

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AUTODA-TIMESERIES: AUTOMATED DATA AUGMENTATION FOR TIME SERIES

Anonymous authors

Paper under double-blind review

ABSTRACT

Data augmentation is a fundamental technique in deep learning, widely applied in both representation learning and automated data augmentation (AutoDA). In representation learning, augmentations are used to construct contrastive views for learning task-agnostic embeddings. While in AutoDA, the augmentations are directly optimized to improve downstream task performance. However, both paradigms have key limitations: representation learning typically follows a two-stage pipeline with limited adaptability, and current AutoDA frameworks are largely designed for image data, rendering them ineffective for capturing time series-specific features. To address these issues, we propose **AutoDA-Timeseries**, the first general-purpose AutoDA framework tailored for time series. AutoDA-Timeseries incorporates time series features into augmentation policy design and adaptively optimizes both augmentation probability and intensity in a single-stage, end-to-end manner. We conduct extensive experiments on five mainstream tasks, including classification, long-term forecasting, short-term forecasting, regression, and anomaly detection, showing that AutoDA-Timeseries consistently outperforms strong baselines across diverse models and datasets.

1 INTRODUCTION

Data augmentation refers to a series of transformations that generate high-quality artificial data by manipulating existing samples, serving as a fundamental approach in deep learning to improve model performance and robustness (Shorten & Khoshgoftaar, 2019; Wang et al., 2024). Existing applications of data augmentation can be broadly categorized into two paradigms. The first paradigm is **representation learning**, where augmentations are used to construct contrastive samples, enabling models to learn task-agnostic representations (Chen et al., 2020; He et al., 2020). The second paradigm is **automated data augmentation (AutoDA)**, which focuses on automatically searching or generating augmentation strategies that directly optimize downstream model performance while reducing the reliance on manual design and tuning (Cubuk et al., 2019; 2020).

In time series analysis tasks, data augmentation is equally indispensable due to data insufficiency and homogeneity (Wen et al., 2020; Iwana & Uchida, 2021; Iglesias et al., 2023). As illustrated in Figure 1, these two application paradigms differ in their training pipelines when applied to time series analysis tasks. In the representation learning paradigm, the encoder is first pretrained with contrastive learning on augmented views, and then transferred to downstream tasks through a separate fine-tuning stage, where the downstream model adapts to the learned representations (Yue et al., 2022; Luo et al., 2023). However, a key limitation of representation learning lies in the adaptability of downstream models to the learned representations. For instance, recurrent neural networks (RNNs) are inherently designed for sequence-to-sequence prediction (Sutskever et al., 2014), excelling at modeling long-term dependencies and dynamic evolution rather than capturing invariant representations emphasized by contrastive learning (Chen et al., 2020). In contrast, AutoDA follows a one-stage scheme where augmentations are jointly optimized with the downstream task. Augmentation policies, including the choice probability and intensity of transformation, are adaptively tuned during training, producing high-quality and diverse samples tailored to the downstream task and directly enhancing downstream performance.

While representation learning frameworks suffer from limitations in adapting to downstream models, AutoDA provides a promising alternative by jointly optimizing augmentations with downstream

Figure 1: Two application paradigms of time series data augmentation: representation learning and AutoDA.

model training. However, existing AutoDA approaches have been predominantly developed for image data and are not directly applicable to time series due to the inherent differences between modalities. Even state-of-the-art (SOTA) of these AutoDA frameworks, including RA (Cubuk et al., 2020), TA (Müller & Hutter, 2021), UA (LingChen et al., 2020), and A2Aug (Li & Li, 2023), still face the following key challenges in the context of automated time series augmentation:

- **Limited task generalization.** Most existing AutoDA methods are validated on a single task. This narrow evaluation setting overlooks the fact that augmentation policies may not generalize well when applied to different time series tasks with distinct objectives.
- **Neglect of time series characteristics.** Existing AutoDA frameworks ignore time series-specific features (e.g., autocorrelation, distribution, high-order features) when generating augmentation policies. Their assumption that transformations preserve semantic validity as in image domains fails for time series modality where critical time series features govern augmentation effectiveness, and modality-agnostic approaches risk distorting intrinsic data properties, yielding suboptimal strategies. For instance, frequency-warping-based augmentations blindly applied without considering autocorrelation patterns may disrupt temporal dependencies, degrading downstream classification or forecasting model performance.
- **Lack of adaptive policy learning.** Previous SOTA AutoDA frameworks rely on uniform sampling to determine both the types and intensities of augmentation transformations, treating all transformations equally important without considering their varying impacts on time series data. This uniform design fails to account for the fact that different transformations and intensities may contribute unevenly to the effectiveness of the augmentation policy, potentially leading to suboptimal or inappropriate augmentation policies.

To address these challenges, we propose a general-purpose automated data augmentation framework for time series. It employs an augmentation data generator that learns a combination distribution of selection probability and the intensity for each augmentation transformation, conditioned on the time series features. AutoDA-Timeseries offers several advantages: **First**, it provides a unified one-stage framework that jointly optimizes augmentation policies with downstream task objectives, ensuring broad applicability across *diverse time series tasks*. **Second**, when choosing the optimal augmentation policy for each time series, it integrates multiple *time series features*, making it suitable for automated augmentation in the time series domain. **Finally**, the framework performs *adaptive* augmentation of both probability and intensity, which can more properly reflect the distribution of the optimal augmentation policy.

To summarize, our key contributions are as follows:

- **Comprehensive revisit of data augmentation application paradigms:** we analyze the limitations of existing paradigms, representation learning and automated data augmentation, highlighting their restricted adaptability and the absence of time series-specific design.
- **AutoDA-Timeseries framework:** we propose the first general-purpose automated data augmentation framework for time series, which incorporates time series-specific features into augmentation selection and jointly optimizes both augmentation model and downstream model in a single-stage, end-to-end manner.
- **Extensive empirical validation:** we conduct extensive experiments on five mainstream tasks, demonstrating the superiority, robustness, and generalization of AutoDA-Timeseries through detailed evaluations and visualizations.

2 RELATED WORK

Time series augmentation refers to a collection of advanced techniques designed to artificially expand and diversify existing time series datasets. Previous studies have surveyed various time series augmentation transformations proposed for different downstream tasks, such as classification and segmentation (Iwana & Uchida, 2021; Wen et al., 2020; Alomar et al., 2023; Iglesias et al., 2023; Mohammadi Foumani et al., 2024), or forecasting and anomaly detection (Wen et al., 2020; Iglesias et al., 2023; Semenoglou et al., 2023). Representative transformations include jittering (Salamon & Bello, 2017), rotation (Ohashi et al., 2017), scaling (Ohashi et al., 2017), slicing (Pan et al., 2020), permuting (Um et al., 2017), time warping (Le Guennec et al., 2016), magnitude warping (Demir et al., 2021), and several other techniques (Wen et al., 2020). Beyond the level of individual transformations, recent research has further explored two broader paradigms for leveraging data augmentation: *representation learning* and *automated data augmentation (AutoDA)*.

Representation learning aims to learn task-agnostic representations that can transfer across diverse downstream tasks. TS2Vec introduces hierarchical contrastive objectives together with contextual consistency (Yue et al., 2022). InfoTS leverages the information bottleneck principle and employs adaptive augmentations to generate diverse views, thereby learning more discriminative representations (Luo et al., 2023). AutoTCL proposes a contrastive learning framework with parametric augmentations (Zheng et al., 2024). AutoCL adaptively adjusts augmentation strength through cross-scale temporal consistency constraints (Jing et al., 2024). CAAP learns an adversarial augmentation policy that produces task-aware perturbations guided by contrastive objectives (Chang et al., 2024). FreRA leverages frequency-domain statistics to adaptively decide augmentation direction and intensity (Tian et al., 2025). Despite their effectiveness, most representation learning frameworks adopt a two-stage pipeline. In the first stage, multiple augmented views of the same time series are generated, and an encoder is trained using contrastive objectives to obtain task-agnostic representations. In the second stage, the pretrained encoder is transferred and adapted to downstream models. However, these two stages are decoupled: the augmentation strategy and representation learning in Stage 1 are optimized entirely for the contrastive objective and cannot perceive feedback from the downstream model in Stage 2, particularly when the downstream model is not explicitly designed to leverage such representations. As a result, the learned representations may not always align well with the objectives or architectures of downstream models, which limits the performance gains in practical scenarios.

AutoDA is proposed to generate optimal augmentation policies, mainly in computer vision (CV) domain (Yang et al., 2023). Early studies proposed **two-stage proxy-based** frameworks, such as TANDA (Ratner et al., 2017) and AutoAugment (Cubuk et al., 2019), where a smaller proxy model was trained to evaluate candidate policies. Although effective, these methods are computationally expensive and often fail to generalize due to the mismatch between proxy and downstream models (Cubuk et al., 2020). **ReAugment** uses a variational masked autoencoder (VMAE) to reconstruct masked raw samples and learn their underlying data distribution, then applies reinforcement learning to adjust the VMAE’s latent variable to generate augmented sequences that preserve the original structure (Yuan et al., 2024). More recent work has shifted toward **one-stage non-proxy** AutoDA frameworks, which directly optimize augmentation policies with the downstream task. Representative approaches include RandAugment (Cubuk et al., 2020), TrivialAugment (Müller & Hutter, 2021), UniformAugment (LingChen et al., 2020), and A2Aug (Li & Li, 2023). These methods

162 eliminate proxy models and instead rely on the simple randomization or ensemble strategies to re-
 163 duce cost while improving downstream performance. However, applying such frameworks to time
 164 series remains challenging, as they lack adaptive augmentation mechanisms and ignore modality-
 165 specific features that are crucial for preserving intrinsic patterns (Christ et al., 2018; Lubba et al.,
 166 2019).

3 METHODOLOGY

3.1 PROBLEM STATEMENT

173 Let $\mathcal{D} = \{\mathbf{D}_1, \mathbf{D}_2, \dots, \mathbf{D}_m\}$ be a time series dataset, where \mathbf{D}_i ($i = 1 \dots m$) is a univariate or
 174 multivariate time series. Let \mathcal{M} denote a downstream model (e.g., a classifier) whose trainable
 175 parameters are denoted as $\theta_{\mathcal{M}}$. We consider a set of time series augmentation transformations $\mathcal{T} =$
 176 $\{T_1, T_2, \dots, T_n\}$, where T_j ($j = 1 \dots n$) is an augmentation operator that can be applied to a given
 177 time series \mathbf{D}_i to produce an augmented view of \mathbf{D}_i . Our goal is to design an **automated time**
 178 **series augmentation framework** A_{θ} parameterized by θ that outputs a policy $P_i = A_{\theta}(\mathbf{D}_i)$ for
 179 each $\mathbf{D}_i \in \mathcal{D}$. P_i consists of two vectors: (i) a *probability* vector p_i , where $p_{i,j} \in [0, 1]$ is the
 180 probability T_j is selected; and (ii) a *intensity* vector t_i , where $t_{i,j} \geq 0$ is the intensity of T_j . After
 181 applying P_i to \mathbf{D}_i , we can obtain the augmented time series $P_i(\mathbf{D}_i)$. By performing this operation
 182 for the entire dataset \mathcal{D} , we obtain the *augmented dataset* $A_{\theta}(\mathcal{D})$, that is,

$$A_{\theta}(\mathcal{D}) = \{P_i(\mathbf{D}_i) \mid \mathbf{D}_i \in \mathcal{D}\}. \quad (1)$$

185 We then train the downstream model \mathcal{M} on the augmented dataset by minimizing a task-related loss
 186 as follows:

$$\theta_{\mathcal{M}}^* = \arg \min_{\theta_{\mathcal{M}}} L(\theta_{\mathcal{M}}, A_{\theta}(\mathcal{D})), \quad (2)$$

190 where L is the loss function of the specific task (e.g., mean squared error for forecasting, cross-
 191 entropy for classification, etc.). Finally, we evaluate the trained model \mathcal{M} using the *original* dataset
 192 \mathcal{D} , aiming to achieve superior performance with respect to the loss function L . The objective thus
 193 becomes finding the optimal parameter θ^* for the augmentation framework A_{θ} :

$$\theta^* = \arg \min_{\theta} L(\theta_{\mathcal{M}}^*, \mathcal{D}). \quad (3)$$

197 The automated time series augmentation is formulated as a joint optimization over both the augmen-
 198 tation framework's parameters θ and the downstream model's parameters $\theta_{\mathcal{M}}$.

