AUTODA-TIMESERIES: AUTOMATED DATA AUGMENTATION FOR TIME SERIES

Anonymous authors

Paper under double-blind review

ABSTRACT

Data augmentation is a fundamental technique in deep learning, widely applied in both representation learning and automated data augmentation (AutoDA). In representation learning, augmentations are used to construct contrastive views for learning task-agnostic embeddings. While in AutoDA, the augmentations are directly optimized to improve downstream task performance. However, both paradigms have key limitations: representation learning typically follows a twostage pipeline with limited adaptability, and current AutoDA frameworks are largely designed for image data, rendering them ineffective for capturing time series—specific features. To address these issues, we propose **AutoDA-Timeseries**, the first general-purpose AutoDA framework tailored for time series. AutoDA-Timeseries incorporates time series features into augmentation policy design and adaptively optimizes both augmentation probability and intensity in a single-stage, end-to-end manner. We conduct extensive experiments on five mainstream tasks, including classification, long-term forecasting, short-term forecasting, regression, and anomaly detection, showing that AutoDA-Timeseries consistently outperforms strong baselines across diverse models and datasets.

1 Introduction

Data augmentation refers to a series of transformations that generate high-quality artificial data by manipulating existing samples, serving as a fundamental approach in deep learning to improve model performance and robustness (Shorten & Khoshgoftaar, 2019; Wang et al., 2024). Existing applications of data augmentation can be broadly categorized into two paradigms. The first paradigm is *representation learning*, where augmentations are used to construct contrastive samples, enabling models to learn task-agnostic representations (Chen et al., 2020; He et al., 2020). The second paradigm is *automated data augmentation (AutoDA)*, which focuses on automatically searching or generating augmentation strategies that directly optimize downstream model performance while reducing the reliance on manual design and tuning (Cubuk et al., 2019; 2020).

In time series analysis tasks, data augmentation is equally indispensable due to data insufficiency and homogeneity (Wen et al., 2020; Iwana & Uchida, 2021; Iglesias et al., 2023). As illustrated in Figure 1, these two application paradigms differ in their training pipelines when applied to time series analysis tasks. In the representation learning paradigm, the encoder is first pretrained with contrastive learning on augmented views, and then transferred to downstream tasks through a separate fine-tuning stage, where the downstream model adapts to the learned representations (Yue et al., 2022; Luo et al., 2023). However, a key limitation of representation learning lies in the adaptability of downstream models to the learned representations. For instance, recurrent neural networks (RNNs) are inherently designed for sequence-to-sequence prediction (Sutskever et al., 2014), excelling at modeling long-term dependencies and dynamic evolution rather than capturing invariant representations emphasized by contrastive learning (Chen et al., 2020). In contrast, AutoDA follows a one-stage scheme where augmentations are jointly optimized with the downstream task. Augmentation policies, including the choice probability and intensity of transformation, are adaptively tuned during training, producing high-quality and diverse samples tailored to the downstream task and directly enhancing downstream performance.

While representation learning frameworks suffer from limitations in adapting to downstream models, AutoDA provides a promising alternative by jointly optimizing augmentations with downstream

Figure 1: Two application paradigms of time series data augmentation: representation learning and AutoDA.

model training. However, existing AutoDA approaches have been predominantly developed for image data and are not directly applicable to time series due to the inherent differences between modalities. Even state-of-the-art (SOTA) of these AutoDA frameworks, including RA (Cubuk et al., 2020), TA (Müller & Hutter, 2021), UA (LingChen et al., 2020), and A2Aug (Li & Li, 2023), still face the following key challenges in the context of automated time series augmentation:

- Limited task generalization. Most existing AutoDA methods are validated on a single task. This narrow evaluation setting overlooks the fact that augmentation policies may not generalize well when applied to different time series tasks with distinct objectives.
- Neglect of time series characteristics. Existing AutoDA frameworks ignore time series-specific features (e.g., autocorrelation, distribution, high-order features) when generating augmentation policies. Their assumption that transformations preserve semantic validity as in image domains fails for time series modality where critical time series features govern augmentation effectiveness, and modality-agnostic approaches risk distorting intrinsic data properties, yielding suboptimal strategies. For instance, frequency-warping-based augmentations blindly applied without considering autocorrelation patterns may disrupt temporal dependencies, degrading downstream classification or forecasting model performance.
- Lack of adaptive policy learning. Previous SOTA AutoDA frameworks rely on uniform sampling to determine both the types and intensities of augmentation transformations, treating all transformations equally important without considering their varying impacts on time series data. This uniform design fails to account for the fact that different transformations and intensities may contribute unevenly to the effectiveness of the augmentation policy, potentially leading to suboptimal or inappropriate augmentation policies.

To address these challenges, we propose a general-purpose automated data augmentation framework for time series. It employs an augmentation data generator that learns a combination distribution of selection probability and the intensity for each augmentation transformation, conditioned on the time series features. AutoDA-Timeseries offers several advantages: **First**, it provides a unified one-stage framework that jointly optimizes augmentation policies with downstream task objectives, ensuring broad applicability across *diverse time series tasks*. **Second**, when choosing the optimal augmentation policy for each time series, it integrates multiple *time series features*, making it suitable for automated augmentation in the time series domain. **Finally**, the framework performs *adaptive* augmentation of both probability and intensity, which can more properly reflect the distribution of the optimal augmentation policy.

To summarize, our key contributions are as follows:

- Comprehensive revisit of data augmentation application paradigms: we analyze the limitations of existing paradigms, representation learning and automated data augmentation, highlighting their restricted adaptability and the absence of time series-specific design.
- AutoDA-Timeseries framework: we propose the first general-purpose automated data augmentation framework for time series, which incorporates time series-specific features into augmentation selection and jointly optimizes both augmentation model and downstream model in a single-stage, end-to-end manner.
- Extensive empirical validation: we conduct extensive experiments on five mainstream tasks, demonstrating the superiority, robustness, and generalization of AutoDA-Timeseries through detailed evaluations and visualizations.

2 Related Work

Time series augmentation refers to a collection of advanced techniques designed to artificially expand and diversity existing time series datasets. Previous studies have surveyed various time series augmentation transformations proposed for different downstream tasks, such as classification and segmentation (Iwana & Uchida, 2021; Wen et al., 2020; Alomar et al., 2023; Iglesias et al., 2023; Mohammadi Foumani et al., 2024), or forecasting and anomaly detection (Wen et al., 2020; Iglesias et al., 2023; Semenoglou et al., 2023). Representative transformations include jittering (Salamon & Bello, 2017), rotation (Ohashi et al., 2017), scaling (Ohashi et al., 2017), slicing (Pan et al., 2020), permuting (Um et al., 2017), time warping (Le Guennec et al., 2016), magnitude warping (Demir et al., 2021), and several other techniques (Wen et al., 2020). Beyond the level of individual transformations, recent research has further explored two broader paradigms for leveraging data augmentation: *representation learning* and *automated data augmentation (AutoDA)*.

Representation learning aims to learn task-agnostic representations that can transfer across diverse downstream tasks. TS2Vec introduces hierarchical contrastive objectives together with contextual consistency (Yue et al., 2022). InfoTS leverages the information bottleneck principle and employs adaptive augmentations to generate diverse views, thereby learning more discriminative representations (Luo et al., 2023). AutoTCL proposes a contrastive learning framework with parametric augmentations (Zheng et al., 2024). Despite their effectiveness, most representation learning frameworks adopt a two-stage pipeline. However, the learned representations may not always align well with the objectives or architectures of downstream models, which limits the performance gains in practical scenarios.

AutoDA is proposed to generate optimal augmentation policies, mainly in computer vision domain (Yang et al., 2023). Early studies proposed **two-stage proxy-based** frameworks, such as TANDA (Ratner et al., 2017) and AutoAugment (Cubuk et al., 2019), where a smaller proxy model was trained to evaluate candidate policies. Although effective, these methods are computationally expensive and often fail to generalize due to the mismatch between proxy and downstream models (Cubuk et al., 2020). More recent work has shifted toward **one-stage non-proxy** AutoDA frameworks, which directly optimize augmentation policies with the downstream task. Representative approaches include RandAugment (Cubuk et al., 2020), TrivialAugment (Müller & Hutter, 2021), UniformAugment (LingChen et al., 2020), and A2Aug (Li & Li, 2023). These methods eliminate proxy models and instead rely on the simple randomization or ensemble strategies to reduce cost while improving downstream performance. However, applying such frameworks to time series remains challenging, as they lack adaptive augmentation mechanisms and ignore modality-specific features that are crucial for preserving intrinsic patterns (Christ et al., 2018; Lubba et al., 2019).

3 METHODOLOGY

3.1 PROBLEM STATEMENT

Let $\mathcal{D}=\{\mathbf{D}_1,\mathbf{D}_2,\ldots,\mathbf{D}_m\}$ be a time series dataset, where \mathbf{D}_i $(i=1\ldots m)$ is a univariate or multivariate time series. Let \mathcal{M} denote a downstream model (e.g., a classifier) whose trainable parameters are denoted as $\theta_{\mathcal{M}}$. We consider a set of time series augmentation transformations $\mathcal{T}=\{T_1,T_2,\ldots,T_n\}$, where T_j $(j=1\ldots n)$ is an augmentation operator that can be applied to a given

time series \mathbf{D}_i to produce an augmented view of \mathbf{D}_i . Our goal is to design an **automated time** series augmentation framework A_{θ} parameterized by θ that outputs a policy $P_i = A_{\theta}(\mathbf{D}_i)$ for each $\mathbf{D}_i \in \mathcal{D}$. P_i consists of two vectors: (i) a *probability* vector p_i , where $p_{i,j} \in [0,1]$ is the probability T_j is selected; and (ii) a *intensity* vector t_i , where $t_{i,j} \geq 0$ is the intensity of T_j . After applying P_i to \mathbf{D}_i , we can obtain the augmented time series $P_i(\mathbf{D}_i)$. By performing this operation for the entire dataset \mathcal{D} , we obtain the *augmented dataset* $A_{\theta}(\mathcal{D})$, that is,

$$A_{\theta}(\mathcal{D}) = \{ P_i(\mathbf{D}_i) | \mathbf{D}_i \in \mathcal{D} \}. \tag{1}$$

We then train the downstream model \mathcal{M} on the augmented dataset by minimizing a task-related loss as follows:

$$\theta_{\mathcal{M}}^* = \underset{\theta_{\mathcal{M}}}{\arg\min} \ L(\theta_{\mathcal{M}}, A_{\theta}(\mathcal{D})), \tag{2}$$

where L is the loss function of the specific task (e.g., mean squared error for forecasting, cross-entropy for classification, etc.). Finally, we evaluate the trained model \mathcal{M} using the *original* dataset \mathcal{D} , aiming to achieve superior performance with respect to the loss function L. The objective thus becomes finding the optimal parameter θ^* for the augmentation framework A_θ :

$$\theta^* = \underset{\theta}{\operatorname{arg\,min}} L(\theta_{\mathcal{M}}^*, \mathcal{D}). \tag{3}$$

The automated time series augmentation is formulated as a joint optimization over both the augmentation framework's parameters θ and the downstream model's parameters $\theta_{\mathcal{M}}$.

Figure 2: Overall architecture of AutoDA-Timeseries.

3.2 AUTODA-TIMESERIES OVERVIEW

As shown in the Figure 2, a time series feature-aware augmented data generator (denoted as A_{θ}) is composed of multiple stacked *Augmentation Layers* $A_{\theta_k}^{(k)}$, each of which is responsible for selecting and applying one of the available transformations in the set $\mathcal{T} = \{T_1, T_2, \dots, T_n\}$.

