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ABSTRACT

Meta reinforcement learning learns a meta-prior (e.g., meta-policy) from a set
of training tasks, such that the learned meta-prior can efficiently adapt to all the
tasks in a task distribution. However, it has been observed in literature that the
learned meta-prior usually has imbalanced generalization, i.e., it adapts well to
some tasks but adapts poorly to some other tasks. This paper aims to explain why
certain tasks are poorly adapted and, more importantly, use this explanation to
improve generalization. Our methodology has two parts. The first part identifies
“critical” training tasks that are most important to achieve good performance on
those poorly-adapted tasks. An explanation of the poor generalization is that the
meta-prior does not pay enough attention to the critical training tasks. To improve
generalization, the second part formulates a bi-level optimization problem where
the upper level learns how to augment the critical training tasks such that the meta-
prior can pay more attention to the critical tasks, and the lower level computes the
meta-prior distribution corresponding to the current augmentation. We propose an
algorithm to solve the bi-level optimization problem and theoretically guarantee
that (1) the algorithm converges at the rate of O(1/ VK ), (2) the learned augmen-
tation makes the meta-prior focus more on the critical training tasks, and (3) the
generalization improves after the task augmentation. We use two real-world ex-
periments and three MuJoCo experiments to show that our algorithm improves the
generalization and outperforms state-of-the-art baselines.

1 INTRODUCTION

Meta reinforcement learning (Meta-RL) aims to learn a meta-prior from a set of training tasks where
each training task is an RL problem and is drawn from an implicit task distribution. The learned
meta-prior is expected to adapt well (i.e., achieve high cumulative reward after adaptation) to every
task in this task distribution (Beck et al.,|2023)). However, it has been observed (Dhillon et al.,[2019;
Nguyen et al., 2021; |Yu et al.| |2020) that the learned meta-prior usually does not adapt well to all
the tasks in the task distribution, i.e., it adapts well to some tasks but adapts poorly to some other
tasks. This paper proposes the first method that uses explainable meta-RL to improve generalization.
Our methodology has two parts. The first part explains why certain tasks are poorly adapted by
identifying the mistakes made by the meta-prior. The second part uses the explanation in the first
part to help correct the mistakes and thus improve generalization.

The first part explains why certain tasks are poorly adapted from the perspective of training tasks.
One reason (Nguyen et al., |2023) of this poor generalization phenomenon is that the meta-prior is
learned by minimizing the average loss of all the training tasks, implicitly treating all the training
tasks as equally important. However, many studies have shown that (Thrun & O’Sullivan, [1996;
Nguyen et al., 2023} [Zamir et al.l 2018} |Achille et al.| 2019; Nguyen et al.| 2021) the tasks are
not equally important, instead, paying attention to certain important tasks can facilitate the gener-
alization over the whole task distribution. Treating all the training tasks as equally important can
potentially hinder the meta-prior from paying enough attention to some important tasks, and thus
lead to poor generalization. Inspired by the idea of identifying critical states that are most influential
to the cumulative reward as an explanation in explainable RL (Guo et al., 2021b; Cheng et al.,|2024),
we aim to identify the training tasks that are most important to achieve good performance on those
poorly adapted tasks. We refer to these training tasks as “critical tasks”. Our explanation for the
poor generalization is that the meta-prior does not pay enough attention to the critical tasks.
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The second part aims to improve generalization by encouraging the meta-prior to pay more attention
to the critical training tasks. Since the critical tasks are the most important tasks to achieve high cu-
mulative reward on those poorly-adapted tasks, paying more attention to the critical tasks results in a
new meta-prior that generalizes better to those originally poorly-adapted tasks. Since this new meta-
prior generalizes well to additional tasks compared to the original meta-prior, the generalization over
the whole task distribution is likely to improve. To encourage the meta-prior to pay more attention
to the critical tasks, we propose to augment the critical tasks by generating augmented data and train
the meta-prior over the augmented data. The augmented data increases the diversity of the original
data and contains additional information. Therefore, it is expected that the meta-prior trained on
the augmented data stores more information of the critical task and thus pays more attention to the
critical tasks. Some recent works augment data to facilitate generalization in RL (Wang et al., [2020)
and meta-learning (Rajendran et al., 2020; Yao et al., |2021). However, they use a pre-defined rule to
augment the data or tasks. While the pre-defined rule may provide a feasible augmentation, it is not
the optimal augmentation, i.e., the augmentation that enables the learned model to best pay attention
to the critical tasks. This paper formulates a bi-level optimization problem where the upper level
learns how to best augment the critical tasks and the lower level computes the meta-prior distribu-
tion corresponding to the current augmentation. In the upper level, we use an information theoretic
metric to quantify the information of the critical tasks stored in the meta-prior. Intuitively, the more
information of the critical tasks stored in the meta-prior, the more attention the meta-prior pays to
the critical tasks. Therefore, we aim to learn an augmentation method to maximize this stored infor-
mation. The difficulty of the upper-level optimization is that we need to compute a distribution of
the meta-prior. Therefore, the lower level formulates a distributional optimization problem where a
meta-prior distribution, instead of a single meta-prior, corresponding to the current augmentation is
learned. We summarize our contributions as follows.

Contribution statement. This paper proposes the first method that uses explainable meta-RL to
improve generalization of meta-RL. Our contributions are threefold:

First, we propose the first explainable meta-RL method. Our method explains why the learned meta-
prior adapts poorly to certain tasks by identifying the critical training tasks where the meta-prior does
not pay enough attention.

Second, we formalize the problem of utilizing the explanation to improve generalization as a bi-level
optimization problem where the upper level learns how to augment the critical tasks such that the
meta-prior can best pay attention to the critical tasks, and the lower level computes the meta-prior
distribution corresponding to the current augmentation. We propose a novel algorithm to solve the
bi-level optimization problem.

Third, we theoretically guarantee that (1) our algorithm converges at the rate of O(1/vK), (2) the
learned augmentation makes the meta-prior focus more on the critical tasks, and (3) the generaliza-
tion improves after the task augmentation. We use two real-world experiments and three MuJoCo
experiments to empirically show that our algorithm can improve generalization of meta reinforce-
ment learning and outperform state-of-the-art baselines.

2 RELATED WORKS

This section discusses related works. Note that there is no previous work on explainable meta-RL.
We introduce works in the following three related areas: explainable RL, explainable meta-learning,
and meta-learning generalization improvement. We also discuss our distinctions from the literature.

Explainable reinforcement learning. While it lacks research works on explainable meta-RL, ex-
plainable RL (XRL) has been extensively studied to explain the decision-making of the RL agents,
including learning an interpretable policy (Bastani et al., 2018} Bewley & Lawry}, 2021} Verma et al.,
2018), pinpointing regions in the observations that are critical for choosing certain actions (Atrey
et al.,|2019;|Guo et al.|[2021a; [Puri et al.;, 2019)), and reward decomposition (Juozapaitis et al., 2019
Lin et al. 2020a} Septon et al.| |2023). The most relevant XRL method to our explanation is to
identify the critical states that are influential to the cumulative reward as an explanation (Guo et al.,
2021b; |Cheng et al.| 2024} |/Amir & Amir, |2018) where they respectively use an RNN, masks, and a
self-proposed rule to find critical states. In contrast, we formulate a bi-level optimization problem
to learn a weight vector that indicates critical tasks.



Under review as a conference paper at ICLR 2025

Explainable meta-learning. There are three works on explainable meta-learning where (Woznica &
Biecek, [2021)) proposes to learn important features that lead to a specific meta model decision using
Friedman’s H-statistic (Friedman & Popescu, [2008)), and (Shao et al.l [2022; 2023) use structural
causal model to model the causal relations between the features and the model decision. While
these works explain why a decision is made, we explain why certain tasks are poorly adapted.

Meta-learning generalization improvement. There are three major ways to improve meta-learning
generalization: task weighting, regularization, and meta-augmentation. Task weighting (Cai et al.,
20205 [Yao et al., [2021; [Nguyen et al., [2023)) proposes to re-weight the training tasks or reshape
the training task distribution to improve generalization. However, (Cai et al., 2020} [Yao et al.,
2021) require an additional target task set to guide how to weight the training tasks or reshape the
training task distribution, and thus the learned meta-prior can be biased towards the target task set
and may not adapt well to other tasks. Regularization-based methods are also used to improve
generalization where (Wang et al., [2023) proposes to add ordinary regularization to the upper level
and inverted regularization to the lower level, and (Yin et al.l|2019) imposes regularization to prevent
memorization overfitting. The most relevant technique to our paper is meta-augmentation which
augments the data and train on the augmented data to improve generalization. In specific, (Rajendran
et al.}2020) proposes to add noise to the data and (Yao et al., 2021) proposes to mix data and shuffle
the channels in the hidden layers. The augmentation method has also been used in RL (Wang et al.,
2020) to improve generalization. These augmentation methods use pre-defined rules to provide
feasible augmentation. In contrast, our paper aims to learn how to best augment the critical tasks.

3 PRELIMINARIES

Reinforcement learning. An RL task 7; is based on a Markov decision process (MDP) M; =
(S, A,v, P;,v;,r;) which includes a state set S, an action set A, a discount factor v € (0,1), a
state transition function P;(|-,-), an initial state distribution »;(-), and a reward function r;(-, ).
Reinforcement learning aims to learn a policy 7, (parameterized by ) to maximize the cumulative
reward, i.e., max, E™ [~ v'ri(s, ar)|so ~ v4]. The policy gradient (Sutton et al., [1999) is
E(s,0)~pme [V log Ty (als)A] 7 (s, a)] where AT is the advantage function under the reward r; and
policy m, p"(s,a) = E™[> 2 v 1{s; = s,ar = a}|sy ~ v;] is the stationary state-action distri-
bution under the policy , and 1{-} is the indicator function. Based on the policy gradient, we can
formulate a surrogate objective for RL (Wang et al., 2020): J;(7) £ E(; o)~ [log 7(als) AT (s, a)].
Here, we omit the policy parameter (.