212 Figure 2: Overall architecture of AutoDA-Timeseries.
 213
 214
 215

216 3.2 AUTOADA-TIMESERIES OVERVIEW
217

218 As shown in the Figure 2, a time series feature-aware augmented data generator (denoted as A_θ) is
219 composed of multiple stacked *Augmentation Layers* $A_{\theta_k}^{(k)}$, each of which is responsible for selecting
220 and applying one of the available transformations in the set $\mathcal{T} = \{T_1, T_2, \dots, T_n\}$.
221

222 The k -th augmentation layer generates an augmentation policy consisting of (i) a series of probability
223 $p_{i,j}^{(k)}$ indicating the likelihood of choosing transformation T_j and (ii) a series of intensity $t_{i,j}^{(k)}$ to apply
224 a chosen transformation. By stacking these augmentation layers, the framework can explore a variety
225 of transformation sequences, allowing for more diverse and potentially useful augmented data. The
226 final output augmented time series is used to train a single downstream model in a single-stage,
227 end-to-end manner, with a composite loss to update the parameters in the augmented data generator
228 together with the downstream model.
229

230 3.3 TIME SERIES FEATURE EXTRACTION
231

232 Following prior work (Qiu et al., 2024), we extracted 24 descriptive statistics for each time series in
233 the original dataset, forming a feature vector $\mathbf{F}_i = f_e(D_i)$, where $f_e(\cdot)$ denotes our feature extrac-
234 tion function. These features are effective across various time series classification and forecasting
235 tasks (Lubba et al., 2019; Qiu et al., 2024). In our design, the feature vector \mathbf{F}_i remains unchanged
236 and static across layers to preserve the global context of the original time series, preventing distortion
237 from sequential augmentations while stabilizing training.
238

3.4 STACKED AUGMENTATION LAYERS

239 Our framework A_θ is composed of K sequential augmentation layers: $A_\theta = A_{\theta_1}^{(1)} \circ A_{\theta_2}^{(2)} \circ \dots \circ A_{\theta_K}^{(K)}$.
240 Each layer $A_{\theta_k}^{(k)}$ receives (i) the input time series $\mathbf{D}_i^{(k-1)}$ from previous layer (raw time series \mathbf{D}_i for
241 the first layer), (ii) the previous probability vector $p_i^{(k-1)}$ (initialized as zeros), and (iii) the global
242 feature vector \mathbf{F}_i . It then generates the probability $p_{i,j}^{(k)}$ and intensity $t_{i,j}^{(k)}$ via MLPs $f_p^{(k)}$ and $f_t^{(k)}$:
243

$$p_{i,j}^{(k)} = f_p^{(k)}(\mathbf{p}_i^{(k-1)}, \mathbf{F}_i), \quad (4)$$

$$t_{i,j}^{(k)} = f_t^{(k)}(\mathbf{p}_i^{(k-1)}, \mathbf{F}_i). \quad (5)$$

244 A transformation T_{r_k} is then sampled in each layer by a Gumbel-Softmax (Jang et al., 2016) ap-
245 proximation (denoted σ_{gs}), which ensures that the framework remains differentiable. The selected
246 transformation T_{r_k} is applied to $D_i^{(k-1)}$ with intensity $t_{i,r_k}^{(k)}$ to generate the augmented time series:
247

$$T_{r_k} = \sigma_{gs}(\mathcal{T}, \mathbf{p}_i^{(k)}), \quad (6)$$

$$D_i^{(k)} = T_{r_k}(D_i^{(k-1)}, t_{i,r_k}^{(k)}). \quad (7)$$

248 By stacking these augmentation layers, the framework performs sequential transformations. The
249 final output $D_i^{(K)} = A_\theta(D_i)$ is fed to the downstream model. All layer parameters are jointly
250 optimized with the downstream model via a composite loss backpropagation.
251

252 3.5 STRATEGIES FOR EXPLORATION AND EXPLOITATION
253

254 To balance exploration (experimenting with diverse transformations) and exploitation (converging
255 on effective augmentations), we incorporate the following strategies:
256

257 3.5.1 LEARNABLE GUMBEL-SOFTMAX TEMPERATURE
258

259 We adopt a learnable temperature parameter in the Gumbel-Softmax distribution to control the ran-
260 domness of transformation sampling (Jang et al., 2016). **Each augmentation layer maintains its own**
261 **temperature, and all temperatures are optimized purely via backpropagation.** A higher temperature
262 encourages exploration by making the selection probabilities more uniform, while gradually low-
263 ering the temperature increases determinism and helps the model converge to the most promising
264 transformation choices.
265

270 3.5.2 COMPOSITE LOSS FUNCTION
271

272 To maintain diversity in the transformation probability distribution, we encourage the augmentation
273 layer to output diverse transformation probabilities. Therefore, in addition to the task-specific loss,
274 we introduce diversity loss terms. To address the weight setting problem for multiple losses, inspired
275 by previous work (Liebel & Körner, 2018), we employ learnable weights in the final composite loss
276 $L_{\text{composite}}$ as follows:

$$277 \quad L_{\text{composite}} = \sum_{z=1,2,3} \left[\frac{1}{2w_z^2} L_z + \ln(1 + w_z^2) \right], \quad (8)$$

279 where: (1) L_1 is the task-specific loss, e.g., mean squared error for forecasting, or cross-entropy for
280 classification. (2) L_2 is an intra-layer diversity loss to encourage diverse transformations within a
281 layer, which is defined as:

$$282 \quad L_2 = \sum_{k=1}^K \mathbb{E}_i \left[H(p_i^{(k)}) \right], \quad (9)$$

285 where K is the number of augmentation layers, $\mathbb{E}_i[\cdot]$ means averaging over samples, $p_i^{(k)} \in \mathbb{R}^n$
286 is the augmentation probability vector for \mathbf{D}_i at the k -th layer, and $H(p_i^{(k)})$ denotes the Shannon
287 entropy calculated as follows:

$$289 \quad H(p_i^{(k)}) = - \sum_{j=1}^n p_{i,j}^{(k)} \log(p_{i,j}^{(k)} + \epsilon), \quad (10)$$

292 where n is the number of transformations, and ϵ is a small constant added for numerical stability
293 (set to 10^{-10} in our implementation). (3) L_3 is an inter-layer diversity loss, which measures the
294 divergence between the augmentation probability distribution of the current layer and that of the
295 previous layer and is defined as:

$$296 \quad L_3 = \sum_{k=2}^K \mathbb{E}_i \left[\text{KL}(p_i^{(k-1)} \| p_i^{(k)}) \right], \quad (11)$$

299 where $\text{KL}(p_i^{(k-1)} \| p_i^{(k)}) = \sum_{j=1}^n p_{i,j}^{(k-1)} \left[\log(p_{i,j}^{(k-1)}) - \log(p_{i,j}^{(k)}) \right]$. (4) w_z^2 s are learnable
300 weights to achieve trade-off between diversity and task performance during the training.

302 This composite loss enables the augmented data generator and the downstream model to be jointly
303 optimized in a fully end-to-end manner.

304 3.5.3 RAW TRANSFORM BIAS
305

306 To avoid overfitting to augmented data, we add a bias term p_{rb} that selects the raw data with proba-
307 bility p_{rb} :

$$308 \quad T_{r_k} = \begin{cases} \sigma_{gs}(\mathcal{T}, p_{i,j}^{(k)}) & \text{with probability } (1 - p_{rb}), \\ T_1 & \text{with probability } p_{rb}, \end{cases}$$

311 where T_1 denotes the Raw (no transformation) operator.

313 4 EXPERIMENTS
314

315 We conduct extensive experiments to systematically evaluate the effectiveness of AutoDA-
316 Timeseries on five mainstream time series analysis tasks: classification, long-term forecasting,
317 short-term forecasting, regression, and anomaly detection. Beyond quantitative comparisons with
318 state-of-the-art baselines, we also provide in-depth analyses and insights into AutoDA-Timeseries.

320 4.1 EXPERIMENT SETUP
321

322 **Implementation** Table 1 summarizes the benchmarks, evaluation metrics, and representative
323 downstream models for each task. Following prior works (Zheng et al., 2024), we evaluate on rep-
resentative downstream models and extend the scope by incorporating both classical and advanced

324 architectures, covering convolutional, recurrent, Transformer-based, and generative paradigms, to
 325 assess the generalizability of AutoDA-Timeseries. More detailed descriptions can be found in Ap-
 326 pendix A.

328 Table 1: Summary of benchmarks, evaluation metrics, and representative downstream models.
 329

330 Tasks	331 Benchmarks	332 Metrics	333 Downstream Models
332 Classification	333 UEA (26 subsets)	334 Accuracy	335 TCN, ROCKET
334 Forecasting	335 Long-term: ETT (4 subsets), 336 Exchange, Weather	337 MSE, MAE	338 RNN, Autoformer
336	337 Short-term: M4 (6 subsets)	338 SMAPE, MASE, OWA	
337 Regression	338 UEA & UCR (6 subsets)	339 MSE, MAE	340 CNN, MLP
338 Anomaly Detection	339 MSL, SMAP, SMD	340 Precision, Recall, F1-score	341 UNet, VAE

341 **Baselines** We compare AutoDA-Timeseries with three groups
 342 of baselines to ensure a comprehensive and fair evaluation. We
 343 use *NoAug* as the **control group**, which does not apply any aug-
 344mentation. For **representation learning**, we adopt InfoTS (Luo
 345 et al., 2023), AutoTCL (Zheng et al., 2024), and TS2Vec (Yue
 346 et al., 2022), which leverage data augmentation to construct
 347 contrastive views and learn task-agnostic representations in a two-
 348 stage manner. For **automated data augmentation**, we con-
 349 sider four state-of-the-art methods: RandAugment (Cubuk et al.,
 350 2020), UniformAugment (LingChen et al., 2020), TrivialAug-
 351 ment (Müller & Hutter, 2021), and A2Aug (Li & Li, 2023).
 352 More detailed descriptions of these baselines can be found in
 353 Appendix B.

355 4.2 RESULTS

356 Figure 3 presents an overall comparison of AutoDA-Timeseries
 357 with state-of-the-art baselines across five time series tasks. We observe that AutoDA-Timeseries
 358 consistently achieves the best performance, covering the largest area in the radar plot. Next, we
 359 provide a more detailed analysis for each task.

362 4.2.1 CLASSIFICATION

364 **Setups** Time series classification aims to assign a discrete label to each sample, which can be either
 365 a univariate or multivariate time series (Ismail Fawaz et al., 2019). We evaluate 26 subsets selected
 366 from the UEA archive (Bagnall et al., 2018), covering diverse domains such as audio recognition,
 367 human activity recognition, and healthcare monitoring. Following prior work (Liu et al., 2024), we
 368 use accuracy as the evaluation metric, and adopt TCN (Bai et al., 2018) and ROCKET (Dempster
 369 et al., 2020) as representative downstream models.

371 **Results** As shown in Figure 4, AutoDA-Timeseries achieves the best accuracy, reaching 0.730
 372 (+6.7%) with TCN and 0.721 (+5.2%) with ROCKET, significantly surpassing the *NoAug* control.
 373 Traditional AutoDA methods (RandAugment, UniformAugment, and TrivialAugment) yield lim-
 374 ited or even negative gains, highlighting the gap in directly transferring image-based augmentation
 375 policies to time series. Representation learning methods show instability: TS2Vec suffers severe
 376 degradation, while AutoTCL and InfoTS achieve only marginal gains. These results suggest that
 377 the augmentation policies of AutoDA-Timeseries can consistently boost classification accuracy and
 378 generalize across different downstream models.

379 Figure 3: Overall comparison of
 380 AutoDA-Timeseries with base-
 381 lines across five time series tasks.

Figure 4: Classification accuracy comparison of AutoDA-Timeseries and baselines on TCN (orange) and ROCKET (blue). “*” in the method names denotes *Augment. Full results are provided in Table 15 and Table 16 in the Appendix.

4.2.2 LONG- AND SHORT-TERM FORECASTING

Setups Time series forecasting is a fundamental task with wide applications in weather, traffic, energy, and finance. We evaluate AutoDA-Timeseries on both long- and short-term forecasting. For long-term forecasting, we use ETT (4 subsets) (Zhou et al., 2021), Exchange (Lai et al., 2018), and Weather (Wetterstation), with MSE and MAE as metrics, following prior works (Wu et al., 2022). For short-term forecasting, we adopt the M4 competition setup with six subsets (Spyros Makridakis, 2018), using SMAPE, MASE, and OWA as metrics. Representative downstream models include RNN-based forecasters and Autoformer (Wu et al., 2021).

Results As shown in Tables 2 and 3, AutoDA-Timeseries achieves the best results on both long- and short-term forecasting. For long-term forecasting, AutoDA-Timeseries attains the lowest MSE and MAE on both RNN and Autoformer. We also observe that representation learning suffers larger relative degradation on RNN than on Autoformer, as Autoformer is more compatible with learned representations. For short-term forecasting, AutoDA-Timeseries again outperforms all baselines on RNN and Autoformer.

Table 2: Comparison of long-term forecasting performance across baselines and AutoDA-Timeseries. “*” in the method names denotes *Augment. Full results are provided in Table 17 and Table 18 in the Appendix.

Downstream Model	Metrics	Methods								
		NoAug	InfoTS	AutoTCL	TS2Vec	Rand.	Uniform.	Trivial.	A2Aug	Ours
RNN	MSE	0.5408	1.5163	1.4888	1.3851	0.5114	<u>0.4416</u>	0.5193	0.6342	0.3968
	MAE	0.5381	1.5423	1.5167	1.4151	0.5117	<u>0.4389</u>	0.5148	0.6347	0.3930
Autoformer	MSE	2.4274	2.2761	2.2872	2.1240	2.4055	2.5116	2.3758	<u>2.0155</u>	1.9098
	MAE	2.4883	2.3323	2.2626	2.1779	2.4655	2.5755	2.4254	<u>2.0617</u>	1.9548

Table 3: Comparison of short-term forecasting performance across baselines and AutoDA-Timeseries. “*” in the method names denotes *Augment.

