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Figure 1. Relightful Harmonization on four real-world images. Each set shows a direct composition (upper left) of the foreground subject
onto a new backgound (lower left), and our harmonized result (right) that accounts for both lighting and color.

Abstract

Portrait harmonization aims to composite a subject into
a new background, adjusting its lighting and color to en-
sure harmony with the background scene. Existing harmo-
nization techniques often only focus on adjusting the global
color and brightness of the foreground and ignore crucial
illumination cues from the background such as apparent
lighting direction, leading to unrealistic compositions. We
introduce Relightful Harmonization, a lighting-aware diffu-
sion model designed to seamlessly harmonize sophisticated
lighting effect for the foreground portrait using any back-
ground image. Our approach unfolds in three stages. First,
we introduce a lighting representation module that allows
our diffusion model to encode lighting information from tar-
get image background. Second, we introduce an alignment
network that aligns lighting features learned from image
background with lighting features learned from panorama

*Work done during an internship at Adobe.

environment maps, which is a complete representation for
scene illumination. Last, to further boost the photorealism
of the proposed method, we introduce a novel data simula-
tion pipeline that generates synthetic training pairs from a
diverse range of natural images, which are used to refine
the model. Our method outperforms existing benchmarks
in visual fidelity and lighting coherence, showing superior
generalization in real-world testing scenarios, highlighting
its versatility and practicality.

1. Introduction

Portrait harmonization [60, 64] stands as a crucial element
in both photography and creative image editing, seeking
to seamlessly composite a subject into a new background
while maintaining realism and aesthetic uniformity in terms
of lighting and color. The process initiates with the seg-
mentation of the subject from its original image, followed
by the composition into a new background. To enhance vi-
sual consistency, the subsequent step entails meticulous ad-
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justments to the foreground, aligning it with the new back-
ground—considering factors such as color, brightness, sat-
uration, and lighting conditions. The manual effort could
be labor-intensive, particularly when dealing with intricate
lighting scenarios in portraiture.

There are two principal sets of methods that could auto-
matically adjust the foreground to match the background for
human portraits: (1) image harmonization techniques, and
(2) portrait relighting methods. Harmonization-based meth-
ods [5, 7, 8, 14–16, 23, 27, 30, 31, 57, 62, 68, 69] aim to
match the color statistics of the foreground with those of the
background, by adjusting the foreground color tone, con-
trast, and illumination. Yet, they often overlook the light-
ing characteristics and leave the foreground illumination ef-
fects unchanged, such as the lighting direction and shadows,
potentially resulting in an unnatural appearance when the
background has distinct lighting conditions. For instance,
compositing a person photographed under a top-down light
into a sunset scene might make the composite non-realistic
to the human eye. On the other hand, recent work on portrait
relighting [34, 39, 43, 56, 65, 70, 73, 77, 80] are designed
for matching the lighting of the subject towards a new en-
vironment by using the paired training data acquired with
the light stage system [10]. Nevertheless, current relighting
methods often require dynamic range (HDR) panorama en-
vironment maps [43] during training and inference, which
are not always feasible to acquire, especially in casual pho-
tography settings. In this work, we explore the possibil-
ity of generating realistic and lighting-aware composition
images in a straightforward harmonization set up. Given
a foreground image (with its corresponding alpha mask)
and an arbitrary background image, we propose a unified
and end-to-end framework that encompasses both color and
lighting harmonization. We approach the task through a
conditional generative framework, leveraging a pretrained
diffusion model [3, 8], and develop a three-stage training
pipeline.

In the first phase, we conduct Lighting-aware Diffusion
Training to integrate explicit lighting conditioning into a
pretrained diffusion model. This involves a lighting repre-
sentation learning module that derives lighting conditions
from a selected background image. The resulting light-
ing information is then integrated into the diffusion UNet
backbone to guide the generative process. The training is
performed on a pairwise relighting-specialized light stage
dataset to effectively capture the lighting dynamics.

Given the challenge of accurately inferring environ-
mental lighting from a single background image, which
is inherently an ill-posed problem, we employ paired en-
vironment maps to augment the physical plausibility of
our background-derived lighting representation. This is
achieved through a second stage of Lighting Representa-
tion Alignment, designed to align the lighting representa-

tion extracted from background images with that learned
from their corresponding panorama environment maps.

