10

-10

In Figures [b] and we show the ID results for the architecture transfer, with Figures [8b] and [8d]in the
Appendix reporting the OOD results. The transferability of noise hyperparameters is lower than across
datasets for CV classification, but it is still successful, especially for weak augmentation and AugMix for
ID settings. Transfer of hyperparameters for tabular data regression works for certain noise types in the ID
setting, including adding Gaussian noise to the input or the weights, which are the top-2 noises for tabular

data regression.

Main Observations: Transfer of hyperparameters across architectures appears more challenging than
across datasets but can be successful in some instances. Caution is advised, and tuning is recommended.

4.5 Learnt Representation Landscapes

We study the learnt representation landscapes of NNs trained with various noises through the lenses of ID
and OOD performance in terms of error, ECE, NLL or MSE. We consider the noises individually, with the
ID-found hyperparameters starting from the same weight initialisation for fairness. We visualise linear inter-
polation modulated through an o parameter between the final, @ = 0 and initial model, « = 1 (Goodfellow
et al., [2014). The interpolation empirically investigates the smoothness of the training process. We also
visualise the landscape in 2D (Li et al., [2018)) by saving the network after each epoch and concatenating the
weights. Instead of using random coordinates, we use the first two principal components of the weights as
the coordinates. We normalise them based on the magnitude of the original weights, and we project all the
weights onto these two components in the vicinity of o and 5. The 2D visualisations show us the exploration
and exploitation of the training process. In Figures [6] and [7] we compare the metric landscapes of no noise
with AugMix and Dropout noises, respectively on CIFAR-10 and WikiFace datasets. We used 20 points for
linear interpolation and 100 points for the 2D plots across five selected OOD augmentations and 1000 test
data samples for compute efficiency. In red, we show the error or MSE; in green, we offer the NLL or ECE.
In the 1D plots, @ and A stand for ID and OOD error or MSE, and x and B stand for ID and OOD ECE
or NLL. In the 2D plots, the darker combined contours signify worse performance than the lighter parts,
and the % in blue or black denotes the start or end weights respectively. The Appendix contains the metric
landscapes for all other noises, tabular classification — Adult, and regression — Yacht datasets.
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Figure 6: No noise (top) and Input AugMix (bottom) on CIFAR-10.
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Figure 7: No noise (top) and Activation Dropout (bottom) on WikiFace.

Observing Figures [6] and [7] we first notice the ID and OOD results are similar, with the OOD results
being slightly worse across all metrics. This includes both the 1D plots and the 2D plots. Second, as seen in
Figures[6a]and [6D] the curves for error, representing generalisation, and ECE or NLL, representing confidence
calibration, do not share the same shapes or curvatures. MSE and NLL curves in Figure [7a] are more similar
than error and ECE curves. Looking at the 1D plots, for example in Figures [6a][6b] and [T the error or MSE
can be more smoothly interpolated than ECE or NLL. Figure shows models trained without noise can
become overconfident, reflected in large NLL and small MSE. Adding noise such as Dropout can fix this,
leading to low NLL for the final model in Figure[7d] Looking at the 2D plots in Figures [6d and [7b] the error
or MSE valley is wider than the ECE or NLL valley, and they are not aligned. From a detailed comparison
between no noise and AugMix or Dropout in Figures [6] and [7] we observe that AugMix and Dropout can
smoothen the optimisation in the 1D plots, but not for ECE, and decrease the gap between ID and OOD
performance. The 2D plots show that AugMix and Dropout can explore broader metric landscapes than no
noise, shown in ranges of o and 3 in the 2D plots, and marginally align the error or MSE with NLL. Seen
in the lightness of the 2D contour plots, the noises navigate lower NLL or ECE landscapes than no noise.
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Our general observations considering both CV and tabular datasets show that while noises such as Aug-
Mix, weak augmentation, MixUp or activation and weight noises based around Dropout can smoothen the
optimisation regarding error or MSE, they rarely smoothen the optimisation regarding ECE. The metric
landscapes often look similar to no noise, but the optimisation ends in more profound valleys. Across the
datasets and tasks, label smoothing, input additive Gaussian and ODS have minimal effect on the 2D land-
scapes or 1D interpolation. The model shrink and perturb make the optimisation more “stairs-like”, and the
metric landscape explored is broader. Together with gradient Gaussian noise, the shrink and perturb noises
explore broader metric landscapes than the others. No method drastically changes the metric landscape or
the interpolation from the default, but they can make the optimisation smoother or broader.

Main Observations: The metric landscapes for error or MSE and ECE or NLL are different, and the
noises can smoothen the optimisation in terms of error or MSE but not necessarily in terms of ECE or NLL.
When a model trained without noise is overconfident, adding noise to the training can resolve it and lead to
a significantly better-calibrated model at the end of training.

5 Conclusion

Key Takeaways: Noise injection methods can improve NN performance across various tasks and datasets.
This is despite the fact L2 regularisation was already tuned to prevent overfitting, indicating noise injection
methods can provide additional benefits beyond standard regularisation. The methods did not have the same
efficiency across all tasks and datasets, with significant differences in performance between regression and
classification. The most effective noise for CV was AugMix, model shrink and perturb and Gaussian noise
added to weights for tabular data classification and regression respectively, while ODS worked the best for
NLP. Even though ODS was not designed to improve calibration and generalisation, it has shown promising
performance in several cases. Combining noises outperformed individual noises in most classification cases,
with regression often benefitting from using only one noise at a time. While directly combining hyperparam-
eters of noises is a reasonable strategy, tuning them can still be valuable if a large budget is used. The noises
improved both ID and OOD performance, but the ID rankings were sometimes inconsistent with the OOD
evaluation. AugMix remained highly ranked for robustness. The visualisation showed noises can smoothen
the optimisation in terms of error or MSE but not necessarily in terms of ECE or NLL. It also showed noise
can be helpful in mitigating overconfidence. Overall, results indicate practitioners should consider combining
noises, e.g. AugMix and dropout, and tuning hyperparameters for their specific problem.

Limitations: To conduct this study, we had to restrict the experiments’ scope. Our scope was limited
to standard datasets, tasks such as classification and regression, and standard NN architectures. Testing
on more complex data and downstream tasks such as object detection, segmentation, or reinforcement
learning would reveal more profound impacts of noise injection. Moreover, we also limited the optimisation
to SGD with momentum and a cosine learning rate schedule, which were tuned beforehand to make the
hyperparameter search tractable. The computational costs of tuning and comparing noises also restricted
the scale of experiments. To draw practical conclusions, we evaluated the noise performance from the
perspective of minimising the NLL rather than exploring all possible settings. Further work on selecting
hyperparameters without exhaustive tuning would make these techniques more accessible.

Future Directions: The strong performance of AugMix highlights the potential for developing specialised,
domain-specific noise techniques. For example, tailored domain-specific noise methods could benefit tabular
data-based problems and NLP. Future work should also explore specific data-architecture noise interactions,
as the transferability of hyperparameters was limited. Inspired by the annealed gradient noise, annealing
noise levels over training may also prove helpful, as early noise could encourage robustness. In contrast, low
late-stage noise could enable convergence on a high-accuracy solution. The potential for combining noises
from the same category should also be investigated further. The noises affected the entire architecture, but
it may be possible to target noise injection methods that only affect specific layers or sections of the network,
requiring more or less regularisation. Lastly, specific noise-based approaches for simultaneously exploring
the generalisation and confidence calibration trade-off should be explored further. We hope our study and
framework, embedded in our codebase, will assist further research in this area.
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Appendix

In the Appendix, we first provide the experimental settings and the hyperparameter ranges for all the
experiments in Section [A] We report the OOD transferability of hyperparameters results in Section [B] We
then provide the full numerical results and visualisations for all the experiments in Section [C}

A Settings

A.1 General Settings

We used stochastic gradient descent with a momentum of 0.9 to train all the networks. The learning rate
and L2 regularisation were tuned and reused for each noise injection method. We used a cosine annealing
learning rate schedule without restarts (Loshchilov & Hutter} [2017)) for all experiments. We used gradient
norm clipping of 20.0 to stabilise the training in most cases, with gradient clipping of 10.0 for tabular
regression and 5.0 for WikiFace. The batch size was set to 256 for all experiments. The final results are
the average of 3 runs with 3 different seeds. We used cross-entropy loss for all classification experiments.
For regression, we used the Gaussian negative log-likelihood (NLL) loss, where we modelled the variance
as an additional output passed through an exponential function to ensure positivity. We added a small
e of 1e7® to the softmax probabilities to avoid NaNs. We clipped the variance between le~* and le* to
avoid NaNs. The hyperparameter ranges, and the sampling scale for each dataset-architecture pair are in
Table ] The hyperparameters and implementations of all the noises and experiments can be found in the
code, which will be open-sourced. We used the default PyTorch weight initialisation for all layers. For the
tabular OOD experiments, we constructed custom augmentations where we applied Gaussian or Uniform
noise scaled by the magnitude of the input features across 5 severities for addition: [0.02, 0.04, 0.06, 0.08, 0.1]
or multiplication [0.04, 0.08, 0.12, 0.16, 0.2] where the severity scaled the range or the standard deviation of
the noise applied to the input. Additionally, we zeroed out some input features with probability [0.04, 0.08,
0.12, 0.16, 0.2], denoting 5 severities. In total, there were 5 different input shifts across 5 severities each.

