
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPROVING GENERALIZATION OF META REINFORCE-
MENT LEARNING VIA EXPLANATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Meta reinforcement learning learns a meta-prior (e.g., meta-policy) from a set
of training tasks, such that the learned meta-prior can efficiently adapt to all the
tasks in a task distribution. However, it has been observed in literature that the
learned meta-prior usually has imbalanced generalization, i.e., it adapts well to
some tasks but adapts poorly to some other tasks. This paper aims to explain why
certain tasks are poorly adapted and, more importantly, use this explanation to
improve generalization. Our methodology has two parts. The first part identifies
“critical” training tasks that are most important to achieve good performance on
those poorly-adapted tasks. An explanation of the poor generalization is that the
meta-prior does not pay enough attention to the critical training tasks. To improve
generalization, the second part formulates a bi-level optimization problem where
the upper level learns how to augment the critical training tasks such that the meta-
prior can pay more attention to the critical tasks, and the lower level computes the
meta-prior distribution corresponding to the current augmentation. We propose an
algorithm to solve the bi-level optimization problem and theoretically guarantee
that (1) the algorithm converges at the rate of O(1/

√
K), (2) the learned augmen-

tation makes the meta-prior focus more on the critical training tasks, and (3) the
generalization improves after the task augmentation. We use two real-world ex-
periments and three MuJoCo experiments to show that our algorithm improves the
generalization and outperforms state-of-the-art baselines.

1 INTRODUCTION

Meta reinforcement learning (Meta-RL) aims to learn a meta-prior from a set of training tasks where
each training task is an RL problem and is drawn from an implicit task distribution. The learned
meta-prior is expected to adapt well (i.e., achieve high cumulative reward after adaptation) to every
task in this task distribution (Beck et al., 2023). However, it has been observed (Dhillon et al., 2019;
Nguyen et al., 2021; Yu et al., 2020) that the learned meta-prior usually does not adapt well to all
the tasks in the task distribution, i.e., it adapts well to some tasks but adapts poorly to some other
tasks. This paper proposes the first method that uses explainable meta-RL to improve generalization.
Our methodology has two parts. The first part explains why certain tasks are poorly adapted by
identifying the mistakes made by the meta-prior. The second part uses the explanation in the first
part to help correct the mistakes and thus improve generalization.

The first part explains why certain tasks are poorly adapted from the perspective of training tasks.
One reason (Nguyen et al., 2023) of this poor generalization phenomenon is that the meta-prior is
learned by minimizing the average loss of all the training tasks, implicitly treating all the training
tasks as equally important. However, many studies have shown that (Thrun & O’Sullivan, 1996;
Nguyen et al., 2023; Zamir et al., 2018; Achille et al., 2019; Nguyen et al., 2021) the tasks are
not equally important, instead, paying attention to certain important tasks can facilitate the gener-
alization over the whole task distribution. Treating all the training tasks as equally important can
potentially hinder the meta-prior from paying enough attention to some important tasks, and thus
lead to poor generalization. Inspired by the idea of identifying critical states that are most influential
to the cumulative reward as an explanation in explainable RL (Guo et al., 2021b; Cheng et al., 2024),
we aim to identify the training tasks that are most important to achieve good performance on those
poorly adapted tasks. We refer to these training tasks as “critical tasks”. Our explanation for the
poor generalization is that the meta-prior does not pay enough attention to the critical tasks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The second part aims to improve generalization by encouraging the meta-prior to pay more attention
to the critical training tasks. Since the critical tasks are the most important tasks to achieve high cu-
mulative reward on those poorly-adapted tasks, paying more attention to the critical tasks results in a
new meta-prior that generalizes better to those originally poorly-adapted tasks. Since this new meta-
prior generalizes well to additional tasks compared to the original meta-prior, the generalization over
the whole task distribution is likely to improve. To encourage the meta-prior to pay more attention
to the critical tasks, we propose to augment the critical tasks by generating augmented data and train
the meta-prior over the augmented data. The augmented data increases the diversity of the original
data and contains additional information. Therefore, it is expected that the meta-prior trained on
the augmented data stores more information of the critical task and thus pays more attention to the
critical tasks. Some recent works augment data to facilitate generalization in RL (Wang et al., 2020)
and meta-learning (Rajendran et al., 2020; Yao et al., 2021). However, they use a pre-defined rule to
augment the data or tasks. While the pre-defined rule may provide a feasible augmentation, it is not
the optimal augmentation, i.e., the augmentation that enables the learned model to best pay attention
to the critical tasks. This paper formulates a bi-level optimization problem where the upper level
learns how to best augment the critical tasks and the lower level computes the meta-prior distribu-
tion corresponding to the current augmentation. In the upper level, we use an information theoretic
metric to quantify the information of the critical tasks stored in the meta-prior. Intuitively, the more
information of the critical tasks stored in the meta-prior, the more attention the meta-prior pays to
the critical tasks. Therefore, we aim to learn an augmentation method to maximize this stored infor-
mation. The difficulty of the upper-level optimization is that we need to compute a distribution of
the meta-prior. Therefore, the lower level formulates a distributional optimization problem where a
meta-prior distribution, instead of a single meta-prior, corresponding to the current augmentation is
learned. We summarize our contributions as follows.

Contribution statement. This paper proposes the first method that uses explainable meta-RL to
improve generalization of meta-RL. Our contributions are threefold:

First, we propose the first explainable meta-RL method. Our method explains why the learned meta-
prior adapts poorly to certain tasks by identifying the critical training tasks where the meta-prior does
not pay enough attention.

Second, we formalize the problem of utilizing the explanation to improve generalization as a bi-level
optimization problem where the upper level learns how to augment the critical tasks such that the
meta-prior can best pay attention to the critical tasks, and the lower level computes the meta-prior
distribution corresponding to the current augmentation. We propose a novel algorithm to solve the
bi-level optimization problem.

Third, we theoretically guarantee that (1) our algorithm converges at the rate of O(1/
√
K), (2) the

learned augmentation makes the meta-prior focus more on the critical tasks, and (3) the generaliza-
tion improves after the task augmentation. We use two real-world experiments and three MuJoCo
experiments to empirically show that our algorithm can improve generalization of meta reinforce-
ment learning and outperform state-of-the-art baselines.

2 RELATED WORKS

This section discusses related works. Note that there is no previous work on explainable meta-RL.
We introduce works in the following three related areas: explainable RL, explainable meta-learning,
and meta-learning generalization improvement. We also discuss our distinctions from the literature.

Explainable reinforcement learning. While it lacks research works on explainable meta-RL, ex-
plainable RL (XRL) has been extensively studied to explain the decision-making of the RL agents,
including learning an interpretable policy (Bastani et al., 2018; Bewley & Lawry, 2021; Verma et al.,
2018), pinpointing regions in the observations that are critical for choosing certain actions (Atrey
et al., 2019; Guo et al., 2021a; Puri et al., 2019), and reward decomposition (Juozapaitis et al., 2019;
Lin et al., 2020a; Septon et al., 2023). The most relevant XRL method to our explanation is to
identify the critical states that are influential to the cumulative reward as an explanation (Guo et al.,
2021b; Cheng et al., 2024; Amir & Amir, 2018) where they respectively use an RNN, masks, and a
self-proposed rule to find critical states. In contrast, we formulate a bi-level optimization problem
to learn a weight vector that indicates critical tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Explainable meta-learning. There are three works on explainable meta-learning where (Woźnica &
Biecek, 2021) proposes to learn important features that lead to a specific meta model decision using
Friedman’s H-statistic (Friedman & Popescu, 2008), and (Shao et al., 2022; 2023) use structural
causal model to model the causal relations between the features and the model decision. While
these works explain why a decision is made, we explain why certain tasks are poorly adapted.

Meta-learning generalization improvement. There are three major ways to improve meta-learning
generalization: task weighting, regularization, and meta-augmentation. Task weighting (Cai et al.,
2020; Yao et al., 2021; Nguyen et al., 2023) proposes to re-weight the training tasks or reshape
the training task distribution to improve generalization. However, (Cai et al., 2020; Yao et al.,
2021) require an additional target task set to guide how to weight the training tasks or reshape the
training task distribution, and thus the learned meta-prior can be biased towards the target task set
and may not adapt well to other tasks. Regularization-based methods are also used to improve
generalization where (Wang et al., 2023) proposes to add ordinary regularization to the upper level
and inverted regularization to the lower level, and (Yin et al., 2019) imposes regularization to prevent
memorization overfitting. The most relevant technique to our paper is meta-augmentation which
augments the data and train on the augmented data to improve generalization. In specific, (Rajendran
et al., 2020) proposes to add noise to the data and (Yao et al., 2021) proposes to mix data and shuffle
the channels in the hidden layers. The augmentation method has also been used in RL (Wang et al.,
2020) to improve generalization. These augmentation methods use pre-defined rules to provide
feasible augmentation. In contrast, our paper aims to learn how to best augment the critical tasks.

3 PRELIMINARIES

Reinforcement learning. An RL task Ti is based on a Markov decision process (MDP) Mi =
(S,A, γ, Pi, νi, ri) which includes a state set S, an action set A, a discount factor γ ∈ (0, 1), a
state transition function Pi(·|·, ·), an initial state distribution νi(·), and a reward function ri(·, ·).
Reinforcement learning aims to learn a policy πφ (parameterized by φ) to maximize the cumulative
reward, i.e., maxφE

πφ [
∑∞
t=0 γ

tri(st, at)|s0 ∼ νi]. The policy gradient (Sutton et al., 1999) is
E(s,a)∼ρπφ [∇φ log πφ(a|s)A

πφ

i (s, a)] where Aπi is the advantage function under the reward ri and
policy π, ρπ(s, a) ≜ Eπ[

∑∞
t=0 γ

t1{st = s, at = a}|s0 ∼ νi] is the stationary state-action distri-
bution under the policy π, and 1{·} is the indicator function. Based on the policy gradient, we can
formulate a surrogate objective for RL (Wang et al., 2020): Ji(π) ≜ E(s,a)∼ρπ [log π(a|s)Aπi (s, a)].
Here, we omit the policy parameter φ.

Meta reinforcement learning. Meta-RL aims to efficiently solve multiple RL tasks by learning a
meta-prior. The meta-prior is learned from a group of N tr training tasks {T tr

i }N
tr

i=1 sampled from
an implicit task distribution P (T). It is typically assumed (Beck et al., 2023) that different tasks
share (S,A, γ) but may have different (P tr

i , ν
tr
i , r

tr
i). Here, the superscript “tr” means that these com-

ponents belong to training tasks. Later on, we will use different superscripts to represent different
kinds of tasks. Current mainstream meta-RL works (Beck et al., 2023; Finn et al., 2017; Fallah et al.,
2021; Xu et al., 2018; Liu et al., 2019) learn a meta-policy πθ (as the meta-prior) from the training
tasks and have the following bi-level structure:

max
θ

L(θ, {T tr
i }N

tr

i=1) =
1

N tr

N tr∑
i=1

J tr
i (π

tr
i (θ)), s.t. πtr

i (θ) = Alg(πθ, T tr
i), (1)

where the upper level aims to learn a meta-policy πθ such that the corresponding task-specific adap-
tation πtr

i (θ) can maximize the cumulative reward J tr
i (π

tr
i (θ)) on each training task T tr

i , and the
lower level computes the task-specific adaptation πtr

i (θ) given the meta-parameter θ. Different meta-
learning methods use different algorithms to compute the task-specific adaptation πtr

i (θ). Here, we
use Alg(πθ, T tr

i) to generally represent an algorithm that computes the task-specific adaptation.

To evaluate the generalization of the meta-policy πθ over the task distribution P (T), people usually
sample some validation tasks where each validation task is drawn from P (T), and use the task-
specific adaptation of each validation task to test the performance on each validation task. However,
it has been empirically observed (Yu et al., 2020) that only a portion of the adapted policies per-
form well on the corresponding validation tasks while some adapted policies perform poorly on

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the corresponding validation tasks. We pick the top N poor poorly-adapted validation tasks and use
{T poor
i }N poor

i=1 to represent the set of these top N poor poorly-adapted validation tasks.

This paper aims to improve the generalization of the meta-policy πθ via two steps. The first step
aims to explain why πθ adapts poorly to {T poor

i }N poor

i=1 . The second step aims to use the explanation
in the first step to improve the generalization over P (T).

4 THE EXPLANATION

This section explains why the meta-policy πθ does not adapt well to {T poor
i }N poor

i=1 from the perspec-
tive of the training tasks. In specific, the meta-policy πθ is learned by minimizing the average loss
of the training tasks, implicitly treating all the training tasks as equally important. However, many
studies (Thrun & O’Sullivan, 1996; Zamir et al., 2018; Achille et al., 2019; Nguyen et al., 2021)
have shown that the tasks are not equally important, and learning from certain important tasks can
facilitate the generalization performance. Treating all the training tasks as equally important can
potentially hinder the meta-prior from paying enough attention to some important tasks. Therefore,
an explanation of why πθ does not adapt well to {T poor

i }N poor

i=1 is that πθ does not pay enough attention
to some training tasks that are most important to achieve high cumulative reward on {T poor

i }N poor

i=1 .
We refer to these training tasks as “critical tasks” and aim to identify the top N cri critical training
tasks as an explanation.

For this purpose, we propose to learn an importance vector ω ∈ RN tr
where each dimension ωi

captures the importance of the corresponding training task T tr
i in terms of achieving high cumulative

reward on {T poor
i }N poor

i=1 . In specific, we propose to solve a bi-level optimization problem:

max
ω

L(θ∗(ω), {T poor
i }N

poor

i=1) s.t. θ∗(ω) = argmax
θ

N tr∑
i=1

ωiJ
tr
i (π

tr
i (θ)), (2)

where the upper level aims to learn how to weight each training task such that the corresponding
weighted meta-policy πθ∗(ω) can adapt to {T poor

i }N poor

i=1 with maximum cumulative reward, and the
lower level computes the weighted meta-policy πθ∗(ω) corresponding to the current weight ω. We
include the algorithm to solve the problem (2) in Appendix A.