The k-th augmentation layer generates an augmentation policy consisting of (i) a series of probability $p_{i,j}^{(k)}$ indicating the likelihood of choosing transformation T_j and (ii) a series of intensity $t_{i,j}^{(k)}$ to apply a chosen transformation. By stacking these augmentation layers, the framework can explore a variety of transformation sequences, allowing for more diverse and potentially useful augmented data. The final output augmented time series is used to train a single downstream model in a single-stage, end-to-end manner, with a composite loss to update the parameters in the augmented data generator together with the downstream model.

3.3 TIME SERIES FEATURE EXTRACTION

Following prior work (Qiu et al., 2024), we extracted 24 descriptive statistics for each time series in the original dataset, forming a feature vector $\mathbf{F}_i = f_e(D_i)$, where $f_e(\cdot)$ denotes our feature extrac-

tion function. These features are effective across various time series classification and forecasting tasks (Lubba et al., 2019; Qiu et al., 2024). In our design, the feature vector F_i remains unchanged and static across layers to preserve the global context of the original time series, preventing distortion from sequential augmentations while stabilizing training.

STACKED AUGMENTATION LAYERS

Our framework A_{θ} is composed of K sequential augmentation layers: $A_{\theta} = A_{\theta_1}^{(1)} \circ A_{\theta_2}^{(2)} \circ \cdots \circ A_{\theta_K}^{(K)}$. Each layer $A_{\theta_k}^{(k)}$ receives (i) the input time series $\mathbf{D}_i^{(k-1)}$ from previous layer (raw time series \mathbf{D}_i for the first layer), (ii) the previous probability vector $p_i^{(k-1)}$ (initialized as zeros), and (iii) the global feature vector \mathbf{F}_i . It then generates the probability $p_{i,j}^{(k)}$ and intensity $t_{i,j}^{(k)}$ via MLPs $f_p^{(k)}$ and $f_t^{(k)}$:

$$p_{i,j}^{(k)} = f_p^{(k)} \left(p_{i,j}^{(k-1)}, \mathbf{F}_i \right), \tag{4}$$

$$t_{i,j}^{(k)} = f_t^{(k)}(p_{i,j}^{(k-1)}, \mathbf{F}_i).$$
 (5)

 $t_{i,j}^{(k)} = f_t^{(k)} \left(p_{i,j}^{(k-1)}, \mathbf{F}_i \right). \tag{5}$ A transformation T_{r_k} is then sampled in each layer by a Gumbel-Softmax (Jang et al., 2016) approximation (denoted σ_{gs}), which ensures that the framework remains differentiable. The selected transformation T_{r_k} is applied to $D_i^{(k-1)}$ with intensity $t_{i,r_k}^{(k)}$ to generate the augmented time series:

$$T_{r_k} = \sigma_{gs} \left(\mathcal{T}, p_{i,j}^{(k)} \right), \tag{6}$$

$$D_i^{(k)} = T_{r_k} \left(D_i^{(k-1)}, t_{i, r_k}^{(k)} \right). \tag{7}$$

 $D_i^{(k)} = T_{r_k} \big(D_i^{(k-1)}, t_{i,r_k}^{(k)} \big). \tag{7} \\$ By stacking these augmentation layers, the framework performs sequential transformations. The final output $D_i^{(K)} = A_{\theta}(D_i)$ is fed to the downstream model. All layer parameters are jointly optimized with the downstream model via a composite loss backpropagation.

STRATEGIES FOR EXPLORATION AND EXPLOITATION 3.5

To balance exploration (experimenting with diverse transformations) and exploitation (converging on effective augmentations), we incorporate the following strategies:

3.5.1 Learnable Gumbel-Softmax Temperature

We adopt a learnable temperature parameter in the Gumbel-Softmax distribution to control the randomness of transformation sampling (Jang et al., 2016). A higher temperature encourages exploration by making the selection probabilities more uniform, while gradually lowering the temperature increases determinism and helps the model converge to the most promising transformation choices.

3.5.2 COMPOSITE LOSS FUNCTION

To maintain diversity in the transformation probability distribution, we encourage the augmentation layer to output diverse transformation probabilities. Therefore, in addition to the task-specific loss, we introduce diversity loss terms. To address the weight setting problem for multiple losses, inspired by previous work (Liebel & Körner, 2018), we employ learnable weights in the final composite loss:

$$L_{\text{composite}} = \sum_{z=1,2,3} \left[\frac{1}{2w_z^2} L_z + \ln(1 + w_z^2) \right], \tag{8}$$

$$L_2 = -\frac{1}{B} \sum_{h=1}^{B} \sum_{i=1}^{n} \mathbf{p}_i^{\text{(current)}} \log \left(\mathbf{p}_i^{\text{(current)}} + \epsilon \right), \tag{9}$$

$$L_{3} = -\frac{1}{B} \sum_{k=1}^{B} \sum_{i=1}^{n} p_{b,j}^{(\text{prev})} \left[\log(\mathbf{p}_{i}^{(\text{prev})}) - \log(\mathbf{p}_{i}^{(\text{current})}) \right], \tag{10}$$

where B is the batch size, w_*^2 s are the learnable weights, L_1 is the task-specific loss (e.g., mean squared error for forecasting or cross-entropy for classification), L_2 is a cross-entropy term on augmentation probabilities to encourage diverse transformations within a batch, and L_3 is a KLdivergence-based loss to encourage inter-batch diversity. The learnable weights w_z^2 s achieve the trade-off between diversity and task performance during the training.

3.5.3 RAW TRANSFORM BIAS

To avoid overfitting to augmented data, we add a bias term p_{rb} that selects the raw data with probability p_{rb} :

 $T_{r_k} = \begin{cases} \sigma_{gs} (\mathcal{T}, p_{i,j}^{(k)}) & \text{with probability } (1 - p_{rb}), \\ T_1 & \text{with probability } p_{rb}, \end{cases}$

where T_1 denotes the Raw (no transformation) operator.

4 EXPERIMENTS

We conduct extensive experiments to systematically evaluate the effectiveness of AutoDA-Timeseries on five mainstream time series analysis tasks: classification, long-term forecasting, short-term forecasting, regression, and anomaly detection. Beyond quantitative comparisons with state-of-the-art baselines, we also provide in-depth analyses and insights into AutoDA-Timeseries.

4.1 EXPERIMENT SETUP

Implementation Table 1 summarizes the benchmarks, evaluation metrics, and representative downstream models for each task. Following prior works (Zheng et al., 2024), we evaluate on representative downstream models and extend the scope by incorporating both classical and advanced architectures, covering convolutional, recurrent, Transformer-based, and generative paradigms, to assess the generalizability of AutoDA-Timeseries. More detailed descriptions can be found in Appendix A.

Table 1: Summary of benchmarks, evaluation metrics, and representative downstream models.

Tasks	Benchmarks	Metrics	Downstream Models
Classification	UEA (26 subsets)	Accuracy	TCN, ROCKET
Forecasting	Long-term: ETT (4 subsets), Exchange, Weather	MSE, MAE	RNN, Autoformer
	Short-term: M4 (6 subsets)	SMAPE, MASE, OWA	
Regression	UEA & UCR (6 subsets)	MSE, MAE	CNN, MLP
Anomaly Detection	MSL, SMAP, SMD	Precision, Recall, F1-score	UNet, VAE

Baselines We compare AutoDA-Timeseries with three groups of baselines to ensure a comprehensive and fair evaluation. We use *NoAug* as the **control group**, which does not apply any augmentation. For **representation learning**, we adopt InfoTS (Luo et al., 2023), AutoTCL (Zheng et al., 2024), and TS2Vec (Yue et al., 2022), which leverage data augmentation to construct contrastive views and learn task-agnostic representations in a two-stage manner. For **automated data augmentation**, we consider four state-of-the-art methods: RandAugment (Cubuk et al., 2020), UniformAugment (LingChen et al., 2020), TrivialAugment (Müller & Hutter, 2021), and A2Aug (Li & Li, 2023). More detailed descriptions of these baselines can be found in Appendix B.

Figure 3: Overall comparison of AutoDA-Timeseries with baselines across five time series tasks.

4.2 RESULTS

Figure 3 presents an overall comparison of AutoDA-Timeseries with state-of-the-art baselines across five time series tasks. We observe that AutoDA-Timeseries consistently achieves the best performance, covering the largest area in the radar plot. Next, we provide a more detailed analysis for each task.

4.2.1 CLASSIFICATION

Setups Time series classification aims to assign a discrete label to each sample, which can be either a univariate or multivariate time series (Ismail Fawaz et al., 2019). We evaluate 26 subsets selected from the UEA archive (Bagnall et al., 2018), covering diverse domains such as audio recognition, human activity recognition, and healthcare monitoring. Following prior work (Liu et al., 2024), we use accuracy as the evaluation metric, and adopt TCN (Bai et al., 2018) and ROCKET (Dempster et al., 2020) as representative downstream models.

Figure 4: Classification accuracy comparison of AutoDA-Timeseries and baselines on TCN (orange) and ROCKET (blue). "*." in the method names denotes *Augment. Full results are provided in Table 12 and Table 13 in the Appendix.

Results As shown in Figure 4, AutoDA-Timeseries achieves the best accuracy, reaching 0.730 (+6.7%) with TCN and 0.721 (+5.2%) with ROCKET, significantly surpassing the *NoAug* control. Traditional AutoDA methods (RandAugment, UniformAugment, and TrivialAugment) yield limited or even negative gains, highlighting the gap in directly transferring image-based augmentation policies to time series. Representation learning methods show instability: TS2Vec suffers severe degradation, while AutoTCL and InfoTS achieve only marginal gains. These results suggest that the augmentation policies of AutoDA-Timeseries can consistently boost classification accuracy and generalize across different downstream models.

4.2.2 Long- and Short-term Forecasting

Setups Time series forecasting is a fundamental task with wide applications in weather, traffic, energy, and finance. We evaluate AutoDA-Timeseries on both long- and short-term forecasting. For long-term forecasting, we use ETT (4 subsets) (Zhou et al., 2021), Exchange (Lai et al., 2018), and Weather (Wetterstation), with MSE and MAE as metrics, following prior works (Wu et al., 2022). For short-term forecasting, we adopt the M4 competition setup with six subsets (Spyros Makridakis, 2018), using SMAPE, MASE, and OWA as metrics. Representative downstream models include RNN-based forecasters and Autoformer (Wu et al., 2021).

Results As shown in Tables 2 and 3, AutoDA-Timeseries achieves the best results on both longand short-term forecasting. For long-term forecasting, AutoDA-Timeseries attains the lowest MSE and MAE on both RNN and Autoformer. We also observe that representation learning suffers larger relative degradation on RNN than on Autoformer, as Autoformer is more compatible with learned representations. For short-term forecasting, AutoDA-Timeseries again outperforms all baselines on RNN and Autoformer.

4.2.3 REGRESSION

Setups Time series regression predicts a continuous scalar from an input time series, differing from classification (discrete labels) and forecasting (future values) (Tan et al., 2021). In particular, it generalizes forecasting by relaxing the requirement that the target must depend primarily on recent values, and has broad applications such as heart rate estimation from physiological signals (Reiss et al., 2019) or crop yield prediction from satellite observations (Yebra et al., 2018). We evaluate six subsets from the UEA & UCR archives (Tan et al., 2020), using MSE and MAE as metrics, with CNN and MLP as downstream models.

Table 2: Comparison of long-term forecasting performance across baselines and AutoDA-Timeseries. "*." in the method names denotes *Augment. Full results are provided in Table 14 and Table 15 in the Appendix.