Downstream Model	Metrics	Methods								
		NoAug	InfoTS	AutoTCL	TS2Vec	Rand.	Uniform.	Trivial.	A2Aug	Ours
RNN	SMAPE	<u>11.384</u>	12.454	13.143	13.832	12.910	11.962	11.482	11.980	11.068
	MASE	1.774	1.864	2.027	2.624	2.536	1.778	<u>1.736</u>	1.985	1.644
	OWA	0.883	0.981	1.009	1.142	1.139	0.906	<u>0.877</u>	0.961	0.838
Autoformer	SMAPE	57.854	47.219	38.875	<u>39.389</u>	63.573	69.034	59.541	39.456	39.425
	MASE	14.865	15.216	10.406	<u>7.790</u>	48.076	16.301	15.729	7.818	7.762
	OWA	6.020	3.359	4.154	3.482	14.915	6.807	6.308	3.499	3.490

432 4.2.3 REGRESSION
433

434 **Setups** Time series regression predicts a continuous scalar from an input time series, differing
435 from classification (discrete labels) and forecasting (future values) (Tan et al., 2021). In particular, it
436 generalizes forecasting by relaxing the requirement that the target must depend primarily on recent
437 values, and has broad applications such as heart rate estimation from physiological signals (Reiss
438 et al., 2019) or crop yield prediction from satellite observations (Yebra et al., 2018). We evaluate
439 six subsets from the UEA & UCR archives (Tan et al., 2020), using MSE and MAE as metrics, with
440 CNN and MLP as downstream models.
441

442 **Results** Regression inherently relies on precise continuous value mappings, making it highly sen-
443 sitive to the quality of augmented data. As shown in Table 4, AutoDA-Timeseries achieves state-of-
444 the-art performance across diverse regression datasets, verifying the effectiveness of its task-adaptive
445 augmentation strategy.
446

447 Table 4: Comparison of regression performance across baselines and AutoDA-Timeseries. “*.” in
448 the method names denotes *Augment. Full results are provided in Table 19 and Table 20 in the
449 Appendix.
450

450 Downstream 451 Model	452 Metrics	453 Methods							
		454 NoAug	455 InfoTS	456 AutoTCL	457 TS2Vec	458 Rand.	459 Uniform.	460 Trivial.	461 Ours
453 CNN	MSE	0.9285	1.1025	1.1290	1.0892	1.0951	1.4714	0.8875	1.6016
	MAE	0.6821	0.7386	0.7343	0.7211	0.7545	0.7477	0.6814	0.7160
455 MLP	MSE	1.2937	1.4036	1.4197	1.3441	1.2196	1.4032	1.2744	1.2157
	MAE	0.7010	0.7352	0.7348	0.7320	0.6695	0.7433	0.6729	0.6652

457 4.2.4 ANOMALY DETECTION
458
459

460 **Setups** Time series anomaly detection aims to identify rare or abnormal patterns that deviate from
461 normal temporal dynamics. The main challenge lies in the scarcity and diversity of anomaly sam-
462 ples, making data augmentation particularly crucial. We follow standard benchmarks (Hundman
463 et al., 2018; Su et al., 2019) and use F1-score as the primary metric. Representative models include
464 UNet (Gao et al., 2020) and VAE (Xu et al., 2018).
465

466 **Results** As shown in Table 5, anomaly detection is highly sensitive to augmentation, since inap-
467 propriate transformations may erase or mimic rare anomalies, making them harder to detect. Nev-
468 ertheless, AutoDA-Timeseries consistently achieves superior results on both models, showing that
469 adaptive policies enhance model robustness and generalize to augmentation-sensitive tasks.
470

471 Table 5: Comparison of anomaly detection performance across baselines and AutoDA-Timeseries.
472 “*.” in the method names denotes *Augment. Full results are provided in Table 21 and Table 22 in
473 the Appendix.
474

475 Downstream 476 Model	477 Metrics	478 Methods								
		479 NoAug	480 InfoTS	481 AutoTCL	482 TS2Vec	483 Rand.	484 Uniform.	485 Trivial.	486 A2Aug	487 Ours
477 UNet	F1	0.6991	0.6912	0.6944	0.6173	0.6844	0.7171	0.6886	0.6993	0.7478
478 VAE	F1	0.5592	0.4887	0.4871	0.4914	0.5610	0.4973	0.4945	0.5591	0.5761

488 4.3 MODEL ANALYSIS
489

490 **Adaptive Augmentation Policy Visualization** We investigate how augmentation policies evolve
491 during training by visualizing augmentation operator probabilities and entropy across layers (Figure
492 5). The results reveal a clear layer-wise differences. Layer 0 rapidly converges to a few op-
493 erators (e.g., Raw augmentation), reflecting deterministic exploitation, while upper layers maintain
494

Figure 5: Adaptive augmentation policy. Top: operator distribution over training epochs. Bottom: entropy dynamics showing convergence in lower layers and diversity in higher layers.

higher entropy and more diverse policies. This pattern illustrates the exploitation-exploration trade-off (Sutton et al., 1998), where lower layers stabilize the augmentation policies and upper layers remain adaptive, providing a complementary balance between stability and diversity.

Feature-Space Consistency under Augmentation We examine whether augmentations preserve time series features as shown in Figure 6. The catch22 features of augmented data remain highly consistent with those of the raw data, indicating that AutoDA-Timeseries maintains essential characteristics and further supports our motivation of incorporating time series feature extraction (Section 3.3).

Figure 6: Feature-space consistency under augmentation.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed AutoDA-Timeseries, a general-purpose framework that adaptively learns augmentation policies conditioned on time series features and jointly optimizes them with downstream models. Experiments across diverse tasks verify its superiority and clear advantages over existing augmentation paradigms. In future work, we aim to extend the framework to real-world time series applications, which often involve diverse domains and complex dynamics.

6 ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or practices that would raise ethical concerns. We confirm compliance with the ICLR Code of Ethics.

540 7 REPRODUCIBILITY STATEMENT
541542 All the source code is provided in the supplementary material for reproduction. They will also
543 be open-sourced after acceptance of this paper. Please refer to README.md in the supplementary
544 material for detailed reproduction steps.
545546 REFERENCES
547548 Khaled Alomar, Halil Ibrahim Aysel, and Xiaohao Cai. Data augmentation in classification and
549 segmentation: A survey and new strategies. *Journal of Imaging*, 9(2):46, 2023.
550551 Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
552 Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. *arXiv*
553 *preprint arXiv:1811.00075*, 2018.
554555 Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
556 and recurrent networks for sequence modeling. *arXiv preprint arXiv:1803.01271*, 2018.
557558 Ping Cao, Xinyi Li, Kedong Mao, Fei Lu, Gangmin Ning, Luping Fang, and Qing Pan. A novel
559 data augmentation method to enhance deep neural networks for detection of atrial fibrillation.
Biomedical Signal Processing and Control, 56:101675, 2020.
560561 Tien-Yu Chang, Hao Dai, and Vincent S Tseng. Caap: Class-dependent automatic data augmentation
562 based on adaptive policies for time series. *arXiv preprint arXiv:2404.00898*, 2024.
563564 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
565 contrastive learning of visual representations. In *International conference on machine learning*,
566 pp. 1597–1607. PMLR, 2020.
567568 Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W Kempa-Liehr. Time series feature
569 extraction on basis of scalable hypothesis tests (tsfresh—a python package). *Neurocomputing*, 307:
72–77, 2018.
570571 Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
572 Learning augmentation strategies from data. In *Proceedings of the IEEE/CVF conference on*
573 *computer vision and pattern recognition*, pp. 113–123, 2019.
574575 Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
576 data augmentation with a reduced search space. In *Proceedings of the IEEE/CVF conference on*
577 *computer vision and pattern recognition workshops*, pp. 702–703, 2020.
578579 Sumeyra Demir, Krystof Mincev, Koen Kok, and Nikolaos G Paterakis. Data augmentation for time
580 series regression: Applying transformations, autoencoders and adversarial networks to electricity
581 price forecasting. *Applied Energy*, 304:117695, 2021.
582583 Angus Dempster, François Petitjean, and Geoffrey I Webb. Rocket: exceptionally fast and accu-
584 rate time series classification using random convolutional kernels. *Data Mining and Knowledge*
585 *Discovery*, 34(5):1454–1495, 2020.
586587 Jingkun Gao, Xiaomin Song, Qingsong Wen, Pichao Wang, Liang Sun, and Huan Xu. Robusttad:
588 Robust time series anomaly detection via decomposition and convolutional neural networks. *arXiv*
589 *preprint arXiv:2002.09545*, 2020.
590591 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
592 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on*
593 *computer vision and pattern recognition*, pp. 9729–9738, 2020.
594595 Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom.
596 Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In *Pro-
597 ceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data
598 mining*, pp. 387–395, 2018.
599

594 Guillermo Iglesias, Edgar Talavera, Ángel González-Prieto, Alberto Mozo, and Sandra Gómez-
 595 Canaval. Data augmentation techniques in time series domain: a survey and taxonomy. *Neural
 596 Computing and Applications*, 35(14):10123–10145, 2023.

597

598 Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
 599 Muller. Deep learning for time series classification: a review. *Data mining and knowledge
 600 discovery*, 33(4):917–963, 2019.

601 Brian Kenji Iwana and Seiichi Uchida. An empirical survey of data augmentation for time series
 602 classification with neural networks. *Plos one*, 16(7):e0254841, 2021.

603

604 Navdeep Jaitly and Geoffrey E Hinton. Vocal tract length perturbation (vtlp) improves speech recog-
 605 nition. In *Proc. ICML workshop on deep learning for audio, speech and language*, volume 117,
 606 pp. 21, 2013.

607

608 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv
 609 preprint arXiv:1611.01144*, 2016.

610

611 Baoyu Jing, Yansen Wang, Guoxin Sui, Jing Hong, Jingrui He, Yuqing Yang, Dongsheng Li, and
 612 Kan Ren. Automated contrastive learning strategy search for time series. In *Proceedings of
 613 the 33rd ACM International Conference on Information and Knowledge Management*, pp. 4612–
 614 4620, 2024.

615

616 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
 617 temporal patterns with deep neural networks. In *The 41st international ACM SIGIR conference
 618 on research & development in information retrieval*, pp. 95–104, 2018.

619

620 Arthur Le Guennec, Simon Malinowski, and Romain Tavenard. Data augmentation for time se-
 621 ries classification using convolutional neural networks. In *ECML/PKDD workshop on advanced
 622 analytics and learning on temporal data*, 2016.

623

624 Lujun Li and Anggeng Li. A2-aug: Adaptive automated data augmentation. In *Proceedings of the
 625 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2267–2274, 2023.

626

627 Lukas Liebel and Marco Körner. Auxiliary tasks in multi-task learning. *arXiv preprint
 628 arXiv:1805.06334*, 2018.

629

630 Tom Ching LingChen, Ava Khonsari, Amirreza Lashkari, Mina Rafi Nazari, Jaspreet Singh Sam-
 631 bee, and Mario A Nascimento. Uniformaument: A search-free probabilistic data augmentation
 632 approach. *arXiv preprint arXiv:2003.14348*, 2020.

633

634 Huaiyuan Liu, Donghua Yang, Xianzhang Liu, Xinglei Chen, Zhiyu Liang, Hongzhi Wang, Yong
 635 Cui, and Jun Gu. Todynnet: temporal dynamic graph neural network for multivariate time series
 636 classification. *Information Sciences*, 677:120914, 2024.

637

638 Carl H Lubba, Sarab S Sethi, Philip Knaute, Simon R Schultz, Ben D Fulcher, and Nick S Jones.
 639 catch22: Canonical time-series characteristics: Selected through highly comparative time-series
 640 analysis. *Data mining and knowledge discovery*, 33(6):1821–1852, 2019.

641

642 Dongsheng Luo, Wei Cheng, Yingheng Wang, Dongkuan Xu, Jingchao Ni, Wenchao Yu, Xuchao
 643 Zhang, Yanchi Liu, Yuncong Chen, Haifeng Chen, et al. Time series contrastive learning with
 644 information-aware augmentations. In *Proceedings of the AAAI Conference on Artificial Intelli-
 645 gence*, volume 37, pp. 4534–4542, 2023.

646

647 Navid Mohammadi Foumani, Lynn Miller, Chang Wei Tan, Geoffrey I Webb, Germain Forestier,
 648 and Mahsa Salehi. Deep learning for time series classification and extrinsic regression: A current
 649 survey. *ACM Computing Surveys*, 56(9):1–45, 2024.

650

651 Samuel G Müller and Frank Hutter. Trivialaugment: Tuning-free yet state-of-the-art data augmenta-
 652 tion. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 774–782,
 653 2021.

648 Hiroki Ohashi, M Al-Nasser, Sheraz Ahmed, Takayuki Akiyama, Takuto Sato, Phong Nguyen, Kat-
 649 suyuki Nakamura, and Andreas Dengel. Augmenting wearable sensor data with physical con-
 650 straint for dnn-based human-action recognition. In *ICML 2017 times series workshop*, pp. 6–11,
 651 2017.

652

653 Qing Pan, Xinyi Li, and Luping Fang. Data augmentation for deep learning-based ecg analysis. In
 654 *Feature engineering and computational intelligence in ECG monitoring*, pp. 91–111. Springer,
 655 2020.

656

657 Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoy-
 658 ing Zhou, Christian S Jensen, Zhenli Sheng, et al. Tfb: Towards comprehensive and fair bench-
 659 marking of time series forecasting methods. *arXiv preprint arXiv:2403.20150*, 2024.

660

661 Alexander J Ratner, Henry Ehrenberg, Zeshan Hussain, Jared Dunnmon, and Christopher Ré. Learn-
 662 ing to compose domain-specific transformations for data augmentation. *Advances in neural in-*

663 *formation processing systems*, 30, 2017.

664

665 Attila Reiss, Ina Indlekofer, Philip Schmidt, and Kristof Van Laerhoven. Deep ppg: Large-scale
 666 heart rate estimation with convolutional neural networks. *Sensors*, 19(14):3079, 2019.

667

668 Justin Salamon and Juan Pablo Bello. Deep convolutional neural networks and data augmentation
 669 for environmental sound classification. *IEEE Signal processing letters*, 24(3):279–283, 2017.

670

671 Artemios-Anargyros Semenoglou, Evangelos Spiliotis, and Vassilios Assimakopoulos. Data aug-
 672 mentation for univariate time series forecasting with neural networks. *Pattern Recognition*, 134:
 673 109132, 2023.

674

675 Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
 676 *Journal of big data*, 6(1):1–48, 2019.

677

678 Spyros Makridakis. M4 dataset, 2018. URL <https://github.com/M4Competition/M4-methods/tree/master/Dataset>.

679

680 Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for
 681 multivariate time series through stochastic recurrent neural network. In *Proceedings of the 25th*

682 *ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 2828–2837,
 683 2019.

684

685 Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
 686 *Advances in neural information processing systems*, 27, 2014.

687

688 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 689 press Cambridge, 1998.

690

691 Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I Webb. Monash university,
 692 uea, ucr time series extrinsic regression archive. *arXiv preprint arXiv:2006.10996*, 2020.

693

694 Chang Wei Tan, Christoph Bergmeir, François Petitjean, and Geoffrey I Webb. Time series extrin-
 695 sic regression: Predicting numeric values from time series data. *Data Mining and Knowledge
 696 Discovery*, 35(3):1032–1060, 2021.

697

698 Tian Tian, Chunyan Miao, and Hangwei Qian. Frera: a frequency-refined augmentation for con-
 699 trastive learning on time series classification. In *Proceedings of the 31st ACM SIGKDD Confer-
 700 ence on Knowledge Discovery and Data Mining V. 2*, pp. 2835–2846, 2025.

701

702 Terry T Um, Franz MJ Pfister, Daniel Pichler, Satoshi Endo, Muriel Lang, Sandra Hirche, Urban
 703 Fietzek, and Dana Kulic. Data augmentation of wearable sensor data for parkinson’s disease
 704 monitoring using convolutional neural networks. In *Proceedings of the 19th ACM international
 705 conference on multimodal interaction*, pp. 216–220, 2017.