We use ω∗ to denote an optimal solution of problem (2). A higher ω∗
i means that the weighted

meta-policy πθ∗(ω∗) should weight the training task T tr
i more in order to adapt to {T poor

i }N poor

i=1 with
high cumulative reward, and thus the training task T tr

i is more important in terms of achieving high
cumulative reward on {T poor

i }N poor

i=1 . Therefore, the top N cri training tasks with the highest weight
values are the top N cri critical tasks we aim to identify. We use {T cri

i }N cri

i=1 to denote these N cri

critical training tasks.
Remark 1 (The weighted meta-policy πθ∗(ω∗) cannot be used to improve generalization). Note
that πθ∗(ω∗) only improves generalization to the poorly-adapted tasks {T poor

i }Npoor

i=1 , but can com-
promise the performance on the non-critical tasks (i.e., the other training tasks that are not the
critical tasks) and thus potentially compromise the generalization to the tasks similar to the non-
critical tasks. The reason is that πθ∗(ω∗) is trained to solve a biased problem (i.e., the lower-level
problem in (2)) where the critical tasks are assigned with larger weights and the non-critical tasks
are assigned with smaller weights. This bias enables πθ∗(ω∗) to generalize better to the originally
poorly-adapted tasks {T poor

i }Npoor

i=1 . However, since πθ∗(ω∗) is biased towards optimizing the per-
formance on the critical tasks, the performance on the non-critical tasks becomes secondary and
can be compromised, especially when the non-critical tasks are very different from the critical tasks.
Therefore, this bias can potentially hinder the meta-policy from generalizing well to tasks similar to
the non-critical tasks.
Remark 2 (Improving generalization without introducing new training tasks). A simple way to
improve generalization is to include more training tasks, especially the tasks similar to the poorly-
adapted tasks {T poor

i }Npoor

i=1 . However, this paper aims to improve generalization without introduc-
ing new training tasks. Moreover, our method is complementary to the method of introducing new
training tasks because one can both introduce new training tasks and use our method to improve
generalization.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

5 THE IMPROVEMENT

This section uses the explanation (i.e., the critical tasks {T cri
i }N cri

i=1) in Section 4 to improve gen-
eralization by encouraging the meta-policy to focus more on the critical tasks. Since the critical
tasks are the most important tasks to achieve high cumulative reward on the poorly-adapted tasks
{T poor
i }N poor

i=1 , paying more attention to the critical tasks results in a new meta-policy that generalizes
better to the originally poorly-adapted tasks. Since this new meta-policy generalizes well to addi-
tional tasks compared to the original meta-policy (i.e., the one without paying more attention to the
critical tasks), the generalization over the whole task distribution is likely to improve. The challenge
is to design a method that enables the meta-policy to focus more on the critical tasks.

A straightforward method to focus more on the critical tasks is to assign larger weights to the critical
tasks and train a meta-policy over the weighted training tasks. However, as mentioned in Remark
1, while this weighting method can improve generalization to the originally poorly-adapted tasks,
it makes the meta-policy biased towards the critical tasks and can compromise the performance on
the non-critical tasks. Therefore, this bias may potentially hinder the meta-policy from generalizing
well to tasks similar to the non-critical tasks.

To address this issue, we propose to focus more on the critical tasks by augmenting the critical
training tasks. We generate augmented data for the critical tasks where the augmented data increases
the diversity of the data and thus contains additional information. We train the meta-policy over the
non-critical training tasks and the augmented critical training tasks. Since the meta-policy is trained
on the augmented data that contains additional information of the critical tasks, it is expected that
the meta-policy stores more task information of the critical tasks and thus pays more attention to
the critical tasks. Compared to directly assigning larger weights to the critical tasks, the benefit of
the proposed task augmentation is that it does not compromise the performance on the non-critical
tasks because it does not introduce bias towards the critical tasks and the task information of the
non-critical training tasks stored in the meta-policy remains unchanged (proved in Appendix B).

This section has three parts. The first part formulates a bi-level optimization problem to learn how
to best augment the critical tasks such that the meta-policy can focus more on the critical tasks.
The second part proposes a novel algorithm to solve the bi-level optimization problem. The third
part includes the theoretical analysis which proves that (1) the algorithm converges at the rate of
O(1/

√
K), (2) the learned augmentation makes the meta-prior focus more on the critical tasks, and

(3) the generalization improves after the task augmentation.

5.1 PROBLEM FORMULATION

This part formulates a bi-level optimization problem where the upper level aims to learn how to
augment the critical tasks such that the meta-policy can best pay attention to the critical tasks, and
the lower level computes the meta-parameter distribution corresponding to the current augmentation.

We use data mixture to augment the critical tasks where data mixture can increase the diversity of
the original data and thus contain additional information (Yao et al., 2021; Wang et al., 2020). Recall
from Section 3 that we can formulate a surrogate RL objective for the critical task T cri

i : J cri
i (π) =

E(s,a)∼ρπ [log π(a|s)Aπi (s, a)]. Data mixture (Wang et al., 2020) proposes to mix any two data
points (sj , aj , Aπi (sj , aj)) and (sj′ , aj′ , A

π
i (sj′ , aj′)) to generate augmented data (s̄jj′ , ājj′ , Ājj′)

where s̄jj′ = λisj + (1 − λi)sj′ , Ājj′ = λiA
π
i (sj , aj) + (1 − λi)A

π
i (sj′ , aj′), ājj′ = aj if

λi ≥ 0.5 and ājj′ = aj′ if λi < 0.5, and the mixture coefficient λi ∈ [0, 1] of the critical task
T cri
i is a random variable that is drawn from a distribution P (λ). For a specific λi, the data mixture

will lead to an augmented stationary state-action distribution ρ̄π,λi(s̄jj′ , ājj′) whose expression is
in Appendix C. Therefore, we have an augmented task T̄ cri

i (λi) and its surrogate RL objective is
J̄ cri
i (π, λi) ≜ E(s̄jj′ ,ājj′)∼ρ̄π,λi [log π(ājj′ |s̄jj′)Ājj′]. With the augmented critical tasks, the meta-

objective (i.e., the upper-level objective) in (1) becomes:

L(θ, {T̄ cri
i (λi)}N

cri

i=1, {T tr
i }N

tr−N cri

i=1) ≜
1

N tr

[N cri∑
i=1

J̄ cri
i (πcri

i (θ), λi) +

N tr−N cri∑
i=1

J tr
i (π

tr
i (θ))

]
. (3)

Compared to the original meta-objective in (1), the new objective (3) replaces the original critical
tasks {T cri

i }N cri

i=1 with the augmented critical tasks {T̄ cri
i (λi)}N

cri

i=1. Since λi is a random variable, the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

corresponding augmented task T̄ cri
i (λi) is also a random variable. In the following context, we use

the notation T̄ cri
i (λi ∼ P (λ)) to highlight that the augmented task is a random variable.

To mathematically reason about whether the meta-parameter pays more attention to the critical tasks
after task augmentation, we use the following information theoretic metric:
Definition 1. We say that the meta-parameter pays more attention to the critical tasks after
task augmentation if I(θ; {T̄ cri

i (λi ∼ P (λ))}Ncri

i=1 |{T cri
i }Ncri

i=1) > 0 where I(θ; {T̄ cri
i (λi ∼

P (λ))}Ncri

i=1 |{T cri
i }Ncri

i=1) is the conditional mutual information between the meta-parameter θ and
the augmented critical tasks {T̄ cri

i (λi ∼ P (λ))}Ncri

i=1 , given the original critical tasks {T cri
i }Ncri

i=1 .

In information theory (Wyner, 1978; Yao et al., 2021), the conditional mutual information quantifies
the difference between the information that θ and {T̄ cri

i (λi ∼ P (λ))}Ncri

i=1 share and the informa-
tion that θ and {T cri

i }Ncri

i=1 share. In other words, the conditional mutual information quantifies the
amount of additional information stored in θ by additionally knowing {T̄ cri

i (λi ∼ P (λ))}Ncri

i=1 given
that {T cri

i }Ncri

i=1 is already known. Intuitively, I(θ; {T̄ cri
i (λi ∼ P (λ))}N cri

i=1|{T cri
i }N cri

i=1) > 0 means
that the task information of the critical tasks stored in the meta-parameter θ increases after we aug-
ment {T cri

i }N cri

i=1 to {T̄ cri
i (λi ∼ P (λ))}N cri

i=1. Since the task information of the critical tasks stored in
θ increases, it means that the meta-parameter θ pays more attention to the critical tasks.

We aim to augment the critical tasks such that I(θ; {T̄ cri
i (λi ∼ P (λ))}Ncri

i=1 |{T cri
i }Ncri

i=1) > 0.
However, the aforementioned data mixture works (Yao et al., 2021; Wang et al., 2020) use a pre-
determined distribution P (λ) of λi to mix the data. While (Yao et al., 2021) shows that the pre-
determined distribution P (λ) is a feasible augmentation to increase the task information stored in
the meta-parameter, this distribution is not guaranteed to be an optimal augmentation, i.e., the one
that can maximally increase the task information stored in the meta-parameter. We aim to learn
how to best augment the critical tasks {T cri

i }N cri

i=1 by optimizing for the distribution P (λ) such that
the conditional mutual information can be maximized. In specific, we use a parameterized distribu-
tion Pϕλ

(λ) with parameter ϕλ to model the distribution of λ. We aim to optimize the distribution
parameter ϕλ to maximize the conditional mutual information. The expression of the conditional
mutual information is:

I(θ; {T̄ cri
i (λi ∼ Pϕλ

(λ))}N
cri

i=1|{T cri
i }N

cri

i=1),

= E
λi∈[0,1],λi∼Pϕλ

(λ),θ∼P∗(·|{T̄ cri
i (λi)}Ncri

i=1)

[
log

P ∗(θ|{T̄ cri
i (λi)}N

cri

i=1)

P ∗(θ|{T cri
i }N cri

i=1)

]
, (4)

where the derivation is in Appendix D, P ∗(·|{T̄ cri
i (λi)}N

cri

i=1) is the posterior distribution of the meta-
parameter θ given the augmented critical tasks {T̄ cri

i (λi)}N
cri

i=1, and P ∗(·|{T cri
i }N cri

i=1) is the posterior
distribution of θ given the original critical tasks {T cri

i }N cri

i=1. Note that the posterior distributions of θ
should also depend on the non-critical training tasks {T tr

i }
N tr−N cri

i=1 , here, we omit the dependence of
the non-critical tasks because the non-critical tasks do not change after task augmentation.

To maximize the conditional mutual information (4), we need to compute the posterior distribu-
tions P ∗(θ|{T cri

i }N cri

i=1) and P ∗(θ|{T̄ cri
i (λi)}N

cri

i=1). Therefore, analogous to (Achille & Soatto, 2018;
Yin et al., 2019), we treat θ as a random variable where the randomness comes from the training
stochasticity. Mathematically, the posterior distributions are:

P ∗(·|{T̄ cri
i (λi)}N

cri

i=1) = argmax
ϕ

Epϕ(θ)

[
L(θ, {T̄ cri

i (λi)}N
cri

i=1, {T tr
i }N

tr−N cri

i=1)
]
,

P ∗(·|{T cri
i }N

cri

i=1) = Eλi∈[0,1],λi∼Pϕλ
(λ)

[
P ∗(·|{T̄ cri

i (λi)}N
cri

i=1)
]

(5)

where Pϕ(θ) is a distribution of θ parameterized by ϕ. Instead of learning a single meta-parameter
θ, problem (5) aims to learn a distribution of θ that can maximize the meta-objective (3). This
idea of optimizing a distribution is widely adopted in meta-learning (Yin et al., 2019) and RL (Liu
et al., 2017; Salimans et al., 2017) when the stochasticity of the learned parameter is of interest. By
combining (4) and (5), we reach the final bi-level optimization problem:

max
ϕλ

I(θ; {T̄ cri
i (λi ∼ Pϕλ

(λ))}N
cri

i=1|{T cri
i }N

cri

i=1), s.t. Problem (5), (6)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where the upper-level problem in (6) learns a distribution Pϕλ
(λ) of the mixture coefficients {λi}N

cri

i=1
to maximize the conditional mutual information (4) (i.e., maximally increase the additional infor-
mation of the critical tasks stored in the meta-parameter), and the lower level (i.e., problem (5))
computes the posterior distribution P ∗(θ|{T̄ cri

i (λi)}N
cri

i=1) corresponding to the current mixture coef-
ficients {λi}N

cri

i=1 and the posterior distribution P ∗(θ|{T cri
i }N cri

i=1) given the original critical tasks.

5.2 ALGORITHM

In this section, we develop an algorithm to improve the generalization of meta-RL. We first identify
the critical tasks as the explanation (line 1 in Algorithm 1). With the identified critical tasks, we
encourage the meta-parameter θ to focus more on the critical tasks by solving the problem (6). At
each iteration k, we first solve the lower-level problem (5) in line 3. In specific, we first sample N ζ̄

sets of mixture coefficients {{λζ̄ji,k}N
cri

i=1}N
ζ̄

j=1 from Pϕλ,k(λ) and project each λζ̄ji,k to [0, 1], and then

compute N ζ̄ posterior distributions {P ∗(·|{T̄ cri
i (λ

ζ̄j
i,k)}N

cri

i=1)}N
ζ̄

ζ̄j=1
where each posterior distribution

P ∗(·|{T̄ cri
i (λ

ζ̄j
i,k)}N

cri

i=1) corresponds to each set of mixture coefficients {λζ̄ji,k}N
cri

i=1. We use these N ζ̄

posterior distributions {P ∗(·|{T̄ cri
i (λ

ζ̄j
i,k)}N

cri

i=1)}N
ζ̄

ζ̄j=1
to estimate the posterior distribution given the

original critical tasks P ∗(·|{T cri
i }N cri

i=1) =
1
N ζ̄

∑N ζ̄

j=1 P
∗(·|{T̄ cri

i (λ
ζ̄j
i,k)}N

cri

i=1). We then solve the upper-
level problem in (6) via gradient ascent (line 4). In the following, we elaborate how we solve the
lower-level and upper-level problems in (6).

Algorithm 1 Explainable meta reinforcement learning to improve generalization (XMRL-G)
Input: Initial mixture coefficient distribution Pϕλ,0

(λ) and meta-parameter distribution Pϕ0
(θ),

training tasks {T tr
i }N

tr

i=1, and poorly-adapted tasks {T poor
i }N poor

i=1 .
Output: Learned mixture coefficient distribution Pϕλ,K

(λ) and meta-parameter distribution
P
ϕ∗({λi,K}Ncri

i=1)
(θ).

