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Abstract

Federated Learning (FL) faces challenges due to data heterogeneity, which limits
the global model’s performance across diverse client distributions. Personalized
Federated Learning (PFL) addresses this by enabling each client to possess an
individual model adapted to its local distribution. Many existing methods assume
that certain global model parameters are difficult to train effectively in a collabo-
rative manner under heterogeneous data. Consequently, they localize or fine-tune
these parameters to obtain personalized models. In this paper, we reveal that both
the feature extractor and classifier of the global model are inherently strong, and
the primary cause of its suboptimal performance is the mismatch between local
features and the global classifier. Although existing methods alleviate this mis-
match to some extent and improve performance, we find that they either (1) fail to
fully resolve the mismatch while degrading the feature extractor, or (2) address the
mismatch only post-training, allowing it to persist during training. This increases
inter-client gradient divergence, hinders model aggregation, and ultimately leaves
the feature extractor suboptimal for client data. To address this issue, we propose
FedPFT, a novel framework that resolves the mismatch during training using per-
sonalized prompts. These prompts, along with local features, are processed by a
shared self-attention-based transformation module, ensuring alignment with the
global classifier. Additionally, this prompt-driven approach offers strong flexibility,
enabling task-specific prompts to incorporate additional training objectives (e.g.,
contrastive learning) to further enhance the feature extractor. Extensive experi-
ments show that FedPFT outperforms state-of-the-art methods by up to 5.07%, with
further gains of up to 7.08% when collaborative contrastive learning is incorporated.
The code is available at https://github.com/XinghaoWu/FedPFT.

1 Introduction

Federated Learning (FL) [34, 65, 24, 21, 23, 22] enables clients to collaboratively train a global
model without sharing their raw data. A major challenge in FL is data heterogeneity, where data
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CIFAR-10, α = 0.5 CIFAR-10, α = 1.0

Methods Match Acc. Origin Acc. Probe Acc. Match Acc. Origin Acc. Probe Acc.

FedAvg 70.71% 60.05% 71.36% 67.34% 60.90% 67.87%
FedBABU 71.86% 60.87% 71.33% 68.55% 62.96% 68.27%

FedPer 70.23% 69.50% 70.20% 66.42% 65.92% 66.12%
FedBN 69.42% 66.19% 69.80% 65.34% 63.39% 65.61%

FedCAC 70.26% 68.15% 70.52% 67.22% 65.77% 67.47%

FedAvg-FT 71.21% 70.63% 71.36% 66.84% 66.44% 67.87%
FedBABU-FT 72.01% 71.69% 71.33% 68.97% 68.42% 68.27%

FedPFT 72.81% 72.66% 71.91% 69.26% 69.08% 69.38%
FedPFT+Con 76.71% 76.83% 76.80% 73.52% 73.15% 74.50%
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Figure 1: Left: Match Acc. represents the accuracy after applying a linear transformation to the
features to adapt them to the classifier. Origin Acc. indicates the accuracy of the original model. Probe
Acc. refers to the accuracy achieved by retraining the classifier with local data. All accuracies are
obtained on the client testing data. The disparity between Origin Acc. and Match Acc. indicates
the degree of mismatch (see Appendix A for a formal definition). Right-Top: (a), (b), and (c) are
toy examples of the models used to calculate the three types of accuracy. Right-Bottom: Addressing
mismatch (orange line) during training reduces inter-client gradient divergence compared to not
addressing it (blue line).

distributions across clients are not independently and identically distributed (non-IID). Under such
conditions, a single global model often fails to generalize well across all clients, leading to suboptimal
local performance.

To address this, Personalized Federated Learning (PFL) has been proposed, enabling each client
to maintain an individual model tailored to its local data distribution. A predominant approach in
PFL involves generating the personalized model by localizing or fine-tuning a selected subset of the
global model parameters, based on the premise that these parameters are inherently challenging to
optimize effectively through collaborative training. For instance, FedPer [1] personalizes the classifier,
while FedBABU [37] fine-tunes it. FedBN [26] introduces personalized batch normalization (BN)
layers, and methods like AlignFed [63, 64] personalizes feature extractors. Additionally, advanced
approaches have adopted more sophisticated techniques, including hypernetwork [33], reinforcement
learning [43], or quantitative metrics [50], to select parameters for personalization.

Global Classifier Proxies

Local Class Features Transformed Class Features

(a) Mismatched (b) Matched

Global Feature Extractor

Personalized Linear Transformation Layers of Clients 1 and 2

Client 1

Client 2

Figure 2: A toy example illustrating the mis-
match in FedAvg and how a linear transform ad-
dresses it. (a) The local features from two clients
have well-clustered structures, but due to the ef-
fects of non-IID data, their features mismatch
with the global classifier proxies. (b) By ap-
plying personalized transformations to the local
features of each client, the features are aligned
with the global classifier.

The above research in PFL reveals an intriguing
phenomenon: regardless of which components
of the global model are personalized (e.g., fea-
ture extractors, classifiers, or intermediate layers),
various PFL methods tend to achieve comparable
performance levels. This observation leads to a
non-trivial hypothesis: each individual compo-
nent within the global model may already be
sufficiently optimized through conventional FL
processes, whereas the suboptimal performance
stems primarily from the mismatch between
these well-trained modules.

To validate this hypothesis, we conduct a linear
transform experiment by inserting a simple lin-
ear layer between the FedAvg-trained global fea-
ture extractor and its classifier, then retraining this
layer on each client’s local data. As reported in
Fig. 1 (“Match Acc.”), this adjustment greatly im-
proves accuracy over the original global model
(“Origin Acc.”). This result reveals that FedAvg
already learns a strong feature extractor and classifier, but their direct combination leads to a
feature-classifier mismatch when applied to client-specific data. A toy example illustrating this
mismatch is shown in Fig. 2.
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Notably, existing PFL methods that localize (lines 5-7) or fine-tune (lines 8-9) only part of the model
parameters mitigate this mismatch, which explains their strong performance despite modifying a
small portion of the model. However, these personalization strategies come with important limitations.
Our linear probe experiments in Fig. 1 indicate that localizing partial parameters degrades the quality
of the global feature extractor (i.e., lowering the “Probe Acc.”), thereby lowering the model’s upper
performance bound.

In contrast, fine-tuning the classifier preserves the strong feature representations learned by the global
feature extractor, leading to higher “Match Acc.”. However, it remains a post-training adjustment,
addressing mismatch only after the global model has been trained. Since mismatch persists throughout
training, clients must further adjust the feature extractor to align with the classifier in each round,
exacerbating inter-client model divergence. This leads to detrimental interference during model
aggregation, making the global feature extractor suboptimal for client data. As illustrated in Fig. 1
(right-bottom), when the mismatch exists (blue line), the gradient divergence among client models is
larger.

To resolve the mismatch problem throughout training, we introduce a novel PFL method, FedPFT.
While inserting a personalized linear layer between the shared feature extractor and shared classifier is
a straightforward approach, it can easily overfit the limited local training data due to the large number
of personalized parameters, and it is insufficient for handling complex datasets (as demonstrated
in the Appendix H). To overcome these limitations, we draw inspiration from prompt technology
[11], which uses prompts to guide model behavior. FedPFT incorporates personalized prompts with
minimal trainable parameters and a shared self-attention-based feature transformation module (FTM).
Both the prompts and local features are fed into the FTM, where features are transformed via the
attention mechanism. In each round, FedPFT first trains the prompts to align local features with
the global classifier. Subsequently, training the model parameters based on this alignment reduces
the model divergence among clients and enhances the synergy between the feature extractor and
classifier. The results in Fig. 1 demonstrate that FedPFT not only resolves the mismatch problem but
also improves the feature extractor.

Another advantage of our designed prompt-driven FTM is its strong flexibility across different tasks.
It can leverage task-specific prompts to incorporate various tasks beneficial for client collaboration,
such as contrastive learning [20, 48], feature alignment [61, 54], etc. Taking contrastive learning as
an example, as shown in Fig. 1, FedPFT+Con further improves model performance by introducing
collaborative contrastive learning through prompts.

Our main contributions can be summarized as follows:

• We identify that the global model’s inadequate performance on client local data in non-IID
scenarios is primarily due to the mismatch between local features and the classifier. We
show that the reason localizing or fine-tuning some parameters improves performance is
that it indirectly alleviates this issue. This insight offers a new perspective for future PFL
approaches to better address the non-IID problem.

• We propose a new PFL framework that incorporates a prompt-driven feature transformation
module to align local features with the global classifier. This approach not only resolves the
mismatch problem but also provides flexibility for incorporating various collaborative tasks
to further enhance PFL performance.

• Our experiments on multiple datasets and non-IID scenarios (including both label shift
and feature shift) demonstrate the superiority of FedPFT, outperforming state-of-the-art
(SOTA) methods by up to 5.07%. When further incorporating contrastive learning task, this
improvement can reach up to 7.08%.

2 Related Work

PFL [45, 60] has emerged as an effective approach to addressing the challenges posed by non-IID
data in FL. In recent years, numerous methodologies have been proposed in this domain [6, 25, 31,
46, 59, 57, 52, 62, 40, 39, 35]. In this section, we focus on three categories of methods most relevant
to our work.

Parameter decoupling methods aim to decouple a subset of parameters from the global model for
personalization. Approaches such as FedPer [1], FedRep [4], and GPFL [58] focus on personalizing
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the classifier. In contrast, methods like LG-FedAvg [28] and AlignFed [64] advocate for the personal-
ization of the feature extractor. Additionally, FedBN [26] and MTFL [36] propose personalizing batch
normalization (BN) layers within the feature extractor. Techniques employing deep reinforcement
learning [43] or hypernetworks [33] have been used to determine which specific layers to personal-
ize. The recent FedCAC [50] and FedSelect [44] further advance this by enabling parameter-wise
selection. FedDecomp [49] extends this idea by decomposing each parameter into a personalized
component and a shared component, achieving finer-grained decoupling. These decoupling methods
indirectly help alleviate the mismatch issue within the global model by allowing local parameter
adjustments. However, these methods do not completely resolve the mismatch issue. Furthermore,
excessive parameter personalization reduces information exchange across clients, which can degrade
the overall quality of the feature extractor.