Meta reinforcement learning. Meta-RL aims to efficiently solve multiple RL tasks by learning a

meta-prior. The meta-prior is learned from a group of N training tasks {7"})¥", sampled from
an implicit task distribution P(7). It is typically assumed (Beck et al., 2023) that different tasks
share (S, A, v) but may have different (P!, ¥, 7I"). Here, the superscript “tr”” means that these com-
ponents belong to training tasks. Later on, we will use different superscripts to represent different
kinds of tasks. Current mainstream meta-RL works (Beck et al., 2023} |[Finn et al., 2017; [Fallah et al.,
20215 Xu et al.} 2018} [Liu et al.,[2019) learn a meta-policy my (as the meta-prior) from the training

tasks and have the following bi-level structure:

Nlr

e ST O), st 6) = Alg(na, T, 0
=1

max (6, {T}Y,) =

where the upper level aims to learn a meta-policy 7y such that the corresponding task-specific adap-
tation 7 (f) can maximize the cumulative reward J*(7(6)) on each training task 7, and the
lower level computes the task-specific adaptation 7 (6) given the meta-parameter 6. Different meta-
learning methods use different algorithms to compute the task-specific adaptation 7" (¢). Here, we
use Alg(mg, T;") to generally represent an algorithm that computes the task-specific adaptation.

To evaluate the generalization of the meta-policy 7y over the task distribution P(7), people usually
sample some validation tasks where each validation task is drawn from P(7T ), and use the task-
specific adaptation of each validation task to test the performance on each validation task. However,
it has been empirically observed (Yu et al.l |2020) that only a portion of the adapted policies per-
form well on the corresponding validation tasks while some adapted policies perform poorly on
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the corresponding validation tasks. We pick the top NP°*" poorly-adapted validation tasks and use
{TPO"} N to represent the set of these top NP poorly-adapted validation tasks.

This paper aims to improve the generalization of the meta-policy mg via two steps. The first step
aims to explain why g adapts poorly to {7,7°} "1, The second step aims to use the explanation

in the first step to improve the generalization over P (7).

4 THE EXPLANATION

This section explains why the meta-policy 7y does not adapt well to {7;7°*'}N'" from the perspec-
tive of the training tasks. In specific, the meta-policy 7y is learned by minimizing the average loss
of the training tasks, implicitly treating all the training tasks as equally important. However, many
studies (Thrun & O’Sullivan, |1996} [Zamir et al., 2018 |Achille et al.l |2019; |[Nguyen et al., 2021)
have shown that the tasks are not equally important, and learning from certain important tasks can
facilitate the generalization performance. Treating all the training tasks as equally important can
potentially hinder the meta-prior from paying enough attention to some important tasks. Therefore,

an explanation of why 7 does not adapt well to { T”°*}¥'" is that 74 does not pay enough attention

to some training tasks that are most important to achieve high cumulative reward on {7;7°*}N'}".
We refer to these training tasks as “critical tasks” and aim to identify the top N" critical training

tasks as an explanation.

For this purpose, we propose to learn an importance vector w € RY " where each dimension w;
captures the importance of the corresponding training task 7, in terms of achieving high cumulative

reward on {77} In specific, we propose to solve a bi-level optimization problem:

Nlr
max L(0"(w), {TPHT) st 0%(w) = argmax »  w; I (7 (6)), )
i=1
where the upper level aims to learn how to weight each training task such that the corresponding
weighted meta-policy 7y« (. can adapt to {7,7°*}']" with maximum cumulative reward, and the
lower level computes the weighted meta-policy 7y« (.,) corresponding to the current weight w. We
include the algorithm to solve the problem (2)) in Appendix [A]

We use w* to denote an optimal solution of problem (). A higher w; means that the weighted
meta-policy 7g- (.~ should weight the training task 7;" more in order to adapt to {7°"}\7" with
high cumulative reward, and thus the training task 7;* is more important in terms of achieving high
cumulative reward on {77°*}N'". Therefore, the top N°" training tasks with the highest weight

values are the top N critical tasks we aim to identify. We use {7}Y] to denote these N°1
critical training tasks.

Remark 1 (The weighted meta-policy 7y (,,-) cannot be used to improve generalization). Note

that g~ (- only improves generalization to the poorly-adapted tasks {T,"**"}N.7™", but can com-

promise the performance on the non-critical tasks (i.e., the other training tasks that are not the
critical tasks) and thus potentially compromise the generalization to the tasks similar to the non-
critical tasks. The reason is that Tg« () is trained to solve a biased problem (i.e., the lower-level
problem in (2))) where the critical tasks are assigned with larger weights and the non-critical tasks
are assigned with smaller weights. This bias enables g« (.~ to generalize better to the originally

poor

poorly-adapted tasks {T°*"}}\". However, since o« is biased towards optimizing the per-
formance on the critical tasks, the performance on the non-critical tasks becomes secondary and
can be compromised, especially when the non-critical tasks are very different from the critical tasks.
Therefore, this bias can potentially hinder the meta-policy from generalizing well to tasks similar to
the non-critical tasks.

Remark 2 (Improving generalization without introducing new training tasks). A simple way to
improve generalization is to include more training tasks, especially the tasks similar to the poorly-
adapted tasks {TP°°" YN""". However, this paper aims to improve generalization without introduc-
ing new training tasks. Moreover, our method is complementary to the method of introducing new
training tasks because one can both introduce new training tasks and use our method to improve
generalization.
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5 THE IMPROVEMENT

This section uses the explanation (i.e., the critical tasks {7?ri f\f{) in Section [4{ to improve gen-
eralization by encouraging the meta-policy to focus more on the critical tasks. Since the critical
tasks are the most important tasks to achieve high cumulative reward on the poorly-adapted tasks
{TF" VN, paying more attention to the critical tasks results in a new meta-policy that generalizes
better to the originally poorly-adapted tasks. Since this new meta-policy generalizes well to addi-
tional tasks compared to the original meta-policy (i.e., the one without paying more attention to the
critical tasks), the generalization over the whole task distribution is likely to improve. The challenge
is to design a method that enables the meta-policy to focus more on the critical tasks.

A straightforward method to focus more on the critical tasks is to assign larger weights to the critical
tasks and train a meta-policy over the weighted training tasks. However, as mentioned in Remark
while this weighting method can improve generalization to the originally poorly-adapted tasks,
it makes the meta-policy biased towards the critical tasks and can compromise the performance on
the non-critical tasks. Therefore, this bias may potentially hinder the meta-policy from generalizing
well to tasks similar to the non-critical tasks.

To address this issue, we propose to focus more on the critical tasks by augmenting the critical
training tasks. We generate augmented data for the critical tasks where the augmented data increases
the diversity of the data and thus contains additional information. We train the meta-policy over the
non-critical training tasks and the augmented critical training tasks. Since the meta-policy is trained
on the augmented data that contains additional information of the critical tasks, it is expected that
the meta-policy stores more task information of the critical tasks and thus pays more attention to
the critical tasks. Compared to directly assigning larger weights to the critical tasks, the benefit of
the proposed task augmentation is that it does not compromise the performance on the non-critical
tasks because it does not introduce bias towards the critical tasks and the task information of the
non-critical training tasks stored in the meta-policy remains unchanged (proved in Appendix [B).

This section has three parts. The first part formulates a bi-level optimization problem to learn how
to best augment the critical tasks such that the meta-policy can focus more on the critical tasks.
The second part proposes a novel algorithm to solve the bi-level optimization problem. The third
part includes the theoretical analysis which proves that (1) the algorithm converges at the rate of
O(1/VK), (2) the learned augmentation makes the meta-prior focus more on the critical tasks, and
(3) the generalization improves after the task augmentation.

5.1 PROBLEM FORMULATION

This part formulates a bi-level optimization problem where the upper level aims to learn how to
augment the critical tasks such that the meta-policy can best pay attention to the critical tasks, and
the lower level computes the meta-parameter distribution corresponding to the current augmentation.

We use data mixture to augment the critical tasks where data mixture can increase the diversity of
the original data and thus contain additional information (Yao et al., 2021} Wang et al., 2020). Recall
from Section 3| that we can formulate a surrogate RL objective for the critical task 7,%: J¢"(7) =
E(s,a)~p[log m(als) AT (s, a)]. Data mixture (Wang et al., |2020) proposes to mix any two data
points (s;,a;, AT (sj,a;)) and (s, a;, AT (s;7,a;)) to generate augmented data (5;;7,a;;7, Aj;r)
where 5]']‘/ = )\753 + (1 - )\1;)5]'/, Ajj/ = /\iA?(sj,aj) + (1 - )\,;)Af(sj/,aj/), C_ij/ = Gy if
Ai > 0.5 and aj;; = aj if \; < 0.5, and the mixture coefficient A\; € [0,1] of the critical task
T is a random variable that is drawn from a distribution P()). For a specific \;, the data mixture
will lead to an augmented stationary state-action distribution p™*: (557, a;,,) whose expression is
in Appendix |C| Therefore, we have an augmented task 7()\;) and its surrogate RL objective is
TN N) = Es,a,)~peni 108 T(@550]557) Ajj]. With the augmented critical tasks, the meta-
objective (i.e., the upper-level objective) in (I)) becomes:
. NN a1 N NN
LOATTOHS AT TN 2 =[S T @m 0,00+ Y. JrEe)]. @)
i=1 i=1

Compared to the original meta-objective in (T, the new objective replaces the original critical
tasks {7}V with the augmented critical tasks {7,"(\;)}/,. Since ); is a random variable, the
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corresponding augmented task 7,()\;) is also a random variable. In the following context, we use
the notation 7" (\; ~ P(\)) to highlight that the augmented task is a random variable.

To mathematically reason about whether the meta-parameter pays more attention to the critical tasks
after task augmentation, we use the following information theoretic metric:

Definition 1. We say that the meta-parameter pays more attention to the critical tasks after
task augmentation if 1(0;{T (N ~ P\ {TC“}{\;T) > 0 where 1(0; {T (N ~
PO o LT “) is the conditional mutual znformatzon between the meta-parameter 0 and

the augmented critical tasks { T (N ~ P(N)YX], given the original critical tasks { TNV o

In information theory (Wyner, 1978} Yao et al.|[2021)), the conditional mutual information quantifies
the difference between the information that 6 and {7,(\; ~ P()\))}f\ﬁ1 share and the informa-
tion that 6 and {7} 1“ share. In other words, the conditional mutual information quantifies the
amount of additional information stored in 6 by additionally knowing {7<()\; ~ P())) {‘Ql given

that {71} is already known. Intuitively, I(6; {7 (A ~ P(A))}Y] {7 ‘1) > 0 means
that the task information of the critical tasks stored in the meta-parameter € increases after we aug-

ment {7} to {7 (A ~ P(A))}Y']. Since the task information of the critical tasks stored in
6 increases, it means that the meta-parameter § pays more attention to the critical tasks.