Finally, we perform Finetuning for Photorealism on an
expanded dataset to improve the photorealism of the harmo-
nization. We propose a novel data synthesis pipeline using
our initially trained model to create additional data from
natural images. Notably, once trained, our pipeline does
not rely on any external environment maps, which greatly
empowers the proposed framework for flexible background
replacement and portrait harmonization.

Our contributions are threefold. (1) We enable the light-
ing effects to be encoded in a pretrained image-conditioned
latent diffusion model by incorporating a spatial lighting
feature extraction and conditioning module to the diffu-
sion backbone. The background-extracted lighting repre-
sentation is further aligned with the feature extracted from
panorama environment map to ensure better physical plau-
sibility. (2) We use our model as a data augmenter and pro-
pose a novel data simulation pipeline to synthesize training
pairs from natural images. The model is then refined with
the enlarged dataset to further boost the photorealism of the
results. (3) Compared with existing harmonization and re-
lighting methods, our pipeline demonstrates improvements
of the harmonized results in both lighting coherence visual
fidelity, providing a versatile solution for real-world portrait
harmonization in a variety of settings.

2. Related Works
Image Harmonization aims to rectify color, contrast,
and style differences between foreground and back-
ground to ensure natural and consistent composition.
In deep learning, this task is approached as an end-to-
end image-to-image translation problem [5, 7, 8, 14–
16, 23, 31, 57, 58, 62, 68, 81], where the network is trained
to predict a harmonized image from the input composite.
Pixel-aligned datasets are created by altering foreground
color in real images with pre-designed [7] or learned [42]
augmentations. Yet, existing harmonization methods
primarily focus on global color adjustment, overlooking the
subtle but important discrepancies between foreground and
background lighting, i.e., direction, intensity, and shadow.
This can lead to a harmonized image that, despite matching
colors, still appears unnatural due to mismatched lighting
conditions. Therefore, we postulate that enhancing the
lighting-awareness of harmonization models is a vital yet
underexplored area for natural and realistic composition.

Portrait Relighting Recent advancements in portrait re-
lighting has been driven by deep learning methods [34, 35,
39, 43, 45, 56, 65, 70, 73, 77, 80]. They leverage super-
vised training with the paired training data acquired with
the light stage system [10]. These methods require a tar-
get HDR enviroment map as the external input source, and
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Figure 2. The Pipeline of Relightful Harmonization. In Stage I, a lighting representation module is integrated into the diffusion model,
conditioning the generation on lighting information encoded from the background image, trained with a light stage dataset for relighting
(lower left). Stage II aligns lighting features derived from the background with the environment map for enhanced physical accuracy.
Finally, Stage III refines the model on a real image dataset (lower right) obtained via a novel data simulation pipeline.

typically involve the intermediate prediction of surface nor-
mals, albedo, and/or a set of diffuse and specular maps with
ground truth supervision. However, reliance on HDR maps
for background replacement and harmonization tasks poses
significant limitations on their applicability in everyday sce-
narios where HDR maps cannot be easily captured along-
side [43]. In our framework, we do not require any ex-
ternal input sources except a single target background im-
age. Furthermore, many current relighting systems employ
multistage frameworks and/or heavily rely on external pack-
ages [12]. The accuracy and performance of these systems
are consequently contingent on the precision of each indi-
vidual stage, making the overall process complicated and
prone to errors propagated through these intermediate steps.
Additionally, the datasets commonly employed for training
are rendered from limited light stage illumination acqui-
sition, which means the target images utilized during the
training phase are not captured in real-world conditions but
are rendered composites. Therefore, its generalization on
unseen images, as well as the photorealism when applied to
arbitrary background replacement tasks remain unclear.

Diffusion Models [11, 20, 52, 53] have significantly ad-
vanced the image and video synthesis quality [19, 21, 25,
26, 46, 48]. Image-conditioned diffusion models [49, 63,
74] typically take an image as additional input to perform
an image-conditioned generation such as image enhance-
ment [24, 26, 29, 47], harmonization [6, 32, 33] and trans-
lation [28, 41, 51, 63, 74, 79], typically trained on task-
specific pairwise data. Recently, the application of pre-
trained text-to-image diffusion models [40, 48, 50] has been
extended to image editing tasks [1–4, 9, 13, 17, 18, 22, 36–
38, 54, 55, 59, 61, 66, 78]. These models leverage text-
image correlations to perform context modifications in
image editing, such as ‘adding a sunset’ with Instruct-

Pix2Pix [3], which is loosely connected to our lighting-
aware set up. However, text-based editing does not incorpo-
rate spatial information, thus lacking finegrained control to
the model. Instead, we propose to use a spatial lighting rep-
resentation as the new ‘instruction’ that guide the diffusion
model to perform lighting-aware editing.