1: Generate the explanation (i.e., the critical tasks {T cri
i }N cri

i=1) using the algorithm in Appendix A.
2: for k = 0, · · · ,K − 1 do
3: SampleN ζ̄ sets of {λζ̄ji,k}N

cri

i=1 and compute the distribution parameter ϕ∗({λζ̄ji,k}N
cri

i=1) such that

P ∗(θ|{T̄ cri
i (λ

ζ̄j
i,k)}N

cri

i=1) = P
ϕ∗({λ

ζ̄j
i,k}

Ncri
i=1)

(θ) for each set {λζ̄ji,k}N
cri

i=1. Estimate P ∗(·|{T cri
i }N cri

i=1)

= 1
N ζ̄

∑N ζ̄

j=1 P
∗(·|{T̄ cri

i (λ
ζ̄j
i,k)}N

cri

i=1).
4: Compute the hyper-gradient gϕλ,k

in Lemma 1 and update the mixture coefficient distribution
parameter ϕλ,k+1 = ϕλ,k + βgϕλ,k

.
5: end for

Solve the lower-level problem (line 3). To solve the lower-level problem (5), we use a Gaussian
distribution to parameterize Pϕ(θ) and thus the distribution parameter ϕ = (µ,Σ) includes a mean
vector µ and a covariance matrix Σ = σσ⊤. We can reparameterize θ via θ = µ + σ ◦ ζ where
ζ ∼ N (0, I) draws from a standard Gaussian distribution and ◦ is component-wise multiplication.
Given {λζ̄ji }N cri

i=1, the gradient of problem (5) is ∇ϕEpϕ(θ)

[
L(θ, {T̄ cri

i (λ
ζ̄j
i)}N cri

i=1, {T tr
i }

N tr−N cri

i=1)
]
=

Eζ∼N (0,I)

[
∇ϕθ · ∇θL(θ, {T̄ cri

i (λ
ζ̄j
i)}N cri

i=1, {T tr
i }

N tr−N cri

i=1)
]
, and we can use Nζ samples ζj ∼

N (0, I) to estimate the gradient:

gϕ =
1

Nζ

Nζ∑
j=1

∇ϕθj · ∇θL(θj , {T̄ cri
i (λ

ζ̄j
i)}N

cri

i=1, {T tr
i }N

tr−N cri

i=1), (7)

where θj = µ + σ ◦ ζj , ∇ϕθj is the gradient of θj with respect to the Gaussian distribution

parameter (µ, σ), and ∇θL(θj , {T̄ cri
i (λ

ζ̄j
i)}N cri

i=1, {T tr
i }

N tr−N cri

i=1) is the meta-gradient. Note that the

meta-gradient ∇θL(θj , {T̄ cri
i (λ

ζ̄j
i)}N cri

i=1, {T tr
i }

N tr−N cri

i=1) can be different for different meta-learning

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

methods because it depends on what the task-specific adaptation πtr
i (θ) is, i.e., the lower-level prob-

lem in (1). We include the expressions of ∇θL(θj , {T̄ cri
i (λ

ζ̄j
i)}N cri

i=1, {T tr
i }

N tr−N cri

i=1) for several major
meta-learning methods in Appendix F.1. We use gradient ascent to solve the lower-level prob-
lem (5) to get ϕ∗({λζ̄ji }N cri

i=1) = (µ∗({λζ̄ji }N cri

i=1), σ
∗({λζ̄ji }N cri

i=1)), which is the learned distribution

parameter such that P ∗(θ|{T̄ cri
i (λ

ζ̄j
i)}N cri

i=1) = P
ϕ∗({λ

ζ̄j
i }Ncri

i=1)
(θ). We compute N ζ̄ posterior dis-

tributions {P ∗(·|{T̄ cri
i (λ

ζ̄j
i,k)}N

cri

i=1)}N
ζ̄

ζ̄j=1
for N ζ̄ sets of mixture coefficients {{λζ̄ji,k}N

cri

i=1}N
ζ̄

ζ̄j=1
, and

estimate P ∗(θ|{T cri
i }N cri

i=1) =
1
N ζ̄

∑N ζ̄

j=1 P
∗(θ|{T̄ cri

i (λ
ζ̄j
i)}N cri

i=1).

Solve the upper-level problem (line 4). We use a Gaussian distribution to parameterize Pϕλ
(λ)

where the distribution parameter ϕλ = (µλ, σλ) includes a mean µλ and a standard deviation σλ.
Therefore, we can reparameterize each sample λζ̄ji from Pϕλ

(λ) via λζ̄ji = µλ + σλζ̄i,j where
ζ̄i,j ∼ N (0, 1). To solve the upper-level problem in problem (6), we need to compute the hyper-
gradient, i.e., the gradient of the conditional mutual information (4) w.r.t. ϕλ.

Lemma 1. Suppose we reparameterize λζ̄ji via λζ̄ji = µλ + σλζ̄i,j , the hyper-gradient can be esti-

mated by gϕλ
=

∑Nζ̄

j=1 ∇ϕλ
σ∗({λ

ζ̄j
i }Ncri

i=1)

||
∑Nζ̄

j=1 σ
∗({λ

ζ̄j
i }Ncri

i=1)||
− 1

N ζ̄

∑N ζ̄

j=1

∇ϕλ
σ∗({λ

ζ̄j
i }Ncri

i=1)

||σ∗({λ
ζ̄j
i }Ncri

i=1)||
where ∇ϕλ

σ∗({λζ̄ji }Ncri

i=1) =

−
[
∇2
σσEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i)}Ncri

i=1 , {T tr
i }N

tr−Ncri

i=1)]
]−1

· ∇2
σϕλ

EPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i)}Ncri

i=1 ,

{T tr
i }N

tr−Ncri

i=1)].

We include the expression of all the gradients in Appendix F. We solve the upper-level problem in
(6) via gradient ascent ϕλ,k+1 = ϕλ,k + βgϕλ,k

where β is the step size.

5.3 THEORETICAL ANALYSIS

This part shows that (1) Algorithm 1 converges at the rate of O(1/
√
K), (2) the learned augmenta-

tion makes the meta-parameter focus more on the critical tasks, and (3) the generalization over the
whole task distribution improves after the augmentation. We start with the following assumption:

Assumption 1. The parameterized meta-policy πθ satisfies the following: ||∇θ log πθ(a|s)|| ≤ Cθ
and ||∇2

θθ log πθ(a|s)|| ≤ C̄θ for any (s, a) ∈ S ×A where Cθ and C̄θ are positive constants.

Assumption 1 assumes that the parameterized log-policy log πθ is Cθ-Lipschitz continuous and C̄θ-
smooth w.r.t. the parameter θ, which is a standard assumption in RL (Kumar et al., 2023; Zhang
et al., 2020; Agarwal et al., 2021).

Theorem 1. Suppose Assumption 1 holds and β = 2
C̄I

√
K

where C̄I is a positive constant

whose derivation is in Appendix G, then Algorithm 1 converges: 1
K

∑K−1
k=0 ||∇ϕλ

I(θ; {T̄ cri
i (λi ∼

Pϕλ,k(λ))}N
cri

i=1|{T cri
i }N cri

i=1)||2 ≤ O(1/
√
K).

Theorem 1 shows that Algorithm 1 converges at the rate of O(1/
√
K). We next show that the

learned augmentation makes the meta-parameter focus more on the critical tasks:

Theorem 2. Suppose Assumption 1 holds and β < 2
C̄I

, then the output Pϕλ,K
(λ) of Algorithm 1

satisfies I(θ; {T̄ cri
i (λi ∼ Pϕλ,K(λ))}N cri

i=1|{T cri
i }N cri

i=1) > 0.

Theorem 2 shows that the augmented critical tasks store additional information in the meta-
parameter, and thus the meta-parameter pays more attention to the critical tasks. We next quantify
the generalization improvement of the learned augmentation Pϕλ,K

(λ). In specific, we first show
that the learned augmentation imposes a quadratic regularization on the meta-parameter θ in Lemma
2 and then show that the generalization over the task distribution P (T) improves.

To reason about the generalization, we consider the following softmax parameterized meta-policy

πθ(a|s) = eθ
⊤f(s,a)∑

a′∈A eθ⊤f(s,a′) where f(s, a) is a feature vector. This policy parameterization is widely

adopted in RL (Sutton et al., 1999; Kakade, 2001; Peters & Schaal, 2008). We consider MAML

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(Finn et al., 2017; Fallah et al., 2021) as the algorithm to compute the task-specific adaptation πtr
i (θ),

and the task-specific adaptation is also softmax parameterized.
Lemma 2. The second-order approximation of the meta-objective (3) after the task augmentation
is Eλi∼Pϕλ,K

[L(θ, {T̄ cri
i (λi)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)] ≈ L(θ, {T tr
i }Ntr

i=1) − θ⊤(1
Ncri

∑Ncri

i=1 H̄
cri
i)θ

where H̄cri
i is a positive definite matrix whose expression is in Appendix I.

Lemma 2 shows that the augmented meta-objective (3) imposes a quadratic regularization on the
original meta-objective (1). Note that we aim to maximize the meta-objective, therefore this negative
quadratic regularization reduces the solution space and thus can lead to a better generalization.

To study the generalization property of this regularization, following (Zhang & Deng, 2021; Yao
et al., 2021), we consider the following softmax policy class that is closely related to the dual prob-
lem of the regularization: Fγ̄ = {πθ : θ⊤(Ei∼P (T)[H̄i])θ ≤ γ̄}. To quantify the improvement of
generalization, we denote the generalization gap by G(Fγ̄) ≜ L(θ, {T tr

i }N
tr

i=1)− Ei∼P (T)[L(θ, Ti)].
The following theorem shows the improvement of generalization:

Theorem 3. Suppose the policy is softmax parameterized (i.e., πθ(a|s) = eθ
⊤f(s,a)∑

a′∈A eθ⊤f(s,a′)) where

the feature vector f(s, a) is twice-differentiable and bounded for any (s, a) ∈ S × A, then with

probability at least 1− δ, the generalization gap satisfies |G(Fγ̄)| ≤ O(
√

γ̄
Ntr +

√
log(1/δ)
Ntr).

According to Lemma 2, the quadratic regularization (i.e., θ⊤(1
Ncri

∑Ncri

i=1 H̄
cri
i)θ) imposed by the

learned task augmentation encourages a smaller γ̄. Therefore, according to Theorem 3, the learned
task augmentation will lead to a smaller generalization gap and thus improve generalization.

6 EXPERIMENT

This section uses two real-world experiments and three MuJoCo experiments to show the effective-
ness of Algorithm 1 (XMRL-G), where the first real-world experiment is conducted on a physical
drone and the second real-world experiment uses real-world stock market data. We introduce three
baselines for comparisons: (1) Task weighting (Nguyen et al., 2023): This method learns how to
weight different training tasks in order to improve generalization. (2) Meta augmentation (Yao
et al., 2021): This method uses a pre-defined distribution of λ to mix the data of each training task to
improve generalization. (3) Meta regularization (Wang et al., 2023): This method adds quadratic
regularization to the upper level and inverted regularization to the lower level to improve general-
ization. We use MAML (Finn et al., 2017; Fallah et al., 2021) as the baseline meta-RL algorithm.

6.1 DRONE NAVIGATION WITH OBSTACLES

Figure 1: Drone navigation

We conduct a navigation experiment (Figure 1) on an AR.Drone
2.0 where the drone (in the yellow bounding box) wants to nav-
igate to the goal (in the green bounding box) while avoiding the
obstacle (in the red bounding box). We use an indoor motion cap-
ture system “Vicon” to record the location of the drone and send
this location information to the drone. For different navigation
tasks, we change the locations of the goal and the obstacle. The
reward function is designed to be positive at the goal, negative at
the obstacle, and zero otherwise. We use success rate (i.e., the
rate of successfully reaching the goal and avoiding collision with
the obstacle) as the metric to evaluate the RL performance. We
use 50 training tasks to train a meta-policy and find 5 poorly-adapted tasks. To evaluate the general-
ization, we randomly generate 20 test tasks and record the mean and standard deviation of success
rate in the second row in Table 1. The experiment details are in Appendix K.1.

6.2 STOCK MARKET

RL to train a stock trading agent has been widely studied in AI for finance (Deng et al., 2016; Liu &
Zhu, 2024b). We use the real-world data of 30 constituent stocks in Dow Jones Industrial Average

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: Experiment results.

MAML XMRL-G Task weighting Meta augmentation Meta regularization
Drone 0.87± 0.01 0.96± 0.02 0.88± 0.02 0.91± 0.02 0.91± 0.02

Stock Market 359.13± 18.63 426.36± 17.15 371.88± 17.25 389.17± 12.66 362.53± 14.27
HalfCheetah −68.89± 4.36 −53.88± 5.21 −66.77± 6.38 −63.49± 4.07 −61.15± 3.82

Hopper −23.24± 5.71 −12.50± 2.37 −19.35± 4.12 −22.37± 4.65 −16.23± 2.03
Walker −82.18± 6.64 −55.76± 5.01 −76.86± 5.29 −67.51± 4.83 −73.25± 4.27

from 2021-01-01 to 2022-01-01. We use a benchmark “FinRL” (Liu et al., 2021) to configure the
real-world stock data into an MDP environment. The RL agent trades stocks on every stock market
opening day in order to maximize profit as well as avoid taking risks. The reward function is defined
as p1 − p2 where p1 is the profit which is the money earned from trading stocks subtracting the
transaction cost, and p2 models the preference of whether willing to take risks. In specific, p2
is positive if the investor buys stocks whose turbulence indices are larger than a certain turbulence
threshold, and zero otherwise. The value of p2 depends on the type and amount of the trading stocks.
The turbulence index measures the risk of buying a stock (Liu et al., 2021), and a lower turbulence
threshold means that the RL agent is less willing to take risks. The turbulence thresholds for different
RL tasks are different. We use 50 training tasks to learn a meta-policy and find 5 poorly-adapted
tasks. We use 20 test tasks to evaluate the generalization. We include the details in Appendix K.2
and the results of cumulative reward in the third row in Table 1.

6.3 MUJOCO

We consider the target velocity problem (Finn et al., 2017; Rakelly et al., 2019; Lin et al., 2020b; Liu
& Zhu, 2023) for three MuJoCo robots: HalfCheetah, Walker, and Hopper. In specific, the robots
aim to maintain a target velocity in each task and the target velocity of different tasks is different.
The reward function is designed as −|v−vtarget| (as in Finn et al. (2017)) where v is the current robot
velocity and vtarget is the target velocity. We use 50 training tasks to learn a meta-policy and find 5
poorly-adapted tasks. We use 20 test tasks to evaluate the generalization. We include the details in
Appendix K.3 and the results of cumulative reward in the fourth to sixth rows in Table 1.

Table 1 shows that our proposed method can significantly improve the generalization of MAML and
outperform the other three baselines.

Evaluation of the explanation. We also aim to evaluate the fidelity and usefulness of our explana-
tion. Fidelity is a widely-used metric in explainable RL (Guo et al., 2021b; Cheng et al., 2024) to
evaluate the correctness of the explanation. The fidelity in our setting means whether the identified
critical tasks {T cri

i }N cri

i=1 are indeed the most important training tasks to achieve high cumulative re-
ward on the poorly-adapted tasks {T poor

i }N poor

i=1 . To evaluate fidelity, we train a meta-policy over the
critical tasks and compare its performance on the poorly-adapted tasks with a meta-policy trained on
N cri randomly-sampled training tasks. The usefulness means whether our explanation can help im-
prove generalization. To evaluate the usefulness, we randomly pick N cri training tasks and use our
augmentation method to augment these N cri training tasks to train a meta-policy. We compare the
generalization performance of this meta-policy with XMRL-G. We include the results in Appendix
K.4, and the results show that our explanation has high fidelity and usefulness.

7 CONCLUSION

This paper proposes the first method that uses explainable meta-RL to improve generalization of
meta-RL. The proposed method has two parts where the first part explains why the learned meta-
policy does not adapt well to certain tasks by identifying the critical training tasks that the meta-
policy does not pay enough attention to, and the second part formulates a bi-level optimization
problem to learn how to augment the critical tasks such that the meta-policy can best pay attention
to the critical tasks. We theoretically guarantee that the learned augmentation can improve general-
ization over the whole task distribution. Two real-world experiments and three MuJoCo experiments
are used to show that our method outperforms state-of-the-art baselines.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alessandro Achille and Stefano Soatto. Emergence of invariance and disentanglement in deep rep-
resentations. Journal of Machine Learning Research, 19(50):1–34, 2018.

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Char-
less C Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for meta-learning.
In IEEE/CVF International Conference on Computer Vision, pp. 6430–6439, 2019.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 22(98):1–76, 2021.

Dan Amir and Ofra Amir. Highlights: Summarizing agent behavior to people. In International
Conference on Autonomous Agents and MultiAgent Systems, pp. 1168–1176, 2018.