706

707 Zaitian Wang, Pengfei Wang, Kunpeng Liu, Pengyang Wang, Yanjie Fu, Chang-Tien Lu, Charu C
 708 Aggarwal, Jian Pei, and Yuanchun Zhou. A comprehensive survey on data augmentation. *arXiv
 709 preprint arXiv:2405.09591*, 2024.

702 Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, Xue Wang, and Huan Xu. Time
 703 series data augmentation for deep learning: A survey. *arXiv preprint arXiv:2002.12478*, 2020.
 704

705 Wetterstation. Weather. <https://www.bgc-jena.mpg.de/wetter/>.
 706

707 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
 708 formers with auto-correlation for long-term series forecasting. *Advances in neural information*
 709 *processing systems*, 34:22419–22430, 2021.

710 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Tem-
 711 poral 2d-variation modeling for general time series analysis. *arXiv preprint arXiv:2210.02186*,
 712 2022.

713 Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu, Youjian
 714 Zhao, Dan Pei, Yang Feng, et al. Unsupervised anomaly detection via variational auto-encoder
 715 for seasonal kpis in web applications. In *Proceedings of the 2018 world wide web conference*, pp.
 716 187–196, 2018.

717 Zihan Yang, Richard O Sinnott, James Bailey, and QiuHong Ke. A survey of automated data augmen-
 718 tation algorithms for deep learning-based image classification tasks. *Knowledge and Information*
 719 *Systems*, 65(7):2805–2861, 2023.

720 Marta Yebra, Xingwen Quan, David Riaño, Pablo Rozas Larraondo, Albert IJM Van Dijk, and Ge-
 721 offrey J Cary. A fuel moisture content and flammability monitoring methodology for continental
 722 australia based on optical remote sensing. *Remote Sensing of Environment*, 212:260–272, 2018.

723 Haochen Yuan, Yutong Wang, Yihong Chen, Yunbo Wang, and Xiaokang Yang. Reaugment:
 724 Model zoo-guided rl for few-shot time series augmentation and forecasting. *arXiv preprint*
 725 *arXiv:2409.06282*, 2024.

726 Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
 727 Bixiong Xu. Ts2vec: Towards universal representation of time series. In *Proceedings of the AAAI*
 728 *conference on artificial intelligence*, volume 36, pp. 8980–8987, 2022.

729 Xu Zheng, Tianchun Wang, Wei Cheng, Aitian Ma, Haifeng Chen, Mo Sha, and Dongsheng Luo.
 730 Parametric augmentation for time series contrastive learning. *arXiv preprint arXiv:2402.10434*,
 731 2024.

732 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 733 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*
 734 *of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.

735

742 A IMPLEMENTATION DETAILS

743 All experiments were conducted on a workstation equipped with a single NVIDIA GeForce RTX
 744 3080 Ti GPU (12 GB memory). To evaluate the effectiveness of AutoDA-Timeseries, we conduct
 745 experiments on a wide range of benchmark datasets across five mainstream tasks, including clas-
 746 sification, long-term forecasting, short-term forecasting, regression, and anomaly detection. The
 747 detailed statistics of the datasets are provided in Tables 6, 7, and 8.

748 We adopt 7 widely used time-series transformations in the augmentation set \mathcal{T} . Specifically, the
 749 augmentation set includes: Raw (no augmentation applied), Jittering (Salamon & Bello, 2017),
 750 Scaling (Ohashi et al., 2017), TimeWarp (Le Guenec et al., 2016), Resample (Cao et al., 2020),
 751 FreqWarp (Jaity & Hinton, 2013), and MagWarp (Demir et al., 2021).

752 We conducted experiments on the validation set across multiple datasets with $K = \{1, 2, 3, 4, 5\}$,
 753 and selected the hyperparameter value that performs well on most datasets, namely $K = 3$. There-
 754 fore, in the main experiments, all datasets use $K = 3$.

756 Table 6: Summary of benchmark datasets for time series classification.
757

Datasets	Code	Classes	Dims	Length	Test Size	Train Size	Type
ArticularyWordRecognition	AWR	25	9	144	300	275	Motion
AtrialFibrillation	AF	3	2	640	15	15	ECG
BasicMotions	BM	4	6	100	40	40	HAR
Cricket	CR	12	6	1197	72	108	HAR
DuckDuckGeese	DDG	5	1345	270	50	50	Audio
EigenWorms	EW	5	6	17984	131	128	Motion
Epilepsy	EP	4	3	206	138	137	HAR
ERing	ER	6	4	65	270	30	HAR
EthanolConcentration	EC	4	3	1751	263	261	Spectro
FaceDetection	FD	2	144	62	3524	5890	EEG
FingerMovements	FM	2	28	50	100	316	EEG
HandMovementDirection	HMD	4	10	400	74	160	EEG
Handwriting	HW	26	3	152	850	150	HAR
Heartbeat	HB	2	61	405	205	204	Audio
Libras	LIB	15	2	45	180	180	HAR
LSST	LSST	14	6	36	2466	2459	Astronomy
MotorImagery	MI	2	64	3000	100	278	EEG
NATOPS	NATOPS	6	24	51	180	180	HAR
PEMS-SF	PEMS-SF	7	963	144	173	267	Transportation
PenDigits	PD	10	2	8	3498	7494	Motion
PhonemeSpectra	PS	39	11	217	3353	3315	Audio
RacketSports	RS	4	6	30	152	151	HAR
SelfRegulationSCP1	SCP1	2	6	896	293	268	EEG
SelfRegulationSCP2	SCP2	2	7	1152	180	200	EEG
StandWalkJump	SWJ	3	4	2500	15	12	ECG
UWaveGestureLibrary	UW	8	3	315	320	120	HAR

780 Table 7: Summary of benchmark datasets for time series regression.
781

Datasets	Code	Dims	Length	Test Size	Train Size	Type
AppliancesEnergy	AE	24	144	42	96	Energy
FloodModeling1	FM1	1	266	202	471	Environment
FloodModeling2	FM2	1	266	167	389	Environment
FloodModeling3	FM3	1	266	184	429	Environment
LiveFuelMoistureContent	LFMC	7	365	1510	3493	Environment
IEEEPPG	IEEEPPG	5	1000	1328	1768	Healthcare

790
791

B BASELINE DESCRIPTIONS

792793 To comprehensively evaluate the performance of the AutoDA-Timeseries framework, the following
794 baselines were applied to the same downstream models:
795

- 796 • NoAug: No augmentation was applied; the downstream model was trained directly on the
797 raw dataset.
- 798 • TS2Vec (Yue et al., 2022): TS2Vec is a universal representation learning framework de-
799 signed for time series, which enables representation learning across multiple semantic lev-
800 els. It achieves this by hierarchically distinguishing positive and negative samples at both
801 the instance and temporal dimensions, thereby capturing rich contextual information for
802 diverse downstream tasks.
- 803 • InfoTS (Luo et al., 2023): InfoTS is a contrastive learning-based method for time series
804 augmentation. It generates two augmented views of the input using parameterized trans-
805 formations and learns representations by maximizing mutual information between them.
806 InfoTS applies instance-level contrastive loss to retain fine-grained semantic identity, par-
807 ticularly useful for downstream classification tasks.
- 808 • AutoTCL (Zheng et al., 2024): AutoTCL proposes a parametric framework for time series
809 contrastive learning. It constructs two views using a learnable augmentation module, and

810
 811 Table 8: Summary of benchmark datasets for time series forecasting and anomaly detection. The
 812 “Dataset Size” column reports the number of samples in the training, validation, and testing splits,
 813 respectively.

814 Tasks	815 Datasets	816 Dims	817 Length	818 Dataset Size	819 Type (Frequency)
820 Long-term Forecasting	821 ETTm1, ETTm2	822 7	823 $\{96, 192, 336, 720\}$	824 (34465, 11521, 11521)	825 Electricity (15 mins)
	826 ETTh1, ETTh2	827 7	828 $\{96, 192, 336, 720\}$	829 (8545, 2881, 2881)	830 Electricity (15 mins)
	831 Weather	832 21	833 $\{96, 192, 336, 720\}$	834 (36792, 5271, 10540)	835 Weather (10 mins)
	836 Exchange	837 8	838 $\{96, 192, 336, 720\}$	839 (5120, 665, 1422)	840 Exchange rate (Daily)
841 Short-term Forecasting	842 M4-Yearly	843 1	844 6	845 (23000, 0, 23000)	846 Demographic
	847 M4-Quarterly	848 1	849 8	850 (24000, 0, 24000)	851 Finance
	852 M4-Monthly	853 1	854 18	855 (48000, 0, 48000)	856 Industry
	857 M4-Weekly	858 1	859 13	860 (359, 0, 359)	861 Macro
	862 M4-Daily	863 1	864 14	865 (4227, 0, 4227)	866 Micro
	867 M4-Hourly	868 1	869 48	870 (414, 0, 414)	871 Other
872 Anomaly Detection	873 MSL	874 55	875 100	876 (44653, 11664, 73729)	877 Spacecraft
	878 SMAP	879 25	880 100	881 (108146, 27037, 427617)	882 Spacecraft
	883 SMD	884 38	885 100	886 (566724, 141681, 708420)	887 Server Machine

825
 826 maximize their alignment via InfoNCE loss. The augmentation parameters are optimized
 827 with a bi-level meta-learning strategy to enhance task performance.

828

- 829 • RandAugment (Cubuk et al., 2020): RandAugment is a proxy-free automated augmentation
 830 framework that has achieved state-of-the-art (SOTA) performance in image classification
 831 tasks, significantly optimizing performance compared to proxy-based frameworks.
- 832 • TrivialAugment (Müller & Hutter, 2021): TrivialAugment is a tuning-free, proxy-free au-
 833 tomated augmentation framework that has demonstrated SOTA performance in image clas-
 834 sification tasks.
- 835 • UniformAugment (LingChen et al., 2020): UniformAugment is a proxy-free AutoDA
 836 framework achieving high efficiency and comparable performance in image classification
 837 tasks with theoretical supports.
- 838 • A2Aug (Li & Li, 2023): A2Aug is a proxy-free AutoDA framework that trains multiple
 839 downstream models in parallel with different augmentation transforms and combines their
 840 outputs via ensemble learning, achieving SOTA performance in image classification tasks.

841 For CV-based AutoDA baseline, We did not naively apply these methods. Instead, we performed a
 842 rigorous time-series-specific adaptation of each method. Specifically, we made three categories of
 843 modifications:

844

- 845 • **Replacing image operations with time-series transformations.** The original RandAug-
 846 ment/TrivialAugment families rely on image operations such as rotation, shear, and color
 847 jitter, which are not meaningful for time series. To ensure fairness, we replaced their aug-
 848 mentation set with standard time-series transformations such as jittering, scaling, time-
 849 warping, etc. This guarantees that all baselines and our method use the same valid aug-
 850 mentation set.
- 851 • **Preserving each method’s original sampling logic.** We strictly retained the core
 852 augmentation-selection mechanisms of each method: RandAugment preserves its N ran-
 853 dom operations + global magnitude M formulation. UniformAugment uniformly samples
 854 both operations and magnitudes. TrivialAugment samples one operation and magnitude
 855 per sample, following its original design. A2Aug learns augmentation weights jointly and
 856 ensembles operator logits adaptively.
- 857 • **Ensuring identical downstream settings for all baselines.** For fair comparison, all base-
 858 lines use the same downstream models (RNN, Autoformer, etc.), the same data splits, se-
 859 quence lengths, and batch sizes as AutoDA-Timeseries.

860 For time series-based representation learning baselines, we take the following measures to ensure
 861 fairness:

862

- 863 • First, all representation learning methods (TS2Vec, InfoTS, AutoTCL) are implemented
 864 using their official open-source repositories. We strictly follow their default hyperparame-
 865 ter configurations, including the number of training epochs, batch size, optimizer settings,

864 and the built-in augmentation pipeline. We do not modify any internal architectural
 865 components or training procedures. This ensures that the results are fully reproducible and not
 866 influenced by implementation choices on our side.
 867

- 868 • Second, unlike image-based AutoDA baselines, time-series representation learning meth-
 869 ods already include augmentation operators specifically designed for sequential data. To
 870 ensure fairness, we preserve the exact augmentation transformations defined in their offi-
 871 cial codebases. This prevents any methodological bias that might arise from altering or
 872 replacing their augmentation primitives.
 873
- 874 • Finally, to guarantee fairness in downstream evaluation, all baselines adopt the same down-
 875 stream configuration used in AutoDA-Timeseries. The downstream model architecture is
 876 kept identical across all methods, and every method is evaluated under the same data splits.
 877 For representation learning baselines, we follow their standard protocol: the encoder is first
 878 pretrained, and then frozen during downstream training while only the prediction head is
 879 optimized.
 880

880 C ABLATION STUDIES

881 To verify the effectiveness of our key insights and the architecture designs introduced in Section 3,
 882 we conducted ablation studies. We remove each component from a complete AutoDA-Timeseries
 883 and evaluate their impacts by performance degradation.
 884

885 The results are presented in Figure 7 and Table 10. As shown in Figure 7, most points lie above the
 886 diagonal, indicating that incorporating time series features, joint optimization, dynamic temperature,
 887 and composite loss consistently improves the performance of AutoDA-Timeseries on the classifica-
 888 tion task compared to their ablated versions. These results validate the necessity of the overall
 889 framework design, showing that each component contributes positively to the final performance,
 890 while removing any of them leads to performance degradation.
 891

892 As shown in Table 10, first, disabling *Time Series Features* increased the MSE by up to 14.4%, which
 893 underscores the need for these features to guide augmentation, verifying our insight of performing
 894 augmentation policy generation conditioned on time series features. Second, removing *Joint Opti-*
 895 *mization* of probabilities and intensities led to an increase in MSE of up to 7.6%, which emphasizes
 896 the importance of generating the optimal combination of transformation types and strengths. Fi-
 897 nally, the exploration-exploitation balancing strategies, including *Dynamic Temperature* and *Com-*
 898 *posite Loss*, all demonstrate clear effectiveness, reducing MSE by up to 7.4% and 8.1% relative to
 899 their ablated counterparts. Overall, these findings emphasize that each component is essential for
 900 the framework’s performance and effectiveness in automated time series augmentation.
 901

902 To verify that AutoDA-Timeseries meaningfully adapts augmentation strategies to time series dy-
 903 namics, we conducted an ablation study based on the three major categories of Catch22 features as
 904 shown in Table 9. Specifically, different subsets of Catch22 capture key dynamic properties of time
 905 series:
 906

- 907 • Linear and nonlinear autocorrelation features (e.g., CO_f1ecac, CO_FirstMin_ac) describe
 908 temporal dependency;
 909
- 910 • Distribution-shape features (e.g., DN_HistogramMode_5, DN_HistogramMode_10) reflect
 911 whether the sequence contains sparse anomalies, skewness, or kurtosis;
 912
- 913 • Differential-based features (e.g., SB_BinaryStats_diff_longstretch0) capture local fluctua-
 914 tions, short-term variation strength, and long-term stationarity.
 915

916 We removed each of these feature categories respectively and evaluated performance across 9 UEA
 917 datasets using ROCKET as the downstream model. The results show that removing any category
 918 consistently leads to a noticeable performance drop. This indicates that temporal-structure features
 919 play an essential role in guiding the learned augmentation policy: the model does not simply ap-
 920 plly general augmentation patterns, but instead relies on time-series-specific dynamic attributes to
 921 adjust both augmentation selection probabilities and augmentation strengths, thereby achieving true
 922 adaptation to time series dynamics.
 923

Figure 7: Ablation study of AutoDA-Timeseries on TCN for classification.