We aim to augment the critical tasks such that I(6; {T"'(\; ~ PO {7 NT) > o.
However, the aforementioned data mixture works (Yao et al., 2021; |Wang et al 2020) use a pre-
determined distribution P()\) of \; to mix the data. While (Yao et al., 2021) shows that the pre-
determined distribution P () is a feasible augmentation to increase the task information stored in
the meta-parameter, this distribution is not guaranteed to be an optimal augmentation, i.e., the one
that can maximally increase the task information stored in the meta-parameter. We aim to learn

how to best augment the critical tasks {7,"}2] by optimizing for the distribution P()) such that
the conditional mutual information can be maximized. In specific, we use a parameterized distribu-
tion Py, (A) with parameter ¢ to model the distribution of \. We aim to optimize the distribution
parameter ¢, to maximize the conditional mutual information. The expression of the conditional
mutual information is:

IO:{T N ~ Poy ODOHTE D),

log PO T () 1Y)

- ENE[OJ]»MNPM(A)ﬂNP*('HﬁC"()\i)}fV:f) P 9‘{7’crl}N°") J “)

where the derivation is in Appendix@ PH({TE () ) is the posterior distribution of the meta-
parameter @ given the augmented critical tasks {7;(\ ) N, and P*(-[{T1} M) is the posterior
distribution of @ given the original critical tasks {77}V 1 Note that the posterior distributions of 6
should also depend on the non-critical training tasks {T‘r}N N here, we omit the dependence of
the non-critical tasks because the non-critical tasks do not change after task augmentation.

To maximize the conditional mutual information (@), we need to compute the posterior distribu-
tions P*(0|{7T1} Y1) and P*(0]{T,(\:)}}¥,). Therefore, analogous to (Achille & Soatto, [2018;
Yin et al.| 2019), we treat € as a random varlable where the randomness comes from the training
stochasticity. Mathematically, the posterior distributions are:

PrEHTR WD) = argmax By, o) [LOAT=O0RE AT ),

PAHTNED) = Baeloamro, o0 [P T OO D) )

where P, (0) is a distribution of § parameterized by ¢. Instead of learning a single meta-parameter
6, problem (5) aims to learn a distribution of @ that can maximize the meta-objective (3). This
idea of optimizing a distribution is widely adopted in meta-learning (Yin et al.l[2019) and RL (Liu
et al.,[2017;|Salimans et al.,[2017) when the stochasticity of the learned parameter is of interest. By
combining (4) and (5)), we reach the final bi-level optimization problem:

max I(0; {TF (A ~ Py (M) IS {T3X), st Problem (5), (6)
A
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where the upper-level problem in (@) learns a distribution Py, (\) of the mixture coefficients {\; }}¥° 1
to maximize the conditional mutual information @) (i.e., maximally increase the additional infor-

mation of the critical tasks stored in the meta-parameter), and the lower level (i.e., problem (&)
computes the posterior distribution P*(8]{7.%(\;)}\}) corresponding to the current mixture coef-

ficients { )\,}fg and the posterior distribution P*(#|{71}) given the original critical tasks.

5.2 ALGORITHM

In this section, we develop an algorithm to improve the generalization of meta-RL. We first identify
the critical tasks as the explanation (line [I]in Algorithm [T). With the identified critical tasks, we
encourage the meta-parameter 6 to focus more on the critical tasks by solving the problem (6). At
each iteration k, we first solve the lower-level problem (5)) in line In specific, we first sample N¢

sets of mixture coefficients {{Affk f\f{ };V_Cl from Py, 1(\) and project each )\ffk to [0, 1], and then

cri

compute N¢ posterior distributions { P* (| {ﬂcri()\f})}i:l)}g 4_1 where each posterior distribution

= . o 7 = - _

P*(~|{7;Cfi(A§fk) N)) corresponds to each set of 7mixture coefficients {)\f’k}fvzl We use these N©

posterior distributions { P* (\{ﬁcr‘()\fjk) Z]\Ll)}é—v i1 to estimate the posterior distribution given the
: =

: cri < - . C cri
original critical tasks P*(-[{ T }L)) = 47 pORES P*(-|{7§°rl()\ffk) N71). We then solve the upper-

level problem in (6)) via gradient ascent (line Eﬁ In the following, we elaborate how we solve the
lower-level and upper-level problems in (6)).

Algorithm 1 Explainable meta reinforcement learning to improve generalization (XMRL-G)

Input: Initial mixture coefficient distribution Py, ;(A\) and meta-parameter distribution Py, (),

training tasks {7;7}¥',, and poorly-adapted tasks { 7;°}N')".

Output: Learned mixture coefficient distribution Py, . (A\) and meta-parameter distribution

P¢"({Ai,xt(}f,vzcii (0)-

1: Generate the explanation (i.e., the critical tasks { 7" f\fl) using the algorithm in Appendix
2: fork=0,---,K—1do

3:  Sample N¢ sets of {)\ka f\f{ and compute the distribution parameter ¢* ({ /\ffk fg) such that
PHONTS O HE) =

E- cri . * . cri
Pab*({A;jk ,N_“'f)(a) for each set {7’} Estimate P*(-[{ T }]C))
NE « - . E cr;
= ﬁ Zj:l P ("{ch()‘ifk) 11\;1)
4. Compute the hyper-gradient g, , in Lemmaand update the mixture coefficient distribution
parameter ¢ p+1 = dxk + ﬁgm’k.
5: end for

Solve the lower-level problem (line . To solve the lower-level problem @), we use a Gaussian
distribution to parameterize Py (#) and thus the distribution parameter ¢ = (y, 3) includes a mean
vector y and a covariance matrix ¥ = oo |. We can reparameterize 6 via § = p + o o ¢ where
¢ ~ N(0,I) draws from a standard Gaussian distribution and o is component-wise multiplication.

Given {)\fj f\fll, the gradient of problem H is Vo Eyp, (o) [L(g7 {ﬁcri(/\i@) iV:°’1‘7 {ﬁr}ﬁ\r:“‘l—zv“‘) _
Ecno,1) [V(ﬁ . VgL(H,{ﬁ“i()\f") gi’{ﬁr}ﬁr{]\,m)} and we can use NS samples (; ~
N (0, I) to estimate the gradient:

NS¢

S Veb; - VoL (05, {T )1 AT TN, )

Jj=1

1
gqs:m

where 0; = p + 0 o (j, V40; is the gradient of #; with respect to the Gaussian distribution
parameter (u, o), and VQL(Hj,i{ﬁ“i()\f" PN AT N s the meta-gradient. Note that the

=1

meta-gradient Vo L(6;, {T(A) IV {72} X" " N") can be different for different meta-learning

=1
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methods because it depends on what the task-specific adaptation 7} (9) is, i.e., the lower-level prob-

lem in (1). We include the expressions of VyL(0;, {TC“()\C’ VI AT }Nlr N m) for several major
meta- learnmg methods in Appendix [FI] We use gradient ascent to solve the lower-level prob-

lem (5) to get d)*({)\CJ}Nm) = (u ({)\CJ}{\Q;), ({)\fj}f\[:c;)), which is the learned distribution

parameter such that P*(9|{’T°“()\<’) NC“) = P¢ (T Ncn)(

tributions { P*(- |{T"“()\S]k)}N m)} | for N ¢ sets of mixture coefficients {{)\fj NCH}N,—l’
estimate P+ (7)) = e T 1P*<9|{T°“<A<7> XD

Solve the upper-level problem (line E]) We use a Gaussian distribution to parameterize Py, ()
where the distribution parameter ¢y = (ux, o) iqcludes a mean i) and_ a standard deviation o.

6). We compute N < posterior dis-

Therefore, we can reparameterize each sample )\fj from Py, (\) via /\gj = ux + O’)\C_i,j where
Gi,j ~ N(0,1). To solve the upper-level problem in problem 1@ we need to compute the hyper-
gradient, i.e., the gradient of the conditional mutual information (4)) w.r.t. ¢.

Lemma 1. Suppose we reparameterize )\CJ via )\C’ = px+ U)\CZ j» the hyper-gradient can be esti-
¢y neri N neri
Z V¢>\ N s) ZNC Voo ({)\ }1 1) CiyNeri
a2 =L yhere Vi, oF ({7 He, ) =
HZ%J*({A“}N“‘>H R llo {A“}N“‘)H g

V2, B oy [LO AT OO AT ] 02, By o [L(0ATE (09
(TN

mated by gy, =

We include the expression of all the gradients in Appendix [ We solve the upper-level problem in
@ via gradient ascent ¢ 11 = Pk + B9g,. , Where § is the step size.

5.3 THEORETICAL ANALYSIS

This part shows that (1) Algorithmconverges at the rate of O(1/v K), (2) the learned augmenta-
tion makes the meta-parameter focus more on the critical tasks, and (3) the generalization over the
whole task distribution improves after the augmentation. We start with the following assumption:

Assumption 1. The parameterized meta-policy 7y satisfies the following: ||Vglog mg(als)|| < Co
and ||V3,logmg(als)|| < Cy for any (s,a) € S x A where Cy and Cy are positive constants.

Assumptionassumes that the parameterized log-policy log 7y is Cg-Lipschitz continuous and C-
smooth w.r.t. the parameter 6, which is a standard assumption in RL (Kumar et al.| [2023; Zhang
et al., [2020; |Agarwal et al., 2021).

Theorem 1. Suppose Assumption I holds and f = & %ﬁ where Cr is a positive constant
whose derivation is in Appendlx then Algorithm I converges: ¢ Z va (0; {T< (N ~
Py sk W HT D2 < O(1/VE),

Theorem |1| shows that Algorithm |1| converges at the rate of O(1/v/ K). We next show that the
learned augmentation makes the meta-parameter focus more on the critical tasks:

2, then the output Py, () ofAlgorithm

Theorem 2. Suppose Assumption I holds and B < C—f,

satisﬁes 1(9, {7;0”()\2» ~ P¢>\7 ( )) Nm|{7‘crt}N‘”)

Theorem [2] shows that the augmented critical tasks store additional information in the meta-
parameter, and thus the meta-parameter pays more attention to the critical tasks. We next quantify
the generalization improvement of the learned augmentation Py, .. ()). In specific, we first show
that the learned augmentation imposes a quadratic regularization on the meta-parameter 6 in Lemma
and then show that the generalization over the task distribution P(7") improves.