3. Method
We aim to develop a conditional diffusion model that pro-
cesses a composite image (along with its alpha mask) as
the input, conditioned on the target background, and pro-
duce color and lighting harmonized output. To do so, we
develop a three-stage training strategy presented in Fig. 2.
Stage I: Lighting-aware Diffusion Training: We build
our model on a pretrained diffusion model [3] and enable
its lighting awareness by attaching a lighting representa-
tion learning branch to encode lighting information from
the background image, which is then injected into the UNet
backbone as illustrated in Fig. 2-I. The training is conducted
with relighting-specialized light stage rendered dataset, as
shown on the bottom left of Fig. 2-I.
Stage II: Lighting Representation Alignment: As one
of our of goals is to enable lighting-aware portrait harmo-
nization without relying on environment maps during infer-
ence, we propose a representation alignment step (Fig. 2-II)
to adapt the lighting representation extracted from a back-
ground image towards the learned representation from its
environment map. We assume the aligned representation is
more robust and physically plausible.
Stage III: Finetuning for Photorealism: In the third stage,
we finetune our model using high-quality pixel-aligned
training pairs from natural images, where these paired
datasets are generated via a novel data synthesis pipeline
(Fig. 2-III) using the stage 2 model as a data augmenter.



3.1. Lighting-aware Diffusion Training

Our lighting-aware diffusion model learns to generate a har-
monized image given the composite input, conditioned on a
lighting representation extracted from the target background
image. Adhering to established practice for training relight-
ing models [43, 56, 76], we assume access to the light stage
rendered training dataset. A training tuple includes the input
image (alongside its alpha mask), the target background, the
target environment map, as well as the target image. An ex-
ample of training data is shown on the bottom left of Fig. 2.

Formally, we represent a rendered image sample as xa
i ,

indicating a portrait image of subject i illuminated under the
lighting condition a. The corresponding environment map
is denoted as zai , and the background image yai for xa

i is
generated by projecting the HDR map with a specified field
of view and resolution. Subject masks mi are obtained us-
ing methods described in [71, 72].
Lighting Conditioning: We further modify the diffusion
backbone to incorporate explicit lighting conditions. As
depicted in Fig. 2-I, a lighting conditioning branch is in-
tegrated atop the UNet backbone, injecting a lighting repre-
sentation f encoded from the target background image by
a CNN F , at multiple scales within the UNet. The condi-
tioning mechanism is designed in a similar fashion as [74]
where conditional feature maps are added to the UNet fea-
tures at respective resolution within the encoder.

With the light stage dataset, we postulate that the light-
ing representation f can be learned from the pairwise train-
ing. Specifically, a training tuple from the same subject i
is sampled as (xa,m, yb, xb). Noise is progressively added
to the target image xb until time step t, resulting in a noisy
image xb

t . The UNet, denoted as Ubg , is conditioned on
the background-extracted lighting feature Fbg(y

b), and is
trained to predict the noise ϵ, with the following objective:

LD = Exa,yb,xb
0,t,ϵ

[ ∥∥ϵ− Ubg(x
b
t , t, x

a, Fbg(y
b))

∥∥2
2

]
(1)

where ϵ ∼ N (0, 1). At this stage, we initilize the weights
of the UNet backbone from [3], and jointly train both UNet
and the conditioning branch.

3.2. Lighting Representation Alignment

Given that a background image is a partial projection of the
environment map which encapsulates panoramic lighting
information (see example on bottom left of Fig. 2), we sus-
pect that the lighting cues learned from an environment map
will be inherently more comprehensive than those from fbg ,
implying that an environment-conditioned model could po-
tentially offer more physically plausible relighting under the
same training scenario. This is further empirically verified
in our ablation detailed in Sec. 4.5. However, in real-world
photography, environment maps are usually not co-acquired
which poses practical challenges, limiting the applicability

of environment map dependent models. To circumvent this,
we align the lighting representation extracted from a back-
ground image with features derived from its ground truth
environment map, ultimately enabling effective portrait har-
monization with just a single background image.