Classifier fine-tuning-based methods such as FedBABU [37] and FedETF [27] propose that when
the global model is well-trained, fine-tuning the classifier alone can yield strong personalized
performance. Consequently, these methods adopt a two-stage training strategy: in the first stage, they
focus on training a high-quality global model, and in the second stage, they fine-tune the classifier
to obtain a personalized model. By improving the feature extractor in the first stage, these methods
provide a stronger foundation for addressing the mismatch through classifier fine-tuning, leading
to better personalized performance. However, since the mismatch persists throughout the global
model training process, clients must continuously adjust the model to align the feature extractor and
classifier in each round. This exacerbates inter-client model divergence, causing interference during
aggregation and ultimately making the feature extractor suboptimal for client data.

Feature alignment methods have shown that non-IID data can lead to discrepancies in feature
distributions across clients, which in turn cause client drift and hinder model training. To mitigate
this issue, existing approaches align features across clients, for example, through global prototype
alignment [54, 61, 53] or classifier calibration [32, 7, 56, 37], thereby reducing inter-client feature
divergence. However, these methods focus solely on inter-client alignment and overlook the fea-
ture–classifier mismatch that occurs within each client, which we identify as a key bottleneck. In
contrast, our approach directly addresses this mismatch by aligning local features with the global
classifier, which also implicitly promotes inter-client feature alignment through a shared semantic
space.

Prompt-tuning-based methods. Prompt tuning has been widely adopted in vision and language
tasks as a lightweight way to adapt pre-trained models [11, 29, 16, 30]. Recent works such as pFedPG
[55], SGPT [5], FedOTP [19], FedAPT [42], and pFedPT [18] extend this idea to PFL, where prompts
are optimized to adapt a shared, well-trained backbone to local data. These works primarily focus on
how to adapt a well-trained global model to fit local client distributions. In contrast, our approach
addresses a fundamentally different problem: how to mitigate feature–classifier mismatch during the
training of the backbone itself. Rather than applying prompts as a fine-tuning tool, we incorporate
them as a mechanism to improve alignment and reduce gradient divergence throughout training. Our
experiments (see Section 4.4) further demonstrate that post-training prompt tuning is insufficient to
match the performance of our training-time alignment strategy.

3 Methodology

3.1 FedPFT Framework: Architecture and Workflow Overview

As illustrated in Fig. 3(a), the core of FedPFT is the introduction of a prompt-driven feature transfor-
mation module (FTM) τi between the feature extractor ϕi and task-specific heads (e.g., classifier).
This module transforms local features during training to better align them with their correspond-
ing tasks. As shown in Fig. 3(b), prompts p and image features f are fed into the FTM, where
self-attention operations transform f to f ′, which is then used by task heads. Specifically, FedPFT
employs classification prompts pκ,i to transform f , ensuring alignment with the classifier hκ,i.

Each training round of each client i in FedPFT includes five key steps:

1. Client downloads the global models, including feature extractor ϕ, FTM τ , and classifier hκ.
2. Client freezes the global feature extractor ϕ and updates τi and prompts pκ,i using the

cross-entropy loss LCE to align local features with the frozen global classifier hκ.
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Figure 3: Overview of FedPFT. (a) The training process of each client i in one communication round.
(b) The feature transformation module in FedPFT.

3. Based on the alignment between the features and the classifier, the client freezes the prompts
pκ,i and updates ϕi, τi, hκ,i with LCE to learn client local knowledge.

4. Client uploads {ϕi, τi, hκ,i} to the server while retaining {pκ,i} locally.

5. The server aggregates the models uploaded by the clients.

3.2 Problem Formulation

In PFL, N clients train their personalized models wi, i ∈ [N ] under the coordination of a server,
aiming for each wi to perform well on client data distribution Di. This objective can be formalized as
min{wi}i∈[N]

1
N

∑N
i=1 Li(wi;Di), where Li represents the loss function of the i-th client.

In this work, we aim to enhance personalized models by addressing the mismatch problem between
local features and the classifier in the global model. The training objective of FedPFT is thus
formulated as:

min
ϕ,τ,hκ

min
{pκ,i}i∈[N]

Ei{Li(ϕ, τ, hκ, pκ,i; di) := Edi
[LCE(ϕ, τ, hκ, pκ,i; di)]}, (1)

where ϕ and hκ represent the global feature extractor and global classifier, respectively. τ is the
newly introduced global FTM. This module, along with the personalized classification prompt pκ,i,
transforms local features to align with the global classifier. LCE denotes the cross-entropy loss for
classification tasks. di represents the dataset of the client.

3.3 Feature Transformation Module (FTM)

In FedPFT, given a sample xj ∈ di, processed by the feature extractor ϕ, the extracted feature is
fj ∈ Rm, where m is the feature dimension. A collection of n prompts is denoted as p = {pk ∈
Rm|k ∈ N, 1 ≤ k ≤ n}. The FTM operates as follows:

[f ′
j , p

′] = τ([fj , p]), (2)

where [·, ·] signifies stacking and concatenation along the sequence length dimension, yielding
[f ′

j , p
′] ∈ R(1+n)×m. Here, the f ′

j ∈ Rm represents the transformed feature, which is subsequently
used for downstream tasks. An illustration of the FTM is provided in Fig. 3(b). In FedPFT, we denote
nκ as the number of prompts contained in pκ,i.

The FTM dynamically adapts local features to downstream tasks, offering strong flexibility. By em-
ploying task-specific prompts p, it can introduce auxiliary objectives beneficial for client collaboration.
We explore this further in Section 3.6.

3.4 Classification Task with Personalized Prompts

FedPFT employs a set of personalized prompts pκ,i as inputs to the FTM, enabling each client
i to transform its local features for better alignment with the global classifier. Specifically, the
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classification loss for client i is defined as:

LCE(ϕ, τ, pκ,i, hκ;x, y) = − log

C∑
c=1

yc log(oi,c),where x, y ∼ di. (3)

C is the number of classes, and oi = Softmax(hκ ◦ τ([ϕ(x), pκ,i])) represents the predicted proba-
bilities, with oi,c being the ones of class c.

3.5 Dual-Phase Alternating Optimization Strategy

To effectively resolve the mismatch problem and coordinate the training of different modules in
FedPFT, we propose an alternating optimization strategy, which partitions each local training round
into two phases: the feature transformation phase and the model training phase.

Feature transformation phase. In this phase, the objective is to align local features with the
classifier by optimizing the classification prompts pκ,i and the FTM τi while keeping the global
feature extractor ϕ and global classifier hκ frozen. The training objective is formulated as:

min
pκ,i,τi

LCE(τi, pκ,i;ϕ, hκ, di). (4)

Model training phase. Following the above phase, this phase focuses on learning client-specific
knowledge by updating the feature extractor, FTM, and classifier while keeping the prompts fixed.
The training objective is given by:

min
ϕi,τi,hκ,i

LCE(ϕi, τi, hκ,i; pκ,i, di). (5)

Let R represent the total number of local epochs per training round. We divide it into Rf epochs for
the feature transformation phase and Ra epochs for the model training phase, satisfying Rf+Ra = R.
It is crucial that Rf is always larger than Ra to ensure that the mismatch between local features and
the classifier is resolved before training the model parameters.

After completing local training, the updated parameters ϕi, τi, and hκ,i are aggregated at the server to
facilitate client collaboration, while the personalized prompts pκ,i remain local. We simply adopt the
aggregation method used in FedAvg. The pseudo-code of FedPFT is summarized in the Appendix D.

3.6 FedPFT with Additional Tasks: An Example of Contrastive Learning
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Figure 4: FedPFT with contrastive learning. The
orange solid line and the green solid line repre-
sent the forward propagation of the classification
task and the contrastive learning task, respec-
tively.

As discussed in Section 3.3, our FTM provides
strong flexibility. Benefiting from this, the FedPFT
framework can seamlessly integrate additional
tasks beneficial for PFL, such as contrastive learn-
ing [20, 48], feature alignment [61, 54], multi-
task learning, etc., by simply incorporating task-
specific prompts. In this section, we utilize con-
trastive learning as an example.

As depicted in Fig. 4, we introduce another set of
personalized prompts pρ,i, which are fed into τi
to transform features for the contrastive learning
task with a global projection head hρ,i. The goal
is to enable all clients to collaboratively optimize the contrastive learning loss, thereby improving the
performance of the feature extractor. The training objective can be formulated as

min
ϕ,τ,hκ

min
{pκ,i}i∈[N]

Ei{Li(ϕ, τ, hκ, pκ,i; di) := Edi [LCE(ϕ, τ, hκ, pκ,i; di) + LCon(ϕ, τ ; di)]}, (6)

where LCon represents the contrastive learning loss function. The detailed optimization process and
the definition of LCon are provided in the Appendix E. In Section 4, we refer to this extended method
as FedPFT+Con, validating the effectiveness of combining FedPFT with contrastive learning.
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Table 1: Test accuracy (%) of different methods under Dirichlet non-IID scenarios on CIFAR-10,
CIFAR-100 and Tiny ImageNet. The best results are highlighted as first , second , and third .