To reason about the generalization, we consider the following softmax parameterized meta-policy

07 f(s.a) . . . T
mo(als) = W where f(s, a) is a feature vector. This policy parameterization is widely
a’e A" ’

adopted in RL (Sutton et al. [1999; Kakade, 2001} Peters & Schaal, [2008). We consider MAML
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(Finn et al.,[2017; Fallah et al., 2021)) as the algorithm to compute the task-specific adaptation 7} (6),
and the task-specific adaptation is also softmax parameterized.

Lemma 2. The second-order approximation of the meta-objective (3)) after the task augmentation
. cri Nn Ncri tr Ncri _ .

is Bxmry  [LO AT Q)N AT Y] & LOATIE) — 07 (ke S A6
where H™ is a positive definite matrix whose expression is in Appendlxm

Lemma [2] shows that the augmented meta-objective (3) imposes a quadratic regularization on the
original meta-objective (I). Note that we aim to maximize the meta-objective, therefore this negative
quadratic regularization reduces the solution space and thus can lead to a better generalization.

To study the generalization property of this regularization, following (Zhang & Deng| [2021}; [Yao
et al.L|2021), we consider the following softmax policy class that is closely related to the dual prob-
lem of the regularization: 7y = {mg : 0 (E;p(1)[H;])0 < 7}. To quantify the improvement of
generalization, we denote the generalization gap by G(F5) 2 L(6, {7} ") — Ei pm L9, Ti)].
The following theorem shows the improvement of generalization:
o0 fs,a)

Za ‘eA eng(s a”)
the feature vector f(s,a) is twice-differentiable and bounded for any (s,a) € S X A, then with

probability at least 1 — 6, the generalization gap satisfies |G(F5)| < O( (1/ A ~& T/ 1og]\(]1“/ 9)

According to Lemma | the quadratic regularization (i.e., T (< e Zl 1 H 1) 0) imposed by the

Theorem 3. Suppose the policy is softmax parameterized (i.e., mp(als) = ) where

1
learned task augmentatlon encourages a smaller 7. Therefore according to Theorem [3] the learned

task augmentation will lead to a smaller generalization gap and thus improve generalization.

6 EXPERIMENT

This section uses two real-world experiments and three MuJoCo experiments to show the effective-
ness of Algorithm [I| (XMRL-G), where the first real-world experiment is conducted on a physical
drone and the second real-world experiment uses real-world stock market data. We introduce three
baselines for comparisons: (1) Task weighting (Nguyen et al., [2023)): This method learns how to
weight different training tasks in order to improve generalization. (2) Meta augmentation (Yao
et al.,2021): This method uses a pre-defined distribution of A to mix the data of each training task to
improve generalization. (3) Meta regularization (Wang et al., [2023)): This method adds quadratic
regularization to the upper level and inverted regularization to the lower level to improve general-
ization. We use MAML (Finn et al.| 2017} Fallah et al.,|2021) as the baseline meta-RL algorithm.

6.1 DRONE NAVIGATION WITH OBSTACLES

We conduct a navigation experiment (Figure[I)) on an AR.Drone
2.0 where the drone (in the yellow bounding box) wants to nav-
igate to the goal (in the green bounding box) while avoiding the
obstacle (in the red bounding box). We use an indoor motion cap-
ture system “Vicon” to record the location of the drone and send
this location information to the drone. For different navigation
tasks, we change the locations of the goal and the obstacle. The
reward function is designed to be positive at the goal, negative at -
the obstacle, and zero otherwise. We use success rate (i.e., the

rate of successfully reaching the goal and avoiding collision with Figure 1: Drone navigation
the obstacle) as the metric to evaluate the RL performance. We

use 50 training tasks to train a meta-policy and find 5 poorly-adapted tasks. To evaluate the general-
ization, we randomly generate 20 test tasks and record the mean and standard deviation of success
rate in the second row in Table[I] The experiment details are in Appendix

6.2 STOCK MARKET

RL to train a stock trading agent has been widely studied in Al for finance (Deng et al., 2016} Liu &
Zhul 2024b). We use the real-world data of 30 constituent stocks in Dow Jones Industrial Average
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Table 1: Experiment results.

MAML XMRL-G Task weighting | Meta augmentation | Meta regularization
Drone 0.87 £0.01 0.96 £ 0.02 0.88 £ 0.02 0.91 £0.02 0.91 £0.02
Stock Market | 359.13 £ 18.63 | 426.36 +17.15 | 371.88 £ 17.25 389.17 £+ 12.66 362.53 £ 14.27
HalfCheetah | —68.89 +4.36 | —53.88 £5.21 | —66.77 £6.38 —63.49 +4.07 —61.15 + 3.82
Hopper —23.24+£5.71 | —12.50 £2.37 | —19.35 £4.12 —22.37+4.65 —16.23 +2.03
Walker —82.18+6.64 | —55.76 £5.01 | —76.86 = 5.29 —67.51 +4.83 —73.25 +£4.27

from 2021-01-01 to 2022-01-01. We use a benchmark “FinRL” (Liu et al., 2021) to configure the
real-world stock data into an MDP environment. The RL agent trades stocks on every stock market
opening day in order to maximize profit as well as avoid taking risks. The reward function is defined
as p1 — po where p; is the profit which is the money earned from trading stocks subtracting the
transaction cost, and p, models the preference of whether willing to take risks. In specific, py
is positive if the investor buys stocks whose turbulence indices are larger than a certain turbulence
threshold, and zero otherwise. The value of p, depends on the type and amount of the trading stocks.
The turbulence index measures the risk of buying a stock (Liu et al.,|2021), and a lower turbulence
threshold means that the RL agent is less willing to take risks. The turbulence thresholds for different
RL tasks are different. We use 50 training tasks to learn a meta-policy and find 5 poorly-adapted
tasks. We use 20 test tasks to evaluate the generalization. We include the details in Appendix
and the results of cumulative reward in the third row in Table[T]

6.3 MuloCo

We consider the target velocity problem (Finn et al.,2017; |Rakelly et al.,|2019; Lin et al., 2020bj} Liu
& Zhu, 2023)) for three MuJoCo robots: HalfCheetah, Walker, and Hopper. In specific, the robots
aim to maintain a target velocity in each task and the target velocity of different tasks is different.
The reward function is designed as —|v — vtarge[| (as in|Finn et al.[(2017)) where v is the current robot
velocity and vyrge 15 the target velocity. We use 50 training tasks to learn a meta-policy and find 5
poorly-adapted tasks. We use 20 test tasks to evaluate the generalization. We include the details in
Appendix and the results of cumulative reward in the fourth to sixth rows in Table

Table [T]shows that our proposed method can significantly improve the generalization of MAML and
outperform the other three baselines.

Evaluation of the explanation. We also aim to evaluate the fidelity and usefulness of our explana-
tion. Fidelity is a widely-used metric in explainable RL (Guo et al., [2021b}; |Cheng et al., 2024)) to
evaluate the correctness of the explanation. The fidelity in our setting means whether the identified

critical tasks {7} "] are indeed the most important training tasks to achieve high cumulative re-

ward on the poorly-adapted tasks {7,”°°"}Y'1". To evaluate fidelity, we train a meta-policy over the
critical tasks and compare its performance on the poorly-adapted tasks with a meta-policy trained on
N randomly-sampled training tasks. The usefulness means whether our explanation can help im-
prove generalization. To evaluate the usefulness, we randomly pick V' °i training tasks and use our
augmentation method to augment these N training tasks to train a meta-policy. We compare the
generalization performance of this meta-policy with XMRL-G. We include the results in Appendix
and the results show that our explanation has high fidelity and usefulness.

7 CONCLUSION

This paper proposes the first method that uses explainable meta-RL to improve generalization of
meta-RL. The proposed method has two parts where the first part explains why the learned meta-
policy does not adapt well to certain tasks by identifying the critical training tasks that the meta-
policy does not pay enough attention to, and the second part formulates a bi-level optimization
problem to learn how to augment the critical tasks such that the meta-policy can best pay attention
to the critical tasks. We theoretically guarantee that the learned augmentation can improve general-
ization over the whole task distribution. Two real-world experiments and three MuJoCo experiments
are used to show that our method outperforms state-of-the-art baselines.

10
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A ALGORITHM TO FIND THE CRITICAL TASKS

Recall from Section [4] that we aim to learn a weight vector w by solving the problem (2) where
each component w; of the weight vector captures the importance of the corresponding training task
T*. The higher the weight value w; is, the more important the corresponding training task 7, is.
Therefore, the top N training tasks with highest weight values are the N1 critical tasks we aim to
identify. The problem (@) is as follows:

Nlr
max L(6* (), {TF° ) st 0% (w) = arg maxzwiJf(W?(e)).
w 0 .
=1
We use Algorithm to solve this problem where at each iteration k, we first solve the lower-level
problem in (2)) to get 6*(w) and then solve the upper-level problem (2) via gradient ascent.

Algorithm 2 Identifying the critical tasks

Input: Training tasks {7;"} "}, poorly-adapted tasks {7;7°*} '}, and initial weight vector w.
Output: Learned weight vector wy.
1: fork=0,---, K —1do
2:  Solve the lower-level problem via gradient ascent to get 6* (w).
3:  Compute the hyper-gradient g, in LernmaE] and update the weight wy, | = Wy + A5G, -
4: end for

Solve the lower-level problem. We use gradient ascent to solve the lower-level problem where the
gradient is Zfil w; Vo Ji'(m¥(#)) and the expression of Vg J'(7"(6)) can be found in Appendix

Solve the upper-level problem. To solve the upper-level problem, we need to compute the hyper-
gradient g,,.

Lemma 3. The hyper-gradient is:
Ju =

NtT NtT Ppoor

_ {VMZwivejfr(wzpr(g*(w)))] {ZWivzgjfr(ﬂgr(g*(w)))}_1|: > Vleoor(ﬂfoor(G*(w)))],

i=1 i=1 i=1
where the derivation is in Appendix[A.]

We use K-step gradient ascent wy, 11 = Wj + Qfgw; to solve the problem to get the learned
weight wgz. Each component wy ; captures the importance of the corresponding training task 7;".

We pick the top N training tasks with the highest weight value as the critical tasks.