Akanksha Atrey, Kaleigh Clary, and David Jensen. Exploratory not explanatory: Counterfactual
analysis of saliency maps for deep reinforcement learning. In International Conference on Learn-
ing Representations, 2019.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3:463–482, 2002.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via policy
extraction. Advances in Neural Information Processing Systems, 31:2499–2509, 2018.

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shi-
mon Whiteson. A survey of meta-reinforcement learning. arXiv preprint arXiv:2301.08028,
2023.

Tom Bewley and Jonathan Lawry. Tripletree: A versatile interpretable representation of black box
agents and their environments. In AAAI Conference on Artificial Intelligence, volume 35, pp.
11415–11422, 2021.

Diana Cai, Rishit Sheth, Lester Mackey, and Nicolo Fusi. Weighted meta-learning. arXiv preprint
arXiv:2003.09465, 2020.

Zelei Cheng, Xian Wu, Jiahao Yu, Wenhai Sun, Wenbo Guo, and Xinyu Xing. StateMask: Explain-
ing deep reinforcement learning through state mask. Advances in Neural Information Processing
Systems, 36, 2024.

Yue Deng, Feng Bao, Youyong Kong, Zhiquan Ren, and Qionghai Dai. Deep direct reinforcement
learning for financial signal representation and trading. IEEE Transactions on Neural Networks
and Learning Systems, 28(3):653–664, 2016.

Guneet Singh Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. A baseline for
few-shot image classification. In International Conference on Learning Representations, 2019.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence theory of gradient-
based model-agnostic meta-learning algorithms. In International Conference on Artificial Intelli-
gence and Statistics, pp. 1082–1092, 2020.

Alireza Fallah, Kristian Georgiev, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence
theory of debiased model-agnostic meta-reinforcement learning. Advances in Neural Information
Processing Systems, 34:3096–3107, 2021.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pp. 1126–1135, 2017.

Jerome H Friedman and Bogdan E Popescu. Predictive learning via rule ensembles. The Annals of
Applied Statistics, pp. 916–954, 2008.

Sihang Guo, Ruohan Zhang, Bo Liu, Yifeng Zhu, Dana Ballard, Mary Hayhoe, and Peter Stone.
Machine versus human attention in deep reinforcement learning tasks. Advances in Neural Infor-
mation Processing Systems, 34:25370–25385, 2021a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wenbo Guo, Xian Wu, Usmann Khan, and Xinyu Xing. Edge: Explaining deep reinforcement
learning policies. Advances in Neural Information Processing Systems, 34:12222–12236, 2021b.

Hongrong Huang and Juergen Sturm. Tum simulator. ROS package at http://wiki. ros.
org/tum simulator, 2014.

Zoe Juozapaitis, Anurag Koul, Alan Fern, Martin Erwig, and Finale Doshi-Velez. Explainable rein-
forcement learning via reward decomposition. In IJCAI/ECAI Workshop on Explainable Artificial
Intelligence, 2019.

Sham Kakade. A natural policy gradient. Advances in Neural Information Processing Systems, 14:
1531–1538, 2001.

Harshat Kumar, Alec Koppel, and Alejandro Ribeiro. On the sample complexity of actor-critic
method for reinforcement learning with function approximation. Machine Learning, pp. 1–35,
2023.

Zhengxian Lin, Kin-Ho Lam, and Alan Fern. Contrastive explanations for reinforcement learning
via embedded self predictions. In International Conference on Learning Representations, 2020a.

Zichuan Lin, Garrett Thomas, Guangwen Yang, and Tengyu Ma. Model-based adversarial meta-
reinforcement learning. Advances in Neural Information Processing Systems, 33:10161–10173,
2020b.

Hao Liu, Richard Socher, and Caiming Xiong. Taming MAML: Efficient unbiased meta-
reinforcement learning. In International Conference on Machine Learning, pp. 4061–4071, 2019.

Shicheng Liu and Minghui Zhu. Distributed inverse constrained reinforcement learning for multi-
agent systems. Advances in Neural Information Processing Systems, 35:33444–33456, 2022.

Shicheng Liu and Minghui Zhu. Meta inverse constrained reinforcement learning: Convergence
guarantee and generalization analysis. In The Twelfth International Conference on Learning Rep-
resentations, 2023.

Shicheng Liu and Minghui Zhu. Learning multi-agent behaviors from distributed and streaming
demonstrations. Advances in Neural Information Processing Systems, 36, 2024a.

Shicheng Liu and Minghui Zhu. In-trajectory inverse reinforcement learning: Learn incrementally
from an ongoing trajectory. arXiv preprint arXiv:2410.15612, 2024b.

Xiao-Yang Liu, Hongyang Yang, Jiechao Gao, and Christina Dan Wang. Finrl: Deep reinforcement
learning framework to automate trading in quantitative finance. In ACM International Conference
on AI in Finance, pp. 1–9, 2021.

Yang Liu, Prajit Ramachandran, Qiang Liu, and Jian Peng. Stein variational policy gradient. In
Conference on Uncertainty in Artificial Intelligence, 2017.

Cuong C Nguyen, Thanh-Toan Do, and Gustavo Carneiro. Probabilistic task modelling for meta-
learning. In Uncertainty in Artificial Intelligence, pp. 781–791, 2021.

Cuong C Nguyen, Thanh-Toan Do, and Gustavo Carneiro. Task weighting in meta-learning with
trajectory optimisation. Transactions on Machine Learning Research, 2023.

Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008.

Nikaash Puri, Sukriti Verma, Piyush Gupta, Dhruv Kayastha, Shripad Deshmukh, Balaji Krishna-
murthy, and Sameer Singh. Explain your move: Understanding agent actions using specific and
relevant feature attribution. In International Conference on Learning Representations, 2019.

Janarthanan Rajendran, Alexander Irpan, and Eric Jang. Meta-learning requires meta-augmentation.
Advances in Neural Information Processing Systems, 33:5705–5715, 2020.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with im-
plicit gradients. Advances in neural information processing systems, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International Conference on
Machine Learning, pp. 5331–5340, 2019.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Yael Septon, Tobias Huber, Elisabeth André, and Ofra Amir. Integrating policy summaries with
reward decomposition for explaining reinforcement learning agents. In International Conference
on Practical Applications of Agents and Multi-Agent Systems, pp. 320–332, 2023.

Xinyue Shao, Hongzhi Wang, Xiao Zhu, and Feng Xiong. FIND: Explainable framework for meta-
learning. arXiv preprint arXiv:2205.10362, 2022.

Xinyue Shao, Hongzhi Wang, Xiao Zhu, Feng Xiong, Tianyu Mu, and Yan Zhang. EFFECT: Ex-
plainable framework for meta-learning in automatic classification algorithm selection. Informa-
tion Sciences, 622:211–234, 2023.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in Neural Information
Processing Systems, 12:1057–1063, 1999.

Sebastian Thrun and Joseph O’Sullivan. Discovering structure in multiple learning tasks: The TC
algorithm. In International Conference on Machine Learning, volume 96, pp. 489–497, 1996.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically interpretable reinforcement learning. In International Conference on Machine
Learning, pp. 5045–5054, 2018.

Kaixin Wang, Bingyi Kang, Jie Shao, and Jiashi Feng. Improving generalization in reinforcement
learning with mixture regularization. Advances in Neural Information Processing Systems, 33:
7968–7978, 2020.

Lianzhe Wang, Shiji Zhou, Shanghang Zhang, Xu Chu, Heng Chang, and Wenwu Zhu. Improving
generalization of meta-learning with inverted regularization at inner-level. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 7826–7835, 2023.

Katarzyna Woźnica and Przemysław Biecek. Towards explainable meta-learning. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pp. 505–520, 2021.

Aaron D Wyner. A definition of conditional mutual information for arbitrary ensembles. Information
and Control, 38(1):51–59, 1978.

Zhongwen Xu, Hado van Hasselt, and David Silver. Meta-gradient reinforcement learning. Ad-
vances in Neural Information Processing Systems, 31:2402–2413, 2018.

Huaxiu Yao, Long-Kai Huang, Linjun Zhang, Ying Wei, Li Tian, James Zou, Junzhou Huang, et al.
Improving generalization in meta-learning via task augmentation. In International conference on
machine learning, pp. 11887–11897, 2021.

Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, and Chelsea Finn. Meta-learning
without memorization. In International Conference on Learning Representations, 2019.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100, 2020.

Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3712–3722, 2018.

Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Basar. Global convergence of policy gradient
methods to (almost) locally optimal policies. SIAM Journal on Control and Optimization, 58(6):
3586–3612, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Linjun Zhang and Zhun Deng. How does mixup help with robustness and generalization? In
International Conference on Learning Representations, 2021.

Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast context
adaptation via meta-learning. In International Conference on Machine Learning, pp. 7693–7702,
2019.

A ALGORITHM TO FIND THE CRITICAL TASKS

Recall from Section 4 that we aim to learn a weight vector ω by solving the problem (2) where
each component ωi of the weight vector captures the importance of the corresponding training task
T tr
i . The higher the weight value ωi is, the more important the corresponding training task T tr

i is.
Therefore, the top N cri training tasks with highest weight values are the N cri critical tasks we aim to
identify. The problem (2) is as follows:

max
ω

L(θ∗(ω), {T poor
i }N

poor

i=1) s.t. θ∗(ω) = argmax
θ

N tr∑
i=1

ωiJ
tr
i (π

tr
i (θ)).

We use Algorithm 2 to solve this problem where at each iteration k̄, we first solve the lower-level
problem in (2) to get θ∗(ω) and then solve the upper-level problem (2) via gradient ascent.

Algorithm 2 Identifying the critical tasks

Input: Training tasks {T tr
i }N

tr

i=1, poorly-adapted tasks {T poor
i }N poor

i=1 , and initial weight vector ω.
Output: Learned weight vector ωK̄ .

1: for k̄ = 0, · · · , K̄ − 1 do
2: Solve the lower-level problem via gradient ascent to get θ∗(ω).
3: Compute the hyper-gradient gωk̄

in Lemma 3 and update the weight ωk̄+1 = ωk̄ + αk̄gωk̄
.

4: end for

Solve the lower-level problem. We use gradient ascent to solve the lower-level problem where the
gradient is

∑N tr

i=1 ωi∇θJ
tr
i (π

tr
i (θ)) and the expression of ∇θJ

tr
i (π

tr
i (θ)) can be found in Appendix

F.1.

Solve the upper-level problem. To solve the upper-level problem, we need to compute the hyper-
gradient gω .

Lemma 3. The hyper-gradient is:

gω =

−
[
∇ω

Ntr∑
i=1

ωi∇θJ
tr
i (πtr

i (θ
∗(ω)))

][Ntr∑
i=1

ωi∇2
θθJ

tr
i (πtr

i (θ
∗(ω)))

]−1[Npoor∑
i=1

∇θJ
poor
i (πpoor

i (θ∗(ω)))
]
,

where the derivation is in Appendix A.1.

We use K̄-step gradient ascent ωk̄+1 = ωk̄ + αk̄gωk̄
to solve the problem (2) to get the learned

weight ωK̄ . Each component ωK̄,i captures the importance of the corresponding training task T tr
i .

We pick the top N cri training tasks with the highest weight value as the critical tasks.

A.1 PROOF OF LEMMA 3

Since θ∗(ω) = argmaxθ
∑N tr

i=1 ωiJ
tr
i (π

tr
i (θ)), then ∇θ

∑N tr

i=1 ωiJ
tr
i (π

tr
i (θ

∗(ω))) = 0. Take gradient
w.r.t. ω on both sides, we have that

∇2
ωθ

N tr∑
i=1

ωiJ
tr
i (π

tr
i (θ

∗(ω))) +
(
∇ωθ

∗(ω)
)⊤[

∇2
θθ

N tr∑
i=1

ωiJ
tr
i (π

tr
i (θ

∗(ω)))
]
= 0,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

⇒ ∇ωθ
∗(ω) =

[
∇2
θθ

N tr∑
i=1

ωiJ
tr
i (π

tr
i (θ

∗(ω)))
]−1[

∇2
θω

N tr∑
i=1

ωiJ
tr
i (π

tr
i (θ

∗(ω)))
]
. (8)

Therefore, we have that

∇ωL(θ
∗(ω), {T poor

i }N
poor

i=1) =
(
∇ωθ

∗(ω)
)⊤

∇θL(θ
∗(ω), {T poor

i }N
poor

i=1),

(a)
=

[
∇2
ωθ

N tr∑
i=1

ωiJ
tr
i (π

tr
i (θ

∗(ω)))
][
∇2
θθ

N tr∑
i=1

ωiJ
tr
i (π

tr
i (θ

∗(ω)))
]−1

∇θL(θ
∗(ω), {T poor

i }N
poor

i=1),

where (a) follows (8).

B THE TASK AUGMENTATION DOES NOT COMPROMISE THE PERFORMANCE
ON THE NON-CRITICAL TASKS

This section shows that the task augmentation does not compromise the performance on the non-
critical tasks. In brief, we prove that the mutual information between the meta-parameter and the
non-critical tasks remains unchanged even if the mutual information between the meta-parameter
and the critical tasks increases after task augmentation. Since the task information of the non-
critical tasks stored in the meta-parameter does not change after augmentation, the performance on
the non-critical tasks is not compromised.