CIFAR-10 CIFAR-100 Tiny ImageNet

Methods α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0

FedAvg 56.81±0.07 60.73±1.85 61.53±0.93 34.47±0.85 31.96±0.70 33.20±0.62 19.15±1.15 18.38±0.48 17.73±0.73
FedBABU 55.87±1.68 61.44±0.92 63.57±1.36 36.37±0.76 33.02±1.15 33.61±0.35 20.05±1.29 19.07±1.14 17.77±0.37
FedETF 56.27±0.64 59.62±1.22 61.51±1.40 33.84±1.05 31.10±1.05 32.24±0.24 17.96±0.54 15.50±0.80 15.18±0.33
FedFA 56.93±0.73 61.02±1.98 62.51±0.88 35.16±1.08 34.07±0.78 34.69±1.58 15.86±0.95 17.49±0.61 16.75±0.60

Local 81.91±3.09 60.15±0.86 52.24±0.41 47.61±0.96 22.65±0.51 18.76±0.63 24.07±0.62 8.75±0.30 6.87±0.28
FedAvg-FT 85.55±2.21 72.00±2.05 67.78±0.67 60.08±0.90 40.72±0.55 37.54±0.46 40.36±1.13 25.11±0.33 21.33±0.59

FedBABU-FT 85.57±1.78 72.16±1.34 68.43±1.20 60.10±0.54 40.95±0.92 38.05±0.89 40.62±1.32 25.47±1.04 21.37±0.51
FedETF-Per 83.49±2.31 67.90±2.58 63.51±0.49 57.00±0.92 36.87±1.97 35.18±1.32 34.04±0.66 19.98±1.68 15.44±0.28
FedFA-FT 80.70±2.98 67.68±2.26 66.50±0.48 42.62±0.59 33.39±0.41 33.88±0.79 24.03±0.61 18.07±0.57 16.51±0.50
FedAMP 84.99±1.82 68.26±0.79 64.87±0.95 46.68±1.06 24.74±0.58 18.22±0.41 27.85±0.71 10.70±0.32 7.13±0.21
FedPer 84.43±0.47 68.80±0.49 64.92±0.66 51.38±0.94 28.25±1.03 21.53±0.50 32.33±0.31 12.69±0.42 8.67±0.40
FedRep 84.59±1.58 67.69±0.86 60.52±0.72 51.25±1.37 26.97±0.33 20.63±0.42 30.83±1.05 12.14±0.28 8.37±0.25
FedBN 83.55±2.32 66.79±1.08 62.20±0.67 54.35±0.63 36.94±0.94 33.67±0.12 33.34±0.71 19.61±0.35 16.57±0.44

FedRoD 86.23±2.12 72.34±1.77 68.45±1.94 60.17±0.48 39.88±1.18 36.80±0.56 41.06±0.77 25.63±1.11 22.32±1.13
pFedSD 86.34±2.61 71.97±2.07 67.21±1.89 54.14±0.77 41.06±0.83 38.27±0.20 39.31±0.19 19.25±1.80 15.91±0.33

pFedGate 87.25±1.91 71.98±1.61 67.85±0.87 48.54±0.39 27.47±0.79 22.98±0.03 37.59±0.39 24.09±0.67 19.69±0.14
FedCAC 86.82±1.18 69.83±0.46 65.39±0.51 57.22±1.52 38.64±0.63 32.59±0.32 40.19±1.20 23.70±0.28 18.58±0.62
pFedPT 82.38±2.91 67.33±1.33 64.37±1.22 43.21±1.66 35.23±0.87 36.25±0.37 23.55±0.68 22.35±0.49 21.69±0.24

FedPFT 87.23±2.69 74.10±1.95 69.23±0.76 60.98±0.39 44.87±0.76 41.83±0.37 41.49±0.10 28.61±0.40 25.10±0.59

4 Experiments

4.1 Experimental Setup

Datasets. In this section, we mainly verify FedPFT in the label shift non-IID scenario, which is
one of the most commonly used scenarios in FL research. Specifically, we examine two settings:
Dirichlet non-IID and Pathological non-IID. In each setting, we employ three datasets: CIFAR-10
[14], CIFAR-100 [13], and Tiny ImageNet [15]. Additionally, in Section 4.6. we also verify FedPFT
in the feature shift non-IID scenario with PACS [17] and DomainNet [38] datasets.

In the label shift scenario, each client is assigned 500 training samples. For CIFAR-10 and CIFAR-
100 datasets, each client has 100 test samples; for the Tiny ImageNet dataset, each client has 200 test
samples. Both training and test data have the same label distribution.

Baseline methods. We compare our method against 17 state-of-the-art (SOTA) methods: FedAvg
[34], FedBABU [37], FedETF [27], FedFA [61], FedAvg-FT, FedBABU-FT, FedETF-Per, FedFA-FT,
FedAMP [10], FedPer [1], FedRep [4], FedBN [26], FedRoD [3], pFedSD [12], pFedGate [2],
FedCAC [50], and pFedPT [18]. Here, FedAvg-FT, FedBABU-FT, and FedFA-FT indicate local
fine-tuning the classifier of the global model, as we find that fine-tuning the classifier consistently
outperforms full-model fine-tuning. FedETF-Per uses the official fine-tuning method to obtain
personalized models.

Hyperparameter settings. For the general hyperparameters of FL, we set the number of clients
N = 40, batch size B = 100, and local update rounds R = 5. The total rounds T are set to 1000 to
ensure all methods reach full convergence. We select the highest average accuracy achieved by all
clients across all rounds as the result. Each experiment is repeated with three random seeds, and the
mean and standard deviation are reported. We employ the ResNet [9] model architecture, specifically
ResNet-8 for CIFAR-10 and ResNet-10 for CIFAR-100 and Tiny ImageNet. Please refer to the
Appendix F for more details.

4.2 Comparison with SOTA Methods

We compare our proposed FedPFT against 17 SOTA methods across three datasets in Dirichlet
non-IID scenarios. The experimental results on CIFAR-10, CIFAR-100, and Tiny ImageNet are
presented in Table 1. Results in Pathological non-IID scenarios are provided in the Appendix G.

Results in Dirichlet non-IID scenario. In this setting, we evaluate the impact of varying non-IID
degrees by adjusting α. The results, as detailed in Table 1, demonstrate that performance varies
significantly depending on the underlying design principles of each method. Among all methods,
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FedRoD demonstrates robust performance across all datasets and non-IID degrees. This is primarily
due to its dual-classifier design: a personalized classifier for local feature alignment and a global
classifier for assistance from other clients to improve generalization. FedPFT explicitly addresses the
mismatch problem and achieves superior results across all scenarios.

Table 2: Test accuracy (%) of FedPFT+Con un-
der Dirichlet non-IID on CIFAR-100 and Tiny
ImageNet.

Datasets α = 0.1 α = 0.5 α = 1.0

CIFAR-10 88.60±2.19 77.54±1.88 74.81±0.77
CIFAR-100 62.03±1.41 47.98±0.78 44.29±0.74

Tiny 43.42±1.62 32.44±0.58 27.84±0.41

To further validate the benefits of incorporating
additional tasks into FedPFT, we also evaluate
FedPFT+Con. As shown in Table 2, FedPFT+Con
significantly outperforms existing SOTA methods
by up to 7.08% by integrating contrastive learn-
ing into FedPFT. This improvement highlights the
strong flexibility of our proposed FTM in enhanc-
ing PFL performance.

4.3 Ablation Study

In this section, we validate the effectiveness of each component in FedPFT on the CIFAR-100 dataset.
The experimental results are presented in Table 3.

Table 3: Experiments on the CIFAR-100 with
α = 0.1 to illustrate the effectiveness of different
modules.

Settings pκ Alter. LCon pρ Accuracy (%)

I 33.87±1.35
II ✓ 40.97±1.28
III ✓ ✓ 60.98±0.39
IV ✓ ✓ ✓ 61.13±0.50
V ✓ ✓ ✓ ✓ 62.03±1.41
VI ✓ ✓ ✓ 53.76±0.35

Setting I represents FedAvg. Setting II incorpo-
rates classification prompts pκ to allow each client
to adjust the global model individually to obtain a
personalized model, resulting in a performance im-
provement. Setting III (i.e., FedPFT) incorporates
alternating training, where prompts are first up-
dated to align local features with the global classi-
fier to address the mismatch problem, followed by
training model parameters. This approach effec-
tively resolves the mismatch issue and enhances
the synergy between the feature extractor and classifier, resulting in the greatest performance im-
provement (20.01%) compared to other modules.

Setting IV adds contrastive learning loss to Setting III, aiming to further enhance the feature extractor’s
performance through contrastive learning techniques. Setting V (i.e., FedPFT+Con) incorporates
specific prompts pρ to better transform features for the contrastive learning task, reducing mutual
interference between the two tasks during training.

Setting VI represents incorporating contrastive learning into PFL without addressing the mismatch
issue. As shown, while contrastive learning can improve model accuracy by enhancing the quality of
the feature extractor, its performance is far inferior to FedPFT (i.e., Setting III). This further highlights
the critical role of addressing the mismatch problem in the PFL.

4.4 Disentangling Model Capacity and Training Strategy Effects

Table 4: Test accuracy (%) of FedAvg variants
using the FedPFT backbone under Dirichlet non-
IID setting on CIFAR-100.

Methods α = 0.1 α = 0.5 α = 1.0

FedPFT-Avg 32.66±0.84 31.20±1.20 32.69±0.77
FedPFT-Avg-Full FT 57.90±0.52 38.44±1.26 36.10±0.08

FedPFT-Avg-Prompt FT 56.76±0.46 38.88±1.00 36.62±0.18

FedPFT introduces an FTM, which slightly in-
creases model capacity compared to standard FL
backbones. A natural concern is whether the per-
formance gains arise simply from this added ca-
pacity, or if they can be achieved by applying
existing fine-tuning strategies to the same archi-
tecture. To disentangle these factors, we reuse the
architecture of FedPFT but train it with different
strategies: (i) standard FedAvg without personal-
ization (FedPFT-Avg), (ii) full local fine-tuning after FedAvg (FedPFT-Avg-Full FT), and (iii)
prompt-only fine-tuning after FedAvg (FedPFT-Avg-Prompt FT). Table 4 reports the results on
CIFAR-100. Compared with FedAvg and FedPFT in Table 1, none of these alternatives match the
performance of FedPFT, despite using the same model capacity.