Downstream Model	Metrics		Methods								
Model		NoAug	InfoTS	AutoTCL	TS2Vec	Rand.	Uniform.	Trivial.	A2Aug	Ours	
RNN	MSE	0.5408	1.5163	1.4888	1.3851	0.5114	0.4416	0.5193	0.6342	0.3968	
	MAE	0.5381	1.5423	1.5167	1.4151	0.5117	0.4389	0.5148	0.6347	0.3930	
Autoformer	MSE	2.4274	2.2761	2.2872	2.1240	2.4055	2.5116	2.3758	2.0155	1.9098	
	MAE	2.4883	2.3323	2.2626	2.1779	2.4655	2.5755	2.4254	2.0617	1.9548	

Table 3: Comparison of short-term forecasting performance across baselines and AutoDA-Timeseries. "*." in the method names denotes *Augment.

Downstream Model	Metrics	Methods								
Model		NoAug	InfoTS	AutoTCL	TS2Vec	Rand.	Uniform.	Trivial.	A2Aug	Ours
	SMAPE	11.384	12.454	13.143	13.832	12.910	11.962	11.482	11.980	11.068
RNN	MASE	1.774	1.864	2.027	2.624	2.536	1.778	1.736	1.985	1.644
	OWA	0.883	0.981	1.009	1.142	1.139	0.906	0.877	0.961	0.838
	SMAPE	57.854	47.219	38.875	39.389	63.573	69.034	59.541	39.456	39.425
Autoformer	MASE	14.865	15.216	10.406	7.790	48.076	16.301	15.729	7.818	7.762
	OWA	6.020	3.359	4.154	3.482	14.915	6.807	6.308	3.499	3.490

Results Regression inherently relies on precise continuous value mappings, making it highly sensitive to the quality of augmented data. As shown in Table 4, AutoDA-Timeseries achieves state-of-the-art performance across diverse regression datasets, verifying the effectiveness of its task-adaptive augmentation strategy.

Table 4: Comparison of regression performance across baselines and AutoDA-Timeseries. "*." in the method names denotes *Augment. Full results are provided in Table 16 and Table 17 in the Appendix.

Downstream Model	Metrics		Methods							
Wiodei		NoAug	InfoTS	AutoTCL	TS2Vec	Rand.	Uniform.	Trivial.	A2Aug	Ours
CNN	MSE	0.9285	1.1025	1.1290	1.0892	1.0951	1.4714	0.8875	1.6016	0.8921
	MAE	0.6821	0.7386	0.7343	0.7211	0.7545	0.7477	0.6814	0.7160	0.6731
MLP	MSE	1.2937	1.4036	1.4197	1.3441	1.2196	1.4032	1.2744	1.2157	1.0350
	MAE	0.7010	0.7352	0.7348	0.7320	0.6695	0.7433	0.6729	0.6652	0.6420

4.2.4 Anomaly Detection

Setups Time series anomaly detection aims to identify rare or abnormal patterns that deviate from normal temporal dynamics. The main challenge lies in the scarcity and diversity of anomaly samples, making data augmentation particularly crucial. We follow standard benchmarks (Hundman et al., 2018; Su et al., 2019) and use F1-score as the primary metric. Representative models include UNet (Gao et al., 2020) and VAE (Xu et al., 2018).

Results As shown in Table 5, anomaly detection is highly sensitive to augmentation, since inappropriate transformations may erase or mimic rare anomalies, making them harder to detect. Nevertheless, AutoDA-Timeseries consistently achieves superior results on both models, showing that adaptive policies enhance model robustness and generalize to augmentation-sensitive tasks.

4.3 MODEL ANALYSIS

Table 5: Comparison of anomaly detection performance across baselines and AutoDA-Timeseries. "*." in the method names denotes *Augment. Full results are provided in Table 18 and Table 19 in the Appendix.

Downst		Metrics		Methods							
WIOC			NoAug	InfoTS	AutoTCL	TS2Vec	Rand.	Uniform.	Trivial.	A2Aug	Ours
UN	et	F1	0.6991	0.6912	0.6944	0.6173	0.6844	0.7171	0.6886	0.6993	0.7478
VA	Е	F1	0.5592	0.4887	0.4871	0.4914	0.5610	0.4973	0.4945	0.5591	0.5761

Figure 5: Adaptive augmentation policy. Top: operator distribution over training epochs. Bottom: entropy dynamics showing convergence in lower layers and diversity in higher layers.

Adaptive Augmentation Policy Visualization We investigate how augmentation policies evolve during training by visualizing augmentation operator probabilities and entropy across layers (Figure 5). The results reveal a clear layer-wise differences. Layer 0 rapidly converges to a few operators (e.g., Raw augmentation), reflecting deterministic exploitation, while upper layers maintain higher entropy and more diverse policies. This pattern illustrates the exploitation-exploration trade-off (Sutton et al., 1998), where lower layers stabilize the augmentation policies and upper layers remain adaptive, providing a complementary balance between stability and diversity.

Figure 6: Feature-space consistency under augmentation.

Feature-Space Consistency under Augmentation We examine whether augmentations preserve time series fea-

tures as shown in Figure 6. The catch22 features of augmented data remain highly consistent with those of the raw data, indicating that AutoDA-Timeseries maintains essential characteristics and further supports our motivation of incorporating time series feature extraction (Section 3.3).

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed AutoDA-Timeseries, a general-purpose framework that adaptively learns augmentation policies conditioned on time series features and jointly optimizes them with downstream models. Experiments across diverse tasks verify its superiority and clear advantages over existing augmentation paradigms. In future work, we aim to extend the framework to real-world time series applications, which often involve diverse domains and complex dynamics.

ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or practices that would raise ethical concerns. We confirm compliance with the ICLR Code of Ethics.

7 REPRODUCIBILITY STATEMENT

All the source code is provided in the supplementary material for reproduction. They will also be open-sourced after acceptance of this paper. Please refer to README.md in the supplementary material for detailed reproduction steps.

REFERENCES

- Khaled Alomar, Halil Ibrahim Aysel, and Xiaohao Cai. Data augmentation in classification and segmentation: A survey and new strategies. *Journal of Imaging*, 9(2):46, 2023.
- Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. *arXiv* preprint arXiv:1811.00075, 2018.
- Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. *arXiv* preprint arXiv:1803.01271, 2018.
- Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *International conference on machine learning*, pp. 1597–1607. PmLR, 2020.
- Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W Kempa-Liehr. Time series feature extraction on basis of scalable hypothesis tests (tsfresh–a python package). *Neurocomputing*, 307: 72–77, 2018.
- Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment: Learning augmentation strategies from data. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 113–123, 2019.
- Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated data augmentation with a reduced search space. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops*, pp. 702–703, 2020.
- Sumeyra Demir, Krystof Mincev, Koen Kok, and Nikolaos G Paterakis. Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting. *Applied Energy*, 304:117695, 2021.
- Angus Dempster, François Petitjean, and Geoffrey I Webb. Rocket: exceptionally fast and accurate time series classification using random convolutional kernels. *Data Mining and Knowledge Discovery*, 34(5):1454–1495, 2020.
- Jingkun Gao, Xiaomin Song, Qingsong Wen, Pichao Wang, Liang Sun, and Huan Xu. Robusttad: Robust time series anomaly detection via decomposition and convolutional neural networks. *arXiv* preprint arXiv:2002.09545, 2020.
- Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 9729–9738, 2020.
- Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom. Detecting spacecraft anomalies using 1stms and nonparametric dynamic thresholding. In *Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 387–395, 2018.

- Guillermo Iglesias, Edgar Talavera, Ángel González-Prieto, Alberto Mozo, and Sandra Gómez-Canaval. Data augmentation techniques in time series domain: a survey and taxonomy. *Neural Computing and Applications*, 35(14):10123–10145, 2023.
 - Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller. Deep learning for time series classification: a review. *Data mining and knowledge discovery*, 33(4):917–963, 2019.
 - Brian Kenji Iwana and Seiichi Uchida. An empirical survey of data augmentation for time series classification with neural networks. *Plos one*, 16(7):e0254841, 2021.
 - Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv* preprint arXiv:1611.01144, 2016.
 - Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term temporal patterns with deep neural networks. In *The 41st international ACM SIGIR conference on research & development in information retrieval*, pp. 95–104, 2018.
 - Arthur Le Guennec, Simon Malinowski, and Romain Tavenard. Data augmentation for time series classification using convolutional neural networks. In *ECML/PKDD workshop on advanced analytics and learning on temporal data*, 2016.
 - Lujun Li and Anggeng Li. A2-aug: Adaptive automated data augmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2267–2274, 2023.
 - Lukas Liebel and Marco Körner. Auxiliary tasks in multi-task learning. *arXiv preprint* arXiv:1805.06334, 2018.
 - Tom Ching LingChen, Ava Khonsari, Amirreza Lashkari, Mina Rafi Nazari, Jaspreet Singh Sambee, and Mario A Nascimento. Uniformaugment: A search-free probabilistic data augmentation approach. *arXiv preprint arXiv:2003.14348*, 2020.
 - Huaiyuan Liu, Donghua Yang, Xianzhang Liu, Xinglei Chen, Zhiyu Liang, Hongzhi Wang, Yong Cui, and Jun Gu. Todynet: temporal dynamic graph neural network for multivariate time series classification. *Information Sciences*, 677:120914, 2024.
 - Carl H Lubba, Sarab S Sethi, Philip Knaute, Simon R Schultz, Ben D Fulcher, and Nick S Jones. catch22: Canonical time-series characteristics: Selected through highly comparative time-series analysis. *Data mining and knowledge discovery*, 33(6):1821–1852, 2019.
 - Dongsheng Luo, Wei Cheng, Yingheng Wang, Dongkuan Xu, Jingchao Ni, Wenchao Yu, Xuchao Zhang, Yanchi Liu, Yuncong Chen, Haifeng Chen, et al. Time series contrastive learning with information-aware augmentations. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 4534–4542, 2023.
 - Navid Mohammadi Foumani, Lynn Miller, Chang Wei Tan, Geoffrey I Webb, Germain Forestier, and Mahsa Salehi. Deep learning for time series classification and extrinsic regression: A current survey. *ACM Computing Surveys*, 56(9):1–45, 2024.
 - Samuel G Müller and Frank Hutter. Trivialaugment: Tuning-free yet state-of-the-art data augmentation. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 774–782, 2021.
 - Hiroki Ohashi, M Al-Nasser, Sheraz Ahmed, Takayuki Akiyama, Takuto Sato, Phong Nguyen, Katsuyuki Nakamura, and Andreas Dengel. Augmenting wearable sensor data with physical constraint for dnn-based human-action recognition. In *ICML 2017 times series workshop*, pp. 6–11, 2017.
 - Qing Pan, Xinyi Li, and Luping Fang. Data augmentation for deep learning-based ecg analysis. In *Feature engineering and computational intelligence in ECG monitoring*, pp. 91–111. Springer, 2020.

- Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoying Zhou, Christian S Jensen, Zhenli Sheng, et al. Tfb: Towards comprehensive and fair benchmarking of time series forecasting methods. arXiv preprint arXiv:2403.20150, 2024.
 - Alexander J Ratner, Henry Ehrenberg, Zeshan Hussain, Jared Dunnmon, and Christopher Ré. Learning to compose domain-specific transformations for data augmentation. *Advances in neural information processing systems*, 30, 2017.
 - Attila Reiss, Ina Indlekofer, Philip Schmidt, and Kristof Van Laerhoven. Deep ppg: Large-scale heart rate estimation with convolutional neural networks. *Sensors*, 19(14):3079, 2019.
 - Justin Salamon and Juan Pablo Bello. Deep convolutional neural networks and data augmentation for environmental sound classification. *IEEE Signal processing letters*, 24(3):279–283, 2017.
 - Artemios-Anargyros Semenoglou, Evangelos Spiliotis, and Vassilios Assimakopoulos. Data augmentation for univariate time series forecasting with neural networks. *Pattern Recognition*, 134: 109132, 2023.
 - Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning. *Journal of big data*, 6(1):1–48, 2019.
 - Spyros Makridakis. M4 dataset, 2018. URL https://github.com/M4Competition/M4-methods/tree/master/Dataset.
 - Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In *Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 2828–2837, 2019.
 - Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. *Advances in neural information processing systems*, 27, 2014.
 - Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT press Cambridge, 1998.
 - Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I Webb. Monash university, uea, ucr time series extrinsic regression archive. *arXiv preprint arXiv:2006.10996*, 2020.
 - Chang Wei Tan, Christoph Bergmeir, François Petitjean, and Geoffrey I Webb. Time series extrinsic regression: Predicting numeric values from time series data. *Data Mining and Knowledge Discovery*, 35(3):1032–1060, 2021.
 - Terry T Um, Franz MJ Pfister, Daniel Pichler, Satoshi Endo, Muriel Lang, Sandra Hirche, Urban Fietzek, and Dana Kulić. Data augmentation of wearable sensor data for parkinson's disease monitoring using convolutional neural networks. In *Proceedings of the 19th ACM international conference on multimodal interaction*, pp. 216–220, 2017.
 - Zaitian Wang, Pengfei Wang, Kunpeng Liu, Pengyang Wang, Yanjie Fu, Chang-Tien Lu, Charu C Aggarwal, Jian Pei, and Yuanchun Zhou. A comprehensive survey on data augmentation. *arXiv* preprint arXiv:2405.09591, 2024.
 - Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, Xue Wang, and Huan Xu. Time series data augmentation for deep learning: A survey. *arXiv preprint arXiv:2002.12478*, 2020.
 - Wetterstation. Weather. https://www.bgc-jena.mpg.de/wetter/.
 - Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. *Advances in neural information processing systems*, 34:22419–22430, 2021.
 - Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Temporal 2d-variation modeling for general time series analysis. *arXiv preprint arXiv:2210.02186*, 2022.

 Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu, Youjian Zhao, Dan Pei, Yang Feng, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications. In *Proceedings of the 2018 world wide web conference*, pp. 187–196, 2018.

Zihan Yang, Richard O Sinnott, James Bailey, and Qiuhong Ke. A survey of automated data augmentation algorithms for deep learning-based image classification tasks. *Knowledge and Information Systems*, 65(7):2805–2861, 2023.

Marta Yebra, Xingwen Quan, David Riaño, Pablo Rozas Larraondo, Albert IJM Van Dijk, and Geoffrey J Cary. A fuel moisture content and flammability monitoring methodology for continental australia based on optical remote sensing. *Remote Sensing of Environment*, 212:260–272, 2018.

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and Bixiong Xu. Ts2vec: Towards universal representation of time series. In *Proceedings of the AAAI conference on artificial intelligence*, volume 36, pp. 8980–8987, 2022.

Xu Zheng, Tianchun Wang, Wei Cheng, Aitian Ma, Haifeng Chen, Mo Sha, and Dongsheng Luo. Parametric augmentation for time series contrastive learning. *arXiv preprint arXiv:2402.10434*, 2024.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.

A IMPLEMENTATION DETAILS

All experiments were conducted on a workstation equipped with a single NVIDIA GeForce RTX 3080 Ti GPU (12 GB memory). To evaluate the effectiveness of AutoDA-Timeseries, we conduct experiments on a wide range of benchmark datasets across five mainstream tasks, including classification, long-term forecasting, short-term forecasting, regression, and anomaly detection. The detailed statistics of the datasets are provided in Tables 6, 7, and 8.

Table 6: Summary of benchmark datasets for time series classification.

Datasets	Code	Classes	Dims	Length	Test Size	Train Size	Туре
ArticularyWordRecognition	AWR	25	9	144	300	275	Motion
AtrialFibrillation	AF	3	2	640	15	15	ECG
BasicMotions	BM	4	6	100	40	40	HAR
Cricket	CR	12	6	1197	72	108	HAR
DuckDuckGeese	DDG	5	1345	270	50	50	Audio
EigenWorms	EW	5	6	17984	131	128	Motion
Epilepsy	EP	4	3	206	138	137	HAR
ERing	ER	6	4	65	270	30	HAR
EthanolConcentration	EC	4	3	1751	263	261	Spectro
FaceDetection	FD	2	144	62	3524	5890	EEG
FingerMovements	FM	2	28	50	100	316	EEG
HandMovementDirection	HMD	4	10	400	74	160	EEG
Handwriting	HW	26	3	152	850	150	HAR
Heartbeat	HB	2	61	405	205	204	Audio
Libras	LIB	15	2	45	180	180	HAR
LSST	LSST	14	6	36	2466	2459	Astronomy
MotorImagery	MI	2	64	3000	100	278	EEG
NATOPS	NATOPS	6	24	51	180	180	HAR
PEMS-SF	PEMS-SF	7	963	144	173	267	Transportation
PenDigits	PD	10	2	8	3498	7494	Motion
PhonemeSpectra	PS	39	11	217	3353	3315	Audio
RacketSports	RS	4	6	30	152	151	HAR
SelfRegulationSCP1	SCP1	2	6	896	293	268	EEG
SelfRegulationSCP2	SCP2	2	7	1152	180	200	EEG
StandWalkJump	SWJ	3	4	2500	15	12	ECG
UWaveGestureLibrary	UW	8	3	315	320	120	HAR

Table 7: Summary of benchmark datasets for time series regression.

Datasets	Code	Dims	Length	Test Size	Train Size	Туре
AppliancesEnergy	AE	24	144	42	96	Energy
FloodModeling1	FM1	1	266	202	471	Environment
FloodModeling2	FM2	1	266	167	389	Environment
FloodModeling3	FM3	1	266	184	429	Environment
LiveFuelMoistureContent	LFMC	7	365	1510	3493	Environment
IEEEPPG	IEEEPPG	5	1000	1328	1768	Healthcare

Table 8: Summary of benchmark datasets for time series forecasting and anomaly detection. The "Dataset Size" column reports the number of samples in the training, validation, and testing splits, respectively.

Tasks	Datasets	Dims	Length	Dataset Size	Type (Frequency)
	ETTm1, ETTm2	7	{96, 192, 336, 720}	(34465, 11521, 11521)	Electricity (15 mins)
Long-term Forecasting	ETTh1, ETTh2	7	{96, 192, 336, 720}	(8545, 2881, 2881)	Electricity (15 mins)
Long-term Forecasting	Weather	21	{96, 192, 336, 720}	(36792, 5271, 10540)	Weather (10 mins)
	Exchange	8	{96, 192, 336, 720}	(5120, 665, 1422)	Exchange rate (Daily)
	M4-Yearly	1	6	(23000, 0, 23000)	Demographic
	M4-Quarterly	1	8	(24000, 0, 24000)	Finance
Short-term Forecasting	M4-Monthly	1	18	(48000, 0, 48000)	Industry
Short-term Forecasting	M4-Weekly	1	13	(359, 0, 359)	Macro
	M4-Daily	1	14	(4227, 0, 4227)	Micro
	M4-Hourly	1	48	(414, 0, 414)	Other
	MSL	55	100	(44653, 11664, 73729)	Spacecraft
Anomaly Detection	SMAP	25	100	(108146, 27037, 427617)	Spacecraft
	SMD	38	100	(566724, 141681, 708420)	Server Machine

B BASELINE DESCRIPTIONS

To comprehensively evaluate the performance of the AutoDA-Timeseries framework, the following baselines were applied to the same downstream models:

- NoAug: No augmentation was applied; the downstream model was trained directly on the raw dataset.
- TS2Vec (Yue et al., 2022): TS2Vec is a universal representation learning framework designed for time series, which enables representation learning across multiple semantic levels. It achieves this by hierarchically distinguishing positive and negative samples at both the instance and temporal dimensions, thereby capturing rich contextual information for diverse downstream tasks.
- InfoTS (Luo et al., 2023): InfoTS is a contrastive learning-based method for time series augmentation. It generates two augmented views of the input using parameterized transformations and learns representations by maximizing mutual information between them. InfoTS applies instance-level contrastive loss to retain fine-grained semantic identity, particularly useful for downstream classification tasks.
- AutoTCL (Zheng et al., 2024): AutoTCL proposes a parametric framework for time series
 contrastive learning. It constructs two views using a learnable augmentation module, and
 maximize their alignment via InfoNCE loss. The augmentation parameters are optimized
 with a bi-level meta-learning strategy to enhance task performance.
- RandAugment (Cubuk et al., 2020): RandAugment is a proxy-free automated augmentation framework that has achieved state-of-the-art (SOTA) performance in image classification tasks, significantly optimizing performance compared to proxy-based frameworks.
- TrivialAugment (Müller & Hutter, 2021): TrivialAugment is a tuning-free, proxy-free automated augmentation framework that has demonstrated SOTA performance in image classification tasks.

- 756 758 759 760 761
- 762
- 763 764 765
- 766 767 768 769 770 771 772 773
- 774 775 776 777 778 779 781 782 783

796 797

806

807

808

809

- UniformAugment (LingChen et al., 2020): UniformAugment is a proxy-free AutoDA framework achieving high efficiency and comparable performance in image classification tasks with theoretical supports.
- A2Aug (Li & Li, 2023): A2Aug is a proxy-free AutoDA framework that trains multiple downstream models in parallel with different augmentation transforms and combines their outputs via ensemble learning, achieving SOTA performance in image classification tasks.

ABLATION STUDIES

To verify the effectiveness of our key insights and the architecture designs introduced in Section 3, we conducted ablation studies. We remove each component from a complete AutoDA-Timeseries and evaluate their impacts by performance degradation.

The results are presented in Figure 7 and Table 9. As shown in Figure 7, most points lie above the diagonal, indicating that incorporating time series features, joint optimization, dynamic temperature, and composite loss consistently improves the performance of AutoDA-Timeseries on the classification task compared to their ablated versions. These results validate the necessity of the overall framework design, showing that each component contributes positively to the final performance, while removing any of them leads to performance degradation.

As shown in Table 9, first, disabling *Time Series Features* increased the MSE by up to 14.4%, which underscores the need for these features to guide augmentation, verifying our insight of performing augmentation policy generation conditioned on time series features. Second, removing Joint Optimization of probabilities and intensities led to an increase in MSE of up to 7.6%, which emphasizes the importance of generating the optimal combination of transformation types and strengths. Finally, the exploration-exploitation balancing strategies, including *Dynamic Temperature* and *Com*posite Loss, all demonstrate clear effectiveness, reducing MSE by up to 7.4% and 8.1% relative to their ablated counterparts. Overall, these findings emphasize that each component is essential for the framework's performance and effectiveness in automated time series augmentation.

Figure 7: Ablation study of AutoDA-Timeseries on TCN for classification.

HYPER-PARAMETER SENSITIVITY

AutoDA-Timeseries involves two key hyper-parameters: the number of augmentation layers k and the raw transform bias p_{rb} , which jointly determine the size of the augmentation search space and the proportion of raw samples retained during training. Specifically, the former controls how many transformations are applied sequentially to each sample, where larger values increase data diversity but may also introduce excessive noise. The latter assigns a probability to directly selecting the raw input, which acts as a regularizer to prevent overfitting to overly augmented samples.

As shown in Figure 8, both hyper-parameters have limited impact on performance across different tasks. Specifically, increasing k yields stable results, with moderate values providing the best tradeoff between diversity and reliability. For the raw transform bias, incorporating a small proportion of raw samples consistently stabilizes training and avoids degradation, highlighting the importance of balancing augmented and authentic data. Overall, these results indicate that AutoDA-Timeseries is robust to the choice of hyper-parameters.

Table 9: Ablation study of AutoDA-Timeseries on RNN for long-term forecasting.