As shown in Fig. 2 II., we first pretrain an environ-
ment map conditioned harmonization model (in green box)
to generate a ground truth environment map-derived light-
ing representation. The model architecture is identical to
the background-based model in Fig. 2 I, while substituting
the Stage I input condition from the background image to
its corresponding environment map. It is trained with the
same light stage dataset, under a denoising loss analogous
to Eq.1, where the background lighting feature fbg is re-
placed with an environment map-derived feature Fenv(z

b).
Then, we freeze the environment-conditioned model and

introduce an alignment network Fbg→env that calibrates the
background-extracted lighting representation to align with
its environment map equivalent. We formulate such a pro-
cess as an inverse problem that can be learned with a net-
work Fbg→env, under a supervised loss. For a training tu-
ple (xa,m, yb, zb, xb), the alignment network takes fbg =
Fbg(y

b) as input, and maps it with the alignment network to
f∗

bg. The environment extracted feature fenv = Fenv(z
b) is

utilized as the ground truth, and we use a L1 objective:

f∗ = Fbg→env(Fbg(y
b)),

LA = Eyb,zb

[ ∥∥Fenv(z
b)− f∗

bg

∥∥
1

]
. (2)

During this phase, we update only Fbg → env, while freez-
ing the other networks. We assume that this alignment en-
hances the background-derived lighting representation to
more accurately encode the environmental lighting, which
is empirically verified where the aligned feature maps re-
flect more global illumination information (Fig. 7). Once
trained, we integrate the aligned feature extraction and con-
ditioning into Uenv, formulating our final model in Fig. 2-III.

3.3. Finetuning for Photorealism

The light stage dataset serves as a valuable resource for
learning lighting representations, providing physically con-
strainted relighting pairs. However, it is essential to rec-
ognize that this dataset is compositional by nature. It uses
backgrounds projected from environment maps, combined
with relit foreground subjects, to create composites that
serve as ground truth for the diffusion model. However,
these composites differ from real photographs, leading to
potential concerns about the photorealism of the model’s
outputs. Moreover, due to the cost of light stage data acqui-
sition, it restricts the number and diversity of the subjects
that can be collected. The diversity of the background im-
ages is also bounded by the scale of available environment
maps during rendering (a few thousands). These limitations
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could affect the model’s generalization ability to real im-
ages, and the capacity to produce realistic and varied light-
ing effects. Therefore, we propose a third stage (Fig. 2 III)
that finetunes our final model for improved photorealism.

We introduce a novel data synthesis pipeline that cre-
ates pairwise training pairs from natural images, to ensure
that the ground truth for finetuning the diffusion model re-
mains real images. As depicted in Fig. 3, the process starts
with a portrait photograph, from which we extract the fore-
ground mask [71, 72]. We then inpaint the foreground re-
gion [67] with text guidance ‘clear background’ to create a
clean background image for the real image, which can serve
as the condition input for the training. Next, the lighting of
the foreground subject(s) is altered by running our trained
model from stage I/II with a randomly chosen background
image or environment map as the condition. This produces
a synthetic input image with distinct foreground lighting
and color compared to the target image. Two sets of gener-
ated training tuples are displayed at bottom right of Fig. 3.
Once we obtain a sufficient number of synthetic data, we
combine the original light stage dataset with the synthetic
data to refine our model. During this stage, we freeze the
lighting representation extraction and conditioning branch
and only finetune the UNet backbone to refine the synthesis
quality while maintaining the learned lighting plausibility.
Once trained, our final model in Fig. 2 III is used to perform
portrait harmonization given arbitrary background images,
eliminating the need for environment maps.

4. Experiments
4.1. Setup and Metrics

Three testing scenarios are created for evaluation: (1) 500
Light stage rendered test pairs to evaluate the lighting accu-
racy; (2) 200 natural image test pairs, synthetically created
from real images using our data synthesis pipeline, to assess
the lighting realism; and most importantly, (3) Real-world
portraits combined with arbitrary backgrounds, examining

the model’s generalizability and adaptability in real-life
scenarios. For (1) and (2), we also quantify the results
with common metrics MSE, SSIM, PSNR and LPIPS [75].
To benchmark, we compare Relightful Harmonization with
both established harmonization methods INR [5], PCT [14],
Harmonizer [27] and PIH [62], and relighting method
TR [43]. We also construct a relighting baseline with a
transformer architecture and trained it with light stage
data. More details are provided in the appendix. Note that
relighting methods are applied only on the light stage test
set as they are not applicable without HDR maps.