A.1 PROOF OF LEMMA 3]
Since 0" (w) = argmaxy S w; JE((0)), then Vo SN w; J¥(x(6*(w))) = 0. Take gradient
w.r.t. w on both sides, we have that

Nlr Nlr

V2 w0 @) + (Vb (@) [Vhe S w07 ()] =
i=1

i=1
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N" _1 N
= Vol (@) = [V Y w20 @)]  [VE, D wiIt (@ @) ®
i=1 i=1

Therefore, we have that

00T T poor
VL L(0" (@) AT ) = (Va0 (@)) VoL(0" (@) AT 1),
Nlr Nlr

= [Vl w67 eEEW“"¢>»”wumU{ﬂWW%,
o QI |

where (a) follows (8).

B THE TASK AUGMENTATION DOES NOT COMPROMISE THE PERFORMANCE
ON THE NON-CRITICAL TASKS

This section shows that the task augmentation does not compromise the performance on the non-
critical tasks. In brief, we prove that the mutual information between the meta-parameter and the
non-critical tasks remains unchanged even if the mutual information between the meta-parameter
and the critical tasks increases after task augmentation. Since the task information of the non-
critical tasks stored in the meta-parameter does not change after augmentation, the performance on
the non-critical tasks is not compromised.
Suppose we augment the critical tasks {7 N B} to {7V “l. Note that the difference be-
tween {7} “ and {Te} N is that they have different distributions, i.e., P({Tm}fv,m) and
P({TF N m) Therefore, we use A to generally represent the critical tasks (either before augmen-
tation or after augmentation), and use P(A = {7}V m) and P(A = {T1})) to respectively

denote that A follows the distribution of {71}V *! and A follows the distribution of {Temy L. "l We
now quantify the change of the mutual information between the meta-parameter and the non-critical

tasks {77}V N
(9 {7—’Lr}N“ e {Tcn}Nc") (9 {Ttr}N" et
/P 9 {7—1r N“ Ne {rﬁcn NC“)

PO TN T )
POHTE I PAT N (T )
/ (9 {Ttr}N“ e {7;cr1 Nc")

(0 {7‘1r}N" Ned {Tcn N°”)
POHT D PUTI Y KTy D)
/ PO N (T

(9|{T°“}Nm)
/ PONTEYE TN T

PONTE)
Q[ PONT RS APATIYET P = (T )

{ Tcrl } N °”

dO(d{ TN TN (@ TN

dO(d{ TN N (@ TN

b N T

(9 {7-tr}N“ Ner {7;cr1 NC") )de(d{:rtr}N" N“‘)(d{Tcn NCn

PO (T TN (TN 1o
}

PONTTIETN", 4)
P(9]A)

PONTEY TN, A)PUTERST N P(A = (T )

log dO(d{ TN N (dA)

PORT N
(9|A)

A g 7YV dA),
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= [ POUTYEN A PATINEN) [PA = (T - PA= (1))

POUT R, )
P(6]4)

/ (9|{7’“}N" Nm ) ({7-tr}N" N“‘)[ (A {TCT] N°“) (A {Tcrl NC”)].
POHTETN, 4)

fP 0|{7‘tr N“ Nm ) ({’T’tr 1\/"r NC")(d{T’tr N“ NC")

/P 9|{7’Tr N — N°“7 ) ({7-tr}N" NC“){ (A {TCI‘I N”‘)_ ( _ {Tcrl}N““)]

log 1d0(d{ T} NN (dA),
=0, ©9)

dO(d{ T TN (dA),

do(dAT I TN T)(dA),

where (a) follows the definition of conditional mutual information (Wyner, [1978), ( ) follows the
fact that the critical tasks and the non-critical tasks are mdependent (i.e., P(0, {T‘r N A) =

PONTET YT APATHET YT, 4) = POUTHSYT A)PUTHE N%(»am
(¢) follows the fact that the non-critical tasks {7}, N ~N" are given and thus P ({7'Tr N m) =1
From (EI) we can see that I(6; {’T“}Mr N {7 Nm) 1(6; {’7‘“}N" NC"\{TCH}N"') = 0, and

thus the information of the non-critical tasks stored in the meta-parameter does not change after the
task augmentation. Therefore, the performance on the non-critical tasks is not compromised.

C EXPRESSION OF THE AUGMENTED STATE-ACTION STATIONARY
DISTRIBUTION

The expression of the augmented state-action stationary distribution is p™*i(5;;:,a;5:) =

Z:(51‘1),(S’,a’)GSXA]l{>‘is + (1 - )‘i)S/ = gjj'}[]l{Ai 2 0'5}pﬂ(svdjj’)pﬂ(8/7a/) + H{Ai <
0.5}p™ (s, a)p™(s',aj;)]. For each (5;;/,a;;:), we sum the joint probability of any two state-action
pairs whose mixture combination is (5;,/, G;;).

D DERIVATION OF THE CONDITIONAL MUTUAL INFORMATION

10: {75 (A ~ PO TSN,
@/P@W?w~ PO (T,

PO, {7 (N ~ PO {TEA)
PORT N PAT (N ~ PO TR

:/P(9|{72°“(Ai) AT RS POV PUT -

(9 {Tcn( )}N”‘ {Tcn}N“‘)
(9‘{7‘cr1 NC“) ({Tcrl( ) N““{Tcrl NC“)

:/P(9|{7§°“(Ai) AT RS POV PUT -

(9‘{7-“1( ) N“‘ Tcn}N”‘)
(9\{T°“}N°”)

(@0) (TN ~ PO E T,

(d0) (@ T ) S @ T ),

(d0) (AN (A T,

cri e
© [ por o po os DG LA S ) e,
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Teri(y 1NV eri
tog POUT DI

= B c0.1] Aim PO, 0~ P (00185 PETTN) )

where (a) follows the definition of conditional mutual information (Wyner, |1978)) and (b) follows

the fact that P(0]{7(\) IV, {7 VT) = POI{T (M) N} because the meta-parameter is

trained on the augmented crmcal tasks {7, (\) )

i=1-
E PROOF OF LEMMA
Recall from (@) that
10T (i ~ Py OISHTE),
PHOTS )
- E * cri NCrl 1 g .
€[0,1],Ai~Ps, (X),0~P~ (- {7 (X)) P*(H\{Tcn}Nm)

Since P ¢, i, (0) is Gaussian distribution, we have that
o= ({27 HED)

1(0: {TE (N ~ Py, O I T,
exp(= 2 (0—p” (A XN T (AN~ <9 pt({ASED)
VI QA "o (AT ]
E [exm L= ()T (S (AT ) - 1(@ e (A6 N“")))} ’
>\i cri cri
VI (AT T or (A

mwwuwwwwwwwwuwww}
VI (88 To (1)
mm—ao—u<uﬂNﬂ><W«A%NU><9—uww%Nﬁ»H
VI (DD T (ASHD)

= E)\i,g |:1Og

= E)\“g {10g

— Fy [IOg E/\i [

(a) exp(—3¢"¢) exp(—3¢"¢)
= Econo, 1){E,\i[log \/|( ({)\( W o ({/\C o } log Ey, {\/ {)\C}N“‘ . *({)\CJ Nm)|H7
[log L ] log Ey, { ]

\/| {)\C}NCH T o {)\C}NC" \/‘ {)\C; Ner )T *({)\C}Nm)

(10)

where (a) follows the fact that § = u*({)\C}Nm) +o ({)\C N) o (. Since we sample N¢ sets

of mixture coefficients {{)\C}N }N Cl from Pp, (A), the conditional mutual information can be esti-
mated by

{Tcrl}NC“)

1O {TE (N ~ Py, )1
1 LNC 1

:—721og = _ — log — = —.
N T e 0O T O NV I Ve (D) Tor (A1)

Therefore, we can get the gradient:
Vo L(0; {TE (N ~ Py, (A)HE I{TC“ X

< C: cri cri

L Ve () 1 WXWN>

- E s cri T NC cri :
IS o (I NS o (O]
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To get V4, 0%, we know that ¢* = argmax Ep, g)[L(0, {’TC“()\?) ZN:CI, {T* lN:t;—Nm)]’ there-
fore, we have that Vo Ep, . () [L (6, {77 (A0 VT, {727} ~)] = 0. Then we have that

d —
%VUEPW(Q[ (0AT )T AT N,

= Voo B L0, AT O N (TR )
+ Voo Ep,. (o) LOATH O )N AT HEG N )] Vgy0™ =0,
= ngua’* — 7|:V2 EP¢* (9)[L(0’ {ﬁcri()\gj) £\51n7 {7‘tr}N v NC“)]

V2, Ep,. o) [LO AT O T AT NV

F GRADIENTS
This section provides all the gradients needed in this paper.

F.1 META-GRADIENTS FOR MAJOR META-RL METHODS

Recall the problem formulation (I) of meta-RL as follows where we omit the superscript for sim-
plicity:

N
max L0 {T}Y) Z ), s.t.m(0) = Alg(me, Ti)-

The meta-gradient is the gradient of the upper-level objective w.r.t. 0, i.e., Vo L(0, {T;}}V,). The
meta-gradient is different for different algorithms because different algorithms use different ways to
compute the task specific adaptations 7;(6). Here, we provide the meta-gradients for several major
meta-RL algorithms, including MAML (Finn et al., [2017; [Fallah et al.,[2021), IMAML (Rajeswaran
et al.,[2019)), and context-based meta-RL (e.g., CAVIA (Zintgraf et al., 2019)).

Lemma 4. The meta-gradients for MAML, iMAML, and CAVIA are respectively:

N
VoLOATHL) = 5 SO +aV3himo) Vo i), (MAML)

=1

N
1 1
VoL(0,{T:}iL,) = N Z[l + iv?plﬂi(ﬂe;)]_lveiﬁ(ﬂai)a (iMAML)
i=1

N
1 /
VoL(0,{T:}iL)) = & ZVeJi(Wo('\',W)% (CAVIA)
where o is a step size, 0; = 0+aVgJi(mg), Vo, Ji(Te,) = E( 4 ,m0: [Ve, log T, (als VA (s,a)],
VieJi(mg) = E(s,a)Np"ﬁ{Zio’ytv(?E(s,a)Np”H [log mg (als ) i"(s,a)](Vologm(als ))T +

V30 E(s,ay~pmo [log 7r9(a|s)Qf9(s,a)ﬂ, X is a hyper-parameter, 8 = argmax,, J;(my) + %Hw -
0112, 7o(-|-,4Y) is a context-based policy where V! = 1o + aV yJ;(ma(+|-,10)) is the context.