Hyperparameter (¢) Range Scale
Learning rate (LR) [107%,1071]  Log
L2 weight [1077,107']  Log
Input Gaussian noise std. [107%,1071] Log
Input AugMix alpha [0,1] Linear
Input AugMix severity [1,10] Linear
Input AugMix width [1,5] Linear
Input AugMix chain-depth [—1,3] Linear
Input ODS epsilon [107%,107Y] Log
Input ODS temperature [0.5,5.0] Log
Input-Target MixUp alpha [0,1] Linear
Input-Target CMixUp alpha [0,1] Linear
Input-Target CMixUp sigma  [107%,102] Log
Target Label Smoothing [0,0.25] Linear
Activation Gaussian noise std [107%,107!]  Log
Activation Dropout rate [0,1] Linear
Gradient Gaussian noise 7 [0,1] Linear
Gradient Gaussian noise [0,1] Linear
Weight Gaussian noise std [107%,1071]  Log
Weight DropConnect rate [0,1] Linear
Model noise shrink factor [0.0,1.0] Linear
Model noise std [1077,107%]  Log
Model noise frequency [0, 20] Linear

Table 4: Hyperparameters (HPs) optimised for individual noises and their range.
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Regarding noise implementation details, Dropout, DropConnect, additive weight or activation Gaussian
noise, are applied to all linear and convolutional weights throughout the network, excluding the last layer
and normalisation layers. Both model and Gaussian gradient noise are implemented on all weights within
the network, encompassing affine parameters in normalisation layers. Rotation was omitted from AugMix,
given that one of our tasks involved predicting the rotation angle.

A.2 Vision Experiments

For SVHN, we used a fully connected network with 4 hidden layers of 150 units followed by ReLLU activations.
When we used ResNet-18 we used it with [64, 128, 256, 512] channels in 4 stages with [2, 2, 2, 2] blocks
with strides [1, 2, 2, 2]. When we used ResNet-34, we used it with [64, 128, 256, 512] channels in 4 stages
with [3, 4, 6, 3] blocks with strides [1, 2, 2, 2]. In all cases, we trained the networks for 200 epochs. We
only used 0-1 truncation followed by normalisation for each dataset without further data augmentations for
training, validation and test sets. For rotation experiments, we enabled uniform rotations between (0, 90°)
degrees, and we rescaled the targets accordingly to [-1, 1]. The selected OOD augmentations for visualisation
experiments were Gaussian noise, motion blur, snow, elastic transformation and JPEG compression across
all 5 severities.

A.3 NLP Classification Experiments

The NewsGroup20 was first pre-processed with respect to glove embeddings (Pennington et al [2014) into
embeddings of dimension 100 and sequence length 100. In all cases, we trained the networks for 200 epochs.
We used the global-pooling convolutional network architecture from Kim| (2014]) with planes [128, 128, 128]
and a transformer decoder (Vaswani et all [2017) with embedding dimensions 100, 6 layers, 8 heads, 1024
hidden dimensions, 64 dimensions per head and no dropout. There was no OOD test set for the NLP task.

A.4 Tabular Regression Experiments

We used a fully connected network with [100, 100, 100, 100] hidden units and ReLU activations for the tabular
experiments. In all cases, we trained the networks for 100 epochs. We normalised the input features and
targets to zero mean and unit variance by using the training set statistics and applied the same normalisation
to the validation and test sets. We used 20% of the data as the test set and 10% of the remaining data as
the validation set. The regression targets were normalised to zero mean and unit variance.

B Out-of-Domain Transferability of Hyperparameters

We report the OOD results studying transferability of hyperparameters in Figure [§]

C Full Results

We provide full results of all experiments in the paper, where the main reported value is the mean across 3
repetitions, followed by the standard deviation. The ranks presented in the main body of the paper can be
obtained by ranking the results in each table by the metric of interest. Following the tables, there are the
visualisations of metric landscapes for CIFAR-10, Adult, WikiFace and Yacht datasets. We encourage the
reader to look at our code for other datasets to regenerate them from there.
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(c) OOD tabular regression in dataset transfer.
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(d) OOD tabular regression in architecture transfer.

Figure 8: Transfer of hyperparameters.

Noise Type SVHN

CIFAR-10

CIFAR-100 TinyImageNet

ID OO0D

OO0D ID OOD ID OO0D

No Noise

INPUT WEAK AUG.
INPUT GAUSSIAN
InpuT ODS

INPUT AUGMIX
INPUT-TARGET MIxUP
LABEL SMOOTHING
ACTIVATION GAUSSIAN
ACTIVATION DROPOUT
GRADIENT (GAUSSIAN

14.67+01s  18.59+0.14

12.28+007  15.67+007

13.83+013  17.43+010

16.33x007  20.18+000  12.04+021 32.32102¢ 44.69x0ss 61.521052  54.15x036  75.65x0.10
5.39x017  27.86+037  26.51x010 52.57x013  39.73x02r  67.73x013
16.454025  20.23+022  12.02+005 31.97x0m  44.34x170  61.141160  53.28+02¢  75.12+0.06
16.35+020  20.13+015  12.01x016 30.42+045 44.28+061 61.344056 66.47+1518  82.46+s.72
7484006 18.75+025  30.09+025  46.05+013  42.49402¢  61.58x0.16
13.95+001  17.71x011  10.97+013  28.38+070 46.15+005 63.00+002  54.02+055  75.33+0.44
16.35+017  20.10+012  11.88+030 31.63+020 42.481047 58 41lt0ss  52.47+0x 73.96+0.15
16.33+017  20.144013  11.444012  30.71+o20 44.58+02s 61.81+015 53.96+016  75.45+014
8.93+025  29.85+0s6  41.51+0s3  58.92+0s0  43.26+035  69.32+032
17.59+015  22.494007  16.414015  37.57+012  45.33+052  62.49+02¢ 59.99+03s  80.15+02

MODEL 16.17+025  20.08+017  10.65+019 32.83+060 35.88+019 56.73+032  49.66+031  72.44+0.15

WEIGHT GAUSSIAN

WEIGHT DROPCONNECT
Topr-2 DIRECT COMBINATION 12.57+01s  16.04 4019
Topr-3 DIRECT COMBINATION 13.49+4019  16.95+0.10
Topr-2 OPTIMISED COMBINATION  12.14+010 15.51 4011
Topr-3 OPTIMISED COMBINATION  12.66+001  16.08+0.04

16.60+016  20.29+011  10.53+020  30.76+055 42.97+051  60.68+021  54.20+011  75.71x013
15.82+006  19.53+001  12.20+020 31.294063 42.08+075  59.16+030  54.33+070  75.70+0.3
4.78+012  16.47+020  24.69+022 43.04+02¢  37.18+001  58.16+0.12
5.07+007  17.72+007  24.88+013  42.99+021  37.43+012  58.73+019
5.15+022  15.63+027  25.28+015  43.86+016  36.88+00s  57.90+024
6.60+016  17.91+063 26.19+023 43.84+030  36.59+006  60.36+0.17

Table 5: CV classification: Error (], %) comparison on in-distribution (ID) and out-of-distribution (OOD)

test sets and with tuned hyperparameters.
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. SVHN CIFAR-10 CIFAR-100 TinyImageNet
Noise Type
ID 00D ID 00D ID 00D ID OO0D

No NOISE 13.10+005  15.59+0.06 4.02+015  16.40+0.36 5.76+0.25 7.43+000  16.43+027 10.11+0m
INPUT WEAK AUG. 6.35+0.19 7.85+0.21 1.924023 15.91 4067 4.83+0.19 13.2840.14 6.49+0.28 11.46+025
INPUT GAUSSIAN 13.24+017  15.67x015 4.224038 16.65+0.59 5.42+0.16 7.70x04s  15.96+137 10.15+045
InpuT ODS 13.03x013  15.43x0.12 4.26x013  15.38x027 5.86+0.30 7.48x017  26.97x1011  28.20+2.53
INPUT AUGMIX 4.81+007 6.03+0.00 1.18+0.06 6.27+0.39 4.41+030 11.38+0.24 4.87+031 15.78+031
INPUT-TARGET MIXUP 2.81+0.08 3.49+0.07 5.41+3.04 7.31+066 14.20+0.13 8.57+042  16.33+1.40 10.26+0.32
LABEL SMOOTHING 8.66+010 10.61+0.08 5.11+012 9.46+002  21.55+015  17.10x015  29.45+0a17 16.62+0.03
ACTIVATION GAUSSIAN 13.09+014  15.56+0.00 5.50+013  18.80x0.25 5.12+0.32 7.58x025  14.7Tx076 9.83+0.20
ACTIVATION DROPOUT 5.33+0.19 6.61+017 4.48+015  18.85x0.62 5.48+0.91 8.64+0s5  10.31x0.66 20.13+0.86
GRADIENT GAUSSIAN 14.84 4000  18.39+0.04 6.03+027  18.79+0.14 5.54+0.42 9.70+027  23.564024 34.33+0.22
MODEL 10.93+019  12.82+0.13 4.424001  18.43 105 9.06+032  11.00+030  10.80+0.24 9.01+0.03
‘WEIGHT GAUSSIAN 13.38+012  15.72x0.08 6.48+021  21.54+0.66 5.99+0.26 7.79x036  14.95+103 9.98+0.33
WEIGHT DROPCONNECT 12.514010  14.87 %005 4.944020 16.99x0.66 5.79%0.36 8.21+047  15.50+0s3 10.12+035
TopP-2 DIRECT COMBINATION 1.79+015 2.76+0.17 1.254015 6.91+0.26 6.19+0.19 14.21 4044 4.04+027 15.69+034
Topr-3 DIRECT COMBINATION 1.31+0a7 1.86+0.09 2.08+0.12 8.57+0.33 6.66+004  14.67+021 13.05+1.09 22.67+1.96

Topr-2 OPTIMISED COMBINATION 2.55+0.07 3.48+0.10 0.96+0.13 5.80+0.16 6.68+022  14.54+0.46 3.21+0.39 15.33+0.05
Topr-3 OPTIMISED COMBINATION 2.89+0.11 3.98+0.08 1.154034 4.97x105 5.60+031  12.56+061 9.90+0.42 20.11+0.26

Table 6: CV classification: ECE ({, %) comparison on in-distribution (ID) and out-of-distribution (OOD)
test sets and with tuned hyperparameters.