4.2. Implementation Details

Our model is implemented in PyTorch [44] using 8×80GB
A100 at 512× 512 resolutions, with 96 batch size. In stage
I, we initialize UNet from the pretrained weights of the In-
structPix2Pix [3] checkpoint. In the first and second stage,
we use in total 400k training image pairs, rendered from
a arbitrary combination of 100 unique light stage subjects,
and 2908 HDR environment maps. We also randomly ro-
tate the HDR maps and use various FoVs to increase the
diversity of the background. In the third stage, we train the
network with additional 200k pairs of images synthesized
from natural images. We set learning rate to 5e−5. More
details are provided in the appendix.

4.3. Benchmark Results

In Figs. 4a and 4b, we present visual comparisons of our
method with selected benchmarks across on both test sets.
Our approach performs better in adjusting both the fore-
ground color and lighting, aligning more closely with the
ground truth on the right. Quantitative results in Table 1
further demonstrate the benefit of our methods. Fig. 4c
showcases test results on natural images. While harmoniza-
tion methods adjust for color, the composition still lacks fi-
delity due to counterintuitive lighting on the composed im-
age. For example, the strong cast shadow on the foreground
in the first row, and opposite lighting directions between
foreground/background in the second and third rows. Full
visual results with all methods are provided in appendix.

We further conducted a user study to verify the visual
plausibility of our method on the real world testing set.
Given pairwise comparison between our method and each
baseline, we asked Amazon Mechanical Turk raters to se-
lect the better harmonized image from a given pair of re-
sults sample from 70 image. The results on 1750 ratings
are collected, and we report the fraction of times that raters
preferred our results over the baseline method in Table. 2.

4.4. Arbitrary Portrait Background Replacement

We further test our model on various in-the-wild portraits
by compositing them onto arbitrary natural backgrounds.
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(a) Comparison on the light stage test set with [43] and [27].
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(b) Comparison on the natural image synthetic test set with [27, 62].

Composite PIH Harmonizer Ours

(c) Comparison with [62] and [27] on real test images. Our method more
effectively harmonizes incoherent foreground lighting and shadow.

Figure 4. Visual comparisons with benchmark methods.

Table 1. Quantitative results on both light stage test set and the natural image test set. The relighing methods including TR [43] and the
transformer baseline require HDR maps during the inference and are thus non-applicable on the natural image test set.

Method Light stage test set Natural image test set

MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓

TR [43] 0.044 (0.057) 15.889 (4.318) 0.757 (0.087) 0.354 (0.092) N/A N/A N/A N/A
Transformer* 0.026 (0.021) 17.259 (3.715) 0.742 (0.096) 0.337 (0.095) N/A N/A N/A N/A
INR [5] 0.016 (0.014) 19.147 (3.353) 0.823 (0.081) 0.327 (0.083) 0.009 (0.005) 21.566 (2.943) 0.904 (0.038) 0.113 (0.031)
Harmonizer [27] 0.015 (0.011) 19.304 (2.980) 0.822 (0.077) 0.338 (0.087) 0.010 (0.007) 21.419 (3.506) 0.905 (0.039) 0.108 (0.032)
PCT [14] 0.020 (0.016) 18.339 (3.454) 0.808 (0.093) 0.408 (0.082) 0.014 (0.010) 19.647 (3.279) 0.898 (0.038) 0.147 (0.039)
PIH [62] 0.018 (0.015) 18.865 (3.087) 0.807 (0.087) 0.330 (0.089) 0.010 (0.007) 21.147 (3.097) 0.901 (0.038) 0.112 (0.033)
Ours 0.012 (0.010) 20.527 (3.136) 0.848 (0.076) 0.159 (0.058) 0.005 (0.004) 23.562 (2.830) 0.913 (0.034) 0.097 (0.044)

Table 2. User preference. Each value represents the fraction of
times that raters preferred our results than the baseline method.

Method PIH [62] INR [5] PCT [14] Harmonizer [27]

Preference Rate 0.713 0.702 0.845 0.639

Lighting Plausibility: We start by evaluating the lighting
plausibility and visual fidelity by replacing the backgrounds
with strong lighting indications, like sunlight. Example re-
sults are shown in Fig. 5a. As can be seen, the lighting
tone and direction in the harmonized foreground matched
the background effectively. We further vertically flip the
backgrounds on the right side, and observe a corresponding
change in the lighting effects as expected.