Suppose we augment the critical tasks {T cri
i }N cri

i=1 to {T̄ cri
i }N cri

i=1. Note that the difference be-
tween {T cri

i }N cri

i=1 and {T̄ cri
i }N cri

i=1 is that they have different distributions, i.e., P ({T cri
i }N cri

i=1) and
P ({T̄ cri

i }N cri

i=1). Therefore, we use A to generally represent the critical tasks (either before augmen-
tation or after augmentation), and use P (A = {T cri

i }N cri

i=1) and P (A = {T̄ cri
i }N cri

i=1) to respectively
denote that A follows the distribution of {T cri

i }N cri

i=1 and A follows the distribution of {T̄ cri
i }N cri

i=1. We
now quantify the change of the mutual information between the meta-parameter and the non-critical
tasks {T tr

i }
N tr−N cri

i=1 :

I(θ; {T tr
i }N

tr−N cri

i=1 |{T̄ cri
i }N

cri

i=1)− I(θ; {T tr
i }N

tr−N cri

i=1 |{T cri
i }N

cri

i=1),

(a)
=

∫
P (θ, {T tr

i }N
tr−N cri

i=1 , {T̄ cri
i }N

cri

i=1)·

log
P (θ, {T tr

i }
N tr−N cri

i=1 |{T̄ cri
i }N cri

i=1)

P (θ|{T̄ cri
i }N cri

i=1)P ({T tr
i }

N tr−N cri

i=1 |{T̄ cri
i }N cri

i=1)
dθ(d{T tr

i }N
tr−N cri

i=1)(d{T̄ cri
i }N

cri

i=1)

−
∫
P (θ, {T tr

i }N
tr−N cri

i=1 , {T cri
i }N

cri

i=1)·

log
P (θ, {T tr

i }
N tr−N cri

i=1 |{T cri
i }N cri

i=1)

P (θ|{T cri
i }N cri

i=1)P ({T tr
i }

N tr−N cri

i=1 |{T cri
i }N cri

i=1)
dθ(d{T tr

i }N
tr−N cri

i=1)(d{T cri
i }N

cri

i=1)

=

∫
P (θ, {T tr

i }N
tr−N cri

i=1 , {T̄ cri
i }N

cri

i=1) log
P (θ|{T tr

i }
N tr−N cri

i=1 , {T̄ cri
i }N cri

i=1)

P (θ|{T̄ cri
i }N cri

i=1)
dθ(d{T tr

i }N
tr−N cri

i=1)(d{T̄ cri
i }N

cri

i=1)

−
∫
P (θ, {T tr

i }N
tr−N cri

i=1 , {T cri
i }N

cri

i=1) log
P (θ|{T tr

i }
N tr−N cri

i=1 , {T cri
i }N cri

i=1)

P (θ|{T cri
i }N cri

i=1)
dθ(d{T tr

i }N
tr−N cri

i=1)(d{T cri
i }N

cri

i=1),

(b)
=

∫
P (θ|{T tr

i }N
tr−N cri

i=1 , A)P ({T tr
i }N

tr−N cri

i=1)P (A = {T̄ cri
i }N

cri

i=1)·

log
P (θ|{T tr

i }
N tr−N cri

i=1 , A)

P (θ|A)
dθ(d{T tr

i }N
tr−N cri

i=1)(dA)

−
∫
P (θ|{T tr

i }N
tr−N cri

i=1 , A)P ({T tr
i }N

tr−N cri

i=1)P (A = {T cri
i }N

cri

i=1)·

log
P (θ|{T tr

i }
N tr−N cri

i=1 , A)

P (θ|A)
dθ(d{T tr

i }N
tr−N cri

i=1)(dA),

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

=

∫
P (θ|{T tr

i }N
tr−N cri

i=1 , A)P ({T tr
i }N

tr−N cri

i=1)
[
P (A = {T̄ cri

i }N
cri

i=1)− P (A = {T cri
i }N

cri

i=1)
]
·

log
P (θ|{T tr

i }
N tr−N cri

i=1 , A)

P (θ|A)
dθ(d{T tr

i }N
tr−N cri

i=1)(dA),

=

∫
P (θ|{T tr

i }N
tr−N cri

i=1 , A)P ({T tr
i }N

tr−N cri

i=1)
[
P (A = {T̄ cri

i }N
cri

i=1)− P (A = {T cri
i }N

cri

i=1)
]
·

log
P (θ|{T tr

i }
N tr−N cri

i=1 , A)∫
P (θ|{T tr

i }
N tr−N cri

i=1 , A)P ({T tr
i }

N tr−N cri

i=1)(d{T tr
i }

N tr−N cri

i=1)
dθ(d{T tr

i }N
tr−N cri

i=1)(dA),

(c)
=

∫
P (θ|{T tr

i }N
tr−N cri

i=1 , A)P ({T tr
i }N

tr−N cri

i=1)
[
P (A = {T̄ cri

i }N
cri

i=1)− P (A = {T cri
i }N

cri

i=1)
]
·

log 1dθ(d{T tr
i }N

tr−N cri

i=1)(dA),

= 0, (9)

where (a) follows the definition of conditional mutual information (Wyner, 1978), (b) follows the
fact that the critical tasks and the non-critical tasks are independent (i.e., P (θ, {T tr

i }
N tr−N cri

i=1 , A) =

P (θ|{T tr
i }

N tr−N cri

i=1 , A)P ({T tr
i }

N tr−N cri

i=1 , A) = P (θ|{T tr
i }

N tr−N cri

i=1 , A)P ({T tr
i }

N tr−N cri

i=1)P (A)), and
(c) follows the fact that the non-critical tasks {T tr

i }
N tr−N cri

i=1 are given and thus P ({T tr
i }

N tr−N cri

i=1) = 1.

From (9), we can see that I(θ; {T tr
i }

N tr−N cri

i=1 |{T̄ cri
i }N cri

i=1) − I(θ; {T tr
i }

N tr−N cri

i=1 |{T cri
i }N cri

i=1) = 0, and
thus the information of the non-critical tasks stored in the meta-parameter does not change after the
task augmentation. Therefore, the performance on the non-critical tasks is not compromised.

C EXPRESSION OF THE AUGMENTED STATE-ACTION STATIONARY
DISTRIBUTION

The expression of the augmented state-action stationary distribution is ρ̄π,λi(s̄jj′ , ājj′) ≜∑
(s,a),(s′,a′)∈S×A 1{λis + (1 − λi)s

′ = s̄jj′}[1{λi ≥ 0.5}ρπ(s, ājj′)ρπ(s′, a′) + 1{λi <

0.5}ρπ(s, a)ρπ(s′, ājj′)]. For each (s̄jj′ , ājj′), we sum the joint probability of any two state-action
pairs whose mixture combination is (s̄jj′ , ājj′).

D DERIVATION OF THE CONDITIONAL MUTUAL INFORMATION

I(θ; {T̄ cri
i (λi ∼ P (λ))}N

cri

i=1|{T cri
i }N

cri

i=1),

(a)
=

∫
P (θ, {T̄ cri

i (λi ∼ P (λ))}N
cri

i=1, {T cri
i }N

cri

i=1)·

log
P (θ, {T̄ cri

i (λi ∼ P (λ))}N cri

i=1|{T cri
i }N cri

i=1)

P (θ|{T cri
i }N cri

i=1)P ({T̄ cri
i (λi ∼ P (λ))}N cri

i=1|{T cri
i }N cri

i=1)
(dθ)(d{T̄ cri

i (λi ∼ P (λ))}N
cri

i=1)(d{T cri
i }N

cri

i=1),

=

∫
P (θ|{T̄ cri

i (λi)}N
cri

i=1, {T cri
i }N

cri

i=1)P (λ)P ({T cri
i }N

cri

i=1)·

log
P (θ, {T̄ cri

i (λi)}N
cri

i=1|{T cri
i }N cri

i=1)

P (θ|{T cri
i }N cri

i=1)P ({T̄ cri
i (λi)}N

cri

i=1|{T cri
i }N cri

i=1)
(dθ)(d{T̄ cri

i (λi)}N
cri

i=1)(d{T cri
i }N

cri

i=1),

=

∫
P (θ|{T̄ cri

i (λi)}N
cri

i=1, {T cri
i }N

cri

i=1)P (λ)P ({T cri
i }N

cri

i=1)·

log
P (θ|{T̄ cri

i (λi)}N
cri

i=1, {T cri
i }N cri

i=1)

P (θ|{T cri
i }N cri

i=1)
(dθ)(dλi)(d{T cri

i }N
cri

i=1),

(b)
=

∫
P (θ|{T̄ cri

i (λi)}N
cri

i=1)P (λ) log
P (θ|{T̄ cri

i (λi)}N
cri

i=1)

P (θ|{T cri
i }N cri

i=1)
(dθ)(dλi)(d{T cri

i }N
cri

i=1),

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

= E
λi∈[0,1],λi∼P (λ),θ∼P (·|{T̄ cri

i (λi)}Ncri
i=1)

[
log

P (θ|{T̄ cri
i (λi)}N

cri

i=1)

P (θ|{T cri
i }N cri

i=1)

]
,

where (a) follows the definition of conditional mutual information (Wyner, 1978) and (b) follows
the fact that P (θ|{T̄ cri

i (λi)}N
cri

i=1, {T cri
i }N cri

i=1) = P (θ|{T̄ cri
i (λi)}N

cri

i=1) because the meta-parameter is
trained on the augmented critical tasks {T̄ cri

i (λi)}N
cri

i=1.

E PROOF OF LEMMA 1

Recall from (4) that

I(θ; {T̄ cri
i (λi ∼ Pϕλ

(λ))}N
cri

i=1|{T cri
i }N

cri

i=1),

= E
λi∈[0,1],λi∼Pϕλ

(λ),θ∼P∗(·|{T̄ cri
i (λi)}Ncri

i=1)

[
log

P ∗(θ|{T̄ cri
i (λi)}N

cri

i=1)

P ∗(θ|{T cri
i }N cri

i=1)

]
.

Since P
ϕ∗({λ

ζ̄j
i }Ncri

i=1)
(θ) is Gaussian distribution, we have that

I(θ; {T̄ cri
i (λi ∼ Pϕλ

(λ))}N
cri

i=1|{T cri
i }N

cri

i=1),

= Eλi,θ

[
log

exp(− 1
2 (θ−µ

∗({λζ̄
i }

Ncri
i=1))

⊤(Σ∗({λζ̄
i }

Ncri
i=1))

−1(θ−µ∗({λζ̄
i }

Ncri
i=1)))√

|(σ∗({λζ̄
i }Ncri

i=1))
⊤σ∗({λζ̄

i }Ncri
i=1)|

Eλi

[
exp(− 1

2 (θ−µ∗({λζ̄
i }Ncri

i=1))
⊤(Σ∗({λζ̄

i }Ncri
i=1))

−1(θ−µ∗({λζ̄
i }Ncri

i=1)))√
|(σ∗({λζ̄

i }Ncri
i=1))

⊤σ∗({λζ̄
i }Ncri

i=1)|

]],
= Eλi,θ

[
log

exp(− 1
2 (θ − µ∗({λζ̄i }N

cri

i=1))
⊤(Σ∗({λζ̄i }N

cri

i=1))
−1(θ − µ∗({λζ̄i }N

cri

i=1)))√
|(σ∗({λζ̄i }N

cri

i=1))
⊤σ∗({λζ̄i }N

cri

i=1)|

]

− Eθ

[
logEλi

[exp(− 1
2 (θ − µ∗({λζ̄i }N

cri

i=1))
⊤(Σ∗({λζ̄i }N

cri

i=1))
−1(θ − µ∗({λζ̄i }N

cri

i=1)))√
|(σ∗({λζ̄i }N

cri

i=1))
⊤σ∗({λζ̄i }N

cri

i=1)|

]]
,

(a)
= Eζ∼N (0,I)

{
Eλi

[
log

exp(− 1
2ζ

⊤ζ)√
|(σ∗({λζ̄i }N

cri

i=1))
⊤σ∗({λζ̄i }N

cri

i=1)|

]
− logEλi

[exp(− 1
2ζ

⊤ζ)√
|(σ∗({λζ̄i }N

cri

i=1))
⊤σ∗({λζ̄ji }N cri

i=1)|

]}
,

= Eλi

[
log

1√
|(σ∗({λζ̄i }N

cri

i=1))
⊤σ∗({λζ̄i }N

cri

i=1)|

]
− logEλi

[1√
|(σ∗({λζ̄ji }N cri

i=1))
⊤σ∗({λζ̄i }N

cri

i=1)|

]
(10)

where (a) follows the fact that θ = µ∗({λζ̄i }N
cri

i=1) + σ∗({λζ̄i }N
cri

i=1) ◦ ζ. Since we sample N ζ̄ sets
of mixture coefficients {{λζ̄i }N

cri

i=1}N
ζ̄

j=1 from Pϕλ
(λ), the conditional mutual information can be esti-

mated by

I(θ; {T̄ cri
i (λi ∼ Pϕλ

(λ))}N
cri

i=1|{T cri
i }N

cri

i=1),

=
1

N ζ̄

N ζ̄∑
j=1

log
1√

|(σ∗({λζ̄ji }N cri

i=1))
⊤σ∗({λζ̄ji }N cri

i=1)|
− log

1

N ζ̄

N ζ̄∑
j=1

1√
|(σ∗({λζ̄ji }N cri

i=1))
⊤σ∗({λζ̄ji }N cri

i=1)|
.

Therefore, we can get the gradient:

∇ϕλ
I(θ; {T̄ cri

i (λi ∼ Pϕλ
(λ))}N

cri

i=1|{T cri
i }N

cri

i=1),

=

∑N ζ̄

j=1 ∇ϕλ
σ∗({λζ̄ji }Ncri

i=1)

||
∑N ζ̄

j=1 σ
∗({λζ̄ji }Ncri

i=1)||
− 1

N ζ̄

N ζ̄∑
j=1

∇ϕλ
σ∗({λζ̄ji }Ncri

i=1)

||σ∗({λζ̄ji }Ncri

i=1)||
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

To get ∇ϕλ
σ∗, we know that ϕ∗ = argmaxEPϕ(θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i)}Ncri

i=1 , {T tr
i }N

tr−Ncri

i=1)], there-

fore, we have that ∇σEPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i)}Ncri

i=1 , {T tr
i }N

tr−Ncri

i=1)] = 0. Then we have that

d

dϕλ
∇σEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)],

= ∇σϕλ
EPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)]

+∇σσEPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)]∇ϕλ
σ∗ = 0,

⇒ ∇ϕλ
σ∗ = −

[
∇2
σσEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)]
]−1

·

∇2
σϕλ

EPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)].

F GRADIENTS

This section provides all the gradients needed in this paper.

F.1 META-GRADIENTS FOR MAJOR META-RL METHODS

Recall the problem formulation (1) of meta-RL as follows where we omit the superscript for sim-
plicity:

max
θ

L(θ, {Ti}Ni=1) =
1

N

N∑
i=1

Ji(πi(θ)), s.t. πi(θ) = Alg(πθ, Ti).

The meta-gradient is the gradient of the upper-level objective w.r.t. θ, i.e., ∇θL(θ, {Ti}Ni=1). The
meta-gradient is different for different algorithms because different algorithms use different ways to
compute the task specific adaptations πi(θ). Here, we provide the meta-gradients for several major
meta-RL algorithms, including MAML (Finn et al., 2017; Fallah et al., 2021), iMAML (Rajeswaran
et al., 2019), and context-based meta-RL (e.g., CAVIA (Zintgraf et al., 2019)).
Lemma 4. The meta-gradients for MAML, iMAML, and CAVIA are respectively:

∇θL(θ, {Ti}Ni=1) =
1

N

N∑
i=1

[I + α∇2
θθJi(πθ)]∇θiJi(πθi), (MAML)

∇θL(θ, {Ti}Ni=1) =
1

N

N∑
i=1

[1 +
1

λ̄
∇2
ψψJi(πθ′i)]

−1∇θiJi(πθi), (iMAML)

∇θL(θ, {Ti}Ni=1) =
1

N

N∑
i=1

∇θJi(πθ(·|·, ψ′′
i)), (CAVIA)

where α is a step size, θi = θ+α∇θJi(πθ), ∇θiJi(πθi) = E(s,a)∼ρπθi [∇θi log πθi(a|s)A
πθi
i (s, a)],

∇2
θθJi(πθ) = E(s,a)∼ρπθ

[∑∞
t=0 γ

t∇θE(s,a)∼ρπθ [log πθ(a|s)Qπθ
i (s, a)](∇θ log πθ(a|s))⊤ +

∇2
θθE(s,a)∼ρπθ [log πθ(a|s)Qπθ

i (s, a)]
]
, λ̄ is a hyper-parameter, θ′i = argmaxψ Ji(πψ) +

λ̄
2 ||ψ −

θ||2, πθ(·|·, ψ′′
i) is a context-based policy where ψ′′

i = ψ0 + α∇ψJi(πθ(·|·, ψ0)) is the context.