. SVHN CIFAR-10 CIFAR-100 TinyImageNet
Noise Type
ID OO0D ID 00D ID [e]0) D] ID OO0D
No Noise 1.43+0.00 1.64+001 0.42+0.01 1.21+0.02 1.85+0.03 2.69+003 2.80+0.02 3.90+0.01
INPUT WEAK AUG. 0.62+0.01 0.75x001 0.200.00 1.10+0.03 1.07x0.01 2.4440.00 1.84+0.02 3.46+0.02
INPUT GAUSSIAN 1.43x0.0 1.65x0.01 0.42x001 1.21+0.03 1.84 +0.08 2.67x008 2.7510.06 3.86+0.02
InpuT ODS 1.40+0.02 1.60+0.02 0.42+001 1.14+0.02 1.84 %003 2.69+003 4.79+279 6.23 4327
INPUT AUGMIX 0.494+0.01 0.61+0.00 0.25+0.00 0.63+0.01 1.17+0.00 2.04+0.01 1.87+00m 3.14+0.01
INPUT-TARGET MIXUP 0.52+0.00 0.64+0.00 0.40+0.03 0.91+0.02 2.03+0.00 2.77+0.01 2.79+0.07 3.88+0.04
LABEL SMOOTHING 0.75+0.01 0.90+0.01 0.46+0.01 1.09+0.00 2.18+0.02 2.87+003 3.25+002 4.15+0.01
ACTIVATION GAUSSIAN 1.41+0.00 1.63+0.00 0.43x0.00 1.27 100 1.84+0.01 2.71x001 2.74%0.02 3.87+o0.01
ACTIVATION DROPOUT 0.51x0.01 0.63x0.01 0.33x001 1.26+0.04 1.71x0.03 2.58x004 1.97 x0.02 3.69x0.05
GRADIENT GAUSSIAN 1.76£0.01 2.12+0.01 0.56+0.01 1.39+001 1.86+0.02 2.76+0.01 3.20+0.02 5.36+0.03
MODEL 1.02+0.01 1.17+0.01 0.37+0.00 1.27+0.03 1.60+0.02 2.63+002 2.38+0.01 3.64+0.01
WEIGHT GAUSSIAN 1.44+0.02 1.65+0.02 0.44 1001 1.41+0.04 1.79+0.03 2.66+002 2.76+0.03 3.89+0.02
WEIGHT DROPCONNECT 1.32+0m 1.52+001 0.43+0.01 1.21+0.03 1.73+0.04 2.58+002 2.78+0.06 3.90+0.04
ToP-2 DIRECT COMBINATION 0.44+0.00 0.54+0.01 0.16x0.00 0.57x0.01 0.97+0.00 1.96+0.02 1.60+0.00 2.98+0.01
Tor-3 DIRECT COMBINATION 0.45x0.00 0.55x0.00 0.17x0.00 0.63x0.01 0.97x0.00 1.97 £0.01 1.73x0.02 3.25x0.10

Topr-2 OPTIMISED COMBINATION 0.43x0.00 0.54 +0.00 0.17x001 0.53+0.01 0.98+0.01 2.00+0.02 1.58+0.01 2.96+0.02
Topr-3 OPTIMISED COMBINATION 0.44+0.00 0.55+0.00 0.21+0.00 0.57+0.00 0.99+0.01 1.93+0.03 1.63+0.01 3.25+0.01

Table 7: CV classification: NLL () comparison on in-distribution (ID) and out-of-distribution (OOD) test
sets and with tuned hyperparameters.
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. CIFAR-10 CIFAR-100 TinyImageNet
Noise Type
ID (0]0)D} ID (0]0)D} ID OO0D
No NoIsSE 16.09+01s  30.81+076  40.97+0.40 61.56+0.11 54.70+081  75.96+052
INPUT WEAK AUG. 7.99+007  27.60x042  24.03+0.09 52.82+013  39.60+026 67.41+002
INPUT GAUSSIAN 16.72+013  30.28+0s5  41.07x025 61.04+014  54.01+to60 75.31+0.33
INnPUuT ODS 15.79+013  29.54+0m 41.13+043 60.43+030  52.77+os1  74.61+0n
INPUT AUGMIX 10.26+00¢  20.95+006  30.18+0.46 45.94+020  40.04+020 60.67+0.15
INPUT-TARGET MIxUPp 16.90+017  32.62+036  39.04+0.30 58.48+00s  51.49+027  72.87+012
LABEL SMOOTHING 17.18+013  31.10+06s  42.00+009  61.49+030 52.33+014  73.95+008

AcCTIVATION GAUSSIAN 16.34+015  30.52+079  38.98+0.19 59.70+022  52.49+023 74.62+02
AcCTIVATION DROPOUT 12.45+012  27.90+010  31.58=0.54 56.38+036  51.85+010 74.08+0.01

GRADIENT GAUSSIAN 18.70+015  34.04+049  47.64+03 67.79+022  55.91+025  76.96+0.06
MODEL 13. 114025  32.40+027 79.31+27s5  87.90+1570 48.86+013  72.07+o12
WEIGHT GAUSSIAN 16.54+011  30.86+020  37.14x0.19 58.32+04s  52.88+045 74.82+01s

WEIGHT DROPCONNECT  16.79+02¢  28.80+0s0 41.18+0s56 61.39+002  53.67+x0190  75.28+0.14

Table 8: CV classification: Error (J, %) comparison on in-distribution (ID) test sets and with hyperparam-
eters transferred across datasets.

. CIFAR-10 CIFAR-100 TinyImageNet
Noise Type
ID OO0D ID (0]0)D) ID 00D
No Noise 9.76+007  20.73x067 12.77+0ss 10.73+03s 20.11+225 11.66+063
INPUT WEAK AUG. 5.40+000  20.98+0.62 3.65+03s  11.12+059 5.97+040 11.75x0.1s
INPUT GAUSSIAN 10.39+015  20.21x076 12.81+025 10.66+016 16.74+067  10.72x0.16
InpuT ODS 9.89+012  20.40x075 11.18+21s  10.28+107  15.981037 10.52+022
INPUT AUGMIX 5.53+00s  11.65+0.07 8.94+0.07 8.86+0.05 3.97+020 15.43+053
INPUT-TARGET MIixUp 6.27+0.5 81214020 14.76+04s  10.991006 19.33+027  10.08x032
LABEL SMOOTHING 1.65+0.20 6.05+046 21.53+030 15.64+020 27.18x02r 15.49+0mn1
ACTIVATION GAUSSIAN 10.03+006  20.36+0.69 5.07+0.19 9.29+035  14.04+072 9.88+0.11
ACTIVATION DROPOUT 9.414017  21.79+0m1 7.94+03 19.81+047  16.67+007  11.00x012
GRADIENT GAUSSIAN 12.77+020 24.59+050 8.38+033  18.02+019 13.41x07 10.07x0.14
MODEL 7.53+026 21.33+036 0.80+1.10 4.07+573  14.45+023  10.68x0.07
WEIGHT (GAUSSIAN 10.05+011  20.70+023 11.79+120 22.28+177  15.55+055  10.38+0.30

WEIGHT DROPCONNECT  10.93+026 19.75+06r 11.24+070 9.93+01s  18.10+020 11.11x0.10

Table 9: CV classification: ECE (., %) comparison on in-distribution (ID) test sets and with hyperparameters
transferred across datasets.
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. CIFAR-10 CIFAR-100 TinyImageNet
Noise Type
ID OO0D ID (0]0)D) ID O0OD
No NoOIsSE 0.71x001 1.55+0.05 1.88+0.02 2.87+00m 2.96+0.12 3.99+0.06
INPUT WEAK AUG. 0.40=0.00 1.84 +0.00 1.02+0.01 2.4510.02 1.80+0.01 3.43+x0.02
INPUT GAUSSIAN 0.72+0.01 1.50+0.06 1.89+0.01 2.84 100 2.81+0.06 3.91+0.03
INnrPUuT ODS 0.71+0.00 1.55+0.07 1.87+0.07 2.80+0.05 2.72+0.02 3.85+0.00
INPUT AUGMIX 0.39x0.00 0.84+0.00 1.30+0.01 2.02+0.01 1.73+0.01 3.10x0.02
INPUT-TARGET MIxUp 0.56+0.01 1.04+0.02 1.71+0.01 2.59+0.00 2.62+0.02 3.65+0.01
LABEL SMOOTHING 0.56+0.00 1.01+0.02 2.16+0.01 3.04 +0.01 3.16+0.00 4.10+0.01
ACTIVATION (GAUSSIAN 0.70+0.01 1.51+0.06 1.66+0.01 2.73+0.02 2.64+0.03 3.81+0.02
ACTIVATION DROPOUT 0.74+0.02 1.96+0.02 1.24+0.02 2.69+0.03 2.70+0.01 3.83+0.00
GRADIENT GAUSSIAN 0.93+0.01 1.99+0.04 1.93+0.01 3.20+0.02 2.83+0.02 3.98+0.01
MODEL 0.52x0.00 1.43+0.02 3.59+1.44 4.07+075 2.46+00m 3.69+0.01
WEIGHT GAUSSIAN 0.72+001 1.54+0.03 1.54+0.03 2.81+0.07 2.72+0.04 3.86+0.02
WEIGHT DROPCONNECT 0.79+0.01 1.48+0.06 1.86+0.01 2.85+0.00 2.83+t0.01 3.92+0.00

Table 10: CV classification: NLL () comparison on in-distribution (ID) test sets and with hyperparameters
transferred across datasets.