De	sign	w/o Time	Series Features	w/o Joint	Optimization	w/o Dyna	mic Temperature	w/o Com	posite Loss	AutoDA-	-Timeseries
Me	etrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
	96	0.5071	0.4738	0.4884	0.4728	0.4903	0.4721	0.4906	0.4730	0.4849	0.4715
h	192	0.5697	0.4989	0.5592	0.5310	0.5540	0.5019	0.5529	0.5262	0.5536	0.5046
ETTh1	336	0.5876	0.5133	0.5468	0.4956	0.6049	0.5227	0.5843	0.5440	0.5552	0.4902
Ш	720	0.5804	0.5209	0.5648	0.5174	0.6232	0.5458	0.6026	0.5635	0.5777	0.5161
	Avg	0.5612	0.5017	0.5398	0.5042	0.5681	0.5106	0.5576	0.5267	0.5429	0.4956
	96	0.6013	0.5031	0.4749	0.4758	0.4635	0.4486	0.5090	0.4957	0.4714	0.4500
n]	192	0.7106	0.5381	0.5179	0.5072	0.5207	0.4987	0.5336	0.5110	0.5107	0.4630
ETTm1	336	0.7354	0.5542	0.5574	0.5246	0.5689	0.4900	0.5552	0.5210	0.5628	0.4881
딢	720	0.7612	0.5737	0.6083	0.5499	0.6203	0.5544	0.6219	0.5579	0.6071	0.5237
	Avg	0.7021	0.5423	0.5396	0.5144	0.5434	0.4979	0.5549	0.5214	0.5380	0.4812
-	96	0.1236	0.2528	0.1188	0.2413	0.1319	0.2494	0.1299	0.2551	0.1086	0.2328
50	192	0.2238	0.3412	0.2607	0.3632	0.2201	0.3353	0.2135	0.3287	0.2049	0.3234
ha	336	0.3745	0.4458	0.3945	0.4605	0.3610	0.4354	0.3989	0.4632	0.3582	0.4360
Exchange	720	0.9984	0.7622	0.9839	0.7570	0.9810	0.7562	0.9866	0.7582	0.6920	0.6493
	Avg	0.4301	0.4505	0.4395	0.4555	0.4235	0.4441	0.4322	0.4513	0.3409	0.4104
	96	0.1842	0.2353	0.2066	0.2440	0.2066	0.2427	0.2053	0.2490	0.1736	0.2191
per	192	0.2286	0.2676	0.2483	0.2824	0.2407	0.2825	0.2474	0.2882	0.2263	0.2636
Weather	336	0.2948	0.3153	0.3168	0.3287	0.3132	0.3236	0.3032	0.3209	0.2761	0.3050
ĕ	720	0.3678	0.3617	0.4195	0.3992	0.3554	0.3517	0.3739	0.3692	0.3536	0.3534
	Avg	0.2689	0.2950	0.2978	0.3136	0.2790	0.3001	0.2825	0.3068	0.2574	0.2853

Figure 8: Performance of AutoDA-Timeseries under different hyper-parameter settings across representative tasks.

E GENERALIZATION ACROSS DATASETS

To further examine the generalizability of AutoDA-Timeseries, we conduct transfer experiments across datasets, as summarized in Table 10. Specifically, we train the downstream model together with augmentation policies on ETTh1 and directly evaluate the trained model on ETTh2 and ETTm2, comparing with NoAug and UniformAugment baselines (the latter is included because it is the second-best method under the RNN downstream model, only inferior to ours). As shown in the upper block (ETTh1 \rightarrow ETTh2), AutoDA-Timeseries consistently outperforms the baselines across all forecasting horizons, achieving the lowest average MSE and MAE, which demonstrates that the models trained with our framework generalize well to datasets with similar distribution. In the more challenging setting of ETTh1 \rightarrow ETTm2, where the source and target distributions differ substantially, the performance gap narrows, yet AutoDA-Timeseries remains competitive and clearly superior to UniformAugment. These results highlight that AutoDA-Timeseries not only enhances performance within a single dataset but also exhibits strong potential for cross-dataset generalization, validating its robustness and applicability in real-world scenarios.

Table 10: Generalization performance of AutoDA-Timeseries on RNN under cross-dataset transfer settings.

	ttin oo	No	Aug	Uniform	Augment	AutoDA-	-Timeseries
se	ttings	MSE	MAE	MSE	MAE	MSE	MAE
h2	96	0.4761	0.4602	0.6486	0.5577	0.4431	0.4409
ETTh2	192	0.5418	0.4944	0.7172	0.5882	0.5146	0.4788
	336	0.5566	0.5116	0.7366	0.6091	0.5374	0.4996
ETTh1	720	0.5416	0.5115	0.7727	0.6315	0.5354	0.5052
EJ	Avg	0.5290	0.4944	0.7188	0.5966	0.5076	0.4811
n2	96	0.8668	0.6702	1.1370	0.7578	0.8663	0.6724
→ ETTm2	192	1.0198	0.7361	1.3273	0.8305	1.0087	0.7338
<u>ш</u>	336	1.2997	0.8369	1.6327	0.9313	1.2791	0.8317
ETTh1 -	720	1.7294	0.9623	2.1243	1.0623	1.7105	0.9576
ET	Avg	1.2289	0.8014	1.5553	0.8955	1.2162	0.7989

F MODEL EFFICIENCY

To further evaluate the practicality of AutoDA-Timeseries, we conduct efficiency experiments considering three factors: parameter size, training time (ms/iter), and accuracy. As shown in Figure 9, AutoDA-Timeseries achieves a favorable balance between accuracy and efficiency. Compared with NoAug, AutoDA-Timeseries brings consistent accuracy improvements with only moderate increases in parameter size and training time. Compared with more complex baselines such as AutoTCL, TS2Vec, and A2Aug, AutoDA-Timeseries delivers higher accuracy with significantly lower computational overhead. Although simple augmentation baselines such as UniformAugment exhibit shorter training times, they fail to match the performance of AutoDA-Timeseries. Overall, these results highlight the advantage of AutoDA-Timeseries in achieving an effective accuracy-efficiency trade-off, demonstrating its practicality for real-world time series applications.

(a) Efficiency comparison on FingerMovements (b) Efficiency comparison on MotorImagery dataset dataset (28 dimensions) (64 dimensions)

Figure 9: Model efficiency comparison across datasets. The x-axis represents training time per iteration, the y-axis shows accuracy, and the bubble size reflects model parameter size.

G ROBUSTNESS UNDER LIMITED TRAINING SAMPLES

In practical scenarios, obtaining sufficient labeled training samples is often challenging. A data augmentation method that maintains strong performance under limited samples demonstrates better generalization under limited training data (Wen et al., 2020). To evaluate this property, we progressively reduced the training set to 10%, 30%, 50%, 70%, and 100% of its original size, and compared the performance of NoAug with AutoDA-Timeseries. We selected three representative tasks, in-

cluding classification, long-term forecasting, and anomaly detection. The model architectures and hyperparameters were kept fixed, and we reported Accuracy, MSE, and F1-score for each task.

As shown in Figure 10, AutoDA-Timeseries consistently outperforms NoAug under different fractions of training data. The advantage is particularly evident in low-data regimes, where augmentation substantially narrows the performance gap caused by limited supervision. Even when more data are available, AutoDA-Timeseries remains competitive, indicating that learned augmentation strategies not only alleviate data scarcity but also enhance robustness across varying data scales. This finding suggests that AutoDA-Timeseries is not merely a remedy for data scarcity but a general mechanism to enhance model generalization in diverse real-world scenarios.

Figure 10: Performance comparison between NoAug and AutoDA-Timeseries under varying training data ratios (10%, 30%, 50%, 70%, 100%) across three representative tasks: classification (Accuracy), long-term forecasting (MSE), and anomaly detection (F1-score).

H WEIGHT DISTRIBUTION ANALYSIS

To further understand the effect of AutoDA-Timeseries on downstream model training, we analyze the weight distributions of models trained with and without augmentation, as they provide a compact characterization of model stability and generalization. Figure 11 presents kernel density estimates of model parameters across five representative tasks, including classification (SelfRegulationSCP2), long-term forecasting (ETTh1), short-term forecasting (M4), regression (FloodModeling2), and anomaly detection (MSL). The distributions remain largely consistent in shape and centered around zero, indicating that AutoDA-Timeseries does not introduce abnormal parameter shifts or bias. Meanwhile, the five tasks exhibit distinct distributional patterns: ETTh1 and Flood-Modeling2 show narrow and almost sparse distributions, while M4 presents wider tails that reflect higher complexity. These results demonstrate that AutoDA-Timeseries adapts effectively to diverse scenarios while preserving distributional stability.

Figure 11: Comparison of weight distributions between models trained without augmentation (blue, NoAug) and with AutoDA-Timeseries (red) across five tasks, demonstrating that AutoDA-Timeseries preserves stable parameter distributions while adapting to task-specific characteristics.

PRIVACY ANALYSIS

972

973 974

975

976

977

978

979

980 981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996 997 998

999

1000

1001

1002

1003

1007

1008

1009 1010 1011

1012 1013

1014

1015 1016

1017

1018

1019

1020 1021

1023

1024

1025

To assess whether releasing augmented datasets could expose sensitive information from the original time series, we conducted statistical attack experiments to compare privacy vulnerability by uniform (employed in RandAugment, UniformAugment, and TrivialAugment) or biased (employed in AutoDA-Timeseries) augmentation selections. We try to reconstruct the original time series from an augmented time series dataset generated from a set of augmentation transforms applied to the original seed time series, and evaluate the privacy vulnerability by the RMSE between the ground truth original time series and the reconstructed time series.

As detailed in Appendix I.1, a more deterministic reconstruction can be performed with known equal probabilities of augmentation, while in contrast, reconstruction with unknown probabilities of augmentation has to be modeled as a mixture-model estimation.

As shown in Table 11, four groups of reconstruction are performed for comparison. To ensure fairness, G1, G3, and G4 utilize the same augmented time series dataset, and we control the G3 and G4 to iterate with the same time consumption. Due to the context limitation, more details can be found in Appendix I.2.

The results are presented in Figure 12. First, G1 and G4, which simulate reconstructing from a dataset generated by previous SOTA AutoDA frameworks, demonstrate a lower RMSE and time consumption than G2 and G3. This indicates the risk to data privacy when releasing augmented datasets with a fixed uniform augmentation policy. Second, the accuracy difference between G3 and G4 shows that the estimation of seed data can be easily misled when the augmentation probabilities are also jointly estimated for a mixture model estimation, proving the effectiveness for augmenting the time series without a fixed augmentation probability. Last, the RMSEs in G2 are higher than G3and G4 with the same estimation model, indicating that the non-uniform augmentation probability in augmentation policy does increase the difficulty of reconstructing the seed data.

Table 11: Reconstruction experiment group setup. AugProbs is whether the augmentation probabilities are equal, and ProbDist is whether this probability distribution is fixed and known to the attacker.

Group	Estimation	ProbDist	AugProbs
Group 1 (G1) Group 2 (G2) Group 3 (G3) Group 4 (G4)	Deterministic Mixture-model Mixture-model Mixture-model	Fixed Unfixed Unfixed Fixed	Uniform Non-uniform Uniform Uniform

(a) Reconstruction RMSE (b) Estimation time

Figure 12: Reconstruction RMSE and time consumption to reconstruct the original time series.

RECONSTRUCT A SINGLE TIME SERIES FROM AUGMENTED TIME SERIES

This section discusses how to reconstruct the seed time series from augmented time series data based on a seed time series and a set of augmentation transformations $\mathcal{T} = \{T_j, j = 1, 2, \dots, n\}$ when randomly sampling augmentation transforms and intensities.

Denote the original time series as c. Suppose the probability of selecting augmentation transform T_i is p_i , the distribution of the augmented time series generated by T_i is Y_i , and the distribution of the entire generated dataset is X_q . Then:

$$E(X_g) = \sum p_i E(Y_i(c)),$$

where $E(X_q)$ is precisely the weighted mean expectation of all time series in the generated dataset, denoted $mean(X_q) = \mu_q$. Next, the variance is given by:

$$Var(X_g) = E(Var(X_g \mid p_i)) + Var(E(X_g \mid p_i)),$$

where

$$E(Var(X_g \mid p_i)) = \sum p_i Var(Y_i(c))$$

represents the weighted mean variance of all subsets generated by different augmentation transforms.