Table 9: Ablation study on Catch22 feature groups.

Dataset	Ours	Remove Autocorrelation	Remove Distribution	Remove Differencing
AWR	0.9800	0.9400	0.9467	0.9800
BM	1	1	1	1
CR	1	0.9861	0.9444	1
EP	0.9783	0.9275	0.9348	0.9203
ER	0.9741	0.9185	0.9296	0.9407
HB	0.7756	0.7610	0.7415	0.7512
RS	0.8947	0.8947	0.8421	0.8026
SCP1	0.8840	0.8464	0.8294	0.8328
UW	0.9313	0.9031	0.9125	0.9188
Average Accuracy	0.9353	0.9086	0.8979	0.9052

D HYPER-PARAMETER SENSITIVITY

AutoDA-Timeseries involves two key hyper-parameters: the number of augmentation layers k and the raw transform bias p_{rb} , which jointly determine the size of the augmentation search space and the proportion of raw samples retained during training. Specifically, the former controls how many transformations are applied sequentially to each sample, where larger values increase data diversity but may also introduce excessive noise. The latter assigns a probability to directly selecting the raw input, which acts as a regularizer to prevent overfitting to overly augmented samples.

As shown in Figure 8, both hyper-parameters have limited impact on performance across different tasks. Specifically, increasing k yields stable results, with moderate values providing the best trade-off between diversity and reliability. For the raw transform bias, incorporating a small proportion of raw samples consistently stabilizes training and avoids degradation, highlighting the importance of balancing augmented and authentic data. Overall, these results indicate that AutoDA-Timeseries is robust to the choice of hyper-parameters.

In addition, our current implementation initializes the augmentation distribution using a uniform prior with an additional raw-transform bonus. To evaluate the sensitivity of our framework to this initialization, we conduct a controlled study on both classification (ROCKET-based, evaluated with accuracy) and long-term forecasting (RNN-based, evaluated with MSE and MAE) settings under four initial augmentation distributions:

- Uniform distribution + raw-transform bonus (the default setting in our paper);
- Pure uniform distribution;
- Random distribution sampled from $\text{Dirichlet}(\alpha = 1)$, which centers around the uniform distribution with moderate variance;
- Random distribution sampled from $\text{Dirichlet}(\alpha = 2)$, which produces samples closer to uniform but still with variability.

As shown in Table 11 and 12, the final performance differences remain consistently small across all augmentation distributions. These results demonstrate that our framework is insensitive to the choice of the initial augmentation distribution, and that the learned augmentation policy remains

972 Table 10: Ablation study of AutoDA-Timeseries on RNN for long-term forecasting.
973

Design Metrics	w/o Time Series Features		w/o Joint Optimization		w/o Dynamic Temperature		w/o Composite Loss		AutoDA-Timeseries		
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
ETTh1	96	0.5071	0.4738	0.4884	0.4728	0.4903	0.4721	0.4906	0.4730	0.4849	0.4715
	192	0.5697	0.4989	0.5592	0.5310	0.5540	0.5019	0.5529	0.5262	0.5536	0.5046
	336	0.5876	0.5133	0.5468	0.4956	0.6049	0.5227	0.5843	0.5440	0.5552	0.4902
	720	0.5804	0.5209	0.5648	0.5174	0.6232	0.5458	0.6026	0.5635	0.5777	0.5161
	Avg	0.5612	0.5017	0.5398	0.5042	0.5681	0.5106	0.5576	0.5267	0.5429	0.4956
ETTm1	96	0.6013	0.5031	0.4749	0.4758	0.4635	0.4486	0.5090	0.4957	0.4714	0.4500
	192	0.7106	0.5381	0.5179	0.5072	0.5207	0.4987	0.5336	0.5110	0.5107	0.4630
	336	0.7354	0.5542	0.5574	0.5246	0.5689	0.4900	0.5552	0.5210	0.5628	0.4881
	720	0.7612	0.5737	0.6083	0.5499	0.6203	0.5544	0.6219	0.5579	0.6071	0.5237
	Avg	0.7021	0.5423	0.5396	0.5144	0.5434	0.4979	0.5549	0.5214	0.5380	0.4812
Exchange	96	0.1236	0.2528	0.1188	0.2413	0.1319	0.2494	0.1299	0.2551	0.1086	0.2328
	192	0.2238	0.3412	0.2607	0.3632	0.2201	0.3353	0.2135	0.3287	0.2049	0.3234
	336	0.3745	0.4458	0.3945	0.4605	0.3610	0.4354	0.3989	0.4632	0.3582	0.4360
	720	0.9984	0.7622	0.9839	0.7570	0.9810	0.7562	0.9866	0.7582	0.6920	0.6493
	Avg	0.4301	0.4505	0.4395	0.4555	0.4235	0.4441	0.4322	0.4513	0.3409	0.4104
Weather	96	0.1842	0.2353	0.2066	0.2440	0.2066	0.2427	0.2053	0.2490	0.1736	0.2191
	192	0.2286	0.2676	0.2483	0.2824	0.2407	0.2825	0.2474	0.2882	0.2263	0.2636
	336	0.2948	0.3153	0.3168	0.3287	0.3132	0.3236	0.3032	0.3209	0.2761	0.3050
	720	0.3678	0.3617	0.4195	0.3992	0.3554	0.3517	0.3739	0.3692	0.3536	0.3534
	Avg	0.2689	0.2950	0.2978	0.3136	0.2790	0.3001	0.2825	0.3068	0.2574	0.2853

991
992 stable and robust regardless of how the distribution is initialized. This indicates that the training
993 dynamics of AutoDA-Timeseries are sufficiently strong to overcome any prior biases introduced at
994 initialization.

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Figure 8: Performance of AutoDA-Timeseries under different hyper-parameter settings across representative tasks.

E GENERALIZATION ACROSS DATASETS

To further examine the generalizability of AutoDA-Timeseries, we conduct transfer experiments across datasets, as summarized in Table 13. Specifically, we train the downstream model together with augmentation policies on ETTh1 and directly evaluate the trained model on ETTh2 and ETTm2, comparing with NoAug and UniformAugment baselines (the latter is included because it is the second-best method under the RNN downstream model, only inferior to ours). As shown in the upper block (ETTh1 → ETTh2), AutoDA-Timeseries consistently outperforms the baselines across all forecasting horizons, achieving the lowest average MSE and MAE, which demonstrates that the models trained with our framework generalize well to datasets with similar distribution. In the

Table 11: Sensitivity of AutoDA-Timeseries to initial augmentation distributions on classification.

Dataset	Unifrom + Raw Bonus (Ours)	Uniform Dist.	Random Dist ($\alpha = 1$)	Random Dist ($\alpha = 2$)
AWR	0.9800	0.9500	0.9733	0.9633
BM	1	1	1	1
CR	1	0.9861	0.9861	1
EP	0.9783	0.9638	0.9420	0.9638
ER	0.9741	0.9222	0.9556	0.9296
HB	0.7756	0.7756	0.7415	0.7366
RS	0.8947	0.8817	0.8882	0.9013
SCP1	0.8840	0.8703	0.8980	0.8805
UW	0.9313	0.9188	0.9270	0.9345
Average Accuracy	0.9353	0.9187	0.9235	0.9233

Table 12: Sensitivity of AutoDA-Timeseries to initial augmentation distributions on long-term forecasting.

Dataset	Pred_len	Metric	Unifrom + Raw Bonus (Ours)	Uniform Dist.	Random Dist ($\alpha = 1$)	Random Dist ($\alpha = 2$)
ETTh1	96	MSE	0.4849	0.5034	0.5098	0.5137
		MAE	0.4715	0.4789	0.4795	0.4803
	192	MSE	0.5536	0.5308	0.5387	0.5420
		MAE	0.5046	0.4912	0.4951	0.4956
	336	MSE	0.5552	0.5658	0.5728	0.5762
		MAE	0.4902	0.5027	0.5065	0.5069
	720	MSE	0.5777	0.5536	0.5692	0.5734
		MAE	0.5161	0.5003	0.5135	0.5139
ETTh2	96	MSE	0.3336	0.3590	0.3559	0.3559
		MAE	0.3779	0.3918	0.3914	0.3914
	192	MSE	0.4229	0.4250	0.4273	0.4273
		MAE	0.4238	0.4277	0.4320	0.4321
	336	MSE	0.4340	0.4453	0.4597	0.4593
		MAE	0.4392	0.4503	0.4582	0.4582
	720	MSE	0.4213	0.4472	0.4546	0.4498
		MAE	0.4431	0.4590	0.4591	0.4505
ETTm1	96	MSE	0.4714	0.4787	0.4761	0.4763
		MAE	0.4500	0.4581	0.4556	0.4539
	192	MSE	0.5107	0.5077	0.5081	0.5280
		MAE	0.4630	0.4601	0.4735	0.4691
	336	MSE	0.5628	0.5612	0.5615	0.6471
		MAE	0.4881	0.4851	0.4897	0.5084
	720	MSE	0.6071	0.6132	0.6023	0.6459
		MAE	0.5237	0.5305	0.5188	0.5584
ETTm2	96	MSE	0.2019	0.2108	0.2156	0.2156
		MAE	0.2850	0.2842	0.2896	0.2856
	192	MSE	0.2601	0.2875	0.2827	0.2826
		MAE	0.3225	0.3296	0.3265	0.3265
	336	MSE	0.3136	0.3611	0.3480	0.3485
		MAE	0.3545	0.3727	0.3635	0.3639
	720	MSE	0.4197	0.4582	0.4328	0.4517
		MAE	0.4165	0.4388	0.4358	0.4368

more challenging setting of ETTh1 \rightarrow ETTm2, where the source and target distributions differ substantially, the performance gap narrows, yet AutoDA-Timeseries remains competitive and clearly superior to UniformAugment. These results highlight that AutoDA-Timeseries not only enhances performance within a single dataset but also exhibits strong potential for cross-dataset generalization, validating its robustness and applicability in real-world scenarios.

F MODEL EFFICIENCY

To further evaluate the practicality of AutoDA-Timeseries, we conduct efficiency experiments considering three factors: parameter size, training time (ms/iter), and accuracy. As shown in Figure 9,

1080 Table 13: Generalization performance of AutoDA-Timeseries on RNN under cross-dataset transfer
1081 settings.
1082

Settings	NoAug		UniformAugment		AutoDA-Timeseries		
	MSE	MAE	MSE	MAE	MSE	MAE	
ETTh1 \rightarrow ETTh2	96	0.4761	0.4602	0.6486	0.5577	0.4431	0.4409
	192	0.5418	0.4944	0.7172	0.5882	0.5146	0.4788
	336	0.5566	0.5116	0.7366	0.6091	0.5374	0.4996
	720	0.5416	0.5115	0.7727	0.6315	0.5354	0.5052
	Avg	<u>0.5290</u>	<u>0.4944</u>	0.7188	0.5966	0.5076	0.4811
ETTh1 \rightarrow ETTm2	96	0.8668	0.6702	1.1370	0.7578	0.8663	0.6724
	192	1.0198	0.7361	1.3273	0.8305	1.0087	0.7338
	336	1.2997	0.8369	1.6327	0.9313	1.2791	0.8317
	720	1.7294	0.9623	2.1243	1.0623	1.7105	0.9576
	Avg	<u>1.2289</u>	<u>0.8014</u>	1.5553	0.8955	1.2162	0.7989

1098 AutoDA-Timeseries achieves a favorable balance between accuracy and efficiency. Compared with
1099 NoAug, AutoDA-Timeseries brings consistent accuracy improvements with only moderate increases
1100 in parameter size and training time. Compared with more complex baselines such as AutoTCL,
1101 TS2Vec, and A2Aug, AutoDA-Timeseries delivers higher accuracy with significantly lower com-
1102 putational overhead. Although simple augmentation baselines such as UniformAugment exhibit
1103 shorter training times, they fail to match the performance of AutoDA-Timeseries. Overall, these
1104 results highlight the advantage of AutoDA-Timeseries in achieving an effective accuracy-efficiency
1105 trade-off, demonstrating its practicality for real-world time series applications.

1106 To complete our analysis, we next present a formal analysis of AutoDA-Timeseries’s computational
1107 complexity. During training, the computational complexity of the augmented model is $O(K \times$
1108 $B \times d \times L)$, and the memory $O(B \times d \times L)$. During inference, our framework does not invoke
1109 the augmented model. Only the downstream model is used, so there is zero additional runtime or
1110 memory cost introduced by AutoDA-Timeseries at inference time. We provide a detailed derivation
1111 below.