Shadow Plausibility: We then examine how our model
handles shadows. Fig. 5b depicts the test cases on input sub-
jects with prominent shadows. When compositing and har-
monizing them onto background images with more ambient
lighting, our model is able to remove the strong shadow and
estimate a shadow-free output, while adapting to the back-
ground light. Conversely, in Fig. 5c, under backgrounds in
daytime scenes with potential overhead sunlight, our model

generates visually plausible self-occlusion shadows.

Creative Background Replacement: Our method allows
for creative background replacement for portrait images. In
Fig. 5d (right), we create a sequence of background crops
from one panorama image with a sliding window, so that the
major light source consistently changes from left to right.
We observe visually consistent lighting changes on the fore-
ground. Similarly, Fig. 5d (left) shows the harmonization
results by placing a subject into different timelapse video
frames at different timepoints, resulting in a series of por-
trait images that effectively mimicked a timelapse effect.
Reference-based Harmonization: Our pipeline also ex-
tends to reference-based harmonization, where users can in-
tegrate their portrait photos with scenes from a chosen ref-
erence portrait image. This is achieved by first inpainting
the reference portrait to generate a background image, onto
which the desired foreground is composited. Our method
ensures that the final output matches the tone and lighting
of the original scene. Fig. 5e showcases examples where
our results effectively align with the tone and lighting of the
reference image, displayed on the top left.



(a) In cases where the target backgrounds offer clear lighting cues, our method generates visually convincing lighting effects. Additionally, upon
flipping the background, we note consistent and appropriate adjustments to the lighting direction in the output.

(b) Our method effectively neutralizes pronounced shadows in the input while accommodating the ambient lighting of the background.

(c) When applied to backgrounds with intense lighting conditions, e.g., with overhead sunlight, our method casts plausible self-occlusion shadows.

(d) Our method consistently adjusts lighting when applied to moving backgrounds with temporally(left) and spatially(right) changing lighting direc-
tions.

(e) Our approach allows for reference-based harmonization tasks. This involves removing the subject from the reference image (upper left) to create a
background (lower left) for composition. The harmonized results (right) achieve lighting effects closely resembling those in the reference.

Figure 5. Real-world testing results under different scenarios to examine the lighting and shadow effects. For each pair of results in row
(a)-(c), we display the composite image (left) and the harmonized image (right). In row (d), we omit the composition for better visibility.
Full visualization is provided in the Appendix.



Table 3. Ablation to verify the effects of lighting conditioning (‘Cond’), alignment (‘Align’), and finetuning (‘Finetune’).

Model Cond Align Finetune Light stage test set Natural image test set

MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓

0 - - - 0.018 (0.015) 18.768 (3.531) 0.815 (0.085) 0.188 (0.070) 0.012 (0.008) 20.158 (3.024) 0.866 (0.045) 0.103 (0.028)
1 Bg - - 0.014 (0.012) 19.748 (3.161) 0.835 (0.084) 0.168 (0.063) 0.013 (0.008) 19.787 (2.684) 0.864 (0.042) 0.106 (0.028)
2 Env - - 0.009 (0.009) 21.626 (3.162) 0.866 (0.077) 0.148 (0.056) 0.013 (0.008) 19.824 (2.634) 0.863 (0.045) 0.105 (0.028)
3 Bg ✓ - 0.012 (0.009) 20.439 (2.987) 0.842 (0.077) 0.163 (0.059) 0.012 (0.007) 20.006 (2.586) 0.866 (0.044) 0.106 (0.028)
4 Bg ✓ ✓ 0.012 (0.010) 20.527 (3.136) 0.848 (0.076) 0.159 (0.058) 0.005 (0.004) 23.562 (2.830) 0.913 (0.035) 0.097 (0.044)

Composite Model 1 Model 2 Model 3 Model 4

Figure 6. Example testing results from our ablation. Model 1 to Model 4 correspond to the configurations in Table 3.

Bg Env ∥fbg∥2 ∥fenv∥2 ∥fbg→env∥2

Figure 7. The L2 norm of learned lighting representations.
The aligned background-derived feature on the right matches the
panorama much closer, indicating a better lighting representation.