In previous AutoDA frameworks (Cubuk et al., 2020; Müller & Hutter, 2021; LingChen et al., 2020), the transformation operators are predefined and fixed. Consequently, the distributions Y_i can be easily derived apart from an unknown intensity range parameter t. Therefore, the distribution of X_g is determined by the original seed data c, the intensity range parameter t, and the probability distribution $\{p_i\}$. These three can be viewed as the prior for X_g and hence can be estimated with the observed samples of X_g , which correspond exactly to the time series in the augmented dataset. As a result, if the augmentation transforms are selected with equal probabilities, t can be easily estimated, and the seed data t can be reconstructed accordingly, jeopardizing data privacy.

For illustration, consider a toy example with a specific seed time series c and an augmentation transform set comprising three transformations:

- Raw transform: $Y_1(c) = c$
- Scaling transform: $Y_2(c) = c \cdot s$, where the scaling factor s follows a uniform distribution $s \sim U[2t-1, 2t+1]$
- Jittering transform: $Y_3(c) = c + n$, where the noise n follows a Gaussian distribution $n \sim \mathcal{N}(0, t^2)$

The expectation and variance of each subset are then:

$$E(Y_1) = c,$$

 $Var(Y_1) = 0,$
 $E(Y_2) = 2t \cdot c,$
 $Var(Y_2) = 4t^2c^2,$
 $E(Y_3) = c,$
 $Var(Y_3) = t^2.$

Hence, if the augmentation transforms are chosen with equal probability $p_1 = p_2 = p_3 = \frac{1}{3}$, the expectation and variance of the entire augmented dataset are:

$$E(X_g) = \frac{c + 2tc + c}{3} = \frac{2t + 2}{3}c,$$

$$Var(X_g) = (0 + \frac{1}{3}c^2 + t^2)/3 + (c^2 + 4t^2c^2 + c^2)/3 - \left(\frac{2t + 2}{3}c\right)^2 = \frac{1}{3}t^2 + \frac{8t^2 - 8t + 3}{9}c^2.$$

Since the average and variance of the augmented dataset can be computed easily, t can be estimated, and subsequently c can be inferred. By contrast, if the probability of augmentation selection is not equal, the model forms a mixture model, making estimation significantly more complex.

Abstractly, when the selection probabilities are not necessarily equal, one must re-estimate the prior from observations of the distribution involving $\{p_i\}$, c, and t. However, when the selection probabilities are assumed to be equal, X_g reduces to a distribution that contains only the unknown priors c and t, which substantially reduces the difficulty of accurate prior estimation.

I.2 RECONSTRUCTION EXPERIMENT SETTINGS

Given a predefined set of augmentation transformations, we apply these transformations to time series in the original dataset. Two types of datasets are generated with different strategies:

- The generated time series data of all different transformations are directly mixed into the dataset \mathcal{D}_1 with equal probability.
- The generated time series data of all transformations are mixed into a synthetic dataset D₂ according to a given probability vector.

From \mathcal{D}_1 and \mathcal{D}_2 , the original seed metrics as prior parameters are estimated. For \mathcal{D}_1 , we use Newton's method to estimate the intensity range parameters and the original seed metrics, denoted as Group1. For \mathcal{D}_2 , since the probability vector prior is unknown, it formulates a mixture model estimation. Thus, the Expectation-Maximization (EM) algorithm is applied to estimate the probability

and the prior parameters of the corresponding distribution iteratively. We generated a dataset with unevenly sampled transformations and performed EM (denoted as *Group2*).

To ensure fairness in comparison, we also established a comparison group of applying EM on \mathcal{D}_1 , learning the probability on its own (denoted as *Group3*), or estimating with a fixed probability (denoted as *Group4*).

In the experiment, specific formal modifications have been made to some augmentation transformations to unify the problem form and accelerate the calculation. For example, the *Raw* transformation is replaced with a *Jittering* transformation with a minimal Gaussian noise. In addition, we have performed standard normalization on the original time series in advance to avoid the problem of inconsistent scales.

J FULL RESULTS

To provide a complete view of the experiment outcomes, we report the detailed results of all down-stream models across different tasks. Specifically, the classification results using TCN and ROCKET are presented in Tables 12 and 13, while the long-term forecasting results with RNN and Autoformer are summarized in Tables 14 and 15. For regression, we present the detailed results of CNN and MLP in Tables 16 and 17. Finally, the anomaly detection results with UNet and VAE are provided in Tables 18 and 19.

Table 12: Detailed classification results with TCN across baselines and AutoDA-Timeseries. "*." in the method names denotes *Augment.

Datasets / Methods	NoAug	InfoTS (2023)	AutoTCL (2024)	TS2Vec (2022)	Rand. (2020)	Uniform.	Trivial.	A2Aug (2023)	Ours
AWR	0.8933	0.9767	0.9800	0.9367	0.9133	0.9100	0.9433	0.9833	0.9533
AF	0.3333	0.3333	0.4667	0.3333	0.4000	0.4667	0.3333	0.3333	0.4667
BM	1	1	1	0.5000	1	1	1	1	1
CR	0.9861	0.9861	0.9583	0.9583	0.9772	0.9028	1	0.9861	1
DDG	0.7200	0.5600	0.6000	0.2800	0.7400	0.7000	0.7000	$\overline{0.6000}$	0.7200
EW	0.8168	0.8015	0.8168	0.7939	0.8321	0.6718	0.7634	0.8092	0.8702
EP	0.9783	0.9348	0.9420	0.9420	0.9783	0.9420	0.9783	0.9855	1
ER	0.7593	0.9185	0.8963	0.1667	0.8778	0.8815	0.8778	0.9037	0.9222
EC	0.4030	0.2548	0.2890	0.3080	0.3004	0.2776	0.3118	0.3156	0.4068
FD	0.5000	0.6302	0.5499	0.5182	0.5000	0.5006	0.5000	0.5000	0.5000
FM	0.5900	0.6000	$\overline{0.5500}$	0.5400	0.5700	0.5700	0.5300	0.5700	0.6200
HMD	0.4730	0.4730	0.4324	0.1758	0.4189	0.4054	0.4324	0.4595	0.4730
HW	0.5847	0.3647	0.4600	0.2753	0.5588	0.0812	0.6118	0.6671	0.4918
HB	0.7854	0.7610	0.7512	0.7317	0.7659	0.7512	0.7756	0.7756	0.7854
LIB	0.8222	0.8278	0.6667	0.7222	0.7667	0.1389	0.8222	0.9111	0.8500
LSST	0.3990	0.6310	0.5114	0.6196	0.4185	0.3491	0.4091	0.6403	0.4124
MI	0.6100	0.5000	0.6000	0.6200	0.6100	0.6200	0.6400	0.6200	0.6700
NATOPS	0.8333	0.9389	0.8389	0.8944	0.8500	0.8444	0.8389	0.8334	0.8889
PEMS-SF	0.8324	0.7861	0.6821	0.5491	0.7977	0.4046	0.7514	0.8728	0.8497
PD	0.8645	0.9237	0.9423	0.9140	0.9525	0.8716	0.9580	0.8971	0.9634
PS	0.2320	0.2741	0.0954	0.1700	0.1497	0.0790	0.1968	0.2103	0.1867
RS	0.9079	0.8882	0.8950	0.7566	0.9145	0.8882	0.9013	0.9211	0.9408
SCP1	0.8396	0.8703	0.8700	0.8567	0.8396	0.8601	0.8805	0.8669	0.8874
SCP2	0.5389	0.5667	0.5667	0.4611	0.5889	0.5667	0.5500	0.5611	0.6111
SWJ	0.3333	0.4667	0.4667	0.3333	0.4667	0.4000	0.4667	0.4000	0.7333
UWGL	0.7656	0.9094	0.8840	0.8156	0.8531	0.7063	0.8061	0.8219	0.7875
Average Accuracy	0.6847	0.6991	0.6812	0.5836	0.6939	0.6073	0.6915	0.7094	0.7304

K SHOWCASES

K.1 Showcase of Forecasting Cases

To provide an intuitive understanding of how different augmentation strategies influence forecasting performance, we present case studies on the ETTh1 dataset with a horizon of 96 steps, where the downstream model is RNN. As shown in Figure 13, the predictions from models trained with

Table 13: Detailed classification results with ROCKET across baselines and AutoDA-Timeseries. "*." in the method names denotes *Augment.

Datasets / Methods	NoAug	InfoTS (2023)	AutoTCL (2024)	TS2Vec (2022)	Rand. (2020)	Uniform. (2020)	Trivial. (2021)	A2Aug (2023)	Ours
AWR	0.9667	0.9767	0.9800	0.9833	0.9567	0.9433	0.9733	0.9900	0.9800
AF	0.4000	0.5333	0.5333	0.4000	0.4000	0.3333	0.4000	0.4000	0.4667
BM	1	0.7750	1	1	1	1	1	1	1
CR	0.9583	0.8889	0.8889	0.5972	0.9306	0.8334	0.9861	0.9861	1
DDG	0.6600	0.7000	0.7000	0.2600	0.6600	0.6200	0.5800	0.7000	0.7000
EW	0.6107	0.6565	0.6183	0.5954	0.6031	0.5649	0.6565	0.7252	0.7328
EP	0.9638	0.5725	0.9275	0.8551	0.9058	0.7971	0.9565	0.9420	0.9783
ER	0.9444	0.9593	0.9556	0.8	0.9296	0.9037	0.9222	0.9556	0.9741
EC	0.2928	0.4297	0.4373	0.4297	0.2928	0.2852	0.3042	0.2548	0.3156
FD	0.6200	0.6393	0.6348	0.5497	0.6379	0.6266	0.6263	0.6510	0.6328
FM	0.5900	0.6300	0.6200	0.6000	0.6300	0.5800	0.6100	0.6100	0.6500
HMD	0.5270	0.5135	0.5405	0.1351	0.5135	0.5000	0.5541	0.5000	0.5541
HW	0.3600	0.2200	0.2212	0.1600	0.3047	0.1141	0.3447	0.4800	0.3588
HB	0.7610	0.7415	0.7366	0.6341	0.7805	0.7512	0.7561	0.7659	0.7756
LIB	0.6889	0.8500	0.8556	0.7056	0.5833	0.3500	0.6389	0.8222	0.7167
LSST	0.6006	0.3978	0.5016	0.6156	0.5921	0.5393	0.6123	0.6415	0.5933
MI	0.5800	0.5900	0.5800	0.6100	0.5600	0.5500	0.5600	0.5500	0.6500
NATOPS	0.9167	0.9000	0.9056	0.8833	0.8889	0.8278	0.9167	0.9167	0.9167
PEMS-SF	0.5376	0.7919	0.7746	0.3584	0.3873	0.1792	0.4682	0.6301	0.5607
PD	0.9634	0.9663	0.9696	0.9574	0.9520	0.9180	0.9634	0.9691	0.9711
PS	0.1837	0.1062	0.1118	0.1288	0.1697	0.1184	0.1828	0.2120	0.1670
RS	0.8750	0.7434	0.8816	0.7895	0.8421	0.8289	0.8421	0.8684	0.8947
SCP1	0.8737	0.7406	0.7372	0.5290	0.8771	0.8532	0.8771	0.8567	0.8840
SCP2	0.5500	0.4778	0.4833	0.5278	0.5389	0.5389	0.5278	0.5556	0.6111
SWJ	0.5333	0.4667	0.4667	0.3333	0.7333	0.5333	0.5333	0.4000	0.7333
UWGL	0.8688	0.8406	0.8438	0.8875	0.8844	0.8594	0.8906	<u>0.9156</u>	0.9313
Average Accuracy	0.6856	0.6630	0.6887	0.5895	0.6752	0.6134	0.6801	0.7038	0.7211

Table 14: Detailed long-term forecasting results with RNN across baselines and AutoDA-Timeseries. "*." in the method names denotes *Augment.