1112 The computational cost of AutoDA-Timeseries comes from two components: the policy generator
1113 (probability and strength generators) and the augmentation operators in the augmentation set \mathcal{T} .

1114 **Time Complexity.** The policy generator takes as input the flattened feature vector in $\mathbb{R}^{C \times d}$ and the
1115 probability vector in \mathbb{R}^n from the previous layer. Both are length-independent vectors. Therefore,
1116 the cost for this part is $O(B \times (Cd + n))$, where B is the dataset size, d is the channel dimension, C
1117 is the number of feature dimensions, and n is the size of the augmentation set. This cost does
1118 not depend on the sequence length L and is significantly smaller than the cost of applying the
1119 augmentation operators.

1120 The dominant cost comes from the augmentation operators. Most transformations used in AutoDA-
1121 Timeseries (such as Jittering, Scaling, TimeWarp, and Resample) involve pointwise operations or
1122 a single interpolation along the temporal axis. Since the operations are performed over all L time
1123 steps and across all d channels, their cost per layer is $O(dL)$. Combining the two parts, the total
1124 time complexity of K stacked augmentation layers is $O(K \times B \times d \times L) + O(B \times (Cd + n)) \approx$
1125 $O(K \times B \times d \times L)$, because the second term is much smaller than the first.

1126 **Memory Complexity.** The memory cost consists of three components.

- 1128 • The policy generator parameters. The MLP weights have size $O(Cd + n)$, which does not
1129 depend on L and is much smaller than the parameter size of downstream models such as
1130 Autoformer, VAE, or TCN;
- 1131 • The intermediate tensors during augmentation. At each layer the model stores the original
1132 sequence and the augmented sequence. The extra memory cost is $O(B \times d \times L)$. Aug-
1133 mentation layers operate sequentially rather than in parallel. Therefore, the total additional
memory cost remains $O(B \times d \times L)$, the same as a single layer;

1134
 1135 • Downstream model memory, which is shared across all methods and does not affect the
 1136 relative cost of AutoDA-Timeseries.

1149 (a) Efficiency comparison on FingerMovements (b) Efficiency comparison on MotorImagery dataset
 1150 dataset (28 dimensions) (64 dimensions)

1151 Figure 9: Model efficiency comparison across datasets. The x-axis represents training time per
 1152 iteration, the y-axis shows accuracy, and the bubble size reflects model parameter size.

G ROBUSTNESS UNDER LIMITED TRAINING SAMPLES

1158 In practical scenarios, obtaining sufficient labeled training samples is often challenging. A data
 1159 augmentation method that maintains strong performance under limited samples demonstrates better
 1160 generalization under limited training data (Wen et al., 2020). To evaluate this property, we progres-
 1161 sively reduced the training set to 10%, 30%, 50%, 70%, and 100% of its original size, and compared
 1162 the performance of NoAug with AutoDA-Timeseries. We selected three representative tasks, in-
 1163 cluding classification, long-term forecasting, and anomaly detection. The model architectures and
 1164 hyperparameters were kept fixed, and we reported Accuracy, MSE, and F1-score for each task.

1165 As shown in Figure 10, AutoDA-Timeseries consistently outperforms NoAug under different frac-
 1166 tions of training data. The advantage is particularly evident in low-data regimes, where augmentation
 1167 substantially narrows the performance gap caused by limited supervision. Even when more data are
 1168 available, AutoDA-Timeseries remains competitive, indicating that learned augmentation strategies
 1169 not only alleviate data scarcity but also enhance robustness across varying data scales. This finding
 1170 suggests that AutoDA-Timeseries is not merely a remedy for data scarcity but a general mechanism
 1171 to enhance model generalization in diverse real-world scenarios.

1184 Figure 10: Performance comparison between NoAug and AutoDA-Timeseries under varying training
 1185 data ratios (10%, 30%, 50%, 70%, 100%) across three representative tasks: classification (Ac-
 1186 curacy), long-term forecasting (MSE), and anomaly detection (F1-score).

1188

H WEIGHT DISTRIBUTION ANALYSIS

1191 To further understand the effect of AutoDA-Timeseries on downstream model training, we ana-
 1192 lyze the weight distributions of models trained with and without augmentation, as they provide a
 1193 compact characterization of model stability and generalization. Figure 11 presents kernel density
 1194 estimates of model parameters across five representative tasks, including classification (SelfRegu-
 1195 lationSCP2), long-term forecasting (ETTh1), short-term forecasting (M4), regression (FloodMod-
 1196 eling2), and anomaly detection (MSL). The distributions remain largely consistent in shape and
 1197 centered around zero, indicating that AutoDA-Timeseries does not introduce abnormal parameter
 1198 shifts or bias. Meanwhile, the five tasks exhibit distinct distributional patterns: ETTh1 and Flood-
 1199 Modeling2 show narrow and almost sparse distributions, while M4 presents wider tails that reflect
 1200 higher complexity. These results demonstrate that AutoDA-Timeseries adapts effectively to diverse
 1201 scenarios while preserving distributional stability.

1202 Figure 11: Comparison of weight distributions between models trained without augmentation
 1203 (blue, NoAug) and with AutoDA-Timeseries (red) across five tasks, demonstrating that AutoDA-
 1204 Timeseries preserves stable parameter distributions while adapting to task-specific characteristics.

1217

I PRIVACY ANALYSIS

1218 To assess whether releasing augmented datasets could expose sensitive information from the orig-
 1219 inal time series, we conducted statistical attack experiments to compare privacy vulnerability by
 1220 uniform (employed in RandAugment, UniformAugment, and TrivialAugment) or biased (employed
 1221 in AutoDA-Timeseries) augmentation selections. We try to reconstruct the original time series from
 1222 an augmented time series dataset generated from a set of augmentation transforms applied to the
 1223 original seed time series, and evaluate the privacy vulnerability by the RMSE between the ground
 1224 truth original time series and the reconstructed time series.

1225 As detailed in Appendix I.1, a more deterministic reconstruction can be performed with known
 1226 equal probabilities of augmentation, while in contrast, reconstruction with unknown probabilities of
 1227 augmentation has to be modeled as a mixture-model estimation.

1228 As shown in Table 14, four groups of reconstruction are performed for comparison. To ensure
 1229 fairness, $G1$, $G3$, and $G4$ utilize the same augmented time series dataset, and we control the $G3$ and
 1230 $G4$ to iterate with the same time consumption. Due to the context limitation, more details can be
 1231 found in Appendix I.2.

1232 The results are presented in Figure 12. First, $G1$ and $G4$, which simulate reconstructing from a
 1233 dataset generated by previous SOTA AutoDA frameworks, demonstrate a lower RMSE and time
 1234 consumption than $G2$ and $G3$. This indicates the risk to data privacy when releasing augmented
 1235 datasets with a fixed uniform augmentation policy. Second, the accuracy difference between $G3$ and
 1236 $G4$ shows that the estimation of seed data can be easily misled when the augmentation probabilities
 1237 are also jointly estimated for a mixture model estimation, proving the effectiveness for augmenting
 1238 the time series without a fixed augmentation probability. Last, the RMSEs in $G2$ are higher than $G3$
 1239 and $G4$ with the same estimation model, indicating that the non-uniform augmentation probability
 1240 in augmentation policy does increase the difficulty of reconstructing the seed data.

1242

1243

1244

1245

1246

1247

1248

1249

Table 14: Reconstruction experiment group setup. AugProbs is whether the augmentation probabilities are equal, and ProbDist is whether this probability distribution is fixed and known to the attacker.

Group	Estimation	ProbDist	AugProbs
Group 1 (G_1)	Deterministic	Fixed	Uniform
Group 2 (G_2)	Mixture-model	Unfixed	Non-uniform
Group 3 (G_3)	Mixture-model	Unfixed	Uniform
Group 4 (G_4)	Mixture-model	Fixed	Uniform

1250

1251

1252

1253

1254

1255

1256

1257

I.1 RECONSTRUCT A SINGLE TIME SERIES FROM AUGMENTED TIME SERIES

1258

1259

1260

1261

This section discusses how to reconstruct the seed time series from augmented time series data based on a seed time series and a set of augmentation transformations $\mathcal{T} = \{T_j, j = 1, 2, \dots, n\}$ when randomly sampling augmentation transforms and intensities.

1262

1263

1264

Denote the original time series as c . Suppose the probability of selecting augmentation transform T_i is p_i , the distribution of the augmented time series generated by T_i is Y_i , and the distribution of the entire generated dataset is X_g . Then:

1265

1266

1267

$$E(X_g) = \sum p_i E(Y_i(c)),$$

1268

1269

1270

where $E(X_g)$ is precisely the weighted mean expectation of all time series in the generated dataset, denoted $mean(X_g) = \mu_g$. Next, the variance is given by:

1271

1272

1273

where

1274

1275

1276

1277

$$E(Var(X_g | p_i)) = \sum p_i Var(Y_i(c))$$

1278

represents the weighted mean variance of all subsets generated by different augmentation transforms.

1279

1280

1281

1282

1283

1284

1285

1286

In previous AutoDA frameworks (Cubuk et al., 2020; Müller & Hutter, 2021; LingChen et al., 2020), the transformation operators are predefined and fixed. Consequently, the distributions Y_i can be easily derived apart from an unknown intensity range parameter t . Therefore, the distribution of X_g is determined by the original seed data c , the intensity range parameter t , and the probability distribution $\{p_i\}$. These three can be viewed as the prior for X_g and hence can be estimated with the observed samples of X_g , which correspond exactly to the time series in the augmented dataset. As a result, if the augmentation transforms are selected with equal probabilities, t can be easily estimated, and the seed data c can be reconstructed accordingly, jeopardizing data privacy.

1287

1288

1289

For illustration, consider a toy example with a specific seed time series c and an augmentation transform set comprising three transformations:

1290

1291

1292

1293

1294

1295

- *Raw* transform: $Y_1(c) = c$
- *Scaling* transform: $Y_2(c) = c \cdot s$, where the scaling factor s follows a uniform distribution $s \sim U[2t - 1, 2t + 1]$
- *Jittering* transform: $Y_3(c) = c + n$, where the noise n follows a Gaussian distribution $n \sim \mathcal{N}(0, t^2)$

Figure 12: Reconstruction RMSE and time consumption to reconstruct the original time series.

1296 The expectation and variance of each subset are then:
 1297

$$\begin{aligned} E(Y_1) &= c, \\ Var(Y_1) &= 0, \\ E(Y_2) &= 2t \cdot c, \\ Var(Y_2) &= 4t^2 c^2, \\ E(Y_3) &= c, \\ Var(Y_3) &= t^2. \end{aligned}$$

1305 Hence, if the augmentation transforms are chosen with equal probability $p_1 = p_2 = p_3 = \frac{1}{3}$, the
 1306 expectation and variance of the entire augmented dataset are:
 1307

$$\begin{aligned} E(X_g) &= \frac{c + 2tc + c}{3} = \frac{2t + 2}{3} c, \\ Var(X_g) &= (0 + \frac{1}{3}c^2 + t^2)/3 + (c^2 + 4t^2 c^2 + c^2)/3 - \left(\frac{2t + 2}{3} c\right)^2 = \frac{1}{3}t^2 + \frac{8t^2 - 8t + 3}{9} c^2. \end{aligned}$$

1311 Since the average and variance of the augmented dataset can be computed easily, t can be estimated,
 1312 and subsequently c can be inferred. By contrast, if the probability of augmentation selection is not
 1313 equal, the model forms a mixture model, making estimation significantly more complex.
 1314

1315 **Abstractly**, when the selection probabilities are not necessarily equal, one must re-estimate the
 1316 prior from observations of the distribution involving $\{p_i\}$, c , and t . However, when the selection
 1317 probabilities are assumed to be equal, X_g reduces to a distribution that contains only the unknown
 1318 priors c and t , which substantially reduces the difficulty of accurate prior estimation.
 1319

1319 I.2 RECONSTRUCTION EXPERIMENT SETTINGS

1320 Given a predefined set of augmentation transformations, we apply these transformations to time
 1321 series in the original dataset. Two types of datasets are generated with different strategies:
 1322

- 1323 • The generated time series data of all different transformations are directly mixed into the
 1324 dataset \mathcal{D}_1 with equal probability.
 1325
- 1326 • The generated time series data of all transformations are mixed into a synthetic dataset \mathcal{D}_2
 1327 according to a given probability vector.

1328 From \mathcal{D}_1 and \mathcal{D}_2 , the original seed metrics as prior parameters are estimated. For \mathcal{D}_1 , we use New-
 1329 ton's method to estimate the intensity range parameters and the original seed metrics, denoted as
 1330 *Group1*. For \mathcal{D}_2 , since the probability vector prior is unknown, it formulates a mixture model esti-
 1331 mation. Thus, the Expectation-Maximization (EM) algorithm is applied to estimate the probability
 1332 and the prior parameters of the corresponding distribution iteratively. We generated a dataset with
 1333 unevenly sampled transformations and performed EM (denoted as *Group2*).
 1334

1335 To ensure fairness in comparison, we also established a comparison group of applying EM on \mathcal{D}_1 ,
 1336 learning the probability on its own (denoted as *Group3*), or estimating with a fixed probability
 1337 (denoted as *Group4*).
 1338

1339 In the experiment, specific formal modifications have been made to some augmentation transfor-
 1340 mations to unify the problem form and accelerate the calculation. For example, the *Raw* transfor-
 1341 mation is replaced with a *Jittering* transformation with a minimal Gaussian noise. In addition, we have
 1342 performed standard normalization on the original time series in advance to avoid the problem of
 1343 inconsistent scales.
 1344

1343 J FULL RESULTS

1344 To provide a complete view of the experiment outcomes, we report the detailed results of all down-
 1345 stream models across different tasks. Specifically, the classification results using TCN and ROCKET
 1346 are presented in Tables 15 and 16, while the long-term forecasting results with RNN and Autoformer
 1347 are summarized in Tables 17 and 18. For regression, we present the detailed results of CNN and
 1348 MLP in Tables 19 and 20. Finally, the anomaly detection results with UNet and VAE are provided
 1349 in Tables 21 and 22.
 1350

1350 Table 15: Detailed classification results with TCN across baselines and AutoDA-Timeseries. “*.” in
 1351 the method names denotes *Augment.