These results demonstrate two key insights: (1) Model capacity alone does not explain the improve-
ments of FedPFT, in fact, larger models are harder to train under limited local data. (2) Simple
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fine-tuning strategies, including prompt tuning, fail to achieve competitive results, highlighting the
necessity of our training-time alignment design.

4.5 Impact of Prompts on Feature Representation

In this section, we analyze how the introduced personalized prompts influence feature representation.

The impact on the alignment of features with downstream tasks. We visualize the features
transformed by different prompts in FedPFT+Con using t-SNE. The experimental setup is consistent
with Appendix I. The results are shown in Fig. 5. Larger markers in the figures represent feature
centroids of corresponding classes for each client.
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(a) Features transformed
by classification prompts
pκ

Horse

Airplane

Ship
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Cat Truck
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(b) Features transformed
by contrastive learning
prompts pρ

Figure 5: The effect of different prompts on fea-
ture space.

It is evident that the features transformed by dif-
ferent prompts adapt to the specific requirements
of their respective downstream tasks: features
from classification prompts pκ align more with
client data distribution than image similarity; for
instance, two classes within a client may appear
close even if the images are not visually similar.
Additionally, these features exhibit well-defined
decision boundaries between classes, as expected
in classification tasks. In contrast, features from
contrastive learning prompts pρ are more aligned
with image similarity. For example, in Fig. 5(b),
the feature centroids of ‘cat’ and ‘dog’ are close,
while those of ‘airplane’ and ‘dog’ are farther apart, consistent with contrastive learning principles.

The impact on the linear separability of features. We assess the linear separability of
features at three stages during the forward propagation process: ‘None’ represents the fea-
tures extracted by ϕ. ‘pκ’ represents the features transformed by the FTM using classification
prompts. ‘pρ’ represents the features transformed by the FTM using contrastive learning prompts.

Table 5: The effect of prompts pκ and pρ on
linear probe accuracy.

CIFAR-10 CIFAR-100

Prompt 0.1 0.5 1.0 0.1 0.5 1.0

None 87.69% 77.12% 73.93% 64.08% 46.50% 40.79%
pκ 87.83% 77.25% 74.02% 64.12% 46.43% 40.95%
pρ 87.82% 77.25% 74.02% 64.18% 46.40% 40.95%

The results are detailed in Table 5. Interestingly,
the accuracies across different prompt conditions
are generally similar, suggesting that the prompts
do not carry additional knowledge to enhance fea-
ture separability.

These experiments confirm that prompts work by
transforming features into the required format to
align with downstream tasks, rather than improv-
ing feature separability. This finding is consistent with the motivation of our paper.

4.6 Experiments in Feature Shift Scenarios

We conduct experiments on two feature shift datasets, PACS [17] and DomainNet [38]. PACS and
DomainNet have four and six domains, respectively, with each domain assigned to one client.
The number of clients corresponds to the number of domains. For each client, we allocate
1000 training samples and 500 testing samples. The experimental results are shown in Table 6.

Table 6: Comparison of different methods in the
feature shift non-IID scenarios.

PACS DomainNet

Methods Origin Acc. Match Acc. Origin Acc. Match Acc.

FedAvg 71.48% 75.49% 63.53% 67.17%

FedPer 74.86% 75.31% 65.70% 65.67%
FedBN 73.91% 74.71% 67.57% 68.57%

FedCAC 74.94% 75.94% 67.80% 68.53%

FedPFT 77.67% 77.64% 70.37% 70.57%

Existence of the mismatch phenomenon. The
results show that in both datasets, there are still
noticeable gaps between Origin Acc. and Match
Acc. across all methods, especially in FedAvg.
This indicates that the mismatch problem persists
in feature shift scenarios and is a major reason for
the suboptimal performance of FedAvg.

Superiority of our method. From the perspective
of mismatch degree, the small gap between Origin
Acc. and Match Acc. in FedPFT demonstrates
its effectiveness in addressing the mismatch problem in feature shift non-IID scenarios. In terms
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of Origin Acc., FedPFT significantly outperforms SOTA methods (e.g., by up to 2.73% on PACS),
further highlighting the superiority of FedPFT in addressing the feature shift non-IID problem.

4.7 Robustness

Table 7: Accuracy (%) of FedPFT with partial client
participation. Values in ‘()’ indicate the performance
change relative to 100% client participation, as pre-
sented in Table 1.
Datasets 90% 70% 50%

CIFAR-10 73.88±1.84 (-0.22) 74.21±1.45 (+0.11) 74.33±1.38 (+0.23)
CIFAR-100 45.74±0.32 (+0.87) 45.46±1.14 (+0.59) 45.87±0.81 (+1.00)
Tiny 28.53±0.62 (-0.08) 29.24±0.16 (+0.63) 29.90±0.10 (+1.29)

In this section, we evaluate the robustness
of FedPFT under partial client participa-
tion. We conduct experiments on CIFAR-
10, CIFAR-100, and Tiny ImageNet with
α = 0.5, considering scenarios where only
a random 50%, 70%, and 90% of clients
participate in training each round. The ex-
perimental results are presented in Table 7.

The results indicate that FedPFT maintains high accuracy even when only a subset of clients participate
in training. Notably, on CIFAR-100 and Tiny ImageNet, performance may even improve under
reduced client participation. This is likely because fewer participating clients per round can mitigate
the impact of non-IID data distribution on the global model. These findings demonstrate the robustness
of FedPFT in scenarios with partial client participation. For a detailed comparison with SOTA methods
under different participation ratios, please refer to Appendix N.

4.8 Training Efficiency

Table 8: The communication cost of each
client in FedAvg and FedPFT in one round.
The percentages in ‘()’ represent the increase
compared to FedAvg.

Models ϕi τi hκ,i FedAvg FedPFT

ResNet-8 1.24M 0.26M 25.70K 1.27M 1.53M (20.47%)
ResNet-10 4.91M 1.05M 51.30K 4.96M 6.01M (21.17%)

As illustrated in Table 8, FedAvg uploads the fea-
ture extractor ϕi and classifier hκ,i in each round.
FedPFT adds FTM τi, increasing communication
overhead by 20.47% for ResNet-8 and 21.17% for
ResNet-10. While FedPFT incurs additional com-
munication costs, it is important to weigh it against
the performance enhancements and flexibility of-
fered by τi. The improved accuracy and robustness
to non-IID data might justify the additional costs in scenarios where model performance is critical.

We also evaluate computation efficiency. FedPFT incurs slightly higher per-round computation time
than FedAvg, but remains computationally more efficient than most SOTA methods. Please refer to
the Appendix P for details.

5 Conclusion

We identify that in non-IID scenarios, the fundamental cause of the global model’s poor performance
on client data is the mismatch between local features extracted by the feature extractor and the global
classifier. This mismatch not only reduces model inference accuracy but also exacerbates inter-client
gradient divergence during training, hindering model aggregation and ultimately rendering the feature
extractor suboptimal for client data. To address this issue throughout training, we propose FedPFT, a
novel PFL method that incorporates a prompt-driven feature transformation module. In each training
round, FedPFT first trains the prompts to align local features with the classifier, followed by updating
model parameters. Our experiments demonstrate that FedPFT not only effectively resolves the
mismatch but also improves feature extractor quality, leading to significant performance gains over
state-of-the-art methods.
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The limitations are explicitly discussed in Appendix Q, including the narrow
focus on global model–based PFL frameworks and the need for deeper understanding of
how parameter personalization affects the feature extractor.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper includes a theoretical analysis (Appendix R), clearly listing assump-
tions, propositions, and proofs supporting convergence guarantees for the FedPFT method
in non-convex settings.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: The paper includes detailed descriptions of datasets, model architectures,
non-IID scenarios, and hyperparameters in Sections 4 and Appendix F. The experiments
are repeated with multiple seeds, and standard deviations are reported. The code is also
provided in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper uses standard publicly available datasets (e.g., CIFAR-10, CIFAR-
100, Tiny ImageNet) with well-known benchmarks. Code is provided in the supplementary
material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4 and Appendix F thoroughly describe all training settings, including
model type (ResNet), batch size, communication rounds, number of clients, optimizers,
learning rates, and prompt configurations.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Results are reported with means and standard deviations across three random
seeds. Variance and error margins are provided in all key results tables.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section F.4 reports compute resources in this paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research adheres to the NeurIPS Code of Ethics. No personally identifiable
data or human subjects are involved; all datasets are publicly available image benchmarks.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper is an algorithm research study and is not related to specific ap-
plications. The model architectures and datasets used in our experiments are all publicly
available.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release models or datasets with high risk for misuse. It
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safety filters.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper uses standard datasets like CIFAR-10 and CIFAR-100, which
are publicly available under clear terms. The ResNet architecture is also standard and
open-source.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new datasets or assets are introduced in this work.
Guidelines:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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Question: For crowdsourcing experiments and research with human subjects, does the paper
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well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any human subjects or crowdsourcing.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve human subjects, and no IRB approval is necessary.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Formal Definition of Feature–Classifier Mismatch

We formally define the feature–classifier mismatch as:

Mismatch(f,W ) = E(x,y)∼Di

[
L(f ′,W )− L(f,W )

]
, (7)

where Di denotes the data distribution of client i, f represents the original local features extracted
by the feature extractor, W is the classifier, f ′ is the transformed feature generated by the feature
transformation module (e.g., a linear transformation layer), and L(·, ·) is the loss function (e.g.,
cross-entropy).

This metric quantifies the improvement in performance (i.e., reduction in classification loss) when
local features are aligned with the classifier. Since loss values are often less intuitive, we report the
accuracy gap between “Origin Acc.” and “Match Acc.” (defined in the caption of Figure 1) as a
practical measure of mismatch throughout the paper. To complement this definition, we also explore
additional metrics for quantifying feature–classifier mismatch, as discussed in Appendix B.

B Further Discussion on Feature–Classifier Mismatch

Beyond accuracy-based measures, we also compute the cosine similarity between local features and
their corresponding classifier weights. As shown in Table 9, FedPFT achieves values comparable to
strong baselines such as FedBABU-FT.