Proof. MAML computes the task-specific adaptation via one-step gradient ascent. In specific, sup-
pose the task-specific adaptation is πθi = πi(θ), and thus θi = θ + α∇θJi(πθ). Therefore,
the meta-gradient is ∇θL(θ, {Ti}Ni=1) = 1

N

∑N
i=1 ∇θJi(πθi) = 1

N

∑N
i=1(∇θθi)

⊤∇θiJi(πθi) =
1
N

∑N
i=1[I + α∇2

θθJi(πθ)]∇θiJi(πθi). From (Fallah et al., 2021), we can get that the
policy gradient is ∇θiJi(πθi) = E(s,a)∼ρπθi [∇θi log πθi(a|s)A

πθi
i (s, a)] and the Hessian

is ∇2
θθJi(πθ) = E(s,a)∼ρπθ

[∑∞
t=0 γ

t∇θE(s,a)∼ρπθ [log πθ(a|s)Qπθ
i (s, a)](∇θ log πθ(a|s))⊤ +

∇2
θθE(s,a)∼ρπθ [log πθ(a|s)Qπθ

i (s, a)]
]
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

iMAML solves the optimization problem to get the task-specific adaptation πθ′i such that θ′i =

argmaxψ Ji(πψ) +
λ̄
2 ||ψ − θ||2 where λ̄ is a hyper-parameter. Since θ′i is the optimal parameter

of the problem maxψ Ji(πψ) +
λ̄
2 ||ψ − θ||2, we know that ∇ψJi(πθ′i) + λ̄(θ′i − θ) = 0. Take

gradient w.r.t. θ on both sides, we can get that (∇θθ
′
i)

⊤∇2
ψψJi(πθ′i)+ λ̄(∇θθ

′
i− I) = 0 ⇒ ∇θθ

′
i =

[1 + 1
λ̄
∇2
ψψJi(πθ′i)]

−1. Therefore, the meta-gradient is ∇θL(θ, {Ti}Ni=1) =
1
N

∑N
i=1 ∇θJi(πθi) =

1
N

∑N
i=1(∇θθi)

⊤∇θiJi(πθi) =
1
N

∑N
i=1[1 +

1
λ̄
∇2
ψψJi(πθ′i)]

−1∇θiJi(πθi).

CAVIA learns a context-based policy πθ(a|s, ψ′′
i) and uses MAML-like method to update

ψ′′
i = ψ0 + α∇ψJi(πθ(·|·, ψ0)). Therefore, the meta-gradient is ∇θL(θ, {Ti}Ni=1) =

1
N

∑N
i=1 ∇θJi(πθ(·|·, ψ′′

i)).

F.2 OTHER GRADIENTS

This part provides the expressions of ∇2
σσEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i)}Ncri

i=1 , {T tr
i }N

tr−Ncri

i=1)] and

∇2
σϕλ

EPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i)}Ncri

i=1 , {T tr
i }N

tr−Ncri

i=1)] needed in Lemma 1.
Lemma 5. We have the following expressions:

∇2
σσEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)],

= Eζ∼N (0,I)

[1

N tr [

N cri∑
i=1

∇2
σσJ̄

cri
i (πcri

i (µ∗ + σ∗ ◦ ζ), λζ̄ji) +

N tr−N cri∑
i=1

∇2
σσJ

tr
i (π

tr
i (µ

∗ + σ∗ ◦ ζ))]
]
,

∇2
σϕλ

EPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)],

= Eζ∼N (0,I)

[1

N tr [

N cri∑
i=1

∇ϕλ
λj ·∫

(sjj′ ,ajj′)∈S×A

[
ρ̄πθi,λj (sjj′ , ajj′)

(
∇θis log πθi(ājj′ |s̄jj′)(sj − sj′)

)
Ājj′

+ ρ̄πθi,λj (sjj′ , ajj′)∇θi log πθi(ājj′ |s̄jj′)(A
πθi
i (sj , aj)−A

πθi
i (sj′ , aj′)))

]
dajj′dsjj′

]
,

where the expression of the second-order term ∇2
σσJ̄

cri
i (πcri

i (µ∗+σ∗◦ζ), λi) can be found in Lemma
4.

Proof. Recall that ϕ∗ = (µ∗, σ∗), θ = µ+ σ ◦ ζ, and ζ ∼ N (0, I). Therefore, we have that

∇σEPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)],

= Eζ∼N (0,I)[∇σL(µ
∗ + σ∗ ◦ ζ, {T̄ cri

i (λ
ζ̄j
i)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)],

= Eζ∼N (0,I)

[1

N tr [

N cri∑
i=1

∇σJ̄
cri
i (πcri

i (µ∗ + σ∗ ◦ ζ), λi) +
N tr−N cri∑
i=1

∇σJ
tr
i (π

tr
i (µ

∗ + σ∗ ◦ ζ))]
]
. (11)

Therefore, we can get the Hessian:

∇2
σσEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)],

= Eζ∼N (0,I)

[1

N tr [

N cri∑
i=1

∇2
σσJ̄

cri
i (πcri

i (µ∗ + σ∗ ◦ ζ), λζ̄ji) +

N tr−N cri∑
i=1

∇2
σσJ

tr
i (π

tr
i (µ

∗ + σ∗ ◦ ζ))]
]
,

where the expression of the second-order term ∇2
σσJ̄

cri
i (πcri

i (µ∗+σ∗◦ζ), λi) can be found in Lemma
4. Similarly, we can get that

∇2
σϕλ

EPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)],

= Eζ∼N (0,I)

[1

N tr [

N cri∑
i=1

∇2
σϕλ

J̄ cri
i (πcri

i (µ∗ + σ∗ ◦ ζ), λζ̄ji) +

N tr−N cri∑
i=1

∇2
σϕλ

J tr
i (π

tr
i (µ

∗ + σ∗ ◦ ζ))]
]
,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

= Eζ∼N (0,I)

[1

N tr [

N cri∑
i=1

∇2
σϕλ

J̄ cri
i (πcri

i (µ∗ + σ∗ ◦ ζ), µλ + σλζ̄j)
]
.

Now we need to derive the expression of ∇2
σϕλ

J̄ cri
i (πcri

i (µ∗ + σ∗ ◦ ζ), µλ + σλζ̄j). Suppose
we use MAML, and thus the first-order gradient ∇σJ̄

cri
i (πcri

i (µ∗ + σ∗ ◦ ζ), µλ + σλζ̄j) =
[I + α∇2

σσJ̄i(πµ∗+σ∗◦ζ , µλ + σλζ̄j)]∇θi J̄i(πθi , µλ + σλζ̄j)] where θi = µ∗ + σ∗ ◦ ζ +
α∇θJ̄i(πµ∗+σ∗◦ζ , µλ+σλζ̄j) and θ = µ∗+σ∗◦ζ. Following the first-order MAML method in (Fal-
lah et al., 2020), we use the gradient ∇σJ̄

cri
i (πcri

i (µ∗+σ∗◦ζ), µλ+σλζ̄j) = ∇σJ̄i(πθi , µλ+σλζ̄j)].
To get the term ∇2

σϕλ
J̄ cri
i (πcri

i (µ∗ + σ∗ ◦ ζ), µλ + σλζ̄j), we derive ∇θiϕλ
J̄i(πθi , µλ + σλζ̄j).

∇2
ϕλ,θi

J̄i(πθi , µλ + σλζ̄j) = ∇ϕλ
E

(sjj′ ,ajj′)∼ρ̄
πθi,λj [∇θi log πθi(ājj′ |s̄jj′)Ājj′],

= ∇ϕλ

∫
(sjj′ ,ajj′)∈S×A

ρ̄πθi,λj (sjj′ , ajj′)∇θi log πθi(ājj′ |s̄jj′)Ājj′dajj′dsjj′ ,

= ∇ϕλ

∫
(sjj′ ,ajj′)∈S×A

[
ρ̄πθi,λj (sjj′ , ajj′)∇θi log πθi(ājj′ |s̄jj′)Ājj′

]
dajj′dsjj′ ,

= ∇ϕλ
λj ·

∫
(sjj′ ,ajj′)∈S×A

∇λj

[
ρ̄πθi,λj (sjj′ , ajj′)∇θi log πθi(ājj′ |s̄jj′)Ājj′

]
dajj′dsjj′ ,

(a)
= ∇ϕλ

λj ·
∫
(sjj′ ,ajj′)∈S×A

[
ρ̄πθi,λj (sjj′ , ajj′)

(
∇θis log πθi(ājj′ |s̄jj′)(sj − sj′)

)
Ājj′

+ ρ̄πθi,λj (sjj′ , ajj′)∇θi log πθi(ājj′ |s̄jj′)(A
πθi
i (sj , aj)−A

πθi
i (sj′ , aj′)))

]
dajj′dsjj′ ,

where (a) follows the fact that ∇λi ρ̄
πθi,λj (sjj′ , ajj′) = 0 and ∇θa log πθi(ājj′ |s̄jj′) because they

include indicator functions. Therefore, we have that

∇2
σϕλ

EPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)],

= Eζ∼N (0,I)

[1

N tr [

N cri∑
i=1

∇ϕλ
λj ·∫

(sjj′ ,ajj′)∈S×A

[
ρ̄πθi,λj (sjj′ , ajj′)

(
∇θis log πθi(ājj′ |s̄jj′)(sj − sj′)

)
Ājj′

+ ρ̄πθi,λj (sjj′ , ajj′)∇θi log πθi(ājj′ |s̄jj′)(A
πθi
i (sj , aj)−A

πθi
i (sj′ , aj′)))

]
dajj′dsjj′

]
.

G PROOF OF THEOREM 1

This section first prove that the conditional mutual information I(θ; {T̄ cri
i (λi ∼

Pϕλ
(λ))}N cri

i=1|{T cri
i }N cri

i=1) is CI -Lipschitz continuous and C̄I -smooth where CI and C̄I are
positive constants in Claim 1, and then prove that Algorithm 1 converges at the rate of O(1/

√
K).

Claim 1. The conditional mutual information is CI -Lipschitz continuous and C̄I -smooth where CI
and C̄I are positive constants.

Proof. From (10), we know that

I(θ; {T̄ cri
i (λi ∼ Pϕλ

(λ))}N
cri

i=1|{T cri
i }N

cri

i=1),

= Eλi

[
log

1√
|(σ∗({λζ̄i }N

cri

i=1))
⊤σ∗({λζ̄i }N

cri

i=1)|

]
− logEλi

[1√
|(σ∗({λζ̄i }N

cri

i=1))
⊤σ∗({λζ̄i }N

cri

i=1)|

]
,

where λζ̄i = µλ + σλζ̄i and ζ̄i ∼ N (0, 1). Therefore, we can get the gradient

∇ϕλ
I(θ; {T̄ cri

i (λi ∼ Pϕλ
(λ))}N

cri

i=1|{T cri
i }N

cri

i=1),

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

=
Eζ̄∼N (0,1)[∇ϕλ

σ∗({λζ̄i }N
cri

i=1)]

||Eζ̄∼N (0,1)[σ
∗({λζ̄i }N

cri

i=1)]||
− Eζ̄∼N (0,1)

[∇ϕλ
σ∗({λζ̄i }N

cri

i=1)

||σ∗({λζ̄i }N
cri

i=1)||
]
]
. (12)

Now, we consider the Hessian

∇2
ϕλϕλ

I(θ; {T̄ cri
i (λi ∼ Pϕλ

(λ))}N
cri

i=1|{T cri
i }N

cri

i=1),

= ∇ϕλ

Eζ̄∼N (0,1)[∇ϕλ
σ∗({λζ̄i }N

cri

i=1)]

||Eζ̄∼N (0,1)[σ
∗({λζ̄i }N

cri

i=1)]||
− Eζ̄∼N (0,1)

[
∇ϕλ

[∇ϕλ
σ∗({λζ̄i }N

cri

i=1)

||σ∗({λζ̄i }N
cri

i=1)||
]
]]
, ,

=
Eζ̄∼N (0,1)[∇2

ϕλϕλ
σ∗({λζ̄i }N

cri

i=1)]

||Eζ̄∼N (0,1)[σ
∗({λζ̄i }N

cri

i=1)]||

−
Eζ̄∼N (0,1)[∇ϕλ

σ∗({λζ̄i }N
cri

i=1)](Eζ̄∼N (0,1)[σ
∗({λζ̄i }N

cri

i=1)])
⊤Eζ̄∼N (0,1)[∇ϕλ

σ∗({λζ̄i }N
cri

i=1)]

||Eζ̄∼N (0,1)[σ
∗({λζ̄i }N

cri

i=1)]||3

− Eζ̄∼N (0,1)

[∇2
ϕλϕλ

σ∗({λζ̄i }N
cri

i=1)

||σ∗({λζ̄i }N
cri

i=1)||
− ∇ϕλ

σ∗({λζ̄i }N
cri

i=1)(σ
∗({λζ̄i }N

cri

i=1))
⊤∇ϕλ

σ∗({λζ̄i }N
cri

i=1)

||σ∗({λζ̄i }N
cri

i=1)||3

]
.

(13)

From (12), we know that if we can lower bound ||σ∗|| and upper bound ||∇ϕλ
σ∗||, the norm of

the gradient ∇ϕλ
I(θ; {T̄ cri

i (λi ∼ Pϕλ
(λ))}N cri

i=1|{T cri
i }N cri

i=1) is bounded. From (13), we know that if
we can lower bound ||σ∗|| and upper bound ||∇ϕλ

σ∗|| and ||∇2
ϕλϕλ

σ∗||, the norm of the Hessian

||∇2
ϕλϕλ

I(θ; {T̄ cri
i (λi ∼ Pϕλ

(λ))}N cri

i=1|{T cri
i }N cri

i=1)|| is bounded. Note that λ ∈ [0, 1] is bounded
within a compact set. Therefore, as long as we can prove that σ∗, ∇ϕλ

σ∗, and ∇2
ϕλϕλ

σ∗ are con-
tinuous in λ, their norms are both upper bounded and lower bounded. To show that σ∗, ∇ϕλ

σ∗,
and ∇2

ϕλϕλ
σ∗ are continuous in λ, we can show that they are differentiable w.r.t. λ. Since ϕλ is

differentiable w.r.t. λ, we only need to show that σ∗, ∇ϕλ
σ∗, and ∇2

ϕλϕλ
σ∗ are differentiable w.r.t.

ϕλ. This suffices to show that ∇ϕλ
σ∗, ∇2

ϕλϕλ
σ∗, and ∇3

ϕλϕλϕλ
σ∗ exist.

From Lemma 1, we know that ∇ϕλ
σ∗ exists and

∇ϕλ
σ∗ = −

[
∇2
σσEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)]
]−1

·

∇2
σϕλ

EPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)].