Datasets / Methods	NoAug	InfoTS (2023)	AutoTCL (2024)	TS2Vec (2022)	Rand. (2020)	Uniform. (2020)	Trivial. (2021)	A2Aug (2023)	Ours
AWR	0.8933	0.9767	0.9800	0.9367	0.9133	0.9100	0.9433	0.9833	0.9533
AF	0.3333	0.3333	0.4667	0.3333	0.4000	0.4667	0.3333	0.3333	0.4667
BM	1	1	1	0.5000	1	1	1	1	1
CR	0.9861	0.9861	0.9583	0.9583	0.9772	0.9028	1	0.9861	1
DDG	0.7200	0.5600	0.6000	0.2800	0.7400	0.7000	0.7000	0.6000	0.7200
EW	0.8168	0.8015	0.8168	0.7939	0.8321	0.6718	0.7634	0.8092	0.8702
EP	0.9783	0.9348	0.9420	0.9420	0.9783	0.9420	0.9783	0.9855	1
ER	0.7593	0.9185	0.8963	0.1667	0.8778	0.8815	0.8778	0.9037	0.9222
EC	0.4030	0.2548	0.2890	0.3080	0.3004	0.2776	0.3118	0.3156	0.4068
FD	0.5000	0.6302	0.5499	0.5182	0.5000	0.5006	0.5000	0.5000	0.5000
FM	0.5900	0.6000	0.5500	0.5400	0.5700	0.5700	0.5300	0.5700	0.6200
HMD	0.4730	0.4730	0.4324	0.1758	0.4189	0.4054	0.4324	0.4595	0.4730
HW	0.5847	0.3647	0.4600	0.2753	0.5588	0.0812	0.6118	0.6671	0.4918
HB	0.7854	0.7610	0.7512	0.7317	0.7659	0.7512	0.7756	0.7756	0.7854
LIB	0.8222	0.8278	0.6667	0.7222	0.7667	0.1389	0.8222	0.9111	0.8500
LSST	0.3990	0.6310	0.5114	0.6196	0.4185	0.3491	0.4091	0.6403	0.4124
MI	0.6100	0.5000	0.6000	0.6200	0.6100	0.6200	0.6400	0.6200	0.6700
NATOPS	0.8333	0.9389	0.8389	0.8944	0.8500	0.8444	0.8389	0.8334	0.8889
PEMS-SF	0.8324	0.7861	0.6821	0.5491	0.7977	0.4046	0.7514	0.8728	0.8497
PD	0.8645	0.9237	0.9423	0.9140	0.9525	0.8716	0.9580	0.8971	0.9634
PS	0.2320	0.2741	0.0954	0.1700	0.1497	0.0790	0.1968	0.2103	0.1867
RS	0.9079	0.8882	0.8950	0.7566	0.9145	0.8882	0.9013	0.9211	0.9408
SCP1	0.8396	0.8703	0.8700	0.8567	0.8396	0.8601	0.8805	0.8669	0.8874
SCP2	0.5389	0.5667	0.5667	0.4611	0.5889	0.5667	0.5500	0.5611	0.6111
SWJ	0.3333	0.4667	0.4667	0.3333	0.4667	0.4000	0.4667	0.4000	0.7333
UWGL	0.7656	0.9094	0.8840	0.8156	0.8531	0.7063	0.8061	0.8219	0.7875
Average Accuracy	0.6847	0.6991	0.6812	0.5836	0.6939	0.6073	0.6915	0.7094	0.7304

K SHOWCASES

K.1 SHOWCASE OF FORECASTING CASES

To provide an intuitive understanding of how different augmentation strategies influence forecasting performance, we present case studies on the ETTh1 dataset with a horizon of 96 steps, where the downstream model is RNN. As shown in Figure 13, the predictions from models trained with AutoDA-Timeseries better capture the temporal dynamics and align more closely with the ground truth compared to those from other baselines.

K.2 SHOWCASE OF AUGMENTATION CASES

We visualize augmentation cases on the SCP1 dataset to provide qualitative insights. Figure 14 and Figure 15 present two different samples, each showing the evolution of augmented time series across three layers. The results indicate that the augmentation process preserves the global structure while introducing diverse variations, demonstrating the effectiveness of AutoDA-Timeseries in generating meaningful augmented data.

1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

Table 16: Detailed classification results with ROCKET across baselines and AutoDA-Timeseries. “*.” in the method names denotes *Augment.

Datasets / Methods	NoAug	InfoTS (2023)	AutoTCL (2024)	TS2Vec (2022)	Rand. (2020)	Uniform. (2020)	Trivial. (2021)	A2Aug (2023)	Ours
AWR	0.9667	0.9767	0.9800	0.9833	0.9567	0.9433	0.9733	0.9900	0.9800
AF	0.4000	0.5333	0.5333	0.4000	0.4000	0.3333	0.4000	0.4000	0.4667
BM	1	0.7750	1	1	1	1	1	1	1
CR	0.9583	0.8889	0.8889	0.5972	0.9306	0.8334	0.9861	0.9861	1
DDG	0.6600	0.7000	0.7000	0.2600	0.6600	0.6200	0.5800	0.7000	0.7000
EW	0.6107	0.6565	0.6183	0.5954	0.6031	0.5649	0.6565	0.7252	0.7328
EP	0.9638	0.5725	0.9275	0.8551	0.9058	0.7971	0.9565	0.9420	0.9783
ER	0.9444	0.9593	0.9556	0.8	0.9296	0.9037	0.9222	0.9556	0.9741
EC	0.2928	0.4297	0.4373	0.4297	0.2928	0.2852	0.3042	0.2548	0.3156
FD	0.6200	0.6393	0.6348	0.5497	0.6379	0.6266	0.6263	0.6510	0.6328
FM	0.5900	0.6300	0.6200	0.6000	0.6300	0.5800	0.6100	0.6100	0.6500
HMD	0.5270	0.5135	0.5405	0.1351	0.5135	0.5000	0.5541	0.5000	0.5541
HW	0.3600	0.2200	0.2212	0.1600	0.3047	0.1141	0.3447	0.4800	0.3588
HB	0.7610	0.7415	0.7366	0.6341	0.7805	0.7512	0.7561	0.7659	0.7756
LIB	0.6889	0.8500	0.8556	0.7056	0.5833	0.3500	0.6389	0.8222	0.7167
LSST	0.6006	0.3978	0.5016	0.6156	0.5921	0.5393	0.6123	0.6415	0.5933
MI	0.5800	0.5900	0.5800	0.6100	0.5600	0.5500	0.5600	0.5500	0.6500
NATOPS	0.9167	0.9000	0.9056	0.8833	0.8889	0.8278	0.9167	0.9167	0.9167
PEMS-SF	0.5376	0.7919	0.7746	0.3584	0.3873	0.1792	0.4682	0.6301	0.5607
PD	0.9634	0.9663	0.9696	0.9574	0.9520	0.9180	0.9634	0.9691	0.9711
PS	0.1837	0.1062	0.1118	0.1288	0.1697	0.1184	0.1828	0.2120	0.1670
RS	0.8750	0.7434	0.8816	0.7895	0.8421	0.8289	0.8421	0.8684	0.8947
SCP1	0.8737	0.7406	0.7372	0.5290	0.8771	0.8532	0.8771	0.8567	0.8840
SCP2	0.5500	0.4778	0.4833	0.5278	0.5389	0.5389	0.5278	0.5556	0.6111
SWJ	0.5333	0.4667	0.4667	0.3333	0.7333	0.5333	0.5333	0.4000	0.7333
UWGL	0.8688	0.8406	0.8438	0.8875	0.8844	0.8594	0.8906	0.9156	0.9313
Average Accuracy	0.6856	0.6630	0.6887	0.5895	0.6752	0.6134	0.6801	0.7038	0.7211

Table 17: Detailed long-term forecasting results with RNN across baselines and AutoDA-Timeseries. “*.” in the method names denotes *Augment.

Methods	NoAug		InfoTS (2023)		AutoTCL (2024)		TS2Vec (2022)		Rand. (2020)		Uniform. (2020)		Trivial. (2021)		A2Aug (2023)		Ours		
Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
ETTM1	96	0.6034	0.5234	0.9196	0.7253	0.8481	0.6904	0.6950	0.6141	0.5067	0.4882	0.5044	0.4809	0.6222	0.5465	0.6221	0.5614	0.4849	0.4715
	192	0.6314	0.5394	0.9829	0.7631	1.0001	0.7744	0.8538	0.6969	0.5392	0.5053	0.5362	0.4978	0.6615	0.5670	0.8087	0.6374	0.5536	0.5046
	336	0.5591	0.4909	1.0161	0.7772	1.1040	0.8068	1.0128	0.7856	0.6173	0.5278	0.5642	0.5090	0.6996	0.5821	0.6959	0.6165	0.5552	0.4902
	720	0.6498	0.5550	1.1145	0.8243	1.1164	0.8273	1.1999	0.8308	0.6226	0.5462	0.6594	0.5694	0.7020	0.5962	0.7665	0.6735	0.5777	0.5161
Avg		0.6109	0.6134	1.0083	0.9378	1.0173	0.9736	0.9404	1.0222	0.5715	0.5930	0.5661	0.5867	0.6713	0.6877	0.7233	0.7570	0.5429	0.5622
ETTM2	96	0.4103	0.4206	1.3967	0.9731	1.5101	1.0029	1.0807	0.8338	0.4822	0.4594	0.3918	0.4034	0.5275	0.4727	0.7067	0.5417	0.3336	0.3779
	192	0.6240	0.5461	1.8304	1.1280	2.7557	1.3260	1.7323	1.0532	0.5981	0.5093	0.4651	0.4430	0.6047	0.5068	1.2000	0.6587	0.4229	0.4238
	336	0.7327	0.5923	2.3618	1.3095	2.3520	1.1934	1.9501	1.1481	0.6260	0.5289	0.4991	0.4695	0.5782	0.5110	1.1345	0.6889	0.4340	0.4392
	720	0.7419	0.5981	3.3260	1.5936	2.5000	1.2913	3.4461	1.5999	0.5614	0.5084	0.5255	0.4877	0.5408	0.4980	0.7155	0.6156	0.4213	0.4431
Avg		0.6272	0.6995	2.2287	2.5061	2.2809	2.5359	2.0523	2.3762	0.5669	0.5952	0.4704	0.4966	0.5628	0.5746	0.9392	1.0167	0.4030	0.4261
ETTM1	96	0.7152	0.5315	0.7686	0.6304	0.7387	0.6327	0.5347	0.5128	0.7454	0.5465	0.5396	0.4725	0.6846	0.5271	0.5489	0.5058	0.4714	0.4500
	192	0.7856	0.5521	0.8374	0.6752	0.7922	0.6620	0.6322	0.5636	0.8462	0.5783	0.5621	0.4844	0.7650	0.5537	0.5858	0.5216	0.5107	0.4630
	336	0.8251	0.5704	0.8773	0.6974	0.8543	0.6969	0.7580	0.6367	0.9121	0.6033	0.5681	0.4923	0.8330	0.5821	0.7301	0.5872	0.5628	0.4881
	720	0.8740	0.5959	0.9345	0.7272	0.9602	0.7524	0.8575	0.6967	0.9820	0.6351	0.6040	0.5106	0.9094	0.6201	0.6301	0.5535	0.6071	0.5237
Avg		0.8000	0.8282	0.8545	0.8831	0.8363	0.8688	0.6956	0.7492	0.8714	0.9134	0.5685	0.5781	0.7980	0.8358	0.6237	0.6487	0.5380	0.5602
ETTM2	96	0.2648	0.3390	0.4430	0.5272	0.9088	0.7701	0.8549	0.7113	0.2383	0.3200	0.2188	0.3017	0.2263	0.3087	0.3262	0.3857	0.2019	0.2850
	192	0.3512	0.3868	0.7770	0.7042	0.9597	0.8069	1.2348	0.9199	0.3011	0.3559	0.2769	0.3365	0.2857	0.3426	0.4879	0.4859	0.2601	0.3225
	336	0.4352	0.4307	1.4088	0.9832	1.0758	0.8514	1.4640	1.0058	0.4257	0.4249	0.3392	0.3733	0.3398	0.3738	0.6555	0.5522	0.3136	0.3545
	720	0.5422	0.4829	2.5102	1.3234	1.8328	1.1009	2.4442	1.3223	0.5411	0.4820	0.5460	0.4654	0.4193	0.4166	0.8572	0.6174	0.4197	0.4165
Avg		0.3984	0.4429	1.2848	1.5653	1.2033	1.3014	1.4995	1.7143	0.3766	0.4226	0.3452	0.3874	0.3178	0.3483	0.5817	0.6669	0.2988	0.3311
Exchange	96	0.1687	0.2995	1.7382	1.0084	1.9485	1.1527	1.8184	1.0493	0.1540	0.2756	0.1540	0.2833	0.1572	0.2813	0.3931	0.4316	0.1086	0.2328
	192	0.2726	0.3835	1.8373	1.0733	2.1392	1.1981	2.0228	1.1680	0.2700	0.3676	0.2453	0.3629	0.2643	0.3693	0.4089	0.4511	0.2049	0.3234
	336	0.4378	0.4931	2.2536	1.2062	2.3431	1.2796	2.2780	1.2362	0.4031	0.4623	0.3826	0.4607	0.4401	0.4838	1.0091	0.7111	0.3582	0.4360
	720	1.0198	0.7766	2.7453	1.3081	2.6330	1.2828	2.4236	1.2374	0.8142	0.6828	0.9486	0.7415	1.0740	0.7864	0.6692	0.6393	0.6920	0.6493
Avg		0.4747	0.5767	2.1436	2.2787	2.2660	2.3718	2.1357	2.2415	0.4103	0.4958	0.4326	0.5255	0.4839	0.5928	0.6201	0.6957	0.3409	0.4184
Weather	96	0.2561	0.2801	1.2829	0.8239	1.0355	0.7405	0.6114	0.5761	0.2005	0.2452	0.1856	0.2355	0.1948	0.2383	0.1997	0.2492	0.1736	0.2191
	192	0.3021	0.3154	1.3174	0.8486	1.0782	0.7719	0.7302	0.6208	0.2432	0.2792	0.2342	0.2740	0.2414	0.2786	0.2802	0.3134	0.2263	0.2636
	336	0.3516	0.3464	1.7156	1.0304	1.4528	0.9040	1.1253	0.8158	0.2885	0.3099	0.2858	0.3081	0.2996	0.3185	0.3481	0.38		

1458
1459
1460
1461
1462
1463

Table 18: Detailed long-term forecasting results with Autoformer across baselines and AutoDA-Timeseries. “*.” in the method names denotes *Augment.