Me	thods	No	Aug	Info (20		Auto (20		TS2 (20		Ra (20	nd. (20)	Unif (20		Triv (20		A2. (20	Aug 23)	Ou	ırs
Me	trics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	96 192 336 720	0.6034 0.6314 <u>0.5591</u> 0.6498	0.5234 0.5394 <u>0.4909</u> 0.5550	0.9196 0.9829 1.0161 1.1145	0.7253 0.7631 0.7772 0.8243	0.8481 1.0001 1.1044 1.1164	0.6904 0.7744 0.8068 0.8273	0.6950 0.8538 1.0128 1.1999	0.6141 0.6969 0.7856 0.8308	0.5067 0.5392 0.6173 0.6226	0.4882 0.5053 0.5278 <u>0.5462</u>	0.5044 0.5362 0.5642 0.6596	0.4809 0.4978 0.5090 0.5694	0.6222 0.6615 0.6996 0.7020	0.5465 0.5670 0.5821 0.5962	0.6221 0.8087 0.6959 0.7665	0.5614 0.6374 0.6165 0.6735	0.4849 0.5536 0.5552 0.5777	0.4715 0.5046 0.4902 0.5161
	Avg	0.6109	0.6134	1.0083	1.0378	1.0173	1.0736	0.9404	1.0222	0.5715	0.5930	0.5661	0.5867	0.6713	0.6877	0.7233	0.7570	0.5429	0.5622
ETTh2	96 192 336 720	0.4103 0.6240 0.7327 0.7419	0.4206 0.5461 0.5923 0.5981	1.3967 1.8304 2.3618 3.3260	0.9731 1.1280 1.3095 1.5914	1.5150 2.7557 2.3520 2.5000	1.0029 1.3260 1.1934 1.2913	1.0807 1.7323 1.9501 3.4461	0.8338 1.0532 1.1481 1.5999	0.4822 0.5981 0.6260 0.5614	0.4594 0.5093 0.5289 0.5084	0.3918 0.4651 0.4991 0.5255	0.4034 0.4430 0.4695 0.4877	0.5275 0.6047 0.5782 0.5408	0.4727 0.5068 0.5110 0.4980	0.7067 1.2000 1.1345 0.7155	0.5417 0.6587 0.6889 0.6156	0.3336 0.4229 0.4340 0.4213	0.3779 0.4238 0.4392 0.4431
_	Avg	0.6272	0.6995	2.2287	2.5061	2.2807	2.5359	2.0523	2.3762	0.5669	0.5952	0.4704	0.4966	0.5628	0.5746	0.9392	1.0167	0.4030	0.4261
ETTm1	96 192 336 720	0.7152 0.7856 0.8251 0.8740	0.5315 0.5521 0.5704 0.5959	0.7686 0.8374 0.8773 0.9345	0.6304 0.6752 0.6974 0.7272	0.7387 0.7922 0.8543 0.9600	0.6327 0.6620 0.6969 0.7524	0.5347 0.6322 0.7580 0.8575	0.5128 0.5636 0.6367 0.6967	0.7454 0.8462 0.9121 0.9820	0.5465 0.5783 0.6033 0.6351	0.5396 0.5621 0.5681 0.6040	0.4725 0.4844 0.4923 0.5106	0.6846 0.7650 0.8330 0.9094	0.5271 0.5537 0.5821 0.6201	0.5489 0.5858 0.7301 0.6301	0.5058 0.5216 0.5872 0.5535	0.4714 0.5107 0.5628 <u>0.6071</u>	0.4500 0.4630 0.4881 0.5237
	Avg	0.8000	0.8282	0.8545	0.8831	0.8363	0.8688	0.6956	0.7492	0.8714	0.9134	0.5685	0.5781	0.7980	0.8358	0.6237	0.6487	0.5380	0.5602
ETTm2	96 192 336 720	0.2648 0.3512 0.4352 0.5422	0.3390 0.3868 0.4307 0.4829	0.4430 0.7770 1.4088 2.5102	0.5272 0.7042 0.9832 1.3234	0.9089 0.9957 1.0756 1.8328	0.7701 0.8069 0.8514 1.1009	0.8549 1.2348 1.4640 2.4442	0.7113 0.9199 1.0058 1.3223	0.2383 0.3011 0.4257 0.5411	0.3200 0.3559 0.4249 0.4820	0.2188 0.2769 0.3392 0.5460	0.3017 0.3365 0.3733 0.4654	0.2263 0.2857 0.3398 0.4193	0.3087 0.3426 0.3738 <u>0.4166</u>	0.3262 0.4879 0.6555 0.8572	0.3857 0.4859 0.5522 0.6174	0.2019 0.2601 0.3136 <u>0.4197</u>	0.2850 0.3225 0.3545 0.4165
	Avg	0.3984	0.4429	1.2848	1.5653	1.2033	1.3014	1.4995	1.7143	0.3766	0.4226	0.3452	0.3874	0.3178	0.3483	0.5817	0.6669	0.2988	0.3311
Exchange	96 192 336 720	0.1687 0.2726 0.4378 1.0198	0.2995 0.3835 0.4931 0.7766	1.7382 1.8373 2.2536 2.7453	1.0084 1.0733 1.2062 1.3081	1.9485 2.1392 2.3431 2.6330	1.1527 1.1981 1.2796 1.2828	1.8184 2.0228 2.2780 2.4236	1.0493 1.1680 1.2362 1.2374	0.1540 0.2700 0.4031 0.8142	0.2756 0.3676 0.4623 0.6828	0.1540 0.2453 0.3826 0.9486	0.2833 0.3629 0.4607 0.7415	0.1572 0.2643 0.4401 1.0740	0.2813 0.3693 0.4838 0.7864	0.3931 0.4089 1.0091 0.6692	0.4316 0.4511 0.7111 0.6393	0.1086 0.2049 0.3582 0.6920	0.2328 0.3234 0.4360 0.6493
	Avg	0.4747	0.5767	2.1436	2.2787	2.2660	2.3718	2.1357	2.2415	0.4103	0.4958	0.4326	0.5255	0.4839	0.5928	0.6201	0.6957	0.3409	0.4184
Weather	96 192 336 720 Avg	0.2561 0.3021 0.3516 0.4254 0.3338	0.2801 0.3154 0.3464 0.3916 0.3597	1.2829 1.3174 1.7156 1.9970 1.5782	0.8239 0.8486 1.0304 1.1336	1.0355 1.0782 1.4528 1.7517	0.7405 0.7719 0.9040 1.0259	0.6114 0.7302 1.1253 1.4813 0.9871	0.5761 0.6208 0.8158 0.9688 1.1123	0.2005 0.2432 0.2885 0.3558 0.2720	0.2452 0.2792 0.3099 0.3524 0.2958	0.1856 0.2342 0.2858 0.3613 0.2667	0.2355 0.2740 0.3081 0.3554 0.2938	0.1948 0.2414 0.2996 0.3926 0.2821	0.2383 0.2786 0.3185 0.3765 0.3112	0.1997 0.2802 0.3481 0.4400 0.3170	0.2492 0.3134 0.3841 0.4494 0.3561	0.1736 0.2263 0.2761 0.3536 0.2574	0.2191 0.2636 0.3050 0.3534 0.2853
1 st (Count	()	()	()	()		1	4	1	1	I	1	2	5	2

AutoDA-Timeseries better capture the temporal dynamics and align more closely with the ground truth compared to those from other baselines.

Table 15: Detailed long-term forecasting results with Autoformer across baselines and AutoDA-Timeseries. "*." in the method names denotes *Augment.

Me	thods	No.	Aug		oTS 23)	Auto (20		TS2 (20		Ra (20	nd. (20)	Unif (20	orm. 120)		vial. 021)		Aug (23)	Oı	ırs
Me	trics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTh1	96 192 336 720	1.0263 0.9639 1.0260 0.9688	0.7891 0.7761 0.8071 0.7799	0.9841 0.9752 0.9689 0.9452	0.7953 0.8126 0.8024 0.7815	1.0033 0.9453 0.9465 0.9263	0.8193 0.7937 0.7928 0.7664	0.8845 0.8865 0.9277 1.0308	0.7419 0.7404 0.7409 0.8376	1.0260 1.0308 1.0334 1.0245	0.7941 0.7904 0.7899 0.7850	1.0410 1.0458 1.0530 1.0575	0.8222 0.8234 0.8263 0.8270	1.2331 1.1358 1.2993 1.2908	0.8827 0.8145 0.8882 0.8784	0.9523 0.9878 0.9864 <u>0.9392</u>	0.7763 0.7885 <u>0.7791</u> <u>0.7763</u>	0.8732 0.9008 1.0216 1.0215	0.7458 0.7534 0.8191 0.8154
	Avg	0.9963	0.9862	0.9684	0.9631	0.9554	0.9394	0.9324	0.9483	1.0287	1.0296	1.0493	1.0521	1.2398	1.2420	0.9664	0.9711	0.9543	0.9813
ETTh2	96 192 336 720	3.8442 2.7073 0.9961 2.5324	1.5563 1.2526 0.7931 1.2130	3.1187 3.1001 3.0804 3.0378	1.3570 1.3430 1.3340 <u>1.3246</u>	3.0869 3.1326 3.1086 3.0566	1.3503 1.3536 1.3462 1.3329	3.0069 3.2592 2.9728 3.1065	1.3180 1.3796 <u>1.3322</u> 1.3330	3.2213 3.2799 3.2731 3.2630	1.4085 1.4174 1.4067 1.4038	3.2230 3.2293 3.2295 3.2516	1.4388 1.4499 1.4515 1.4560	2.8329 3.2522 3.2216 3.0298	1.3110 1.3950 1.3838 1.4151	2.8021 2.9939 3.2867 3.2314	1.2940 1.3380 1.4342 1.4569	2.4034 2.7126 2.7465 2.8374	1.2302 1.3442 1.3848 1.4446
	Avg	2.5200	2.0786	3.0843	3.0728	3.0962	3.0993	3.0864	3.1128	3.2593	3.2720	3.2334	3.2368	3.0841	3.1679	3.0785	3.1707	2.6750	2.7655
ETTm1	96 192 336 720	1.8310 1.7354 1.6885 1.6893	1.1192 1.0828 1.0605 1.0515	1.0957 1.1138 1.1021 1.0674	0.7893 0.8536 0.7957 0.8193	1.1103 1.1029 1.1519 1.1063	0.8027 0.7935 0.8530 <u>0.7960</u>	0.8148 0.8867 0.8935 0.9424	0.7252 0.7623 0.7615 0.7811	1.2186 1.2134 1.2129 1.2135	0.8663 0.8631 0.8622 0.8637	1.2275 1.2192 1.2157 1.2177	0.8792 0.8771 0.8765 0.8791	1.2325 1.2252 1.2237 1.2294	0.8709 0.8678 0.8674 0.8729	1.0236 1.0293 0.9422 1.1114	0.7758 0.7854 0.7738 0.8154	0.8689 1.1311 1.0529 1.2272	0.7072 0.8390 0.8140 0.8876
	Avg	1.7361	1.7044	1.0948	1.0944	1.1179	1.1204	0.8844	0.9075	1.2146	1.2133	1.2200	1.2175	1.2277	1.2261	1.0266	1.0276	1.0700	1.1371
ETTm2	96 192 336 720	2.7817 3.6055 4.0774 3.0671	1.3155 1.5007 1.6337 1.4349	3.1061 3.1309 3.1818 3.1932	1.3551 1.3587 1.3692 1.3696	3.0206 3.1359 3.1447 3.0466	1.4202 1.3587 1.3679 1.3929	2.3535 2.5970 2.2067 3.3414	1.3076 1.3592 1.1345 1.4279	2.6729 3.1856 3.1680 2.9395	1.4181 1.4233 1.4353	2.8379 3.2365 3.3635 3.3176	1.3706 1.4555 1.4706 1.4655	3.5723 3.3879 3.3197 3.2869	1.4780 1.4786 1.4834 1.4884	2.8887 3.1428 3.2642 3.1796	1.3317 1.3996 1.3716 1.4394	2.5533 2.7021 2.9326 2.6495	1.2498 1.3589 1.3434 1.2698
	Avg	3.3829	3.5833	3.1530	3.1686	3.0870	3.1091	2.6247	2.7150	2.9915	3.0977	3.1889	3.3059	3.3917	3.3315	3.1188	3.1955	2.7094	2.7614
Exchange	96 192 336 720	3.0696 2.0449 1.8875 2.7725	1.4659 1.1978 1.1624 1.3706	4.7716 4.7517 4.7606 4.7999	1.7676 1.7609 1.7500 1.7619	4.7654 3.5271 4.7626 4.8315	1.8026 1.5486 1.7528 1.7682	4.7650 4.6947 4.7386 4.8138	1.7686 1.7496 1.7508 1.7665	2.5649 2.0318 1.9907 2.9641	1.2911 1.1312 1.1883 1.3662	2.2821 2.9111 2.6509 3.0918	1.2414 1.4173 1.3539 1.4682	1.5506 2.2307 2.2047 2.2418	1.0461 1.2602 1.1812 1.2271	2.5712 2.0573 <u>1.6807</u> 2.3173	1.3783 1.2145 <u>1.0388</u> 1.2722	1.4143 1.4095 1.5898 1.6965	0.9761 0.9194 0.9914 1.0897
	Avg	2.4436	2.2350	4.7710	4.7707	4.4717	4.3737	4.7530	4.7490	2.3879	2.3289	2.7340	2.8846	2.0570	2.2257	2.1566	2.0184	1.5275	1.5653
Weather	96 192 336 720	3.6475 3.1727 3.5969 3.5249	1.5226 1.4315 1.5274 1.5348	0.4995 0.6173 0.6121 0.6123	0.5151 0.5979 0.5925 0.5940	0.6277 0.4497 0.6172 0.4358	0.6023 0.4468 0.5957 0.4500	0.3700 0.4087 0.4556 0.6198	0.4085 0.4189 0.4541 <u>0.5466</u>	3.7655 3.4958 3.5772 3.3654	1.5601 1.5027 1.5229 1.4862	3.6130 3.6112 3.4884 3.8626	1.5279 1.5176 1.5027 1.5746	3.1235 3.5880 3.3572 2.9488	1.4159 1.5015 1.4611 1.3717	1.6439 1.7755 1.7180 1.8466	1.0193 1.0565 1.0404 1.0787	1.2919 2.9921 2.7707 3.0353	0.9329 1.3855 1.3381 1.4080
	Avg	3.4855	3.4315	0.5853	0.6139	0.5326	0.5009	0.4635	0.4947	3.5510	3.4795	3.6438	3.6541	3.2544	3.2980	1.7460	1.7800	2.5225	2.9327
1 st (Count	(5		1	(5	2	9		0	(0	-	0)	1	7