Proof. MAML computes the task-specific adaptation via one-step gradient ascent. In specific, sup-
pose the task-specific adaptation is mp, = m;(#), and thus §; = 0 + aVyJ;(7p). Therefore,

the meta-gradient is Vo L(0, {T:}Y.,) = %Zi1v6<]i(7€i) = %Zfil(veei)j—veﬂi(mi) =
%Z?LJI + aV2,Ji(m9)|Ve, Ji(me,). From (Fallah et al., 2021), we can get that the

policy gradient is Vo, Ji(m,) = E .., [Vo, logm,(als)A

is vgeji(ﬂ'g) = E(S,Q)pre{Z;’iof}/thE(s,a)prs [log mg(a|s)QT ?(s,a)](Vglogmg(als)) "
V34 B(saypro log T al5) QT (5, 0)] .

:’"(s,a)] and the Hessian
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IMAML solves the optimization problem to get the task-specific adaptation 7y, such that 0, =
argmax,, J;(my) + %[t — 0]|* where X is a hyper-parameter. Since 6} is the optimal parameter
of the problem maxy, J;(my) + 5||¢ 2, we know that VyJi(mg;) + A0 —0) = 0. Take
gradient w.r.t. 6 on both sides, we can get that (VQHQ)TVfW Ji(mg;) + MVt —1) =0 = Vb, =
[1+ V3, Ji(me )] ™" Therefore, the meta-gradient is Vo L(6, {Ti};L,) = & SN VoJi(me,) =
N N _

~ 2i1(Vebi) T Vo, Ji(me,) = & Yiy 1+ 3V, Ji(ma)] "' Vo, Ji(m,).

CAVIA learns a context-based policy mg(als,))) and uses MAML-like method to update
O = o + aVyJi(me(-|,10)).  Therefore, the meta-gradient is VoL(0,{T;}Y,) =
¥ Sy Voo ([ 0). 0

F.2 OTHER GRADIENTS

This part provides the expressions of V2 Ep¢*(9)[L(9,{7_;‘3fi(/\§j) NUATEIYNT) and
V2, Ep,. o) [LO (T O} {71 )] needed in Lemmall]
Lemma 5. We have the following expressions:

V2, Ep,. (o) [LOATT )T T -],

Nm N"— Nui
= B NWZV?,UJ;’% W oo QAN + 3 VI 4o 0O

V2 By o) L0 AT O 0 TN ),
N(‘H
- ECNN(O 1) {N" Z V%

=1

/( YESX A |:ﬁ7r9i'>\j (Sjj'7 ajj/) (v9is logﬂ'ai (&jj/@jj/)(sj — Sj’>>Ajj/
Si.r,a5:0)ESX

3%
+ P70 (s550, a55) Vo, log ma, (a|5550) (A7 (s, ) — AT (s, aj')))} dajj/dsjj'} )
where the expression of the second-order term V2 J&" (75" (u* +0* 0(), \;) can be found in Lemma

4

Proof. Recall that ¢* = (u*,0*),0 = pu+ oo, and ¢ ~ N (0, I). Therefore, we have that
Vo Ep. o) [LOATH R AT

= Beuno.n[Vo L + 0% 0 AT 9T AT M),
NCl’l Nll’_NCﬂ
= Econon [Nerv FRE (0 a0 QN+ Y Vi (mi + 0" o O] A
i=1
Therefore, we can get the Hessian:
V2, Bp,. o) LO AT O TP,
Ncn Nu Ncri
= Beowon | el 2 Ve 070 0) JAT) + Y Vol 4o O],

where the expression of the second-order term V2 J& (7 (u* +0*0(), A;) can be found in Lemma
[ Similarly, we can get that

V2, Ep,. o [LO AT O80T AT N,

Nm Nu Nui
= Boatton |55 (30 Vo TG + 07 0.0 0P) + > Vea it +o" o Q)]
i=1
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Ncri
1 . _
= Boratto) [ a3 Voo T + 70 Qi + 0n5)]-

Now we need to derive the expression of me Jei(rti(p* + 0% o ), pua + 0a(j). Suppose
we use MAML, and thus the first-order gradient V,J& (7 (u* + o* o (), un + 0a(;) =
[T+ aVZ, Ji(Tu 1oroc, ix + UACJ)]VG Ji(mo,, pix + JACJ)] where 0; = p* + 0% o ( +
aVyld; (7TM “torocy ia+0or(;) and @ = p*+0* o(. Following the first-order MAML method in (Fal-
lah et al.| 2020), we use the gradient V, J& (77 (1% + 0% 0 (), pr +0(j) = Vo di(ma,, i +01E;)]-

To get the term V2, J&" (5™ (1* + 0™ 0 (), pix + 0a(;), we derive Vi, g, Ji(mo,, pix + 01 ().

V0. di(mo,, pia + oa(5) = VorE(s, ay,nmp [Voi logma, (a5 15550) Ay,

= Vg, / PN (85405 a5 )V, log e, (0|55 ) Ajjrdagjrdsje,
(S 7,Q /)ESX.A

:v¢x/
(

SjilAjj

= Vg, A / Vi, {P” i (8440, a450) Ve, log me, (@155 )Ajj']dajj’dsjju
(S j1a /)ESX.A

JesxA [pm 2 (85575045 ) Ve, log me, (@j5]85;) _jj’}dajj’dsjj’a
1)eES X

= Vo) /( eses {ﬁ”i'*f‘ (Sjj’vajj’)(v&sbg mo: (@055 )(sj — Sj'))f_ljj'
Sii1,a,.51)ESX

+ PN (555, a550) Vo, log o, (@018 ) (A7 " (55, a5) — A" (s, @j')))} dajj ds;jr,

where (a) follows the fact that V., 5" %% (s;;7,a;j;,) = 0 and Vg, log 7y, (@;;/|5,;/) because they
include indicator functions. Therefore, we have that

V2o By o LO AT OGRS AT YT,
NLl'l
= Ecn(o.1) [Nlr ZV%

/ [ﬁ”“i (85575 ajj) (Veis log e, (ajj:|5550)(s5 — 850 )) Ajji
(8;:r,a;.1)ESXA

+ P70 (855, a550) Ve, log ma, (@j0|855 ) (A7 (s5,a5) — A7 " (s, aj/)))} dajj'dé’jj'] .

G PROOF OF THEOREM 1]

This section first prove that the conditional mutual information I(6; {7 (\; ~
Py, (M) Nm|{7’Cr1 N7) is Cp-Lipschitz continuous and Cr-smooth where C; and Cj are
positive constants in Claim and then prove that Algorithm converges at the rate of O(1/vVK).

Claim 1. The conditional mutual information is C-Lipschitz continuous and Cr-smooth where C
and C are positive constants.

Proof. From (10), we know that
IO {T (i ~ Po, ODHOHT ),

=E\,|lo L log Ej, 1 |
[gw (A To *({AC}N“)} ) [Vl (O To ({A<}N“">|}

where )\E = pux+ J)\C_i and Ez ~ N(0,1). Therefore, we can get the gradient
Vo L0 {TE (N ~ Py, O0)HST T YY),
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_ EZNN(O,I)[vdb\ ({)\C}NC“ ] _ B N v(,b,\ ({)\C}N”‘)
Econonlo OSEDN VOV Do (a8

Now, we consider the Hessian

1] (12)

v¢>\¢>\ (6’ {fcn(AZ NP¢>\( )) N”‘ {,7?” Nm)

E¢on 0,1 [Vm ({AC}N)]
o ICJ%N(N(;,U[ DI ~Beeon [V
 Beawvon [V3s, ()]
- 1Bz a0l S(AGY]|
 Eeno[Vero (DI Eenon o N T Benon Voo ((AET)]

1 Eznon o (ASED)IB

Vi ? (NHN) - Voo (M) (0" (D) Voo (X il
l|o *({)\C}Nm) | = ({AC}NCU) E

Voo (AET)
[l (D]

1]

- E§~N(0,1) [

13)

From (12), we know that if we can lower bound ||o*|| and upper bound ||V, o*||, the norm of
the gradient ¥, I(6; {T (A ~ Py, (\) IV {7 is bounded. From (13), we know that if
we can lower bound ||o*|| and upper bound [|Vgp,o* H and ||V¢ 4,0 |, the norm of the Hessian
IVZ, o, L0 AT (N ~ Py, W)} NT{TENT)|| is bounded. Note that A € [0,1] is bounded
within a compact set. Therefore, as long as we can prove that 0*, V4, 0", and \% By, O are con-
tinuous in A, their norms are both upper bounded and lower bounded. To show that o*, V4, 0,
and Vix o o* are continuous in A\, we can show that they are differentiable w.r.t. A. Since ¢, is
differentiable w.r.t. A, we only need to show that o*, V4, ", and VZA mU* are differentiable w.r.t.

@ This suffices to show that Vg, o*, V¢ ¢)\O’ , and VZWWA o* exist.
From Lemmam, we know that V, o* exists and
Vor0" = = |V2,Ep,. o [LOAT O AT )]
V2 g e (L0 AT O T (T ).

Since log 7y is smooth in 6 (Assumption EI), we can see that L (6, {Tcri()\éj) N (TN N

is also smooth in §. Since 6 is smooth in o, L(6, {ﬁcri()\?j) fV:CI, {7} N Nm) is also smooth in
o. Similarly, we can derive

V20n0" = [ V20 Ep,. o) [LOATT O RS AT Y]
Vi on By o [LOAT VP AT )]
(V20 B, o LOAT O AT )]

= [V2,Ep,. o [LOAT O AT ]
Vi ron By 0[O0, T O ATy,

*

and similarly we can derive the expression of V?ﬁ)\ 61050 Therefore, we can see that [[o™|],
||V py0*|], and || V2 %16, 0 || are both lower bounded and upper bounded, and thus there exists pos-

itive constants C; and C; such that ||V, I(0; {7 (A ~ Py, (AT < Cr and
192, 60 1O AT O ~ Py ODYS TN < G O
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For simplicity, we denote f(¢x k) = 1(0; {T(Ni ~ Py, ()Y N T N) Clalmlshows

that f(¢x k) is C'1-smooth, therefore, we have that

C
F(@x+1) = F(Dak) + (Voo F(Dr k) Dokt — Oak) — 71\|¢A,k+1 — oakll?,
Clﬂ

D F(oa) + BIIVor F S0 = ZL (Vg F(20)I2,

202
Y B0 Fr I < SO 1) = Fdne) + LT

CI;/I?[f(¢A,k+1) — forn)] + 5%

e* Z 1V g f(@r0)l12 < f[ (érx) — Fldr0)] +

D1V, F(ern)]2 <

93
VK’

where (a) follows the fact that ¢y rr1 = éxk + BV, f(drk), (b) follows the fact that
||V, f(#x)]] < Cr, and (c) follows the fact that 3 = CI?/?'