Table 9: Cosine similarity between local features and their corresponding classifier weights in
different methods on CIFAR-10.

Scenarios FedAvg FedAvg-FT FedBABU FedBABU-FT FedPFT

α = 0.5 0.20 0.26 0.28 0.39 0.42
α = 1.0 0.22 0.24 0.31 0.37 0.36

However, this similarity metric is not strongly correlated with accuracy or loss, as it can be influenced
by confounding factors such as feature norm and classifier bias terms. For this reason, we do not
adopt it as the primary definition of mismatch in our paper. Instead, we define mismatch through the
performance gap before and after feature transformation, which directly reflects model effectiveness.
Our method is therefore designed to learn a transformation module that minimizes classification loss,
rather than enforcing explicit angular constraints.

C More Explanation of the Experiments Discussed in the Introduction

To facilitate understanding of the experiments mentioned in the introduction, we give a toy example
to visualize the models used to calculate Origin Acc., Probe Acc., and Match Acc. in Figure 6.

(b) Linear Probe

insert

(c) Linear Transform(a) Origin Model

Pretrained by 
FL algorithm

Retrained by 
client’s data

replace

Figure 6: A toy example illustrating the model structures used to calculate Origin Acc., Probe Acc.,
and Match Acc.

Figure 6(a) represents the model trained using the FL algorithm, where the accuracy measured on
the client’s local data is referred to as Origin Acc. Figure 6(b) illustrates the model obtained from
the linear probe experiment, where the classifier in the FL pre-trained model is replaced by a linear
classifier retrained on the client data. The accuracy corresponding to this model is referred to as
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Probe Acc. Figure 6(c) depicts the model obtained from the linear transform experiment, where a
linear transformation layer, retrained on client data, is inserted between the feature extractor and
classifier of the FL pre-trained model. The accuracy of this model is referred to as Match Acc.

D Pseudo-code of FedPFT

The pseudo-code of FedPFT is summarized in Algorithm 1.

Algorithm 1 FedPFT

Input: Each client’s initial personalized prompts p(0)κ,i; The initial global models {ϕ(0), τ (0), h
(0)
κ }; Client

Number N ; Total round T ; Epochs of two learning phases Rf and Ra.
Output: Personalized model {ϕ(T ), τ (T ), h

(T )
κ , p

(T )
κ,i } for each client.

for t = 0 to T − 1 do
Client-side:
for i = 1 to N in parallel do

Initializing {ϕ(t)
i , τ

(t)
i , h

(t)
κ,i} with {ϕ(t), τ (t), h

(t)
κ }.

Updating {τ (t)
i , p

(t)
κ,i} by Eq.(4) for Rf epochs to obtain {τ (t′)

i , p
(t+1)
κ,i }.

Updating {ϕ(t)
i , τ

(t′)
i , h

(t)
κ,i} by Eq.(5) for Ra epochs to obtain {ϕ(t+1)

i , τ
(t+1)
i , h

(t+1)
κ,i }.

Sending {ϕ(t+1)
i , τ

(t+1)
i , h

(t+1)
κ,i } to the server.

end for
Server-side:
Aggregating a set of global model {ϕ(t+1), τ (t+1), h

(t+1)
κ }.

Sending {ϕ(t+1), τ (t+1), h
(t+1)
κ } to each client i.

end for

E Details of Combining FedPFT with Contrastive Learning

Following Section 3.6 of the main text, this section provides details of the combination of FedPFT
with contrastive learning, including the definition of LCon and the optimization process of Eq. (6).

E.1 Definition of LCon

We adopt the Momentum Contrast (MoCo) framework [8] for contrastive learning. The associated
contrastive loss function is defined as:

LCon(ϕ, τ, pρ,i, hρ;x) = − log
exp (q · k+/β)∑K
j=0 exp (q · kj/β)

,where x ∼ di. (8)

In this formula, hρ is the projection head used for contrastive learning. q = hρ ◦ τ([ϕ(x′), pρ,i])

represents the query vector, and k+ = h̃ρ ◦ τ([ϕ̃(x′′), pρ,i]) denotes the positive key vector. Here, x′

and x′′ are augmented versions of the sample x, ϕ̃ and h̃ρ refer to the momentum-updated encoder
and projection head, respectively. β is a temperature hyperparameter, and K is the number of negative
samples drawn from MoCo’s queue, comprising the set {kj}Kj=0.

E.2 Optimization Process of FedPFT+Con

As discussed in Section 3.5 of the main text, FedPFT employs an alternating training strategy. In
FedPFT+Con, we extend this approach by incorporating contrastive learning into the optimization
process.

Feature transformation phase. In this phase, FedPFT+Con additionally utilizes LCon to update ϕi,
τi and hρ,i to enhance the feature quality. The objective can be formulated as:

min
pκ,i,τi,ϕi,hρ,i

LCE(τi, pκ,i;ϕi, hκ, di) + LCon(ϕi, τi, hρ,i; pρ,i, di). (9)
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Model training phase. FedPFT+Con additionally updates pρ,i in this phase to align the features with
the contrastive learning task, reducing interference from the classification task. Its training objective
can be formulated as:

min
ϕi,τi,hκ,i,pρ,i

LCE(ϕi, τi, hκ,i; pκ,i, di) + LCon(pρ,i, τi;ϕi, hρ,i, di). (10)

Figure 7 illustrates the training process of the contrastive learning and classification tasks in
FedPFT+Con. The blue modules represent components from FedPFT, while the orange mod-
ules represent additional components introduced in FedPFT+Con. Solid arrows indicate forward
propagation and dashed arrows represent backpropagation.
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Figure 7: Training process of FedPFT+Con in each client i.

F Experiment Setup

F.1 Introduction to non-IID Scenarios

Pathological non-IID. In this setting, each client is randomly assigned data from a subset of classes
with equal data volume per class. For the CIFAR-10, CIFAR-100, and Tiny ImageNet datasets, we
assign 2, 20, and 40 classes of data to each client, respectively.
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(a) α = 0.1, 10-class

0 1 2 3 4 5 6 7 8 9
Class Labels

0
2
4
6
8

10
12
14
16
18

C
lie

nt
 ID
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(d) α = 0.1, 50-class
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(e) α = 0.5, 50-class
Figure 8: Visualization of data partitioning in Dirichlet non-IID scenarios with different α.
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Dirichlet non-IID. This is a commonly used setting in current FL research [51, 50, 41]. In this
scenario, the data for each client is generated from a Dirichlet distribution denoted as Dir(α). As
the value of α increases, the class imbalance within each client’s dataset progressively decreases.
This Dirichlet non-IID setting enables the evaluation of different methods across a broad spectrum of
non-IID conditions, reflecting various degrees of data heterogeneity.

For a clearer, more intuitive understanding, we involve 20 clients with 10-class and 50-class datasets
to visualize the data distribution among clients with varying α values. As depicted in Figure 8, the
horizontal axis labels the data class indices, while the vertical axis lists the client IDs. Each red dot
indicates the class data assigned to a client, with larger dots signifying a higher volume of data in that
class.

F.2 Introduction to Comparative Methods

FedBABU [37], FedETF [27], and FedFA [61] focus on enhancing the feature extractor of the global
model. In FedBABU and FedETF, the classifier is frozen during the training of the global model.
FedFA utilizes prototypes to align client feature extractors and calibrate the classifier. FedAMP [10]
is a weighted-aggregation-based method where clients with similar data distributions are given higher
aggregation weights during model aggregation. Because it mainly encourages the collaboration
of clients with similar data distribution, it is a method that pays more attention to the local data
distribution of clients. FedPer [1], FedRep [4], FedBN [26], FedRoD [3], and FedCAC [50] are
parameter-decoupling-based methods, which personalize the global model by retaining certain
parameters locally based on FedAvg. FedRoD additionally introduces a balanced global classifier to
obtain assistance from other clients, alleviating the overfitting issue caused by personalized classifiers
alone. pFedSD [12] and pFedGate [2] are fine-tuning-based methods that adapt the global model to
local data through fine-tuning. pFedSD directly fine-tunes the global model by distilling local models,
while pFedGate trains an additional gating network and applies it to the global model. pFedPT [18],
a prompt-based method, can also be viewed as a fine-tuning approach, enhancing the global model’s
adaptation to local data distributions by adding prompts to images. FedAvg-FT, FedBABU-FT, and
FedFA-FT are methods where all clients collaboratively train a global model during the first stage,
followed by client-specific classifier fine-tuning of the global model to obtain personalized models.
FedETF-Per uses the official fine-tuning method to obtain personalized models.

F.3 Hyperparameter Settings in Different Methods

For the unique hyperparameters of each baseline method, we utilize the optimal parameter combina-
tions reported in their respective papers. For learning rates, we adjust within {1e-1, 1e-2, 1e-3}.

In FedPFT, to simplify the hyperparameter tuning process and enhance usability, we provide a default
set of hyperparameters: for all scenarios, we set nκ = 10 and (Rf , Ra) = (4, 1). We use the SGD
optimizer with a learning rate of 0.05 for the FTM and 0.1 for other components. In FedPFT+Con,
for the Dirichlet non-IID scenario with α = 0.1, we set (Rf , Ra) = (3, 2), while in other scenarios,
we use (Rf , Ra) = (4, 1). The learning rate for the FTM remains 0.01, with other hyperparameters
consistent with FedPFT. Unless otherwise specified, the above hyperparameter settings are used in our
experiments, though fine-tuning these parameters for specific scenarios may yield better performance.

F.4 Compute Resources

Experiments are implemented using PyTorch and conducted on 4x NVIDIA RTX 2080 GPUs. For
the methods we compared, as well as FedPFT, a single training session requires 12-36 hours. For
FedPFT+Con, the training process takes longer due to the use of the MoCo algorithm, which requires
data augmentation that can only be executed on the CPU. Consequently, a single training session for
FedPFT requires 48-72 hours.