. SVHN CIFAR-100 TinyImageNet
Noise Type
ID OO0D ID OO0Db ID OO0Db
No Noise 5.12+0.13 9.20+010 43.87+04s 61.251+046 53.63x017  75.20+032
INPUT WEAK AUG. 4.13+0.10 8.51+023 27.33x035 51.09+01s 38.21+024 64.75+02
INPUT GAUSSIAN 5.01+0.0s 9.09+006 43.05+035 58 7lxos2 54.15+150 T74.61+1.00
INPUT AUGMIX 3.51%0.05 8.27+004  30.23x006 45.51x017  42.05+020 59.93x0.10
INPUT-TARGET MIxUp 5.58+012  12.75+011  43.93+06s  59.98+023 52.95+126 73.82+054
LABEL SMOOTHING 5.04+0.03 8.88+001  42.99+036 57.27+043  5H3.77Txo32 74.25+0n
ACTIVATION GAUSSIAN 5.14+0.0s 9.17+006 43.74x031  59.291065 56.32+205 76.49+123
AcCTIVATION DROPOUT 4.37 +0.02 8.16+004 42.89+090 58.26+031 42.47+035 67.78=025
GRADIENT GAUSSIAN 6.25+010 11.43+014  44.39x073  59.56x0s7  57.92x075  T7.81t034
MODEL 3.98+0.02 8. 114004 37.14+033 56.97x+016 47.11x053 69.76+0.09
WEIGHT GAUSSIAN 5.04+0.04 9.08+006 44.28+031  59.84+00s 5H4.1lx2a1  T4.52+142
WEIGHT DROPCONNECT 5.11+0m 9.03+011  45.75+080 59.71+115 56.44+341 76.12+255

Table 11: CV classification: Error (}, %) comparison on in-distribution (ID) test sets and with hyperparam-
eters transferred across architectures.
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. SVHN CIFAR-100 TinyImageNet
Noise Type
ID OO0D ID (0]0)D) ID O0OD
No NoOIsSE 2.73+0.10 5.13+0.06 5.76+0.34 7.50+011  14.68+047 9.93+0.0s
INPUT WEAK AUG. 2.66+0.05 5.75x0.09 6.33+032  15.26+0.80 8.20+1.23 9.88+0.3s
INPUT GAUSSIAN 2.68+0.05 5.09x0.03 5.07x0.61 9.59+163  13.79x049 8.75x0.16
INPUT AUGMIX 1.46+0.04 3.04 +o0.07 6.56+071  14.17+059 6.23+063 16.60+0.23
INPUT-TARGET MIxUp 5.61+119 5.27 +0.90 2.68+0.2 6.77+043 12.24+4082 8.32+0.10
LABEL SMOOTHING 0.95+0.07 1.164+003  10.18+2s4 8.54+172  17.47 4022 9.76+0.12
ACTIVATION GAUSSIAN 2.75+0.05 5.11+007 5.45+123  10.46+17s  10.66+363 8.42+0.89
AcCTIVATION DROPOUT 3.03+0.02 5.72+0.02 5.49+032  10.00+041 14.68+017 25.16+075
GRADIENT (GAUSSIAN 3.61+011 7.07+015 5.59+120 11.16+173  21.10+045 31.33+035
MODEL 2.38+0.05 4.78+0.04 7.59+052  13.21+040 5.63+031  10.34+0.1
WEIGHT GAUSSIAN 2.67+0.03 5.06+0.02 5.30+0.20 9.87+053 12.42+087 8.24 +0.34

WEIGHT DROPCONNECT 2.91+0.0s 5.38+0.07 6.98+13 11.51+160 11.421214 7.99+0s2

Table 12: CV classification: ECE ({, %) comparison on in-distribution (ID) test sets and with hyperparam-
eters transferred across architectures.

. SVHN CIFAR-100 TinyImageNet
Noise Type
ID OO0D ID OO0Db ID O0OD
No Noise 0.23+001 0.41+0.00 1.83+0.03 2.69+0.02 2.72+003 3.86+0.02
INPUT WEAK AUG. 0.23+0.00 0.48+0.00 1.09+0.01 2.36+0.02 1.84+0.05 3.28+0.04
INPUT GAUSSIAN 0.23+0.00 0.41+0.00 1.75+0.03 2.56+0.02 2.67+o0.0s 3.76+0.06
INPUT AUGMIX 0.16+0.00 0.31+0.00 1.19+0.01 2.05+0.00 1.90+0.01 3.05+0.01
INPUT-TARGET MIixUp 0.24+001 0.46+0.01 1.76+0.03 2.58+0.01 2.56+0.03 3.68+x0.03
LABEL SMOOTHING 0.19+0.00 0.31+0.00 1.99+0.06 2.65+0.06 2.82+0.02 3.86+0.01
ACTIVATION GAUSSIAN 0.23+0.00 0.41x0.00 1.78+0.02 2.59+0.04 2.72+0.19 3.84+0.00
ACTIVATION DROPOUT 0.260.00 0.480.00 1.76+0.04 2.55+0.01 2.03+0.00 3.70x0.04
GRADIENT GAUSSIAN 0.30x0.01 0.57+0.02 1.79+0.03 2.60+0.04 2.94 1005 4.79+0.04
MODEL 0.18+0.00 0.35+0.00 1.59+0.01 2.67+00 2.10+0.02 3.46+0.00
WEIGHT (GAUSSIAN 0.23+0.00 0.40=0.00 1.81x0.02 2.61+0m 2.63+0.13 3.74x0.09

WEIGHT DROPCONNECT 0.24+00m 0.43+0.01 1.87+0.0a 2.61+0.04 2.73+0.16 3.82+0.15

Table 13: CV classification: NLL (]) comparison on in-distribution (ID) test set and with hyperparameters
transferred across architectures.

. Wine Toxicity Abalone Students Adult
Noise Type
ID 00D ID 00D ID 00D ID 00D ID OO0D

No Noise 35.73+220 64.16+062  47.06+832  42.78+553  43.30+020 47.32+013  65.40+4ss  68.52+23s  15.54+023  17.03+010
INPUT GAUSSIAN 35.944043  64.15+06s  47.06+s32  42.514550  43.304043  47.3Tx032  65.40+ass 68.42+107  15.58+042  16.99+0.20
InpuT ODS 35.83+161  63.00+050  48.04+555  42.78+571  43.38+073  46.65+043  64.56+373  68.64+245  15.47+030  16.97+0.22
INPUT-TARGET MIXUP 38.02+052  63.21+077  50.98+s500  44.20+s331  43.46+045  47.25x0m  65.40+260  69.05+23s  15.28+033  16.66+0.25
LABEL SMOOTHING 35.524037  64.07+0s6  50.00+416  44.20+44s  43.224020  47.281033  64.98+430  68.56+2235  15.55+035  16.9T+022
ACTIVATION GAUSSIAN 35.00+201  63.99+0s3  46.08+605  42.67+s562  43.10+050 47.28+020 65.40+ass  68.44+232  15.55+0210  16.91+01s
ACTIVATION DROPOUT 35.52+145  63.05+106  54.90+114s  52.78+1206  43.02+107  46.89x072  71.31xas0  72.74+s300 14.75+03  15.88+0.23
GRADIENT GAUSSIAN 32.60+053  62.78+400  50.00+416  48.39x147  43.74xon  47.5Tx0m  68.78+s60  70.62+320 15.38z0s  16.77T+025
MODEL 37.92+125  63.49+001  45.10+601  42.71+s506  43.42+020 47.432035  65.82+a451 68.39+216  14.72+046  15.90+0.16
WEIGHT GAUSSIAN 35.52+105  64.20+077  50.00+635  46.67+161  43.10+030  47.342013  64.98z+uss  69.87+322  15.13x0m  16.41+020
WEIGHT DROPCONNECT 38.85+053  61.50+115  47.06+s3  43.2215s  43.42x07s 46.75x028  64.56+45  69.57+315  14.93x032  16.21x01s
Top-2 DIRECT COMBINATION 37.29+007  63.19+0s1  39.224s567  37.18+133  43.62+0m  47.21x0ss 69.62+273 72.34+1356  14.67+026  15.83+0.10
Topr-3 DIRECT COMBINATION 38.65+053  63.17+106  31.37T+r72 31.37+rm2 43.30+06s  47.10x0m  70.46+215  72.46+10  14.71+0a1  15.83+0.20
Top-2 OPTIMISED COMBINATION  37.40+007  62.37+146  33.334500  33.064586  43.22x062  47.01x02  83.54+170  83.90x100  14.56+028  15.77x01s