H PROOF OF THEOREM

This section proves Theorem [2| via two steps. Step (i): we prove that I(0;{T(\; ~
Py, (M) Y T ") is monotonically increasing in Claim Step (ii): we provide that
IO AT (N NPm,K( DT > .

Claim 2. If § < 2, the conditional mutual information is monotonically increasing, i.e.,

Cr ] o . o
LO:AT N ~ Poy st ODETHTED) > 10:AT (N ~ Py s WIS HTEEY), and
{Tcrl}N"’) | > 0.

is strictly increasing if ||V 5, 1(0; {T (N ~ Py x(A)) I N

Proof. For simplicity, we denote f(¢x k) = 1(0; {T (N ~ Py, x(\) Y N
we have that

LH{TE N ' ). Therefore,

(a)
f(orp+1) = fDrg) + (Vo F(Drk), Pr k1 — Oak) — %||¢>\,k+l — darll%

C
D F(da) + BlIVar F i)l - fﬁ LT TN

= F(rkin) — F(Oa) > MHWJ(WW >0 (14

where (a) follows the fact that f(¢,) is C7-smooth (Claim, (b) follows the fact that ¢y k41 =
Oak + BV, f(drk). from , we can see that f(¢x ky1) > f(Prk). Moreover, f(¢px pr1) >
F(ox) if [V, f(orr)][> > 0. O

From Claim 2] we know that I(6; {T(A; ~ Py, x WINTHTINT) = 16; {TF0 (N

Py oAV { T N)). The only situation where I(6; {75 (A ~ Py, x(A) ) {TC“}NL”)
L0 {TF (N ~ Py o (W) HETHTE YY) ds that Vi, 1(6; {77 (A ~ Py, 0(A ))}Nm {Ty) =

0, i.e., the initialization is a statlonary pomt, which is of zero probability. Therefore we know that
IO AT (N ~ Py k ONHI T ) > T0:{T (N ~ Pyy o(W)FE T Y. Since
conditional mutual informatlon is always nonnegative (Wyner 1978), we know that 1(0; {7;“1()\ ~
Pyy e M) HEIHTE L) > 1O T (N ~ Py o D) HG T ) > 0.

I PROOF OF LEMMA

In this section, we prove that the learned augmentation Py, , () imposes a quadratic regulariza-
tion on the original meta-objective. Let’s first consider J‘"’“( (@), \;). We use ¢; to denote the
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parameter of the task-specific adaptation, i.e., Ty, = 7<"(#). Since we use MAML to compute
the task-specific adaptation, we know that ¢; = 0 — aVyJ{(mg). We use 5;;-()\) and @;;(\) to
represent 5;; and a; ;- to highlight the mixture coefficient A. Therefore, we have that

E/\ NN(MA K)g)\ K) |:JCT1( cr1(9)7)\i):|,
- E(Sjvaj))(s,‘ )a/')’\’pﬂ(bi' 7)\iNN(MA,K)‘7§,K) |:10g 7T¢7 (C_LJJI (Al) |’§J]/ (Al)) [)\ZA:—(% (SJ7 a’J)

(1= A)AT (s apl],

(a) _ _ T,
= Bl(s;00).(5)a))~p ™0 MmN (i 02 ) |:10g7r¢i(ajj/()\i)‘sjj’()\i))/\iAida (Sj,aj)]

+ E(sj,aj),(s;,a;)prw‘bi AN (B, K503 ) |:10g Tp; (&j'j(l )|8J j(l - /\l))(l - /\l)A (337 a])] )

0) ) i "o,
= Bs;,05),(5 ) )mp™5 MmN (i, 1,03 10) [log T, (@50 (M) |5550 (X)) A; ™ (s, aj)}

F B s;,05).(5,05) ™8 AN (1= pa 103 ) {k’g o (@550 (M) [555 (N )) N AT (s, aj)} ’
= E(s;10;),(5a))mp™1 MmN (1,203 ) {10% oo (@550 (M550 (M)A A7 " (55, aj)} ’ (15)

where (a) follows the fact that s;;,(A) = s;:;(1 — A) and a;;7(A) = a;;(1 — X), (b) follows
the fact that (1 — ;) ~ N(1 — pxr x,03 ) if \i ~ N(uax,03 ). Letz; = 1 — \; and
Fi(x;) = logmy, (a;5:(\i)]5;5:(Ni))NiA; i (s;,a;), therefore, the second-order approximation of
Fi(z;) is
1
Fy(w:) = Fy(0) + F{(0)z; + 5 F/'(0)a7. (16)

We now derive the expression of F/(0) and F}’(0).
OFi(x:) 9aj;(A) | OFi(xi) 05,y (N) | OFi(w:)

1(-1‘1) 3&jj/()\) 81'74 8§jj/()\) 8% 81'1 ’
(:c) an(,T,) 8§jj/()\) n 8FZ(SL‘Z)
65jj/()\> (91‘7 6:61 ’

= XA (55,a5) (Vs log e, (@5 (M550 (M) T (550 — ;)

— log g, (@50 ()55 (A‘))A% (85, a5),

= Fj(0) = AM (85,0a5)(Vslogmy, (%‘5])) (50 — 85) — log my, (a]|s]) (s]7aj) (17)
aa /()\)

where (c) follows the fact that = 0 almost everywhere. We now reason about the second-

order derivation:

oA A '(85,05) (Vs log me, (@ (A i)|§jj’()‘i)))-r(5j’ —55)
ox;

 Dlogmy, (az;(Ni)l5,50 (M) AL (5, a5)
8$i ’

= — A" (55,05) (Vs log e, (@5 (M)5550 (M) T (550 — ;)
= NA; " (55, 05) (550 = 55) T (Vs log g, (a0 (M) 555 () (57 = s5)
_A "(s5,a;)(Vslogmg, (@5 (Ai)]5;5 (A )))T(SJ’ 55)s
= F/'(0) = —2A7" (55, ;) (Vs logmg, (aj]s;)) " (sj0 — 55)
+ AT (s5,05) (s — 55) T (Vaglog mg, (ay]s5)) (550 — s5). (18)
By plugging (I7)-(I8) into (I6), we have that
Fi(z;) =~ log 7y, (%‘53) (SJ’aJ)
(AT (s, 7) (Vi Tog g, aglsy)) (557 = 55) = Tog ma, (agls) AT (s5,5) |

El'(x;) =
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— 247" (s5,0;)(Vslogmg, (a|s;)) " (sjr — s5)}
+ A (s5,05) (s5r — 85) T (Vi logmg, (az]s5)) (sjr — 55)7,
10g7r¢1(a]|sj) (sj,a]) + Oy, (s5,a5)
+ A (s5,05)(s5r — 85) T (Vi log e, (as]s5)) (sjr — 55)7, (19)

where  Cj, (s, a ) = [A?%(Sj,aj)(vs10g7T¢i(aj|5j))T(5j/ - 8) -

log g, (aj]s;) A7 " (55, aa)] (1= A) = 247 (s5,05) (Vs log g, (as;)) T (55 — s;)(1 — Ni)?.
Now we take a look at the term V2 log 4, (a;|s;). Recall that the softmax policy parameterization
ebi fs,a)

T therefore we have that
VA

7T¢i(a’|8) =

ale

V2, log 7y, (als) = V2,[0] f(s.0) ~log Y e? 1],
a’eA

Swead V2 f(s,a)e? 159 4 6T (V, f(s,a) (Vs f(s,a') Ted Foa) g,
Za’EA e¢jf(8’a/)

= ¢, V2, f(s,a) -
(Za’eA Qb;vsf(s’ a’)e¢;rf(s,a'))2

T Caeac R
T ’
= ¢, V2. f(s,a) — Pwea bl Visf (s a)ei Jo)
1 S8 ) Z e¢;rf(5,al)
a’€A
T ’ T ’ T ’
7 [EwealVaS (s ) (Ve (5, ) TSN g T 10) = (50 Vb (s a)e? 0
Z (Caeac? )2 i
a’€A
T2 Nedi f(s,a’)
’ ; V 5 4
= 61V, (s,0) - LAl Vel O Ty g, (20)
Ea'EAe K ’
s.al f(s.a’)) Te®d Fsiah) L e flsa)y (s fs.al)e®d f(sal)y2
where H (s, a) = 2erea(Ve/(2:0D))(Va/(5.07) (Carea )=(Larea Vol (5:0) 2

(Ea rea e¢1 f(s, a/))2

0 by Cauchy-Schwartz inequality. By plugging (20) into (I9), we have that

Fi(z;) ~ logmy, (aj]s;)A (33’%) + Cx (85, a5) +A (sj,a5)(sjr — 5]’)T'

[¢TV2 f(S a) — ZQ’GA ¢z Vssf(s7a )e¢‘i f(sa! )
k3 88 I Z rea e‘be(S’a/)

= logmg, (aj|s;)A; i (s, a5) + CA (sj,a5) — ¢THcrl(5j’aj)¢ia
log Ty, (a;s;)A; i (8j7(lj)—|—C)\ (sj,a5) — (0—O[Vg]fri(ﬂ'e)>—rﬁ§\:i(8j7aj)(e—O[vgjfri(ﬂ'g))’
= log 7y, (aj|s]) (Syvaj) +C>\ (85, a5) — QTHCH(Sj’aj)Gv (21)

— 0] H(sj, ;)91 (s — 5,)a%,

@

where (d) follows the fact that ¢; = 0 — aVaJi(mg), Oy, (sj,a;) = A;" (sj,a;)(sj —
aren®d V2 f(sa eti I(2:a") rycri
)T [0 VES(sa) — ZersalVelGOO sy et Afi(sne) =
aleA €’ _
A% (s a;)H (sj,a5)(sp — sj)a? = 0 given that H(sj,a;) > 0, and Cy(s,a) =
Ci.(s,a) — a®(VoJf" (7)) T HY! (5, a) (Ve S (mg)).