Since log πθ is smooth in θ (Assumption 1), we can see that L(θ, {T̄ cri
i (λ

ζ̄j
i)}Ncri

i=1 , {T tr
i }N

tr−Ncri

i=1)

is also smooth in θ. Since θ is smooth in σ, L(θ, {T̄ cri
i (λ

ζ̄j
i)}Ncri

i=1 , {T tr
i }N

tr−Ncri

i=1) is also smooth in
σ. Similarly, we can derive

∇2
ϕλϕλ

σ∗ =
[
∇2
σσEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)]
]−1

·

∇3
σσϕλ

EPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)]·[
∇2
σσEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)]
]−1

−
[
∇2
σσEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)]
]−1

·

∇3
σϕλϕλ

EPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1)],

and similarly we can derive the expression of ∇3
ϕλϕλϕλ

σ∗. Therefore, we can see that ||σ∗||,
||∇ϕλ

σ∗||, and ||∇2
ϕλϕλ

σ∗|| are both lower bounded and upper bounded, and thus there exists pos-

itive constants CI and C̄I such that ||∇ϕλ
I(θ; {T̄ cri

i (λi ∼ Pϕλ
(λ))}N cri

i=1|{T cri
i }N cri

i=1)|| ≤ CI and
||∇2

ϕλϕλ
I(θ; {T̄ cri

i (λi ∼ Pϕλ
(λ))}N cri

i=1|{T cri
i }N cri

i=1)|| ≤ C̄I .

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

For simplicity, we denote f(ϕλ,k) = I(θ; {T̄ cri
i (λi ∼ Pϕλ,k(λ))}N

cri

i=1|{T cri
i }N cri

i=1). Claim 1 shows
that f(ϕλ,k) is C̄I -smooth, therefore, we have that

f(ϕλ,k+1) ≥ f(ϕλ,k) + ⟨∇ϕλ
f(ϕλ,k), ϕλ,k+1 − ϕλ,k⟩ −

C̄I
2
||ϕλ,k+1 − ϕλ,k||2,

(a)
= f(ϕλ,k) + β||∇ϕλ

f(ϕλ,k)||2 −
C̄Iβ

2

2
||∇ϕλ

f(ϕλ,k)||2,

(b)⇒ β||∇ϕλ
f(ϕλ,k)||2 ≤ f(ϕλ,k+1)− f(ϕλ,k) +

C̄IC
2
Iβ

2

2

(c)⇒ ||∇ϕλ
f(ϕλ,k)||2 ≤ C̄I

√
K

2
[f(ϕλ,k+1)− f(ϕλ,k)] +

C2
I√
K
,

⇒ 1

K

K−1∑
k=0

||∇ϕλ
f(ϕλ,k)||2 ≤ C̄I

2
√
K

[f(ϕλ,K)− f(ϕλ,0)] +
C2
I√
K
,

where (a) follows the fact that ϕλ,k+1 = ϕλ,k + β∇ϕλ
f(ϕλ,k), (b) follows the fact that

||∇ϕλ
f(ϕλ)|| ≤ CI , and (c) follows the fact that β = 2

C̄I

√
K

.

H PROOF OF THEOREM 2

This section proves Theorem 2 via two steps. Step (i): we prove that I(θ; {T̄ cri
i (λi ∼

Pϕλ,k
(λ))}N cri

i=1|{T cri
i }N cri

i=1) is monotonically increasing in Claim 2. Step (ii): we provide that
I(θ; {T̄ cri

i (λi ∼ Pϕλ,K
(λ))}N cri

i=1|{T cri
i }N cri

i=1) > 0.

Claim 2. If β < 2
C̄I

, the conditional mutual information is monotonically increasing, i.e.,

I(θ; {T̄ cri
i (λi ∼ Pϕλ,k+1(λ))}N

cri

i=1|{T cri
i }N cri

i=1) ≥ I(θ; {T̄ cri
i (λi ∼ Pϕλ,k(λ))}N

cri

i=1|{T cri
i }N cri

i=1), and
is strictly increasing if ||∇ϕλ

I(θ; {T̄ cri
i (λi ∼ Pϕλ,k(λ))}N

cri

i=1|{T cri
i }N cri

i=1)|| > 0.

Proof. For simplicity, we denote f(ϕλ,k) = I(θ; {T̄ cri
i (λi ∼ Pϕλ,k(λ))}N

cri

i=1|{T cri
i }N cri

i=1). Therefore,
we have that

f(ϕλ,k+1)
(a)

≥ f(ϕλ,k) + ⟨∇ϕλ
f(ϕλ,k), ϕλ,k+1 − ϕλ,k⟩ −

C̄I
2
||ϕλ,k+1 − ϕλ,k||2,

(b)
= f(ϕλ,k) + β||∇ϕλ

f(ϕλ,k)||2 −
C̄Iβ

2

2
||∇ϕλ

f(ϕλ,k)||2,

⇒ f(ϕλ,k+1)− f(ϕλ,k) ≥
2β − C̄Iβ

2

2
||∇ϕλ

f(ϕλ,k)||2 ≥ 0 (14)

where (a) follows the fact that f(ϕλ) is C̄I -smooth (Claim 1), (b) follows the fact that ϕλ,k+1 =
ϕλ,k + β∇ϕλ

f(ϕλ,k). from (14), we can see that f(ϕλ,k+1) ≥ f(ϕλ,k). Moreover, f(ϕλ,k+1) >
f(ϕλ,k) if ||∇ϕλ

f(ϕλ,k)||2 > 0.

From Claim 2, we know that I(θ; {T̄ cri
i (λi ∼ Pϕλ,K(λ))}N cri

i=1|{T cri
i }N cri

i=1) ≥ I(θ; {T̄ cri
i (λi ∼

Pϕλ,0(λ))}N
cri

i=1|{T cri
i }N cri

i=1). The only situation where I(θ; {T̄ cri
i (λi ∼ Pϕλ,K(λ))}N cri

i=1|{T cri
i }N cri

i=1) =

I(θ; {T̄ cri
i (λi ∼ Pϕλ,0(λ))}N

cri

i=1|{T cri
i }N cri

i=1) is that ∇ϕλ
I(θ; {T̄ cri

i (λi ∼ Pϕλ,0(λ))}N
cri

i=1|{T cri
i }N cri

i=1) =
0, i.e., the initialization is a stationary point, which is of zero probability. Therefore, we know that
I(θ; {T̄ cri

i (λi ∼ Pϕλ,K(λ))}N cri

i=1|{T cri
i }N cri

i=1) > I(θ; {T̄ cri
i (λi ∼ Pϕλ,0(λ))}N

cri

i=1|{T cri
i }N cri

i=1). Since
conditional mutual information is always nonnegative (Wyner, 1978), we know that I(θ; {T̄ cri

i (λi ∼
Pϕλ,K(λ))}N cri

i=1|{T cri
i }N cri

i=1) > I(θ; {T̄ cri
i (λi ∼ Pϕλ,0(λ))}N

cri

i=1|{T cri
i }N cri

i=1) ≥ 0.

I PROOF OF LEMMA 2

In this section, we prove that the learned augmentation Pϕλ,K
(λ) imposes a quadratic regulariza-

tion on the original meta-objective. Let’s first consider J̄ cri
i (πcri

i (θ), λi). We use ϕi to denote the

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

parameter of the task-specific adaptation, i.e., πϕi
= πcri

i (θ). Since we use MAML to compute
the task-specific adaptation, we know that ϕi = θ − α∇θJ

cri
i (πθ). We use s̄jj′(λ) and ājj′(λ) to

represent s̄jj′ and ājj′ to highlight the mixture coefficient λ. Therefore, we have that

Eλi∼N (µλ,K ,σ2
λ,K)

[
J̄ cri
i (πcri

i (θ), λi)
]
,

= E(sj ,aj),(s′j ,a
′
j)∼ρ

πϕi ,λi∼N (µλ,K ,σ2
λ,K)

[
log πϕi

(ājj′(λi)|s̄jj′(λi))[λiA
πϕi
i (sj , aj)

+ (1− λi)A
πϕi
i (s′j , a

′
j)]

]
,

(a)
= E(sj ,aj),(s′j ,a

′
j)∼ρ

πϕi ,λi∼N (µλ,K ,σ2
λ,K)

[
log πϕi

(ājj′(λi)|s̄jj′(λi))λiA
πϕi
i (sj , aj)

]
+ E(sj ,aj),(s′j ,a

′
j)∼ρ

πϕi ,λi∼N (µλ,K ,σ2
λ,K)

[
log πϕi

(āj′j(1− λi)|s̄j′j(1− λi))(1− λi)A
πϕi
i (s′j , a

′
j)
]
,

(b)
= E(sj ,aj),(s′j ,a

′
j)∼ρ

πϕi ,λi∼N (µλ,K ,σ2
λ,K)

[
log πϕi(ājj′(λi)|s̄jj′(λi))λiA

πϕi
i (sj , aj)

]
+ E(sj ,aj),(s′j ,a

′
j)∼ρ

πϕi ,λi∼N (1−µλ,K ,σ2
λ,K)

[
log πϕi(ājj′(λi)|s̄jj′(λi))λiA

πϕi
i (sj , aj)

]
,

= E(sj ,aj),(s′j ,a
′
j)∼ρ

πϕi ,λi∼N (1,2σ2
λ,K)

[
log πϕi(ājj′(λi)|s̄jj′(λi))λiA

πϕi
i (sj , aj)

]
, (15)

where (a) follows the fact that sjj′(λ) = sj′j(1 − λ) and ajj′(λ) = aj′j(1 − λ), (b) follows
the fact that (1 − λi) ∼ N (1 − µλ,K , σ

2
λ,K) if λi ∼ N (µλ,K , σ

2
λ,K). Let xi = 1 − λi and

Fi(xi) = log πϕi
(ājj′(λi)|s̄jj′(λi))λiA

πϕi
i (sj , aj), therefore, the second-order approximation of

Fi(xi) is

Fi(xi) ≈ Fi(0) + F ′
i (0)xi +

1

2
F ′′
i (0)x

2
i . (16)

We now derive the expression of F ′
i (0) and F ′′

i (0).

F ′
i (xi) =

∂Fi(xi)

∂ājj′(λ)

∂ājj′(λ)

∂xi
+
∂Fi(xi)

∂s̄jj′(λ)

∂s̄jj′(λ)

∂xi
+
∂Fi(xi)

∂xi
,

(c)
=

∂Fi(xi)

∂s̄jj′(λ)

∂s̄jj′(λ)

∂xi
+
∂Fi(xi)

∂xi
,

= λiA
πϕi
i (sj , aj)(∇s log πϕi

(ājj′(λi)|s̄jj′(λi)))⊤(sj′ − sj)

− log πϕi
(ājj′(λi)|s̄jj′(λi))A

πϕi
i (sj , aj),

⇒ F ′
i (0) = A

πϕi
i (sj , aj)(∇s log πϕi(aj |sj))⊤(sj′ − sj)− log πϕi(aj |sj)A

πϕi
i (sj , aj), (17)

where (c) follows the fact that ∂ājj′ (λ)∂xi
= 0 almost everywhere. We now reason about the second-

order derivation:

F ′′
i (xi) =

∂λiA
πϕi
i (sj , aj)(∇s log πϕi(ājj′(λi)|s̄jj′(λi)))⊤(sj′ − sj)

∂xi

− ∂ log πϕi
(ājj′(λi)|s̄jj′(λi))A

πϕi
i (sj , aj)

∂xi
,

= −Aπϕi
i (sj , aj)(∇s log πϕi

(ājj′(λi)|s̄jj′(λi)))⊤(sj′ − sj)

= λiA
πϕi
i (sj , aj)(sj′ − sj)

⊤(∇2
ss log πϕi

(ājj′(λi)|s̄jj′(λi)))(sj′ − sj)

−A
πϕi
i (sj , aj)(∇s log πϕi

(ājj′(λi)|s̄jj′(λi)))⊤(sj′ − sj),

⇒ F ′′
i (0) = −2A

πϕi
i (sj , aj)(∇s log πϕi(aj |sj))⊤(sj′ − sj)

+A
πϕi
i (sj , aj)(sj′ − sj)

⊤(∇2
ss log πϕi

(aj |sj))(sj′ − sj). (18)

By plugging (17)-(18) into (16), we have that

Fi(xi) ≈ log πϕi(aj |sj)A
πϕi
i (sj , aj)

+
[
A
πϕi
i (sj , aj)(∇s log πϕi(aj |sj))⊤(sj′ − sj)− log πϕi(aj |sj)A

πϕi
i (sj , aj)

]
xi

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

− 2A
πϕi
i (sj , aj)(∇s log πϕi

(aj |sj))⊤(sj′ − sj)x
2
i

+A
πϕi
i (sj , aj)(sj′ − sj)

⊤(∇2
ss log πϕi(aj |sj))(sj′ − sj)x

2
i ,

= log πϕi
(aj |sj)A

πϕi
i (sj , aj) + Cλi

(sj , aj)

+A
πϕi
i (sj , aj)(sj′ − sj)

⊤(∇2
ss log πϕi

(aj |sj))(sj′ − sj)x
2
i , (19)

where Cλi
(sj , aj) =

[
A
πϕi
i (sj , aj)(∇s log πϕi

(aj |sj))⊤(sj′ − sj) −

log πϕi
(aj |sj)A

πϕi
i (sj , aj)

]
(1 − λi) − 2A

πϕi
i (sj , aj)(∇s log πϕi

(aj |sj))⊤(sj′ − sj)(1 − λi)
2.

Now we take a look at the term ∇2
ss log πϕi

(aj |sj). Recall that the softmax policy parameterization

πϕi(a|s) = eϕ
⊤
i f(s,a)∑

a′∈A eϕ
⊤
i

f(s,a′) , therefore we have that

∇2
ss log πϕi

(a|s) = ∇2
ss

[
ϕ⊤i f(s, a)− log

∑
a′∈A

eϕ
⊤
i f(s,a

′)
]
,

= ϕ⊤i ∇2
ssf(s, a)−

∑
a′∈A ϕ

⊤
i ∇2

ssf(s, a
′)eϕ

⊤
i f(s,a

′) + ϕ⊤i (∇sf(s, a
′))(∇sf(s, a

′))⊤eϕ
⊤
i f(s,a

′)ϕi∑
a′∈A e

ϕ⊤
i f(s,a

′)

+
(
∑
a′∈A ϕ

⊤
i ∇sf(s, a

′)eϕ
⊤
i f(s,a

′))2

(
∑
a′∈A e

ϕ⊤
i f(s,a

′))2
,

= ϕ⊤i ∇2
ssf(s, a)−

∑
a′∈A ϕ

⊤
i ∇2

ssf(s, a
′)eϕ

⊤
i f(s,a

′)∑
a′∈A e

ϕ⊤
i f(s,a

′)

− ϕ⊤i

[[∑a′∈A(∇sf(s, a
′))(∇sf(s, a

′))⊤eϕ
⊤
i f(s,a

′)](
∑
a′∈A e

ϕ⊤
i f(s,a

′))− (
∑
a′∈A ∇sf(s, a

′)eϕ
⊤
i f(s,a

′))2

(
∑
a′∈A e

ϕ⊤
i f(s,a

′))2

]
ϕi,

= ϕ⊤i ∇2
ssf(s, a)−

∑
a′∈A ϕ

⊤
i ∇2

ssf(s, a
′)eϕ

⊤
i f(s,a

′)∑
a′∈A e

ϕ⊤
i f(s,a

′)
− ϕ⊤i H(s, a)ϕi, (20)

whereH(s, a) =
[
∑

a′∈A(∇sf(s,a
′))(∇sf(s,a

′))⊤eϕ
⊤
i f(s,a′)](

∑
a′∈A eϕ

⊤
i f(s,a′))−(

∑
a′∈A ∇sf(s,a

′)eϕ
⊤
i f(s,a′))2

(
∑

a′∈A eϕ
⊤
i

f(s,a′))2
≻

0 by Cauchy-Schwartz inequality. By plugging (20) into (19), we have that

Fi(xi) ≈ log πϕi
(aj |sj)A

πϕi
i (sj , aj) + Cλi

(sj , aj) +A
πϕi
i (sj , aj)(sj′ − sj)

⊤·[
ϕ⊤i ∇2

ssf(s, a)−
∑
a′∈A ϕ

⊤
i ∇2

ssf(s, a
′)eϕ

⊤
i f(s,a

′)∑
a′∈A e

ϕ⊤
i f(s,a

′)
− ϕ⊤i H(sj , aj)ϕi

]
(sj′ − sj)x

2
i ,

= log πϕi
(aj |sj)A

πϕi
i (sj , aj) + C̄λi

(sj , aj)− ϕ⊤i H̄
cri
λi
(sj , aj)ϕi,

(d)
= log πϕi(aj |sj)A

πϕi
i (sj , aj) + C̄λi(sj , aj)− (θ − α∇θJ

cri
i (πθ))

⊤H̄cri
λi
(sj , aj)(θ − α∇θJ

cri
i (πθ)),

= log πϕi
(aj |sj)A

πϕi
i (sj , aj) + C̃λi

(sj , aj)− θ⊤H̄cri
λi
(sj , aj)θ, (21)

where (d) follows the fact that ϕi = θ − α∇θJ
cri
i (πθ), C̄λi(sj , aj) = A

πϕi
i (sj , aj)(sj′ −

sj)
⊤
[
ϕ⊤i ∇2

ssf(s, a) −
∑

a′∈A ϕ⊤
i ∇2

ssf(s,a
′)eϕ

⊤
i f(s,a′)∑

a′∈A eϕ
⊤
i

f(s,a′)

]
(sj′ − sj)x

2
i , H̄cri

λi
(sj , aj) =

A
πϕi
i (sj , aj)H(sj , aj)(sj′ − sj)x

2
i ≻ 0 given that H(sj , aj) ≻ 0, and C̃λi

(s, a) =
C̄λi(s, a)− α2(∇θJ

cri
i (πθ))

⊤H̄cri
λi
(s, a)(∇θJ

cri
i (πθ)).