Table 16: Detailed regression results with CNN across baselines and AutoDA-Timeseries. "*." in the method names denotes *Augment.

Datasets	Metrics	NoAug	InfoTS (2023)	AutoTCL (2024)	TS2Vec (2022)	Rand. (2020)	Uniform. (2020)	Trivial. (2021)	A2Aug (2023)	Ours
AE	MSE MAE	$\begin{array}{ c c }\hline 0.6424 \\ \hline 0.6347 \\ \end{array}$	0.6463 0.6465	0.6461 0.6461	0.6457 0.6458	0.6424 0.6361	<u>0.6424</u> <u>0.6349</u>	0.6425 0.6362	0.6458 0.6458	0.6423 0.6375
FM1	MSE MAE	0.7370 0.6480	0.7965 0.6473	0.7414 0.6507	0.7982 0.6591	0.7370 0.6528	0.7390 0.6555	0.7387 0.6539	4.8129 0.8405	0.6602 0.6264
FM2	MSE MAE	0.7813 0.3195	0.5699 0.4305	2.1929 0.4185	0.9154 0.3684	0.5273 0.2547	3.1468 0.4643	0.4536 0.2879	0.4685 0.2652	0.3875 0.2204
FM3	MSE MAE	0.8647 0.6891	1.4001 0.8537	1.4228 0.8423	1.3215 0.7890	1.2162 0.8296	1.5773 0.9066	0.8622 0.7082	1.1040 0.7535	1.2221 0.8040
LFMC	MSE MAE	0.9789 0.7544	0.9790 0.7541	0.9786 0.7494	0.9791 0.7563	1.7238 1.0769	0.9789 0.7537	0.9789 0.7544	0.9789 0.7541	0.9768 0.7484
IEEEPPG	MSE MAE	1.5666 1.0466	1.7569 1.0993	1.7577 1.0990	1.8753 1.1079	1.7238 1.0769	1.7439 1.0709	1.6492 1.0480	1.5992 1.0371	1.4636 1.0018
Avg N Avg N		0.9285 0.6821	1.0248 0.7386	1.2899 0.7343	1.0892 0.7211	1.0951 0.7545	1.4714 0.7477	0.8875 0.6814	1.6016 0.7160	0.8921 0.6731
1st Co	ount	<u>2</u>	0	0	0	0	0	<u>2</u>	0	10

K.2 Showcase of Augmentation Cases

We visualize augmentation cases on the SCP1 dataset to provide qualitative insights. Figure 14 and Figure 15 present two different samples, each showing the evolution of augmented time series across three layers. The results indicate that the augmentation process preserves the global structure while introducing diverse variations, demonstrating the effectiveness of AutoDA-Timeseries in generating meaningful augmented data.

Table 17: Detailed regression results with MLP across baselines and AutoDA-Timeseries. "*." in the method names denotes *Augment.

Datasets	Metrics	NoAug	InfoTS (2023)	AutoTCL (2024)	TS2Vec (2022)	Rand. (2020)	Uniform. (2020)	Trivial. (2021)	A2Aug (2023)	Ours
AE	MSE MAE	0.6433 0.6331	0.6425 0.6318	0.6424 0.6325	0.6435 0.6298	0.6438 0.6406	0.6425 0.6335	0.6425 0.6371	0.6438 0.634	0.6415 0.6354
FM1	MSE	0.2787	0.6555	0.6619	0.6332	0.3529	0.7047	0.3384	0.4155	0.2788
	MAE	0.4062	0.5960	0.6148	0.6018	0.4774	0.6518	0.4455	0.4733	0.3885
FM2	MSE	3.1369	3.0971	3.0911	2.7806	2.3691	2.9632	2.9757	2.4156	1.7873
	MAE	0.5184	0.5029	0.4051	0.4494	0.3179	0.4729	0.4364	0.3604	0.3223
FM3	MSE	0.8488	1.2171	1.2412	1.2197	1.0149	1.2935	0.8554	0.9558	0.7675
	MAE	0.7416	0.8065	0.8744	0.8433	0.7046	0.8217	0.6666	<u>0.6534</u>	0.6530
LFMC	MSE MAE	0.9790 0.7530	$\begin{array}{ c c }\hline 0.9789 \\ 0.7546 \end{array}$	0.9789 0.7545	$\frac{0.9789}{0.7546}$	0.9790 <u>0.7528</u>	0.9789 0.7544	0.9790 0.7533	$\frac{0.9789}{0.7543}$	0.9673 0.7505
IEEEPPG	MSE	1.8752	1.8306	1.9025	1.8085	1.9581	1.8361	1.8551	1.8846	1.7675
	MAE	1.1534	1.1195	1.1273	1.1131	1.1239	1.1256	1.0984	1.1157	1.1022
Avg MSE		1.2937	1.4036	1.4197	1.3441	1.2196	1.4032	1.2744	1.2157	1.0350
Avg MAE		0.7010	0.7352	0.7348	0.7320	0.6695	0.7433	0.6729	0.6652	0.6420
1st Co	ount	1 1	0	0	1	<u>1</u>	0	1	0	10

Table 18: Detailed anomaly detection results with UNet across baselines and AutoDA-Timeseries. "*." in the method names denotes *Augment.

Datas	ets		MSL			SMAP				Avg F1	
Metrics		P	R	F1	P	R	F1	P	R	F1	
NoAug		0.6215	0.9475	0.7506	0.7734	0.9692	0.8603	0.3290	0.9323	0.4864	0.6991
InfoTS	(2023)	0.6226	0.9475	0.7515	0.7734	0.9646	0.8585	0.3207	0.8371	0.4637	0.6912
AutoTCL	(2024)	0.6287	0.9458	0.7553	0.7677	0.9350	0.8431	0.3279	0.9297	0.4848	0.6944
TS2Vec	(2022)	0.618	0.9387	0.7453	0.6856	0.5722	0.6238	0.3268	0.9236	0.4828	0.6173
Rand.	(2020)	0.6283	0.9436	0.7544	0.7714	0.8971	0.8295	0.3176	0.898	0.4692	0.6844
Uniform.	(2020)	0.7144	0.9884	0.8293	0.7841	0.9392	0.8547	0.3249	0.8318	0.4673	0.7171
Trivial.	(2021)	0.6207	0.9448	0.7492	0.7679	0.9347	0.8431	0.3203	0.9080	0.4736	0.6886
A2Aug	(2023)	0.6217	0.9475	0.7508	0.7743	0.9737	0.8626	0.3279	0.9279	0.4846	0.6993
Ours		0.7772	0.9906	0.8710	0.7888	0.9661	0.8685	0.3491	0.9045	0.5038	0.7478

Table 19: Detailed anomaly detection results with VAE across baselines and AutoDA-Timeseries. "*." in the method names denotes *Augment.

Datas	ets	MSL				SMAP				Avg F1	
Metrics		P	R	F1	P	R	F1	P	R	F1	
NoAug		0.9015	0.4041	0.5581	0.9717	0.8652	0.9153	0.1507	0.3159	0.2041	0.5592
InfoTS	(2023)	0.9026	0.3962	0.5507	0.9948	0.5557	0.7131	0.1491	0.3137	0.2022	0.4887
AutoTCL	(2024)	0.9012	0.3894	0.5438	0.9948	0.5558	0.7132	0.1509	0.3158	0.2042	0.4871
TS2Vec	(2022)	0.9084	0.4017	0.5571	0.9948	0.5558	0.7132	0.1508	0.3154	0.2040	0.4914
Rand.	(2020)	0.9021	0.4151	0.5685	0.9863	0.8447	0.9100	0.1512	0.3163	0.2046	0.5610
Uniform.	(2020)	0.9043	0.4203	0.5739	0.9949	0.5559	0.7133	0.1512	0.3164	0.2046	0.4973
Trivial.	(2021)	0.9011	0.4125	0.5660	0.9948	0.5558	0.7132	0.1509	0.3160	0.2043	0.4945
A2Aug	(2023)	0.9001	0.4102	0.5635	0.9905	0.8393	0.9087	0.1517	0.3168	0.2052	0.5591
Ours		0.9032	0.4224	0.5756	0.9731	0.9225	0.9471	0.1521	0.3172	0.2056	0.5761

Figure 13: Forecasting showcase on ETTh1 dataset with horizon 96 using RNN as the downstream model.

Figure 14: SCP1 augmentation showcase 1 Figure 15: SCP1 augmentation showcase 2 across three layers.