G Comparison with State-of-the-art Methods

We present the comparative results of FedPFT and FedPFT+Con against established methods on
CIFAR-10, CIFAR-100, and Tiny ImageNet datasets under Pathological non-IID scenarios in Table 10.
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Table 10: Test accuracy (%) of different methods under Pathological non-IID setting on CIFAR-10,
CIFAR-100, and Tiny ImageNet.

Methods CIFAR-10 CIFAR-100 Tiny ImageNet

FedAvg 54.33 ± 3.03 34.27 ± 0.44 18.05 ± 0.23
Local 85.85 ± 0.93 38.40 ± 0.69 16.20 ± 0.30

FedAMP 88.88 ± 0.83 38.36 ± 0.79 16.13 ± 0.55
FedPer 87.51 ± 0.95 41.54 ± 0.74 20.25 ± 0.65
FedRep 87.10 ± 0.91 40.63 ± 0.74 19.24 ± 0.33
FedBN 87.02 ± 1.41 47.75 ± 1.03 24.91 ± 0.48

FedRoD 88.06 ± 1.70 52.55 ± 0.92 32.25 ± 0.80
pFedSD 89.97 ± 1.45 52.30 ± 1.18 30.27 ± 0.78

pFedGate 89.15 ± 0.76 43.73 ± 0.14 22.42 ± 0.83
FedCAC 89.77 ± 1.14 49.07 ± 0.87 30.83 ± 0.42
pFedPT 86.29 ± 1.11 39.92 ± 0.33 21.38 ± 0.98

FedPFT 89.67 ± 1.96 57.62 ± 1.18 36.13 ± 1.32
FedPFT+Con 90.55 ± 1.35 58.14 ± 0.71 37.59 ± 0.39

Results in Pathological non-IID scenario. This is an extreme setting where each client has data
from only a subset of classes. This scenario is particularly pronounced in the CIFAR-10 dataset,
where each client essentially performs a simple binary classification task. Here, clients can achieve
decent performance by solely focusing on their local tasks (‘Local’), even without collaboration with
other clients. As such, methods that prioritize local data distribution, such as FedAMP, pFedSD, and
pFedGate, perform well. In contrast, on CIFAR-100 and Tiny ImageNet datasets, as clients have
more local classes with fewer samples per class, local tasks become more challenging. Effective
collaboration with other clients becomes crucial. Consequently, methods such as FedRoD, which
emphasize client collaboration, exhibit increasingly significant performance. FedAMP and pFedGate
show considerable performance degradation. FedPer, FedRep, FedBN, and FedCAC, by personalizing
certain parameters of FedAvg, enhance local performance by indirectly aligning local features with
classifiers to some extent. However, as they do not address the mismatch issue, they compromise the
performance of feature extractors to some extent, thereby limiting their performance to a moderate
level across the three datasets. FedPFT aligns local features with the global feature space using
classification prompts, enhancing both local feature-classifier alignment and inter-client collaboration
effectiveness. It achieves competitive performance on CIFAR-10 and surpasses existing SOTA
methods on CIFAR-100 and Tiny ImageNet. FedPFT+Con further incorporates contrastive learning
tasks to enhance feature extractor performance, outperforming SOTA methods significantly across all
datasets.

H Addressing Mismatch by Inserting Linear Layer

As discussed in Section 1 of the main text, a straightforward approach to address the mismatch
problem is to insert a personalized linear transformation layer between the global feature extractor and
the global classifier (FedAvg+Linear). In this section, we validate this method through experiments,
with the results shown in Table 11.

By combining the results in Table 1 of the main text, we observe that FedAvg+Linear outper-
forms most SOTA methods on the CIFAR-10 dataset, demonstrating the effectiveness of addressing
the mismatch problem during training. However, on the more challenging CIFAR-100 dataset,
FedAvg+Linear underperforms several SOTA methods. This illustrates that a simple linear transfor-
mation is insufficient for complex datasets. Notably, on CIFAR-100 with α = 1.0, FedAvg+Linear
even underperforms FedAvg, highlighting that FedAvg+Linear tends to overfit the limited local
training data due to the large number of personalized parameters introduced.

In comparison, FedPFT demonstrates superior performance across all scenarios. Leveraging the
flexibility of the FTM, FedPFT+Con further enhances model performance, significantly outperforming
FedAvg+Linear.
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Table 11: Test accuracy (%) of FedAvg+Linear under Dirichlet non-IID on CIFAR-10 and CIFAR-
100.

CIFAR-10 CIFAR-100

Methods α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0

FedAvg 60.39±1.46 60.41±1.36 60.91±0.72 34.91±0.86 32.78±0.23 33.94±0.39
Local 81.91±3.09 60.15±0.86 52.24±0.41 47.61±0.96 22.65±0.51 18.76±0.63

FedAvg+Linear 85.96±2.23 71.17±1.28 67.63±0.83 58.07±0.41 37.09±0.85 31.23±0.24

FedPFT 87.23±2.69 74.10±1.95 69.23±0.76 60.98±0.39 44.87±0.76 41.83±0.37
FedPFT+Con 88.60±2.19 77.54±1.88 74.81±0.77 62.03±1.41 47.98±0.78 44.29±0.74

I Learned Features of Different Methods

In this section, we visually compare the feature quality extracted by different methods. We conduct
experiments on the CIFAR-10 dataset with 10 clients and the data distribution is illustrated in Fig. 9(a).
For each method, we visualize the feature vectors of testing data from different clients using t-SNE
[47]. The results are shown in Fig. 9(b)-(f).
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Figure 9: t-SNE visualization of features extracted by different methods on the CIFAR-10 dataset.
Different colors indicate various data categories, while distinct markers represent different clients.

FedAvg and FedCAC exhibit noticeable cluster structures of features but lack clear discriminative
boundaries. FedPer shows overlapping features across various classes.

FedPFT exhibits clearer discriminative boundaries, which can be attributed to the alignment of
local features with the global classifier achieved during local training. We also observe that data
from the same class across different clients are mapped to the same positions in the feature space,
indicating that our approach not only resolves the mismatch issue but also addresses client feature
discrepancies, as emphasized in many prior works [61, 27, 54]. ‘FedPFT w/o Alter.’ denotes the
variant without alternating training. Although it shows improved clustering compared to FedAvg,
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its boundary discriminative quality is weaker than that of FedPFT, as it does not fully resolve the
mismatch problem.

J Feature Separability of Different Methods

In this section, we delve deeper into the linear separability of features extracted by various PFL
methods. We conduct linear probing experiments on the CIFAR-10 and CIFAR-100 to assess this
property, with results detailed in Table 12.

Table 12: Linear probe accuracy (%) of different methods.
CIFAR-10 CIFAR-100

Methods 0.1 0.5 1.0 0.1 0.5 1.0

FedAvg 85.01% 72.52% 68.38% 59.50% 37.40% 32.33%
FedPer 84.44% 71.07% 66.51% 52.09% 26.61% 20.51%
FedBN 84.52% 70.15% 66.51% 57.86% 35.24% 30.28%

FedCAC 85.22% 71.56% 66.98% 56.86% 34.64% 29.35%
FedRoD 82.79% 67.07% 63.12% 56.88% 33.99% 29.22%
pFedSD 85.86% 72.42% 68.12% 60.07% 37.33% 31.99%

FedPFT 85.52% 72.59% 69.57% 61.60% 43.14% 38.47%

It can be observed that the feature linear separability of most PFL methods is inferior to FedAvg.
This suggests that although they partially alleviate the mismatch issue and achieve better model
performance, the quality of the feature extractor is inevitably compromised due to their design,
thereby limiting the full potential of PFL.

In stark contrast, FedPFT significantly improves the linear separability of features compared to
FedAvg. It accomplishes this by fundamentally addressing the mismatch issue during the training
process, thereby reducing model divergence among clients and the mutual interference between the
feature extractor and classifier caused by misalignment.

K Comparison of FedPFT+Con with Two-stage Approach

In FedPFT+Con, we propose an FTM to coordinate the joint training of contrastive learning and
classification tasks. To illustrate the superiority of this design, we introduce a baseline called ‘Two-
stage,’ similar to [48], where contrastive learning training is conducted first, followed by classification
task training after convergence. For fairness, in the two-stage method, we first perform 1000 rounds of
contrastive learning training, followed by 1000 rounds of classification task training. The experimental
results are depicted in Figure 10.
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Figure 10: Comparison with two-stage approach on training LCon, LCE, and testing accuracy.

Firstly, from the perspective of the contrastive learning loss (LCon), FedPFT+Con registers lower loss
values compared to the Two-stage approach, suggesting that simultaneous training with the classifi-
cation task enhances the efficacy of contrastive learning. Secondly, considering both Figure 10(b)
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and Figure 10(c), our method exhibits significantly higher accuracy compared to the Two-stage
approach. However, LCE converges to a higher training loss value, suggesting that in our design,
contrastive learning tasks can alleviate overfitting issues in the classification task during training.
These experiments demonstrate that our proposed approach can effectively coordinate both tasks,
allowing them to assist each other. Importantly, these experiments also indicate that the significant
performance improvement brought by contrastive learning in our method is largely attributed to the
design of our FTM and training approach.

L Attention Weight Visualization

In the FTM of FedPFT and FedPFT+Con, self-attention mechanisms are employed to facilitate the
integration of prompts with sample features. This section visualizes the attention weights to reveal
how prompts influence the transformation process. We analyze 20 test samples from a single client
on the CIFAR-10 dataset, with results depicted in Figure 11. Each row in the figure corresponds
to the attention weights for the output feature f ′ of a single sample. Columns represent the input
dimensions of the FTM: the first column corresponds to the original input feature f , while subsequent
columns relate to different prompts from the sets pκ,i or pρ,i.
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Figure 11: Visualize attention weights for different prompts in a client in the CIFAR-10 dataset under
the Dirichlet non-IID scenario.