Topr-3 OPTIMISED COMBINATION  37.08+126  63.17+102  48.0447310  42.67432¢  43.22403 47.134031  74.68+101s  76.494s65  14.6T+030  15.844014

Table 14: Tabular data classification: error ({,%) comparison on in-distribution (ID) test sets and with
tuned hyperparameters.
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. ‘Wine Toxicity Abalone Students Adult
Noise Type
ID 00D ID OO0D ID 00D ID 00D ID OO0D

No Noise 8.75+131  52.81+231  45.78+s12 42.21 450 3.94+050  10.68+03s  12.46+202  17.32+013 3.47+020 6.11+0.47
INPUT GAUSSIAN 8.56+060  52.64+217  45.844s40  41.9T+s570 3.60+041  10.73+045  13.36+041  17.23+025 3.50+0.44 6.10+0.46
InpuT ODS 5.75+0m1  48.57+153  42.82+417  38.14+116 3.04+075 8.92+0s6  14.042235  16.69+0.30 3.64+0.46 6.07+0.51
INPUT-TARGET MIXUP 4.43+077  47.55+326  43.18+518  40.06+263 3414100  10.45+04s  11.072s7  13.47+200 2.79+036 5.32+051
LABEL SMOOTHING 4.82x06  50.4T+34s  42.08x415  37.42+50 2.7T+07 9.95+050  12.69+250  17.31+08s 3.32z032 5.88+045
ACTIVATION GAUSSIAN 9.48+162  52.68+255  46.21+746 41.9045.45 3.42+063  10.63+047  13.11x2s3  17.27+0s7 3.42+04s8 5.94+0.45
ACTIVATION DROPOUT 7.01+100 49.44+572  24.29+1335  21.99+13.03 3.13+161 8.68+0.52 8.12+138 8.41+1.46 0.87+0.16 2. 744000
GRADIENT GAUSSIAN 16.96+10s  55.49+517  48.32+315  47.65+135 5.30+157  13.13+200  17.58+400  20.88+4.60 2.81+053 5.29+050
MODEL 4.73+173  49.134267  39.66:+295 36.94 4557 2.80+1.00 9.63+055  12.35+263  17.13+0.238 1.49+05 3.31+02
WEIGHT GAUSSIAN 9.56+117  53.75+261  48.7T+ar0  44.02+3587 3.48+05  10.66+010 12272118 17.80+0.02 2.36+025 4.65+025
WEIGHT DROPCONNECT 5.65+331  42.80+257  46.4T+700  42.2345.35 3.72+147 9.62+035  12.73+163  17.94%0.70 1.70+0.40 3.9140.40
Topr-2 DIRECT COMBINATION 4.06+100  48.26+265  18.01+1053  18.3240.8 3.85+1.66 8.27+07r 12414148 10.53+057 0.88+0.21 2.88+0.22
Topr-3 DIRECT COMBINATION 3.36+063  46.46+30r  11.48+103  11.2240.13 3.35+117 7. 744077 10.22+072 9.48+0.76 1.03+020 2.85+0.20
Topr-2 OPTIMISED COMBINATION 5.90+220  45.81+146  16.46+65s 17.43+5.0 3.23+170 9.67+0.45 4.16+3.35 4.38+261 1.28+035 3.10+0.10

Topr-3 OPTIMISED COMBINATION 5.58+106  48.17+17s  24.36+1300  21.23+10a47 3.53+0s7 9.7T+0.25 8.82+245  11.354343 1.22+012 3.01+0.01

Table 15: Tabular data classification: ECE (], %) comparison on in-distribution (ID) test sets and with
tuned hyperparameters.

. Wine Toxicity Abalone Students Adult
Noise Type
ID OO0D ID OO0D ID OO0D ID OO0D ID OO0D

No Noise 0.94+0.05 6.25+0.81 4.85+023 4.95+034 0.84+0.02 1.04x0.02 1.87x0.0s 2.41+0m 0.35+0.01 0.44+0.02
INPUT GAUSSIAN 0.94+0.05 6.17+050 4.85+027 4.95+035 0.84+0.02 1.04+0.02 1.87x0.0s 2.39+0.11 0.34+00 0.44+0.02
InpUT ODS 0.91+005 5.28+0.10 2.20+0.33 2.61+0.41 0.84+0.02 0.97+0.02 1.87+0.08 2.41+0m 0.35+0.01 0.44+0.02
INPUT-TARGET MIXUP 0.91+0.01 4.69+0.50 2.39+007 2.59+0.15 0.84+0.02 1.03+0.01 1.88+0.01 2.2540.10 0.34+001 0.43+0.01
LABEL SMOOTHING 0.93+0.014 5.41+007 1.76+022 1.86+036 0.84+0.02 1.01+001 1.87+0.0s8 2414012 0.34+001 0.43+0.01
ACTIVATION GAUSSIAN 0.94+0.01 6.19+0s5 4.76+0.23 4.87+0n 0.84-+0.02 1.04+0.02 1.87+0.0s 2.42+011 0.34+001 0.44+0.02
ACTIVATION DrROPOUT 0.92+0.05 5.46+1.06 1.05+025 1.03+024 0.84+0.02 0.98+0.01 2.18+0.05 2.31+0.00 0.32+001 0.37+0.01
GRADIENT GAUSSIAN 1.26+0.00 8.07+1.64 5.41+016 6.20+0.11 0.86-+0.03 1.11+005 1.95+0.06 2.51+0.07 0.34+0.01 0.43+0.02
MODEL 0.92+0.04 4.75+0.48 2.06+0.37 2.3440.45 0.84+0.02 1.01+0.02 1.87+0.0s 2.42+011 0.31+0.01 0.37+0.01
WEIGHT GAUSSIAN 0.95+0.05 6.65+0.04 3.02:+020 3.33+025 0.84+0.02 1.04z001 1.91x00s 2.43+0.00 0.33+001 0.41+0.01
WEIGHT DROPCONNECT 0.94+0.04 4.19+033 4.82+0a17 4.91+030 0.84+0.02 0.99+0.01 1.91x0.00 2.43+0.00 0.32:+00 0.39+0.01
Topr-2 DIRECT COMBINATION 0.92+0.01 4.60+0.41 1.05+025 1.12+030 0.84+0.02 0.96+0.02 2.16-+0.06 2.31+0.06 0.32+001 0.38+0.01
Topr-3 DIRECT COMBINATION 0.94+0.01 4.29+0.40 0.95+0.19 0.95+0.19 0.84+0.02 0.95+0.02 2.16+0.05 2.30+0.00 0.32+001 0.37+0.01
Topr-2 OPTIMISED COMBINATION 0.91+0.01 4.34+0.05 0.97+0.1s 0.99+019 0.84+0.02 1.01+0.01 2.50+0.10 2.52+0.00 0.31+001 0.37+001
Topr-3 OPTIMISED COMBINATION 0.91+0.04 4.80+0.01 1.12+035 1.22+40.42 0.84+0.02 1.01+0.01 2.07+0.30 2.33+0.14 0.31+0.00 0.36+0.01

Table 16: Tabular data classification: NLL (]) comparison on in-distribution (ID) test sets and with tuned
hyperparameters.

Noise Type Architecture
GP-CNN TRANSFORMER

No NOISE 35.67+1.13 36.56+0.83
INPUT GAUSSIAN 35.44 +087 36.59+0.51
INpuT ODS 33.564+0.33 34.44+0.74
INPUT-TARGET MIxUp 35.44+0.7s 36.70+0.92
LABEL SMOOTHING 35.59+0.69 36.56+1.10
ACTIVATION GAUSSIAN 35.56+1.16 36.44 1057
AcCTIVATION DROPOUT 39.19+0.02 36.48=+0.29
GRADIENT GAUSSIAN 40.56+0.18 36.52+0.89
MODEL 40.22+0.64 36.52+0.76
WEIGHT GAUSSIAN 35.48+053 36.89+0.79
WEIGHT DROPCONNECT 35.19+0.69 37.04+0.68
Topr-2 DIRECT COMBINATION 34.30+0.41 34.33+06s
Topr-3 DIRECT COMBINATION 34.59+0.23 34.41+o067
TopP-2 OPTIMISED COMBINATION  33.63+0.76 34.52+055
TopP-3 OPTIMISED COMBINATION  34.56+0.42 36.22+0.79

Table 17: NewsGroup NLP classification: Error ({, %) comparison on in-distribution (ID) test set and with
tuned hyperparameters.
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Noise Type Architecture
GP-CNN TRANSFORMER

No NOISE 5.12+053 3.47 +0.08
INPUT GAUSSIAN 4.78+1.30 3.59+0.s3
INpuT ODS 2.57+0s1 7.99+0.50
INPUT-TARGET MIxUp 5.07+0.59 2.54+1.07
LABEL SMOOTHING 3.78+x0.50 4.13+0.94
ACTIVATION GAUSSIAN 5.75+0.50 3.42+1.05
AcCTIVATION DROPOUT 7.19+12 2.26+0.20
GRADIENT GAUSSIAN 24.26+1.01 3.24+1.07
MODEL 2.91+0.90 3.55+0.84
WEIGHT GAUSSIAN 4.57+o0.1s 4.01+079
WEIGHT DROPCONNECT 5.41+076 4.43+072
Topr-2 DIRECT COMBINATION 2.78+031 8.19+072
Topr-3 DIRECT COMBINATION 2.76+0.76 7.90+0.35
Topr-2 OPTIMISED COMBINATION 5.77 052 6.26+0.62
Topr-3 OPTIMISED COMBINATION 3.12+04s 3.31+070

Table 18: NewsGroup NLP classification: ECE (|, %) comparison on in-distribution (ID) test set and with
tuned hyperparameters.