Therefore, we have that
JTE(0), As) = By, )1 a0 yops [Fi (31)]

© Bl a5)mp™i [10g7r¢ (ajls5) A7 (s5,a5) + Cx, (35, a5) = 0THCH(5J‘aaj)9},

JCrl( Crl( )) +C)\1 _9TH§\I;197
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where  (e) fol}ows , O, = By, a;)~p™oi [Cxi(s5,a5)],  and HSt =
By, a)~pmei [HN (85,05)] = 0 given that H{(s;,a;) > 0. Ifiwe only consider the second-
order term, we can see that J{(n§"(0), A;) ~ J{(n§"(0)) — 0T H{M0. Therefore, we have that
(9 {TCrl( ) N”‘ {Ttr}N r Ncll) (0 {7"5 }Nn) QT(ZiI\Ll H’g\?)@ where (Zivl ijir:) =0
given that H{" > 0. Thus we have that B, .p, (v (L0, { T ) I AT V"] ~
L(0, {T }N“) _ 9T(Z£V:1 ﬁicri)g where f[ic"' = E>‘77~P¢>\,K(>‘) [flg\“] > 0 given that Hf\“ > 0.

J  PROOF OF THEOREM [3]

We start with standard uniform deviation bound based on Rademacher complexity (Bartlett &
Mendelson, 2002).

Claim 3 ((Bartlett & Mendelson, 2002)). Let the sample {z1,--- ,zn} be drawn ii.d. from a dis-
tribution P over Z and let F be a function class on Z mapping from Z to a bounded set. Then

for § > 0, with probability at least 1 — 0, it holds that sup;,_, % Zivzl f(z) = E.wplf(2)]|| <
2R(F,z1, y2n)+1/ W, where R(F, z;,- -+ , zn) is the Rademacher complexity of the func-

tion class F.

i T T 1 1/6
From Cla1m | we know that the generalization gap |G(F,)| < R(F5, T\, -+ , Ti%) + 1/ %l,/),
where Fy £ {J;(mg) : m9 € F}. Therefore, we can compute the Rademacher complexity:

R(]?:Y,'Tllf,, .. ”7';\;“) =E,, [ sup NG Zazjtr (0 }

J~ T
< sup Ji(m:(6)),

mo~Fy i P(T)

= sup E™% e [log 7, (a\s)A?‘“ (s,a)],
romFo i P(T)  (SO™P

= sup E (6] f(s,a) —log( Y e? F&D)) AT (s, a)],
o~ Ty imP(T) & a)rp” i a%

where o; is a random variable with equal probability of choose 1 and —1. Recall that ¢; =

0—aVgJ;(mg) and ||V Ji(mp)|| is bounded. Moreover, A7 i (s, a) is also bounded given that the re-
ward value is bounded, and the chosen feature vector f (s, a) is also bounded. Therefore, there exists

a constant C; such that R(F5, T\, -+ , Ti) < \/c]\lTU SUD ., 7. i P(T) Ezrs‘i’;)wp%i [0 h;] where
hf h; = Eip() [H;]. Therefore, we have that R(F5, T, -, T¥.) < Cay/ ~w Where Cs is a pos-

itive constant. Therefore, we have that |G(F,)| < 202/« +1/ log](vl"/ ) = Of 7 T/ log](\,%).

K EXPERIMENT DETAILS

K.1 DRONE NAVIGATION WITH OBSTACLES

We cannot directly train the meta-learning algorithm on the physical drone because during training,
the drone needs to interact with the environment and can be damaged due to collision with the ob-
stacle and the wall. To avoid the damage of the drone, we build a simulator in Gazebo (Figure[2) Liu
& Zhu| (2022} 2024a)) that imitates the physical environment with the scale 1 : 1. We train the meta-
learning algorithm on the simulated drone in the simulator and the empirical results (i.e., successful
rate) are counted in the simulator. Once we obtain a learned policy that has good performance in the
simulator, we implement the policy on the physical drone.

Discussion of the sim-to-real problem. In some cases, the models that — —
have good performance in the simulator may not have good performance in |
the real world due to the reason that the simulator cannot 100% precisely
imitate the physical world. However, in our case, the sim-to-real issue is not
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significant because of two reasons: (i) the simulated drone is built according
to the dynamics of areal Ar. Drone 2.0 (Huang & Sturm,|2014); (ii) the states
and actions are just the coordinates of the location and the heading direction
of the drone instead of some low-level control such as the motor’s velocity,
etc. Given that Vicon can output precise pose of the physical drone and the
simulator is built on the 1 : 1 scale. If a learned trajectory can succeed in the
simulator, it can succeed in the real world given that the low-level control of
both the simulated and physical drones are given.

In this experiment, the state of the drone is its 3-D coordinate (x, y, z) and the
action of the drone is also a 3-D coordinate (dz, dy, dz) which captures the
heading direction of the drone. We fix the length of each step as 0.1 and thus

: dx dy dz
the next state is (z + V@@ Y T @@t T o @@ )

In this experiment, we do not need the drone to change its height so that we usually fix the value of
z and set dz = 0. The goal is an 1 x 1 square. Denote the coordinate of the center of the goal as
(@goal; Ygoal )> then for all the different tasks, Zgoq € (0.5,6.5) and ygoar € (10, 11). The obstacle is
a 3 x 1 square. Denote the coordinate of the lower left end of the obstacle as (Zobstacles Yobstacle )» the
for the different tasks, Zobstacle € (0,4) and Yobstacte € (4, 5).

we first use the 50 training tasks to learn a meta-policy. We then randomly sample 10 validation
tasks and find the top 5 validation tasks where the meta-policy adapts with the worst performance.
These 5 tasks are the poorly-adapted tasks. Note that these 5 poorly-adapted tasks are not included
in the 20 test tasks when we evaluate the generalization of our algorithm. We find 5 critical tasks
from the 20 training tasks.

K.2 STOCK MARKET

We use the real-world data of 30 constitute stocks in Dow Jones Industrial Average from 2021-
01-01 to 2022-01-01. The 30 stocks are respectively: ‘AXP’, ‘AMGN’, ‘AAPL’, ‘BA’, ‘CAT",
‘CSCO’, ‘CVX’, ‘GS’, ‘HD’, ‘HON’, ‘IBM’, ‘INTC’, ‘INJ’, ‘KO’, ‘JPM’, ‘MCD’, ‘MMM,
‘MRK’, ‘MSFT’, ‘NKE’, ‘PG’, ‘TRV’, ‘UNH’, ‘CRM’, ‘VZ’, ‘V’, ‘WBA’, ‘WMT"’, ‘DIS’, ‘DOW".
The state of the stock market MDP is the perception of the stock market, including the open/close
price of each stock, the current asset, and some technical indices (Liu et al., 2021). The action
has the same dimension as the number of stocks where each dimension represents the amount of
buying/selling the corresponding stock. The detailed formulation of the MDP can be found in FinRL
(L1u et al.l [2021)).

The turbulence index is a technical index of stock market and is included as a dimension of the
state (Liu et al) [2021). The turbulence index measures the price fluctuation of a stock. If the
turbulence index is high, the corresponding stock has a high fluctuating price and thus is risky to
buy. Therefore, an investor unwilling to take risks has a relatively low turbulence threshold. The
function ps is defined as the amount of buying the stocks whose turbulence index is larger than the
turbulence threshold. Therefore, the more the target investor buys the stocks whose turbulence index
is larger than the turbulence threshold, the larger p, will be and thus the smaller reward the target
investor will receive. We choose the turbulence threshold between 45 and 50.

We randomly sample 10 validation tasks and find the top 5 validation tasks where the meta-policy
adapts with the worst performance. These 5 tasks are the poorly-adapted tasks. We find 5 critical
tasks from the 20 training tasks.

K.3 MuJoCo

The target velocity of all the three robots (i.e., Halfcheetah, Hopper, and Walker2d) is between 0
and 2. Note that we fix the training tasks and we first use these 50 training tasks to learn a meta-
policy. We then randomly sample 10 validation tasks and find the top 5 validation tasks where
the meta-policy adapts with the worst performance. These 5 tasks are the poorly-adapted tasks.
Note that these 5 poorly-adapted tasks are not included in the 20 test tasks when we evaluate the
generalization of our algorithm. We find 5 critical tasks from the 20 training tasks.
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K.4 EVALUATION OF THE EXPLANATION

This section evaluates the fidelity and usefulness of the explanation.

Evaluation of fidelity. Fidelity means the correctness of the explanation. Recall that the explanation
(i.e., the critical tasks) aims to identify the most important training tasks to achieve high cumulative
reward on the poorly-adapted tasks. To evaluate the fidelity, we train a meta-policy on the critical
tasks and evaluate the performance of the meta-policy on the poorly adapted tasks. We introduce
two baselines for comparison. The first baseline is the “original meta-policy” that trains on all the
training tasks. We refer to this baseline as “original”. The second baseline is that we randomly pick
N = 5 training tasks and train a meta-policy over the N = 5 training tasks. We refer to this
baseline as “random”. We compare the performance on the poorly-adapted tasks with these two
baselines.

Table 2: Fidelity comparison

Drone Stock market HalfCheetah Hopper Walker
Ours 0.97+0.02 | 44229 £12.79 | —50.16 £3.32 —7.71+£2.43 —49.26 £4.27
Original | 0.68 = 0.16 | 296.27 £ 35.16 | —104.79 £ 12.72 | —46.27 £ 8.62 | —108.38 £ 12.29
Random | 0.71 £0.08 | 284.97 £29.85 | —96.78 £9.24 | —52.91+6.36 | —95.27 +17.46

Table 2] shows that our explanation has high fidelity because the meta-policy trained on our expla-
nation significantly outperforms the two baselines on the poorly-adapted tasks.

Evaluation of usefulness. Usefulness means whether the explanation can indeed help improve gen-
eralization. Table[I] already shows that our method (XMRL-G) can significantly improve MAML.
However, this might be the effect of the task augmentation method. To evaluate whether the critical
tasks help improve generalization. We randomly pick N = 5 training tasks and use the same algo-
rithm (Algorithm[I)) to augment these 5 tasks. We refer to this method as random, and we compare

the generalization of our method with this random method.

Table 3: Usefulness comparison

Drone Stock market HalfCheetah Hopper Walker
MAML | 0.87+0.01 | 359.13 £18.63 | —68.89 £4.36 | —23.24 £5.71 | —82.18 +6.64
Ours 0.96 £0.02 | 426.36 £17.15 | —53.88 £5.21 | —12.50 £2.37 | —55.76 £5.01
Random | 0.88£0.02 | 371.24 £17.81 | —66.81 £6.65 | —22.69 £4.60 | —78.44 +9.33

Table [3| shows that our explanation has high usefulness because randomly pick N = 5 training
tasks and augment can only slightly improve the generalization, while our method can significantly
improve generalization.
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