It can be observed that when α = 0.1, indicating severe local class imbalances, each client has
data from only a few classes. In this case, the feature transformation task is relatively simple, and
the influence of different prompts on a sample is similar. As α increases, indicating more complex
local tasks, the influence of prompts becomes more intricate. Particularly at α = 1.0, it can be seen
that each sample is affected differently by different prompts. This also indicates that our approach
performs sample-level feature transformation.

M Expanding to more clients and More Complex Models

To demonstrate the scalability of FedPFT, we further conduct experiments on CIFAR-10 in Dirichlet
non-IID scenarios with more clients and more complex models.

Scaling to more clients. We perform experiments with 100 clients, and the test accuracies of various
methods are presented in Table 13.

29



Table 13: Accuracy (%) of different methods with 100 clients.

Scenarios FedPer FedBN FedRoD FedCAC FedPFT

α = 0.1 84.68 85.51 87.58 87.40 88.43
α = 0.5 71.40 70.85 75.23 72.82 76.49
α = 1.0 66.92 67.18 70.99 69.06 72.53

Scaling to more complex models. We conduct experiments using ResNet-18, with the test accuracies
of different methods shown in Table 14.

Table 14: Accuracy (%) of different methods with ResNet-18.

Scenarios FedPer FedBN FedRoD FedCAC FedPFT

α = 0.1 82.80 78.10 83.50 82.60 83.52
α = 0.5 65.35 55.38 67.55 63.27 68.93
α = 1.0 61.83 56.88 62.05 60.53 64.95

In both experiments, FedPFT significantly outperforms state-of-the-art methods, highlighting the
scalability of our approach.

N Partial Client Participation

As discussed in Section 4.7, we evaluated the robustness of FedPFT under partial client participation.
In this section, we further consider a more challenging scenario where only 20% of clients participate
in each round, and compare our method against state-of-the-art baselines. The results are reported
in Table 15. As shown, FedPFT consistently outperforms all competing methods across different
settings, demonstrating its strong robustness.

Table 15: Test accuracy (%) on CIFAR-100 with Dirichlet α = 0.5 under different client participation
ratios.

Methods 90% 70% 50% 20%

FedAvg-FT 41.50 40.88 41.95 40.23
FedBABU-FT 40.33 41.28 41.65 38.80
FedRoD 39.75 40.55 38.37 38.23
FedPFT 45.45 46.08 46.22 46.10

O Effect of Hyperparameters

In the previous experiments, we utilize the default hyperparameter combination. In this section, we
verify how variations in these hyperparameters influence the performance of FedPFT.

O.1 Effect of nκ

nκ represent the number of prompts in pκ,i for each client. We examine the impact of this hyperpa-
rameter on the performance of FedPFT on CIFAR-10 and CIFAR-100 datasets. The experimental
results are depicted in Figure 12.

FedPFT shows considerable robustness to variations in nκ. On the CIFAR-10 dataset, changes
in nκ have minimal impact on performance, suggesting that the model can effectively handle
simpler data distributions even with fewer prompts. In contrast, on the more complex CIFAR-100
dataset, performance is initially limited by a small number of prompts, which may not sufficiently
cover the diverse feature space required for effective feature transformation. As the number of
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Figure 12: The effect of hyperparameter nκ on CIFAR-10 and CIFAR-100 in the Dirichlet non-IID
scenario.

prompts increases, the model’s ability to transform and adapt features improves, leading to enhanced
performance.

O.2 Effect of Rf and Ra

Rf and Ra are used to control the number of training epochs for the two training stages. Since
we set Rf + Ra = R, in this experiment, we only adjust Rf to examine the impact of these two
hyperparameters on model performance. The experimental results are illustrated in Figure 13.
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Figure 13: The effect of hyperparameter Rf on CIFAR-10, CIFAR-100, and Tiny ImageNet in the
Dirichlet non-IID scenario with α = 0.1.

When Rf = 0, it indicates that local features are not aligned with the global classifier before training
the model parameters. Under this condition, the model performance is observed to be very poor. As
Rf gradually increases, the model performance initially improves but then declines in some scenarios,
suggesting that Rf balances the trade-off between the two training stages. When Rf is too small,
local features are not sufficiently transformed to match the classifier, resulting in the model being
affected by the mismatch during the model training phase, which reduces the synergy between the
feature extractor and classifier. On the other hand, when Rf is too large, the model parameters are
insufficiently trained, limiting the learning of local knowledge from clients.

In general, Rf and Ra are two hyperparameters that need careful adjustment, as they have a significant
impact on the performance of FedPFT. Typically, in scenarios where clients’ local tasks are simple, it
may be appropriate to decrease the value of Rf . In other cases, we recommend using a larger Rf

value to fully align the local features with the global classifier.

O.3 Impact of Local Epoch E

In this section, we extend our evaluation to explore the impact of increasing local update epochs
(E ∈ {10, 15, 20}). The results are shown in the Table 16. As expected, larger E values lead to
performance degradation across all methods due to exacerbated client drift under non-IID settings.
However, FedPFT exhibits smaller performance drops, highlighting its robustness.

This robustness stems from our two-phase training design: by resolving the feature–classifier mis-
match before model updates, FedPFT ensures that training begins from an aligned feature space and
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Table 16: Test accuracy (%) on CIFAR-10 with Dirichlet α = 1.0 under different E.

Methods 10 15 20

FedAvg-FT 67.73 67.55 67.23
FedBABU-FT 68.30 68.13 67.85
FedRoD 67.23 67.05 66.80
FedPFT 69.43 69.32 69.10

mitigates interference between the feature extractor and classifier, thus reducing the adverse effects
of drift.

P Computation Efficiency

We empirically evaluate the computational efficiency of our method on CIFAR-100 using ResNet-
10, with results displayed in Table 17. We run each method for 100 rounds and calculate their
average runtime per round. Each method exclusively utilizes a single machine during runtime. All
experiments are conducted on four NVIDIA RTX 2080 GPUs.

Table 17: The average computation time per round for different methods on CIFAR-100.

Methods FedAvg FedPer FedBN FedRoD FedCAC FedPFT

Time per round (s) 50.10 51.81 52.65 54.76 55.35 51.61

FedPFT introduces the FTM, which adds some computational overhead. However, since it does not
require updating the feature extractor during the feature learning phase, this helps reduce training
costs to some extent. Overall, from the results in Table 17, FedPFT takes slightly longer to compute
than FedAvg but is more time-efficient compared to SOTA methods.

Q Limitations and Future Work

In this paper, we primarily investigate PFL methods that derive personalized models based on a global
model. We analyze the essential reasons these methods enhance performance from the perspective of
mismatches between local features and classifiers. Although such methods occupy the mainstream in
the current PFL field, it is necessary to admit that there are some PFL methods that are not based
on global models, such as personalized-weight-aggregation-based methods, which are not explored
in this study. Additionally, while this paper observes that personalizing a subset of parameters
degrades the quality of the feature extractor, the underlying reasons for this phenomenon require
further investigation.

R Theoretical Analysis

Since the main problem in Eq. (3.2) is non-convex, we focus on the factors affecting convergence in
the non-convex setting.

R.1 Problem Setup

Non-convex case analyses are provided, because our model is multi-layer transformer. Analyses are
as follows.

We transform the problem into an unconditional bi-level optimization problem:

min
w

EF (w) = Ei{Fi(w) := min
pκ,i

Edi
LCE(w, pκ,i; di)}
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Table 18: The glossary of notations used in the theoretical analysis.
Implication Notation

Global / Local loss L / Li

Global / Local problem F / Fi

Local Dataset on ith client d̃i ∈ di
Feature extractor ϕ

Feature transformation module τ
Classification / Contrastive learning prompts pκ / pρ

Feature extractor & Feature transformation module & Classifier w
Classification / Contrastive learning task head hκ / hρ

Global / Local problem’s gradient ∇F (w) / ∇Fi(w)
Local gradient approximation gti,r

Client number N
Local update epoch R

The number of clients sampled at each global epoch S
The set of clients sampled at global epoch t St

The actual learning rate of global problem η̃
The learning rate of local problem η

Approximated local gradient error’s upper-bound δ
Local-global gradient error’s upper-bound σF

Index of client, local epoch and global epoch i ∈ [N ], r ∈ [R], t ∈ [T ]

where E represents the expectation of all random variables, Ei means the expectation of client
sampling, Edi

is the local data sampling expectation, and we use w = {ϕ, τ, hκ} for simplification,
based on the equivalence of block coordinate descent and gradient descent.

With contrastive learning the problem could be transformed into a similar problem with constrain. By
Lagrange duality, the main problem is transformed as follows:

min
ϕ,τ,hκ

min
{pκ,i}i∈[N]

EiEdiLCE(ϕ, τ, hκ, pκ,i; di)

s.t. EiEdi
LCon(ϕ, τ ; di) ≤ HCon

R.2 Propositions

Proposition R.1 (L-smooth). If f is L-smooth, ∀x, y we have:

⟨∇f(x)−∇f(y), x− y⟩ ≤ L||x− y||2

||∇f(x)−∇f(y)|| ≤ L||x− y||
||∇f(x)−∇f(y)||2 ≤ 2L[f(x)− f(y)]

f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ L

2
||y − x||2

Proposition R.2 (Jensen’s inequality). If f is convex, we have the following inequality:

EXf(X) ≥ f(EXX).

A variant of the general one shown above, given a group {xi}i∈[N ]:

||
∑
i∈[N ]

xi||2 ≤ N
∑
i∈[N ]

||xi||2.

Proposition R.3 (Triangle inequality). The triangle inequality, where || · || is the norm, and A, B is
the elements in the corresponding norm space:

||A+B|| ≤ ||A||+ ||B||
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Proposition R.4 (Matrix norm compatibility). The matrix norm compatibility, A ∈ Ra×b, B ∈
Rb×c, v ∈ Rb:

||AB||m ≤ ||A||m||B||m
||Av||m ≤ ||A||m||v||

Proposition R.5 (Peter Paul inequality). ∀x, y and ∀ϵ > 0, we have the following inequality:

2⟨x, y⟩ ≤ 1

ϵ
||x||2 + ϵ||y||2

R.3 Assumptions

Assumption R.1 (L-smooth local objectives). ∀i, Fi is LF -Smooth, the main proposition is shown in
Prop. R.1. Notice that the Fi is assumed to be L-smooth and non-convex, which matches the problem
and neural network architecture setting in the main paper.