Noise Type Architecture
GP-CNN TRANSFORMER

No NOISE 1.14+00m 1.13+0.02
INPUT GAUSSIAN 1.12+001 1.13+0.02
InpuT ODS 1.03+0.00 1.10+0.01
INPUT-TARGET MixUp 1.13+001 1.13+0.02
LABEL SMOOTHING 1.12+001 1.13+0.02
ACTIVATION GAUSSIAN 1.14+00 1.13+0.02
AcCTIVATION DROPOUT 1.18+0.01 1.11+002
GRADIENT (GAUSSIAN 1.87+xo0.07 1.13+0.02
MODEL 1.21+0.01 1.13+0.02
WEIGHT GAUSSIAN 1.14+00 1.13+0.02
WEIGHT DROPCONNECT 1.13+001 1.13+0.02
Topr-2 DIRECT COMBINATION 1.02+0.01 1.10+0.01
Topr-3 DIRECT COMBINATION 1.03+0.01 1.10x0.01
Tor-2 OPTIMISED COMBINATION 1.03+0.00 1.09+0.01
Tor-3 OPTIMISED COMBINATION 1.02+0.01 1.12+001

Table 19: NewsGroup NLP classification: NLL (]) comparison on in-distribution (ID) test set and with
tuned hyperparameters.
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. Rotated CIFAR-100 WikiFace
Noise Type
ID OO0D ID O0OD

No Noise 0.03+0.00 0.13+0.01 0.03+0.00 0.04 +0.00
INPUT WEAK AUG. 0.03+0.00 0.13+0.01 0.03+0.00 0.04 +0.00
INPUT GAUSSIAN 0.03+0.00 0.14+0.01 0.04+0.00 0.05+0.00
INPUT AUGMIX 0.03+0.00 0.07=x0.00 0.03+0.00 0.04 +0.00
INpPUT-TARGET CMIXUP 0.03+0.00 0.09+0.00 0.04+0.00 0.04 +0.00
AcCTIVATION GAUSSIAN 0.03+0.00 0.14+0.01 0.04+0.00 0.04 +0.00
AcCTIVATION DROPOUT 0.03+0.00 0.14+0.00 0.04+0.00 0.05+0.00
GRADIENT GAUSSIAN 0.04 +0.00 0.11+0.00 0.04+0.00 0.04 +0.00
MODEL 0.04 +0.00 0.16+0.01 0.04+0.00 0.04 +0.00
WEIGHT GAUSSIAN 0.03+0.00 0.15+0.00 0.04+0.00 0.04 +0.00
WEIGHT DROPCONNECT 0.03+0.00 0.12+0.01 0.10+0.04 0.1140.04
Topr-2 DIRECT COMBINATION 0.03+0.00 0.08+0.00 0.04+0.00 0.04 +0.00
TopP-3 DIRECT COMBINATION 0.03+0.00 0.08+0.01 0.04+0.00 0.04 +0.00
Topr-2 OPTIMISED COMBINATION 0.03+0.00 0.06+0.00 0.03+0.00 0.04 +0.00
Topr-3 OPTIMISED COMBINATION 0.24+015 0.29+0.10 0.04+0.00 0.04 +0.00

Table 20: Rotated CV regression: MSE (J.) comparison on in-distribution (ID) and out-of-distribution (OOD)
test sets and with tuned hyperparameters.

. Rotated CIFAR-100 WikiFace
Noise Type
ID O0OD ID O0OD

No NoIsE -4.81+0.00 6.90+1.52 27.03+204¢  31.43+330
INPUT WEAK AUG. -4.60+0.06 3.41+053 -0.82+0.: 0.31+0.66
INPUT GAUSSIAN -4.67+011 7.57+2.14 27.96+266 31.50+215
INPUT AUGMIX -4.82+0.01 -1.70+0.04 0.78+027 -0.12+011
INPUT-TARGET CMIxUp -4.62+0.04 1.86+0.35 21.83+235 25.62+0.93
ACTIVATION (GAUSSIAN -4.27 +0.07 2.94 1018 14.93+100  17.61%1.01
ACTIVATION DROPOUT -3.81+055 1.04+0.59 -1.354+002  -0.53+0.36
GRADIENT (GAUSSIAN -3.70+0.00 -0.44+0.00 25.87+210  29.6943.75
MODEL -4.36+0.05 3.44+076 -1.08+0.03 -1.08+0.03
WEIGHT GAUSSIAN -4.23+012 2.53+0.36 4.42+0.10 5.65+0.60
WEIGHT DROPCONNECT -2.28+1.903 39.88+24.73 4.83+3.37 6.00+4.13
Topr-2 DIRECT COMBINATION -4.14 4023 -1.93+013 -1.344001  -1.15+0.02
Topr-3 DIRECT COMBINATION -4.21+0.07 -1.76+0.0 -1.3210010  -1.16+0.02
TopP-2 OPTIMISED COMBINATION  -4.27+0.03 -1.71+x0.05 -1.39+001  -1.121002
Topr-3 OPTIMISED COMBINATION 1.84 4273 0.57+0.s5 -1.344003  -1.07+0.10

Table 21: Rotated CV regression: NLL () comparison on in-distribution (ID) and out-of-distribution (OOD)
test sets and with tuned hyperparameters.
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. Energy Boston Wine Yacht Concrete
Noise Type
ID OO0D ID OO0D ID OO0D ID 00D ID OOD

No NoIse 0.04+0.00 0.21+0.02 0.13+0.03 0.50+0.06 0.254001  5600.91+1260.15 0.07+0.07 1.08+051 0.10+0.01 0.70+0.05
INPUT GAUSSIAN 0.04+0.00 0.21+0.02 0.12+0.02 0.46+0.03 0.25+0.01  5596.92+1263.15 0.02+0.02 0.86+0.61 0.10+0.01 0.73+0.08
INPUT-TARGET CMIXUP 0.04+0.00 0.21+0.02 0.13+0.02 0.51+0.03 0.25+0.01  5544.15+120832 0.15+0.17 0.59+0.22 0.10+0.00 0.65+0.02
ACTIVATION GAUSSIAN 0.04+0.00 0.21+0.02 0.13+0.03 0.53+0.07 0.25+000  5611.73 4126734 0.05+0.05 0.93+0.65 0.10+0.01 0.72+0.07
ACTIVATION DROPOUT 0.04+0.00 0.21+0.02 0.16+0.04 0.44+0.03 0.38+006  3018.21+100s31 0.02+0.01 0.94+0.63 0.10+0.01 0.74+0.04
GRADIENT GAUSSIAN 0.04+0.00 0.21+0.01 0.17+0.03 0.68+0.06 0.25+001  5426.31 4118542 0.01+0.01 0.99+0.54 0.10+0.01 0.72+0.07
MODEL 0.04+0.00 0.22+0.02 0.14+0.03 0.54+0.04 0.25+0.00  5599.59+1267.65 0.54+0.70 0.70=+0.50 0.10+0.01 0.64+0.07
‘WEIGHT GAUSSIAN 0.04+0.00 0.21+0.02 0.13+0.03 0.55+0.03 0.25+001  5623.27+1266.02 0.02+0.01 0.61+0.30 0.10+0.01 0.73+0.03
‘WEIGHT DROPCONNECT 0.04+0.00 0.21+0.02 0.14+0.05 0.57+0.07 0.25+0.00  5619.57+1275.47 0.05+0.05 0.50+0.10 0.10+0.01 0.72+0.014
Top-2 DIRECT 0.04+0.00 0.21+0.02 0.12+0.02 0.56+0.04 0.25+001  5588.08+1258.38 0.03+0.03 0.80+0.61 0.10+0.01 0.76+0.01
Top-3 DIRECT 0.04+0.00 0.21+0.02 0.14+0.03 0.52+0.05 0.2540.00  5561.37+1200628 0.04+0.03 0.75+0.51 0.10+0.01 0.73+0.00
Top-2 OPTIMISED 0.04+0.00 0.22+0.02 0.14+0.01 0.45+0.00 0.25+001  5581.54+1216.90 0.02+0.01 1.15+056 0.10+0.01 0.71+0.06
Topr-3 OPTIMISED 0.04+0.00 0.22+0.02 0.15+0.01 0.44+0.03 0.2540.01  5576.97+121668 0.02+0.00 0.70+0.12 0.10+0.01 0.71+0.07

Table 22: Tabular regression: MSE () comparison on in-distribution (ID) test sets and with tuned hyper-
parameters.