Therefore, we have that

J̄ cri
i (πcri

i (θ), λi) = E(sj ,aj),(s′j ,a
′
j)∼ρ

πϕi [Fi(xi)]

(e)
= E(sj ,aj)∼ρ

πϕi

[
log πϕi(aj |sj)A

πϕi
i (sj , aj) + C̃λi(sj , aj)− θ⊤H̄cri

λi
(sj , aj)θ

]
,

= J cri
i (πcri

i (θ)) + C̃λi − θ⊤H̄cri
λi
θ,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

where (e) follows (21), C̃λi
= E(sj ,aj)∼ρ

πϕi [C̃λi
(sj , aj)], and H̄cri

λi
=

E(sj ,aj)∼ρ
πϕi [H̄

cri
λi
(sj , aj)] ≻ 0 given that H̄cri

λi
(sj , aj) ≻ 0. If we only consider the second-

order term, we can see that J̄ cri
i (πcri

i (θ), λi) ≈ J cri
i (πcri

i (θ)) − θ⊤H̄cri
λi
θ. Therefore, we have that

L(θ, {T̄ cri
i (λi)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1) ≈ L(θ, {T tr
i }Ntr

i=1)−θ⊤(
∑N cri

i=1 H̄
cri
λi
)θ where (

∑N cri

i=1 H̄
cri
λi
) ≻ 0

given that H̄cri
λi

≻ 0. Thus we have that Eλi∼Pϕλ,K
(λ)[L(θ, {T̄ cri

i (λi)}N
cri

i=1 , {T tr
i }N

tr−Ncri

i=1)] ≈

L(θ, {T tr
i }Ntr

i=1)− θ⊤(
∑N cri

i=1 H̄
cri
i)θ where H̄cri

i = Eλi∼Pϕλ,K
(λ)[H̄

cri
λi
] ≻ 0 given that H̄cri

λi
≻ 0.

J PROOF OF THEOREM 3

We start with standard uniform deviation bound based on Rademacher complexity (Bartlett &
Mendelson, 2002).
Claim 3 ((Bartlett & Mendelson, 2002)). Let the sample {z1, · · · , zN} be drawn i.i.d. from a dis-
tribution P over Z and let F be a function class on Z mapping from Z to a bounded set. Then
for δ > 0, with probability at least 1 − δ, it holds that supf∼F || 1N

∑N
i=1 f(zi) − Ez∼P [f(z)]|| ≤

2R(F , z1, · · · , zn)+
√

log(1/δ)
N , whereR(F , zi, · · · , zN) is the Rademacher complexity of the func-

tion class F .

From Claim 3, we know that the generalization gap |G(Fγ)| ≤ R(F̄γ̄ , T tr
1 , · · · , T tr

N tr) +
√

log(1/δ)
N tr ,

where F̄γ̄ ≜ {Ji(πθ) : πθ ∈ Fγ̄}. Therefore, we can compute the Rademacher complexity:

R(F̄γ̄ , T tr
1 , · · · , T tr

N tr) = Eσi

[
sup
J∼F̄γ̄

1

N tr

N tr∑
i=1

σiJ
tr
i (πi(θ))

]
,

≤ sup
πθ∼Fγ̄ ,i∼P (T)

Ji(πi(θ)),

= sup
πθ∼Fγ̄ ,i∼P (T)

E
πϕi

(s,a)∼ρπϕi
[log πϕi

(a|s)Aπϕi
i (s, a)],

= sup
πθ∼Fγ̄ ,i∼P (T)

E
πϕi

(s,a)∼ρπϕi
[(ϕ⊤i f(s, a)− log(

∑
a′∈A

eϕ
⊤
i f(s,a)))A

πϕi
i (s, a)],

where σi is a random variable with equal probability of choose 1 and −1. Recall that ϕi =
θ−α∇θJi(πθ) and ||∇θJi(πθ)|| is bounded. Moreover,A

πϕi
i (s, a) is also bounded given that the re-

ward value is bounded, and the chosen feature vector f(s, a) is also bounded. Therefore, there exists
a constant C1 such that R(F̄γ̄ , T tr

1 , · · · , T tr
N tr) ≤ C1√

N tr supπθ∼Fγ̄ ,i∼P (T)E
πϕi

(s,a)∼ρπϕi
[θ⊤h̄i] where

h̄⊤i h̄i = Ei∼P (T)[H̄i]. Therefore, we have thatR(F̄γ̄ , T tr
1 , · · · , T tr

N tr) ≤ C2

√
γ
N tr whereC2 is a pos-

itive constant. Therefore, we have that |G(Fγ)| ≤ 2C2

√
γ
N tr +

√
log(1/δ)
N tr = O(

√
γ
N tr +

√
log(1/δ)
N tr).

K EXPERIMENT DETAILS

K.1 DRONE NAVIGATION WITH OBSTACLES

We cannot directly train the meta-learning algorithm on the physical drone because during training,
the drone needs to interact with the environment and can be damaged due to collision with the ob-
stacle and the wall. To avoid the damage of the drone, we build a simulator in Gazebo (Figure 2) Liu
& Zhu (2022; 2024a) that imitates the physical environment with the scale 1 : 1. We train the meta-
learning algorithm on the simulated drone in the simulator and the empirical results (i.e., successful
rate) are counted in the simulator. Once we obtain a learned policy that has good performance in the
simulator, we implement the policy on the physical drone.

Figure 2: Simulator

Discussion of the sim-to-real problem. In some cases, the models that
have good performance in the simulator may not have good performance in
the real world due to the reason that the simulator cannot 100% precisely
imitate the physical world. However, in our case, the sim-to-real issue is not

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

significant because of two reasons: (i) the simulated drone is built according
to the dynamics of a real Ar. Drone 2.0 (Huang & Sturm, 2014); (ii) the states
and actions are just the coordinates of the location and the heading direction
of the drone instead of some low-level control such as the motor’s velocity,
etc. Given that Vicon can output precise pose of the physical drone and the
simulator is built on the 1 : 1 scale. If a learned trajectory can succeed in the
simulator, it can succeed in the real world given that the low-level control of
both the simulated and physical drones are given.

In this experiment, the state of the drone is its 3-D coordinate (x, y, z) and the
action of the drone is also a 3-D coordinate (dx, dy, dz) which captures the
heading direction of the drone. We fix the length of each step as 0.1 and thus
the next state is (x+ dx

10
√

(dx)2+(dy)2+(dz)2
, y + dy

10
√

(dx)2+(dy)2+(dz)2
, z + dz

10
√

(dx)2+(dy)2+(dz)2
).

In this experiment, we do not need the drone to change its height so that we usually fix the value of
z and set dz = 0. The goal is an 1 × 1 square. Denote the coordinate of the center of the goal as
(xgoal, ygoal), then for all the different tasks, xgoal ∈ (0.5, 6.5) and ygoal ∈ (10, 11). The obstacle is
a 3× 1 square. Denote the coordinate of the lower left end of the obstacle as (xobstacle, yobstacle), the
for the different tasks, xobstacle ∈ (0, 4) and yobstacle ∈ (4, 5).

we first use the 50 training tasks to learn a meta-policy. We then randomly sample 10 validation
tasks and find the top 5 validation tasks where the meta-policy adapts with the worst performance.
These 5 tasks are the poorly-adapted tasks. Note that these 5 poorly-adapted tasks are not included
in the 20 test tasks when we evaluate the generalization of our algorithm. We find 5 critical tasks
from the 20 training tasks.

K.2 STOCK MARKET

We use the real-world data of 30 constitute stocks in Dow Jones Industrial Average from 2021-
01-01 to 2022-01-01. The 30 stocks are respectively: ‘AXP’, ‘AMGN’, ‘AAPL’, ‘BA’, ‘CAT’,
‘CSCO’, ‘CVX’, ‘GS’, ‘HD’, ‘HON’, ‘IBM’, ‘INTC’, ‘JNJ’, ‘KO’, ‘JPM’, ‘MCD’, ‘MMM’,
‘MRK’, ‘MSFT’, ‘NKE’, ‘PG’, ‘TRV’, ‘UNH’, ‘CRM’, ‘VZ’, ‘V’, ‘WBA’, ‘WMT’, ‘DIS’, ‘DOW’.

The state of the stock market MDP is the perception of the stock market, including the open/close
price of each stock, the current asset, and some technical indices (Liu et al., 2021). The action
has the same dimension as the number of stocks where each dimension represents the amount of
buying/selling the corresponding stock. The detailed formulation of the MDP can be found in FinRL
(Liu et al., 2021).

The turbulence index is a technical index of stock market and is included as a dimension of the
state (Liu et al., 2021). The turbulence index measures the price fluctuation of a stock. If the
turbulence index is high, the corresponding stock has a high fluctuating price and thus is risky to
buy. Therefore, an investor unwilling to take risks has a relatively low turbulence threshold. The
function p2 is defined as the amount of buying the stocks whose turbulence index is larger than the
turbulence threshold. Therefore, the more the target investor buys the stocks whose turbulence index
is larger than the turbulence threshold, the larger p2 will be and thus the smaller reward the target
investor will receive. We choose the turbulence threshold between 45 and 50.

We randomly sample 10 validation tasks and find the top 5 validation tasks where the meta-policy
adapts with the worst performance. These 5 tasks are the poorly-adapted tasks. We find 5 critical
tasks from the 20 training tasks.

K.3 MUJOCO

The target velocity of all the three robots (i.e., Halfcheetah, Hopper, and Walker2d) is between 0
and 2. Note that we fix the training tasks and we first use these 50 training tasks to learn a meta-
policy. We then randomly sample 10 validation tasks and find the top 5 validation tasks where
the meta-policy adapts with the worst performance. These 5 tasks are the poorly-adapted tasks.
Note that these 5 poorly-adapted tasks are not included in the 20 test tasks when we evaluate the
generalization of our algorithm. We find 5 critical tasks from the 20 training tasks.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

K.4 EVALUATION OF THE EXPLANATION

This section evaluates the fidelity and usefulness of the explanation.

Evaluation of fidelity. Fidelity means the correctness of the explanation. Recall that the explanation
(i.e., the critical tasks) aims to identify the most important training tasks to achieve high cumulative
reward on the poorly-adapted tasks. To evaluate the fidelity, we train a meta-policy on the critical
tasks and evaluate the performance of the meta-policy on the poorly adapted tasks. We introduce
two baselines for comparison. The first baseline is the “original meta-policy” that trains on all the
training tasks. We refer to this baseline as “original”. The second baseline is that we randomly pick
N cri = 5 training tasks and train a meta-policy over the N cri = 5 training tasks. We refer to this
baseline as “random”. We compare the performance on the poorly-adapted tasks with these two
baselines.

Table 2: Fidelity comparison

Drone Stock market HalfCheetah Hopper Walker
Ours 0.97± 0.02 442.29± 12.79 −50.16± 3.32 −7.71± 2.43 −49.26± 4.27

Original 0.68± 0.16 296.27± 35.16 −104.79± 12.72 −46.27± 8.62 −108.38± 12.29
Random 0.71± 0.08 284.97± 29.85 −96.78± 9.24 −52.91± 6.36 −95.27± 17.46

Table 2 shows that our explanation has high fidelity because the meta-policy trained on our expla-
nation significantly outperforms the two baselines on the poorly-adapted tasks.

Evaluation of usefulness. Usefulness means whether the explanation can indeed help improve gen-
eralization. Table 1 already shows that our method (XMRL-G) can significantly improve MAML.
However, this might be the effect of the task augmentation method. To evaluate whether the critical
tasks help improve generalization. We randomly pickN cri = 5 training tasks and use the same algo-
rithm (Algorithm 1) to augment these 5 tasks. We refer to this method as random, and we compare
the generalization of our method with this random method.

Table 3: Usefulness comparison

Drone Stock market HalfCheetah Hopper Walker
MAML 0.87± 0.01 359.13± 18.63 −68.89± 4.36 −23.24± 5.71 −82.18± 6.64

Ours 0.96± 0.02 426.36± 17.15 −53.88± 5.21 −12.50± 2.37 −55.76± 5.01
Random 0.88± 0.02 371.24± 17.81 −66.81± 6.65 −22.69± 4.60 −78.44± 9.33

Table 3 shows that our explanation has high usefulness because randomly pick N cri = 5 training
tasks and augment can only slightly improve the generalization, while our method can significantly
improve generalization.

27

	Introduction
	Related works
	Preliminaries
	The explanation
	The improvement
	Problem formulation
	Algorithm
	Theoretical analysis

	Experiment
	Drone navigation with obstacles
	Stock market
	MuJoCo

	Conclusion
	Algorithm to find the critical tasks
	Proof of Lemma 3

	The task augmentation does not compromise the performance on the non-critical tasks
	Expression of the augmented state-action stationary distribution
	Derivation of the conditional mutual information
	Proof of Lemma 1
	Gradients
	Meta-gradients for major meta-RL methods
	Other gradients

	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 2
	Proof of Theorem 3
	Experiment details
	Drone navigation with obstacles
	Stock market
	MuJoCo
	Evaluation of the explanation