4.5. Ablation

As our proposed method involves multiple stages, we con-
ducted an ablation study to isolate individual and collec-
tive effects. We define the base Model#0 as a baseline
diffusion model without lighting conditioning. Model#1
and Model#2 incorporate lighting conditioning via back-
ground and environment map, respectively. Model#3 fur-
ther introduces the alignment module and Model#4 is our
final model that includes the finetuning. Table 3 illustrates
the quantitative performance of each model configuration
on both light stage and natural image test sets. We include
more visual comparisons in the appendix.
Lighting-conditioning: Upon integrating lighting condi-
tioning into Model#0, we observe notable improvements
across all metrics on light stage data with both background
conditioned Model#1 and environmental conditioned
Model#2. Model#2 further outperforms Model#1, ver-
ifying our assumption that an environmental map facilitates
a more accurate encoding of lighting.

Lighting Representation Alignment: In Model#3, we
introduce the embedding alignment. The improvements
from Model#1 to Model#3 validated the benefits of uti-
lizing an additional adaptation step to extract robust lighting
representation from a single background image. As shown
in Fig. 7, the right column representing the aligned feature
norms, shows a visual convergence towards the features ex-
tracted from the environment map.
Finetuning for Photorealism: Model#4 is a finetuned
version of Model#3 with the newly synthesized data. We
observe significant improvements in particular on the nat-
ural image test set, verifying our assumption that the fine-
tuning boosts the photorealism on natural images. As can
be also seen in examples in Fig. 6, while Model#2 and
Model#3 estimate plausible lighting direction, the lighting
effects are much less realistic than the finetuned Model#4.

5. Conclusion
We present Relightful Harmonization, a novel lighting-
aware diffusion model to blend advanced lighting effects
into foreground portraits when compositing onto diverse
background images. Limitations exist including a resolu-
tion cap of 512x512, potentially affecting facial detail, es-
pecially in smaller faces. Also, subtle variations may occur
in the subject’s clothing and skin tones. Detailed analyses
and additional failure cases are included in the appendix.
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Supplementary Material

7. Additional Results

We note that the all testing input portrait images shown in
our paper are sampled from Unsplash or Adobe Stock.
Comparison with benchmarks To supplement Fig. 4c, we
present additional visual comparison with benchmarks on
the real world data in Fig. 8, 9 and 10. To supplement
Fig. 4a and Fig. 4b, we show full benchmark comparison
on the light stage test dataset in Fig. 11, and on the natural
image test set in Fig. 12.
Ablation We present additional visual comparison among
our ablation models on the natural image test and light stage
test set in Fig. 14 and Fig. 15 respectively. The ablation
comparison on the real test set is shown in Fig. 13 as a sup-
plement to Fig. 6. In Fig. 16, we include additional visu-
alization of the feature norms to illustrate the affects of the
alignment module to supplement Fig. 7.
Real world testing results Fig. 17 shows reference based
harmonization example as in Fig. 5e. Fig. 18 shows harmo-
nization results when we flip the background image as in
Fig 5a. Fig. 19 shows the results under spatially and tempo-
rally changing lighting as in Fig. 5d.

8. Additional Implementation Details

8.1. Network Architecture

Lighting-conditioned diffusion is built on the Instruct-
Pix2Pix [3] backbone. The core rationale for selecting
the pretrained InstructPix2Pix model [3] as the foundation,
rather than the stable diffusion model, is on its capability to
incorporate an additional input image channel. Therefore,
at the beginning of our training, the input and output image
will be identital (i.e., no editing on the input image), and
it will gradually incorporate the lighting conditioning from
the extra lighting representation. We use a dummy editing
prompt ‘portrait’ during our training and inference.

The lighting conditioning branch architecture follows
ControlNet [74], where an encoder structure identical to the
diffusion UNet backbone is applied and the intermediate
feature maps are added to the UNet encoder at respective
resolutions. The lighting representation is extracted from a
4-layer CNN. We train our model with the input resolution
of 512× 512 (for both input image and the background im-
age), and the lighting representation is a tensor with shape
64 × 64 × 320. We empirically found that training with
a higher resolution (e.g., 768 × 768) led to better identity
preservation, but performed worse in terms of the relight-
ing. We speculate that this is related to the stable diffusion
pretraining, which is on 512× 512 resolution.