. Energy Boston ‘Wine Yacht Concrete
Noise Type
ID OOD ID OOD ID OOD ID (e]0)5} ID [e]e)b]

No Noise -1.52+005  1817.31+70200  -0.30+0.06 2.53+001  -0.22+00s  7170328.29+300050114  -1.18+022  58.54+s17s -0.56+000  328.73+2s177
INPUT GAUSSIAN -1.55+005  2457. 744132000 -0.54+0.00 1.45+001  -0.22x00s  7145441.15+300137822  -1.45+0.10 4. 7T x50 -0.55+010  320.13+230.80
INPUT-TARGET CMIXUP  -1.53+002  3059.134330528  -0.43+011 1.61+020  -0.194000  7761911.37 4530375200 -1.05+020 1.54+131 -0.63+001  140.19+s770
ACTIVATION GAUSSIAN -1.55+002  3745.284225508  -0.07+025 4.404112 -0.22+00s  7104338.64+307576051  -1.24+01s 5.57+5.00 -0.54+007  384.49+303.01
ACTIVATION DROPOUT -1.53+00s  2313.01+0s036  -0.64+00s  -0.05+0.10 0.01+0.05 180520.25+21s366.62  -1.41+0.20 19.59+1052  -0.57+00s  376.76+21001
GRADIENT GAUSSIAN -1.56+00s  4408.72+103056 0.15+022  19.01+13.05  -0.22200s  7760431.18+2s0757355  -1.86+0.47 171041000 -0.56+00s  472.63+1s7.55
MoODEL -1.56+00s  4409.60+150150  -0.02x021 3.43x070  -0.22x00s  7152203.36+s00s1s236  -0.77+113  237.514s3567  -0.59+006  213.64z22061
WEIGHT GAUSSIAN -1.56+00s  3777.23+150361  -0.19+014 3.79+158  -0.22x00s  7170268.09+116108062  -2.04+0.45 7.53%6.51 -0.53+000  499.07+107.58
WEIGHT DROPCONNECT ~ -1.55x001  4191.704210752  -0.53+0.00 1.59+051  -0.22x00s  7165628.28+m532541  -1.31+0.06 3.03x3.13 -0.58+000  293.66+225.45
Topr-2 DIRECT -1.52+0.02 339.14 45403 -0.14+023 4.30+003  -0.22x008 91454.37+45902.04 -1.69+0.31 4.59+3.78 -0.57+007  399.03+215.22
Topr-3 DIRECT -1.55+0.02 338.68+31.63 -0.48+0.11 1.09+072  -0.22+0.08 88988.14 +43835.81 -1.46+0.20 19.70+2516  -0.60+005  276.95+180.00
Top-2 OPTIMISED -1.55+0.02 371.09+7651 -0.36+0.34 1.83+081  -0.2220.08 90698.30+45723.43 -1.41+0m 84.90+ss10  -0.56+00s  274.05+255.85
Top-3 OPTIMISED -1.55+0.02 390.96+26.40 -0.48+0.12 0.09+005  -0.22+0.08 90023.16+43206.88 -1.46+0.70 8.01+6.52 -0.61+005  256.70+217.00

Table 23: Tabular regression: NLL () comparison on in-distribution (ID) test sets and with tuned hyper-
parameters.

Noise Type Energy Wine Concrete
ID O0OD ID 00D ID O0OD

No NOISE 0.03%0.01 0.18=0.04 0.21+0.01 7969.85+1464.68 0.09x0.01 0.68x0.21
INPUT GAUSSIAN 0.03x0.01 0.17+0.04 0.21+0.02 8479.83 +£2666.50 0.08+0.01 0.64+0.14
INPUT-TARGET CMIXUP 0.03=0.00 0.15+0.02 0.18=x0.01 10948.25+355.18 0.10x0.01 0.79x0.24
ACTIVATION GAUSSIAN 0.03%0.01 0.15x0.03 0.20+0.02 8718.85+3531.05 0.09x0.01 0.58=0.06
AcTIvATION DROPOUT 0.03x0.00 0.15+0.03 0.23+0.02 9143.26 +ss5.77 0.09+0.02 0.66+0.16
GRADIENT (GAUSSIAN 0.03x0.01 0.194006 311.38+410517  380875.57+£398196.36 0.09x0.02 0.81+0.20
MODEL 0.03+0.00 0.16+0.02 0.21+0.01 7392.87 +1504.76 0.11+0.01 0.48+0.10
WEIGHT GAUSSIAN 0.03+0.01 0.15+0.02 0.20+0.02 8641.30+2279.35 0.09+0.02 0.53+0.0s
WEIGHT DROPCONNECT 0.03x0.01 0.15x0.02 0.20=+0.02 9051.78+3747.02 0.09x0.02 0.53+0.05

Table 24: Tabular regression: MSE () comparison on in-distribution (ID) test sets and with hyperparameters
transferred across datasets.
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Noise Type Energy Wine Concrete
ID (0]0)D} ID O0D ID O0OD

No Noise -1.70+011 T1.13+33.74 4.78+131 184737.06+s9012.05 -0.54+015  163.20+15858
INPUT GAUSSIAN -1.74+0.07 T7.67+3951 5.24 4158 108313.49+97244.80 -0.40+0.15 75.81+71.04
INPUT-TARGET CMI1XUP -1.66=+0.10 45.14 42541 -0.06+015  17570843.36+24372000.06 -0.65+005  439.78+s527.26
AcCTIVATION GAUSSIAN -1.70+0.10 19.954687 2.92+106  13323470.95+1s820335.63  -0.47+0.00 43.37+9.14
ACTIVATION DROPOUT -1.73+0.07 21.38+7.77 -0.29+0.06 50.93 5.3 -0.56+012  154.96 4164001
GRADIENT (GAUSSIAN -1.70+011  147.90+111.83 1.97+1.04 39.66+26.95 -0.11x010 102.71+64.24
MoODEL -1.64+0.02 37.29+2.13 4.68+1.33 61705.40+64591.04 -0.64+0.03 25.73+32.25
WEIGHT GAUSSIAN -1.71+0.06 28.59+12.19 4.51+162  28605057.88+1s501115.57  -0.55+0.07 35.82+32.72

WEIGHT DROPCONNECT  -1.73+0.12 32.32+1457 0.37+0.43 7213717.63+10190125.70 -0.67+013 7.66+258

Table 25: Tabular regression: NLL (J.) comparison on in-distribution (ID) test sets and with hyperparameters
transferred across datasets.

. Boston Yacht Concrete
Noise Type
ID O0OD ID 00D ID 00D

No NoOIsSE 0.13%0.04 0.58=x0.10 0.56+0.71 0.91 050 0.11x0.01 0.61+0.06
INPUT GAUSSIAN 0.13+0.03 0.51+0.09 0.55+0.75 1.08+0.45 0.10+0.01 0.64+0.07
INPUT-TARGET CMIxXUP 0.50+0.47 0.72+0.32 0.05+0.02 0.70=x0.50 0.11+0.01 0.63+x0.02
ACTIVATION GAUSSIAN 0.14+0.03 0.55+0.09 0.56+0.75 0.98+0.16 0.11x0.01 0.67x0.0s
ACTIVATION DROPOUT 0.16+0.04 0.42+0.05 0.03+0.00 0.55+0.09 0.10+0.01 0.61+0.07
GRADIENT (GAUSSIAN 0.16+0.04 0.52+0.05 0.02+0.01 0.71+0.21 0.11+0.01 0.61+0.06
MODEL 0.15+0.06 0.55+0.03 0.11x0.00 0.36+x0.0s 0.12x0.01 0.59x0.02
WEIGHT GAUSSIAN 0.12+0.04 0.48=+0.06 0.03+0.00 0.54+0.11 0.11+0.01 0.64+0.0s

WEIGHT DROPCONNECT 0.13x0.03 0.52+0.05 0.04 +0.02 0.80+0.62 0.11+0.01 0.63=x0.06

Table 26: Tabular regression: MSE () comparison on in-distribution (ID) test sets and with hyperparameters
transferred across architectures.

. Boston Yacht Concrete
Noise Type
ID OO0Db ID OO0Db ID OO0Db

No NoOIsSE -0.25+021 3.45+036 -0.4210ss 3.02+402  -0.57x006 145.83+127.35
INPUT GAUSSIAN -0.35+0.10 2.454091  -0.94+125 3.59+196  -0.58+00s 179.80+13261
INPUT-TARGET CMIXUP  -0.09=+0.20 1.06+052  -1.20+0.07 1.03+120  -0.60=x0.04 118.96+75.711
ACTIVATION GAUSSIAN -0.23+0.8 2.83+1.99 -0.46+0.0 1.60+155  -0.59+00s  207.32+127.13
ACTIVATION DROPOUT -0.57+002  -0.13+005 -1.67+035 3.44+25 -0.58+006 163.41+15115
GRADIENT GAUSSIAN 0.97+113 5.51+297 -1.52+043 5.11+737  -0.57+006 145.83+127.35
MODEL -0.31+025 3.08+043 -0.57+010 -0.244010 -0.58+0.03 54.63+2781
WEIGHT GAUSSIAN -0.42+018 1.79+032 -1.62+034 8.84+565 -0.56+007 188.86+173.50

WEIGHT DROPCONNECT  -0.46=+0.00 1.36+01s  -1.72+03 7.51+767  -0.55+006 168.03+139.58

Table 27: Tabular regression: NLL (]) comparison on in-distribution (ID) test sets and with hyperparameters
transferred across architectures.
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S Sturt weights P End weights

(a) Error and ECE. (b) Error and NLL. (c) Error and ECE on ID. (d) Error and ECE on OOD.