Assumption R.2 (Bounded local variance). The local problem’s gradient is assumed not to be too
far from the global problem’s gradient.

∀w,Ei||∇Fi(w)−∇F (w)|| ≤ σF

Assumption R.3 (Bounded approximated gradient). The first-order approximation of the local
problem’s gradient gti,r should not be too far from the ground truth ∇Fi(w

t
i,r). In this assumption,

the approximated error of the block coordinate descent in Algorithm 1 is bounded.

∀{(i, r, t)}, ||gti,r −∇Fi(w
t
i,r)|| ≤ δ

R.4 Lemmas

Lemma R.1 (Bounded local approximation error). If η̃ := ηR ≤ 1
2LF

, we have the following bound
of client drift error:

1

NR

N,R∑
i,r

E||g(t)i,r −∇Fi(w
(t))||2 ≤ 2δ2 + 2R+3LF [3η̃

2
N∑
i

E||∇Fi(w
(t))||2 + 2η̃2δ2

R
]

Proof. The client drift error on given ith client and its upper bound are as follows:

E||g(t)i,r −∇Fi(w
(t))||2

≤2E||g(t)i,r −∇Fi(w
(t)
i,r)||

2 + 2E||∇Fi(w
(t))−∇Fi(w

(t)
i,r)||

2

≤2δ2 + 2LFE||w(t)
i,r − w(t)||2

(11)

where the first inequality is by Proposition R.3 and the second one is by Assumption R.1.

For the last term in the upper bound, we have the iterative formulation as follows:

E||w(t)
i,r − w(t)||2

=E||w(t)
i,r−1 − w(t) − g

(t)
i,r−1||

2

≤2E||w(t)
i,r−1 − w(t) − η∇Fi(w

(t))||2 + 2η2E||g(t)i,r−1 −∇Fi(w
(t))||2

≤2(1 +
1

2R
)E||w(t)

i,r−1 − w(t)||2 + 2(1 + 2R)η2E||∇Fi(w
(t))||2

+ 4η2[δ2 + L2
FE||w(t)

i,r − w(t)||2]

=2(1 +
1

2R
+ 2η2L2

F )E||w(t)
i,r−1 − w(t)||2 + 4η2δ2

+ 2(1 + 2R)η2E||∇Fi(w
(t))||2

where the two inequalities are by Proposition R.3, Proposition R.5 and Eq. (11).

Take η̃ := ηR ≤ 1
2LF

, we recursively unroll the inequality as follows:
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E||w(t)
i,r − w(t)||2

≤2(1 +
1

R
)E||w(t)

i,r−1 − w(t)||2 + 4η2δ2 + 2(1 + 2R)η2E||∇Fi(w
(t))||2

≤[3η̃2E||∇Fi(w
(t))||2 + 2η̃2δ2

R
]2R+2

where the inequality is unrolled and we use 1
R ≤ 1. Thus, we have:

E||g(t)i,r −∇Fi(w
(t))||2 ≤ 2δ2 + 2R+4η̃2LF [3σ

2
F + 3E||∇F (w(t))||2 + δ2

R
]

R.5 Theorem and Discussion

Theorem R.2 (Non-convex and smooth convergence of FedPFT). Let Assumption R.1, Assump-
tion R.2 and Assumption R.3 hold, if η̃ := ηR ≤ min{ 1

2LF
, η̂} is taken, where η̂ := N/S−1

24(N−1)2R
σ2
F−1,

we have the following bound:

O(E||∇F (w(t̄))||2) := O(
∆F

η̂T
+

2R/3L
1/3
F (Rσ2

F + δ2)1/3∆
2/3
F

T 2/3R1/3
+ (

σF

√
LF (N/S − 1)∆F√

TN
) + δ2)

Proof.

EF (w(t+1))−EF (w(t))

≤E⟨∇F (w(t)), w(t+1) − w(t)⟩+ LF

2
E||w(t+1) − w(t)||2

=− η̃E⟨∇F (w(t)), g(t)⟩+ η̃2LF

2
E||g(t)||2

=− η̃E||∇F (w(t))||2 − η̃E⟨∇F (w(t)), g(t) −∇F (w(t))⟩+ η̃2LF

2
E||g(t)||2

≤− η̃

2
E||∇F (w(t))||2 + η̃

2
E|| 1

NR

N,R∑
i,r

g
(t)
i,r −∇Fi(w

(t))||2 + η̃2LF

2
E||g(t)||2

≤− η̃

2
E||∇F (w(t))||2 + η̃

2
E|| 1

NR

N,R∑
i,r

g
(t)
i,r −∇Fi(w

(t))||2

+
3η̃2LF

2
E[||g(t) −∇Fi(w

(t))||2 + || 1
S

∑
i∈S(t)

∇Fi(w
(t))−∇F (w(t))||2 + ||∇F (w(t))||2]

=− η̃(1− 3η̃LF )

2
E||∇F (w(t))||2 + η̃(1 + 3η̃LF )

2

1

NR

N,R∑
i,r

E||g(t)i,r −∇Fi(w
(t))||2

+
3η̃2LF

2
|| 1
S

∑
i∈S(t)

∇Fi(w
(t))−∇F (w(t))||2

≤− η̃(1− 3η̃LF )

2
E||∇F (w(t))||2 + 3η̃2LF

N/S − 1

N − 1
[σ2

F + ||∇F (w(t))||2]

+ η̃(1 + 3η̃LF )[δ
2 + 2R+3η̃2LF [3σ

2
F + 3E||∇F (w(t))||2 + δ2

R
]]

where the four inequalities are respectively by LF -smooth of F := EiFi, Proposition R.5, Lemma R.1
and the similar classic Lemma 4 in [41].

Let c1 := 3δ2, c2 := 3LFσ
2
F

N/S−1
N−1 , c3 := 2R+3LF [3σ

2
F + δ2

R ],
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EF (w(t+1))−EF (w(t)) ≤− η̃

2
{1− [

3

2
− 3

N/S − 1

N − 1
σ2
F + 72× 2Rη̃]}E||∇F (w(t))||2

+ c3η̃
3 + c2η̃

2 + c1η̃

≤− η̃

2
E||∇F (w(t))||2 + c3η̃

3 + c2η̃
2 + c1η̃

where let η̃ ≤ min{ 1
2LF

, η̂, where η̂ := 2
3×2R+4

N/S−1
N−1 σ2

F − 1}. Re-arranging the inequality above
and accumulating, we have:

1

2
E||∇F (w(t))||2 ≤ EF (w(t+1))−EF (w(t)) + c3η̃

2 + c2η̃ + c1

1

2T

t=T−1∑
t=0

E||∇F (w(t))||2 ≤ EF (w(T ))−EF (w(0)) + c3η̃
2 + c2η̃ + c1

Let ∆F = F (w0)− F (w∗), where w∗ is the minimum of the main problem argminw EF (w). To
measure the exact term of the bounds, we consider the following cases:

• ∆F

c3T
≤ η̃3 or ∆F

c2T
≤ η̃2, let η̃ = min{(∆F

c3T
)1/3, (∆F

c2T
)1/2}, we have:

1

2
E||∇F (w(t))||2 ≤

c
1/3
3 ∆

2/3
F

T 2/3
+ (

c2∆F

T
)1/2 + c1

• ∆F

c3T
≥ η̃3 and ∆F

c2T
≥ η̃2, let η̃ = η̂, we have:

1

2
E||∇F (w(t))||2 ≤ ∆F

η̂T
+

c
1/3
3 ∆

2/3
F

T 2/3
+ (

c2∆F

T
)1/2 + c1

Uniformly sample a t̄ ∈ [T ]− 1, we have the upper bound as follows:

1

T

T−1∑
t=0

E||∇F (w(t)||2) = O(E||F (w(t̄))||2)

:=O(
∆F

η̂T
+

2R/3L
1/3
F (Rσ2

F + δ2)1/3∆
2/3
F

T 2/3R1/3
+ (

σF

√
LF (N/S − 1)∆F√

TN
) + δ2)

Remark R.2.1. According to Theorem R.2, our proposed FedPFT converges at a sub-linear level. The
linear term O(∆F

η̂T ) is affected by η̂ and the initialization gap ∆F . The sub-linear term O(1/T 2/3) is
affected by R, especially when R is large due to the exponential factor 2R. As the local approximation
error of the gradient δ grows, both the convergence radius O(δ) and the sub-linear term O(1/T 2/3)

are affected by the local optimizer selection significantly. Another sub-linear term O(
√
T ) is

eliminated if N/S − 1 = 0 when all the clients are sampled. Otherwise, the sub-linear rate is mainly
affected by σF .

FedPFT addresses the mismatch and aligns the training objectives across clients by introducing pκ,i
. Our design can effectively reduce differences in local gradients among clients during training,
thereby reducing σF and subsequently lowering the upper bound. During training, pκ,i incorporate
information from the local datasets. By using them as part of the input, FedPFT effectively reduces
the randomness in gradient computation, thereby lowering δ and consequently reducing the upper
bound.

S Empirical Support for Remark R.2.1.

To validate Remark R.2.1, we measure the standard deviation of local gradients within clients (δ)
and the gradient differences across clients (σF ) in each training round. As shown in the Fig. 14, our
proposed prompts significantly reduce both metrics, directly supporting the theoretical insights.
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(a) Local Gradient Deviation

0 100 200 300 400 500
0.7

1.1

1.5

1.9

FedPFT w/o prompt
FedPFT

(b) Client Gradient Difference
Figure 14: Comparison of local gradient deviation and inter-client gradient difference with and
without prompts in FedPFT on CIFAR-100.
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