The Alignment Network is an encoder-decoder architec-
ture built with Residual blocks. The encoder is composed
of three sequential residual blocks. Each of these blocks is
coupled with a subsequent downsampling layer. The de-
coder is symmetrical to the encoder, with three residual
blocks, and each of them followed by an upsampling layer.
The input and output dimensions of the alignment network
are consistent, maintaining a shape of 64× 64× 320.
Ablation Models Specifics Model#0 is a baseline dif-
fusion model without lighting conditioning and its imple-
mentation follows InstructPix2Pix [3] with the text prompt
fixed as ‘Portrait’. Model#1 takes the background image
as the conditional input, which is resized to 512 × 512.
Model#2 shares the same architecture as Model#1 but re-
places the conditional input to the LDR environment map.
Model#3 introduces the alignment module after the con-
ditional branch from Model#1. The Unet backbone from
Model#2 is used as diagramed in Fig. 2. Model#4 fine-
tunes on Model#3 with the synthetic data.

8.2. Transformer relighting model

To train a relighting baseline on our light stage dataset, we
built a transformer based encoder-decoder network. The
network input is a concatenated input image, foreground
mask, and the parsing mask, which is divided into patches
of 4 × 4. A hierarchical Transformer encoder is applied to
obtain multi-level features at { 1

4 ,
1
8 ,

1
16 ,

1
32} of the original

resolution. A decoder with transpose convolution is then
followed to get the final result with the same resolution as
the input. The target LDR environment map is concatenated
at the bottleneck latent space in a similar manner as [56].

9. Failure case and analysis
We illustrate several example failure cases in Fig.20. In our
training approach, since we do not impose constraints on
the subject’s identity, there are instances where the model
struggles to retain identity-specific details. For instance, as
shown in Fig.20a, the color of the subject’s clothing is in-
accurately altered during the color harmonization process.
Similarly, in Fig. 20b, there is a notable change in hair color
(middle). Furthermore, in scenarios where the input skin
tone is not clearly indicated (right), our model occasion-
ally produces ambiguous results in skin tone modification.
Additionally, our method does not incorporate intermediate
steps like albedo estimation, which can be crucial in han-
dling complex lighting conditions. As a result, in inputs
with pronounced cast shadows, our model sometimes fails
to eliminate these shadows effectively.
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Figure 8. Example comparison results on the real world test set to supplement Fig. 4c in the main paper.
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Figure 9. Example comparison results on the real world test set to supplement Fig. 4c in the main paper.
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Figure 10. Example comparison results on the real world test set to supplement Fig. 4c in the main paper.
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Figure 11. Example comparison results on the light stage test set to supplement Fig. 4a in the main paper. The environment map is shown
at the bottom of the ground truth image.
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Figure 12. Example comparison results on the natural image test set to supplement Fig. 4b in the main paper.
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Figure 13. Example testing results from our ablation on the real image test set. Model 0 to Model 4 correspond to the configurations in
Table 3. Our final model (Model 4) presents the best visual quality while maintaining plausible lighting effects.
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Figure 14. Example testing results from our ablation on the natural image test set. Model 0 to Model 4 correspond to the configurations in
Table 3. Our final model (Model 4) presents the best visual quality while maintaining plausible lighting effects.
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Figure 15. Example testing results from our ablation on the light stage test set. Model 0 to Model 4 correspond to the configurations in
Table 3. Our final model (Model 4) presents the best visual quality while maintaining plausible lighting effects.
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Figure 16. The L2 norm of learned lighting representations to supplement Fig. 7. The aligned background-derived feature on the right
matches the panorama much closer, indicating a better lighting representation.



Figure 17. Visual results on the reference-based harmonization application to supplement Fig. 5e. It allows user images to be blended into
scenes from real portraits. This involves removing the subject from the reference image (upper left) to create a background (lower left) for
composition. The harmonized results (right) achieve lighting effects closely resembling those in the reference.



Figure 18. Harmonization results when flipping the background, to supplement Fig. 5a.



(a) We create spatially changing lighting conditions by cropping background images (top) from a panoramic image. Our model produces visually
coherent lighting changes on different portrait images.

(b) We obtain temporally changing lighting conditions by taking multiple screenshots (top) from a timelapse video (https://www.youtube.com/
watch?v=CSfri4U9w28). Our model produces visually reasonable harmonization results.

Figure 19. Harmonization results under the background images where lighting conditions are changing spatially (a) or temporally (b).

https://www.youtube.com/watch?v=CSfri4U9w28
https://www.youtube.com/watch?v=CSfri4U9w28


(a) In some examples, our model modified the color of the subject clothes due to its harmonization nature.

(b) In some examples, our model may not fully preserve the subject identity, such as the hair color and the skin tone, especially when the input skin
tone is ambiguous (right two examples).

(c) In portraits with strong casted shadows, our model may fail to completely remove them.

Figure 20. Failure cases
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