Figure 9: Input Random Crop, Horizontal Flip on CIFAR-10. Observations: Did not change the smoothness
of the 1D curves or the 2D metric landscape trajectory compared to no noise.
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(a) Error and ECE. (b) Error and NLL. (c) Error and ECE on ID. (d) Error and ECE on OOD.

Figure 10: Input Additive Gaussian on CIFAR-10. Observations: Changed the smoothness of the 1D curves
where NLL became less smooth and removed the bumps in ECE for « approaching the initial model. The
2D metric landscape trajectory did not change in comparison to no noise.
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Figure 11: Input ODS on CIFAR-10. Observations: Marginally changed the smoothness of the 1D curves.
The 2D metric landscape trajectory did not change in comparison to no noise.
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Figure 12: Input-Target MixUp on CIFAR-10. Observations: Both the NLL and ECE 1D curves changed in
comparison to no noise, and the 2D plots seem to explore wider valleys compared to no noise.
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(a) Error and ECE. (b) Error and NLL. (c) Error and ECE on ID. (d) Error and ECE on OOD.

Figure 13: Target Smoothing on CIFAR-10. Observations: The NLL became more aligned with the error,
not the ECE. The 2D plots show slightly more variation in the trajectory than no noise.
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Figure 14: Activation Additive Gaussian on CIFAR-10. Observations: Did not change the smoothness of
the 1D curves or the 2D metric landscape trajectory compared to no noise.
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(a) Error and ECE. (b) Error and NLL. (c) Error and ECE on ID. (d) Error and ECE on OOD.
Figure 15: Activation Dropout on CIFAR-10. Observations: Dropout narrowed the gap between 1D and

OOD results; nevertheless, the shape of the 1D curves is similar to no noise. The trajectories in 2D plots
did not seem to converge into a narrow local minimum.
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Figure 16: Gradient Gaussian on CIFAR-10. Observations: The 1D and 2D figures changed curvature and
shape drastically, and NLL and ECE follow a non-linear pattern. The 2D plots show a circular curvature,
perhaps suggesting difficulty in convergence.
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Figure 17: Model Shrink and Perturb on CIFAR-10. Observations: The 1D and 2D figures changed curvature
and shape drastically, and all metrics show a non-linear optimisation path as hypothesised. The point cluster
around centres created by shrinking and perturbing the weights.
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Figure 18: Weight Additive Gaussian on CIFAR-10. Observations: The 1D curves marginally changed their
shape. However, the difference between ID and OOD metrics became more profound. The 2D plots suggest
that the optimisation was not able to converge.
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Figure 19: Weight DropConnect on CIFAR-10. Observations: Did not change the smoothness of the 1D
curves or the 2D metric landscape trajectory compared to no noise.
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Figure 20: No noise on Adult.
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(a) Error and ECE. (b) Error and NLL. (c) Error and ECE on ID. (d) Error and ECE on OOD.

Figure 21: Input Additive Gaussian on Adult. Observations: Did not change the smoothness of the 1D
curves or the 2D metric landscape trajectory compared to no noise.
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Figure 22: Input ODS on Adult. Observations: Did not change the smoothness of the 1D curves or the 2D
metric landscape trajectory compared to no noise.
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Figure 23: Input-Target MixUp on Adult. Observations: Did not change the smoothness of the 1D curves
or the 2D metric landscape trajectory compared to no noise.
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Figure 24: Target Smoothing on Adult. Observations: Did not change the smoothness of the 1D curves or
the 2D metric landscape trajectory compared to no noise.
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Figure 25: Activation Additive Gaussian on Adult. Observations: Did not change the smoothness of the
curves or the 2D metric landscape trajectory compared to no noise.
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Figure 26: Activation Dropout on Adult. Observations: Changed the ECE curvature and made the NLL
plots smoother in the 1D case. In the 2D plots, the ECE and error appear aligned during optimisation.
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Figure 27: Gradient Gaussian on Adult. Observations: Did not change the
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but the 2D trajectory appears more exploratory compared to no noise.
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Figure 28: Model Shrink and Perturb on Adult. Observations: Did not change the smoothness of the
curves, but the 2D trajectory appears more exploratory compared to no noise.
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(a) Error and ECE. (b) Error and NLL. (c) Error and ECE on ID. (d) Error and ECE on OOD.

Figure 29: Weight Additive Gaussian on Adult. Did not change the smoothness of the 1D curves or the 2D
metric landscape trajectory compared to no noise.
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Figure 30: Weight DropConnect on Adult. Changed the ECE curvature and made the NLL plots smoother
in the 1D case. In the 2D plots, the ECE and error appear aligned during optimisation.
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(a) MSE and NLL. (b) MSE and NLL on ID. (c) MSE and NLL on OOD.

Figure 31: Input Additive Gaussian on WikiFace. Observations: Did not change the smoothness of the 1D
curves, or the 2D trajectory.
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(a) MSE and NLL. (b) MSE and NLL on ID. (¢) MSE and NLL on OOD.

Figure 32: Input Random Crop, Horizontal Flip on WikiFace. Observations: Surprisingly, the NLL starts
decreasing compared to MSE as the model is interpolated between the final and the initial model in the 1D
plots. The 2D plots demonstrate that the model was able to explore a deeper optimal from the start where
NLL was slower to converge than MSE.
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(a) MSE and NLL. (b) MSE and NLL on ID. (¢) MSE and NLL on OOD.

Figure 33: Input AugMix on WikiFace. Observations: Surprisingly, the NLL starts decreasing compared to
MSE as the model is interpolated between the final and the initial model in the 1D plots. The 2D plots
demonstrate that the model was able to explore a deeper optimal from the start where NLL was slower to
converge than MSE, and it did not converge in the optima from the perspective of NLL.
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(a) MSE and NLL. (b) MSE and NLL on ID. (¢) MSE and NLL on OOD.

Figure 34: Input-Target CMixUp on WikiFace. Observations: Did not change the smoothness of the 1D
curves, or the 2D trajectory appears more exploratory compared to no noise.
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Figure 35: Activation Additive Gaussian on WikiFace. Observations: Did not change the smoothness of the
1D curves, but the 2D trajectory appears more exploratory compared to no noise.
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Figure 36: Gradient Gaussian on WikiFace. Observations: Did not change the smoothness of the 1D curves,
but the 2D trajectory appears to align MSE and NLL. However, it seems that the optimisation missed a
local minimum during training.
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Figure 37: Model Shrink and Perturb on WikiFace. Observations: Due to shrinking and perturbation,
the experiment appears to converge in a narrow basin and as seed in the 1D plots, the optimisation was

completely non-linear and unrecoverable.
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Figure 38: Weight Additive Gaussian on WikiFace. Observations: The 1D curves look similar to no noise,
although with respect to a different scale for NLL. The 2D plots explore a similar trajectory to no noise;
however, the 2D landscape appears more distorted.
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Figure 39: Weight DropConnect on WikiFace. Observations: The 1D curves look similar to no noise,
although with respect to a different scale for NLL. The 2D plots explore a similar trajectory to no noise.
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Figure 40: No noise on Yacht.
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Figure 41: Input Additive Gaussian on Yacht. Observations: While the shape of the 1D curves looks similar
to no noise, the MSE and NLL magnitudes are different. The 2D plots demonstrate a wider landscape of
feasible solutions than no noise.
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Figure 42: Input-Target CMixUp on Yacht. Observations: While the shape of the 1D curves looks similar
to no noise, the MSE and NLL magnitudes are different. The 2D plots demonstrate a wider landscape of
feasible solutions than no noise.
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Figure 43: Activation Additive Gaussian on Yacht. Observations: While the shape of the 1D curves looks
similar to no noise, the MSE and NLL magnitudes are different. The 2D plots are close to the no-noise ones,

showing marginal differences.
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Figure 44: Activation Dropout on Yacht. Observations: Dropout converged in a narrow valley, as demon-
strated in the 2D plots, but also in the 1D plot where a small interpolation disturbs especially the OOD
performance of the model.
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Figure 45: Gradient Gaussian on Yacht. Observations: The 1D curves remained unchanged except for the
magnitude of NLL or MSE. Nevertheless, the 2D plots show us that the optimisation trajectory significantly
differed from no noise where the landscape of potential optimal solutions was wider.
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Figure 46: Model Shrink and Perturb on Yacht. Observations: The model jumped between narrow valleys
as seed in the 2D plots and the 1D plots show smoother behaviour from the OOD perspective for MSE but

no NLL.
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Figure 47: Weight Additive Gaussian on Yacht. Observations: Did not change the smoothness of the 1D

curves or the 2D trajectory.
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Figure 48: Weight DropConnect on Yacht. Observations: While the shape of the 1D curves looks similar
to no noise, the MSE and NLL magnitudes are different. The 2D plots demonstrate a wider landscape of
feasible solutions than no noise.
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