Methods	NoAug		InfoTS (2023)		AutoTCL (2024)		TS2Vec (2022)		Rand. (2020)		Uniform. (2020)		Trivial. (2021)		A2Aug (2023)		Ours		
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
ETTh1	96	1.0263	0.7891	0.9841	0.7953	1.0033	0.8193	0.8845	0.7419	1.0260	0.7941	1.0410	0.8222	1.2331	0.8827	0.9523	0.7763	0.8732	0.7458
	192	0.9639	0.7761	0.9752	0.8126	0.9453	0.7937	0.8865	0.7404	1.0308	0.7904	1.0458	0.8234	1.1358	0.8145	0.9878	0.7885	0.9008	0.7534
	336	1.0260	0.8071	0.9689	0.8024	0.9465	0.7928	0.9277	0.7409	1.0334	0.7899	1.0530	0.8263	1.2993	0.8882	0.9864	0.7791	1.0216	0.8191
	720	0.9688	0.7799	0.9452	0.7815	0.9263	0.7664	1.0308	0.8376	1.0245	0.7850	1.0575	0.8270	1.2908	0.8784	0.9392	0.7763	1.0215	0.8154
Avg	0.9963	0.9862	0.9684	0.9631	0.9554	0.9394	0.9324	0.9483	1.0287	1.0296	1.0493	1.0521	1.2398	1.2420	0.9664	0.9711	0.9543	0.9813	
ETTh2	96	3.8442	1.5563	3.1187	1.3570	3.0869	1.3503	3.0069	1.3180	3.2213	1.4085	3.2230	1.4388	2.8329	1.3110	2.8021	1.2940	2.4034	1.2302
	192	2.7073	1.2526	3.1001	1.3430	3.1326	1.3536	3.2592	1.3796	3.2799	1.4174	3.2293	1.4491	3.2522	1.3950	2.9939	1.3380	2.7126	1.3442
	336	0.9961	0.7931	3.0804	1.3340	3.1083	1.3462	2.9728	1.3322	3.2731	1.4067	3.2295	1.4515	3.2216	1.3838	3.2867	1.4342	2.7465	1.3848
	720	2.5324	1.2130	3.0378	1.3246	3.0564	1.3329	3.1065	1.3330	3.2630	1.4038	3.2516	1.4560	3.0298	1.4151	3.2314	1.4569	2.8374	1.4446
Avg	2.5200	2.0786	3.0843	3.0728	3.0962	3.0993	3.0864	3.1128	3.2593	3.2720	3.2334	3.2368	3.0841	3.1679	3.0785	3.1707	2.6750	2.7655	
ETTm1	96	1.8310	1.1192	1.0957	0.7893	1.1103	0.8027	0.8148	0.7252	1.2186	0.8663	1.2275	0.8792	1.2325	0.8709	1.0236	0.7758	0.8689	0.7072
	192	1.7354	1.0828	1.1138	0.8536	1.1029	0.7935	0.8867	0.7623	1.2134	0.8631	1.2192	0.8771	1.2252	0.8678	1.0293	0.7854	1.1311	0.8390
	336	1.6885	1.0605	1.1021	0.7957	1.1519	0.8530	0.8935	0.7615	1.2129	0.8622	1.2157	0.8765	1.2237	0.8674	0.9422	0.7738	1.0529	0.8140
	720	1.6893	1.0515	1.0674	0.8193	1.1063	0.7960	0.9424	0.7811	1.2135	0.8637	1.2177	0.8791	1.2294	0.8729	1.1114	0.8154	1.2272	0.8876
Avg	1.7361	1.7044	1.0948	1.0944	1.1179	1.1204	0.8844	0.9075	1.2146	1.2133	1.2200	1.2175	1.2277	1.2261	1.0266	1.0276	1.0700	1.1371	
ETTm2	96	2.7817	1.3155	3.1061	1.3551	3.0208	1.4202	2.3535	1.3076	2.6729	1.2963	2.8379	1.3704	3.5723	1.4780	2.8887	1.3317	2.5533	1.2498
	192	3.6055	1.5007	3.1309	1.3587	3.1359	1.3587	2.5970	1.3592	3.1856	1.4181	3.2365	1.4555	3.3879	1.4786	3.1428	1.3996	2.7021	1.3589
	336	4.0774	1.6337	3.1818	1.3692	3.1447	1.3679	2.2067	1.1345	3.1680	1.4233	3.3635	1.4706	3.3197	1.4834	3.2642	1.3716	2.9326	1.3434
	720	3.0671	1.4349	3.1932	1.3696	3.0466	1.3929	3.3414	1.4279	2.9395	1.4353	3.3176	1.4655	3.2869	1.4884	3.1796	1.4394	2.6495	1.2698
Avg	3.3829	3.5833	3.1530	3.1686	3.0870	3.1091	2.6247	2.7150	2.9915	3.0977	3.1889	3.3059	3.3917	3.3315	3.1188	3.1955	2.7094	2.7614	
Exchange	96	3.0696	1.4659	4.7716	1.7676	4.7654	1.8026	4.7650	1.7686	2.5649	1.2911	2.2821	1.2414	1.5506	1.0461	2.5712	1.3783	1.4143	0.9761
	192	2.0449	1.1978	4.7517	1.7609	3.5271	1.5486	4.6947	1.7496	2.0318	1.1312	2.9111	1.4173	2.2307	1.2602	2.0573	1.2145	1.4095	0.9194
	336	1.8875	1.1624	4.7606	1.7500	4.7626	1.7528	4.7386	1.7508	1.9907	1.1883	2.6509	1.3539	2.2047	1.1812	1.6807	1.0388	1.5898	0.9914
	720	2.7725	1.3706	4.7999	1.7619	4.8315	1.7682	4.8138	1.7665	2.9641	1.3662	3.0918	1.4682	2.2418	1.2271	2.3173	1.2722	1.6965	1.0897
Avg	2.4436	2.2350	4.7710	4.7707	4.4717	4.3737	4.7530	4.7490	2.3879	2.3289	2.7340	2.8846	2.0570	2.2257	2.1566	2.0184	1.5275	1.5653	
Weather	96	3.6475	1.5226	0.4995	0.5151	0.6277	0.6023	0.3700	0.4085	3.7655	1.5601	3.6130	1.5279	3.1235	1.4159	1.6439	1.0193	1.2919	0.9329
	192	3.1727	1.4315	0.6173	0.5979	0.4497	0.4468	0.4087	0.4189	3.4958	1.5027	3.6112	1.5176	3.5880	1.5015	1.7755	1.0565	2.9921	1.3855
	336	3.5969	1.5274	0.6121	0.5925	0.6172	0.5957	0.4556	0.4541	3.5772	1.5229	3.4884	1.5027	3.3572	1.4611	1.7180	1.0404	2.7707	1.3381
	720	3.5249	1.5348	0.6123	0.5940	0.4358	0.4500	0.6198	0.5466	3.3654	1.4862	3.8626	1.5746	2.9488	1.3717	1.8466	1.0787	3.0353	1.4080
Avg	3.4855	3.4315	0.5853	0.6139	0.5326	0.5009	0.4635	0.4947	3.5510	3.4795	3.6438	3.6541	3.2544	3.2980	1.7460	1.7800	2.5225	2.9327	

1st Count | 6 | 1 | 6 | 29 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 |

1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Datasets	Metrics	NoAug	InfoTS (2023)	AutoTCL (2024)	TS2Vec (2022)	Rand. (2020)	Uniform. (2020)	Trivial. (2021)	A2Aug (2023)	Ours
AE	MSE	0.6424	0.6463	0.6461	0.6457	0.6424	0.6424	0.6425	0.6458	0.6423
	MAE	0.6347	0.6465	0.6461	0.6458	0.6361	0.6349	0.6362	0.6458	0.6375
FM1	MSE	0.7370	0.7965	0.7414	0.7982	0.7370	0.7390	0.7387	4.8129	0.6602
	MAE	0.6473	0.6507	0.6507	0.6591	0.6528	0.6555	0.6539	0.8405	0.6264
FM2	MSE	0.7813	0.5699	2.1929	0.9154	0.5273	3.1468	0.4536	0.4685	0.3875
	MAE	0.3195	0.4305	0.4185	0.3684	0.2547	0.4643	0.2879	0.2652	0.2204
FM3	MSE	0.8647	1.4001	1.4228	1.3215	1.2162	1.5773	0.8622	1.1040	1.2221
	MAE	0.6891	0.8537	0.8423	0.7890	0.8296	0.9066	0.7082	0.7535	0.8040
LFMC	MSE	0.9789	0.9790	0.9786	0.9791	1.7238	0.9789	0.9789	0.9789	0.9768
	MAE	0.7544	0.7541	0.7494	0.7563	1.0769	0.7537	0.7544	0.7541	0.7484
IEEEPPG	MSE	1.5666	1.7569	1.7577	1.8753	1.7238	1.7439	1.6492	1.5992	1.4636
	MAE	1.0466	1.0993	1.0990	1.1079	1.0769	1.0709	1.0480	1.0371	1.0018
Avg MSE		0.9285	1.0248	1.2899	1.0892	1.0951	1.4714	0.8875	1.6016	0.8921
Avg MAE		0.6821	0.7386	0.7343	0.7211	0.7545	0.7477	0.6814	0.7160	0.6731
1 st Count		2	0	0	0	0	0	2	0	10

1512

1513

1514 Table 20: Detailed regression results with MLP across baselines and AutoDA-Timeseries. “*.” in
1515 the method names denotes *Augment.

Datasets	Metrics	NoAug	InfoTS (2023)	AutoTCL (2024)	TS2Vec (2022)	Rand. (2020)	Uniform. (2020)	Trivial. (2021)	A2Aug (2023)	Ours
AE	MSE	0.6433	0.6425	0.6424	0.6435	0.6438	0.6425	0.6425	0.6438	0.6415
	MAE	0.6331	0.6318	0.6325	0.6298	0.6406	0.6335	0.6371	0.634	0.6354
FM1	MSE	0.2787	0.6555	0.6619	0.6332	0.3529	0.7047	0.3384	0.4155	0.2788
	MAE	0.4062	0.5960	0.6148	0.6018	0.4774	0.6518	0.4455	0.4733	0.3885
FM2	MSE	3.1369	3.0971	3.0911	2.7806	2.3691	2.9632	2.9757	2.4156	1.7873
	MAE	0.5184	0.5029	0.4051	0.4494	0.3179	0.4729	0.4364	0.3604	0.3223
FM3	MSE	0.8488	1.2171	1.2412	1.2197	1.0149	1.2935	0.8554	0.9558	0.7675
	MAE	0.7416	0.8065	0.8744	0.8433	0.7046	0.8217	0.6666	0.6534	0.6530
LFMC	MSE	0.9790	0.9789	0.9789	0.9789	0.9790	0.9789	0.9790	0.9789	0.9673
	MAE	0.7530	0.7546	0.7545	0.7546	0.7528	0.7544	0.7533	0.7543	0.7505
IEEEPPG	MSE	1.8752	1.8306	1.9025	1.8085	1.9581	1.8361	1.8551	1.8846	1.7675
	MAE	1.1534	1.1195	1.1273	1.1131	1.1239	1.1256	1.0984	1.1157	1.1022
Avg MSE		1.2937	1.4036	1.4197	1.3441	1.2196	1.4032	1.2744	1.2157	1.0350
Avg MAE		0.7010	0.7352	0.7348	0.7320	0.6695	0.7433	0.6729	0.6652	0.6420
1 st Count		1	0	0	1	1	0	1	0	10

1532

1533

1534

1535

1536

1537 Table 21: Detailed anomaly detection results with UNet across baselines and AutoDA-Timeseries.
1538 “*.” in the method names denotes *Augment.

Datasets	MSL			SMAP			SMD			Avg F1
	P	R	F1	P	R	F1	P	R	F1	
NoAug	0.6215	0.9475	0.7506	0.7734	0.9692	0.8603	0.3290	0.9323	0.4864	0.6991
InfoTS (2023)	0.6226	0.9475	0.7515	0.7734	0.9646	0.8585	0.3207	0.8371	0.4637	0.6912
AutoTCL (2024)	0.6287	0.9458	0.7553	0.7677	0.9350	0.8431	0.3279	0.9297	0.4848	0.6944
TS2Vec (2022)	0.618	0.9387	0.7453	0.6856	0.5722	0.6238	0.3268	0.9236	0.4828	0.6173
Rand. (2020)	0.6283	0.9436	0.7544	0.7714	0.8971	0.8295	0.3176	0.898	0.4692	0.6844
Uniform. (2020)	0.7144	0.9884	0.8293	0.7841	0.9392	0.8547	0.3249	0.8318	0.4673	0.7171
Trivial. (2021)	0.6207	0.9448	0.7492	0.7679	0.9347	0.8431	0.3203	0.9080	0.4736	0.6886
A2Aug (2023)	0.6217	0.9475	0.7508	0.7743	0.9737	0.8626	0.3279	0.9279	0.4846	0.6993
Ours	0.7772	0.9906	0.8710	0.7888	0.9661	0.8685	0.3491	0.9045	0.5038	0.7478

1549

1550

1551

1552

1553 Table 22: Detailed anomaly detection results with VAE across baselines and AutoDA-Timeseries.
1554 “*.” in the method names denotes *Augment.

Datasets	MSL			SMAP			SMD			Avg F1
	P	R	F1	P	R	F1	P	R	F1	
NoAug	0.9015	0.4041	0.5581	0.9717	0.8652	0.9153	0.1507	0.3159	0.2041	0.5592
InfoTS (2023)	0.9026	0.3962	0.5507	0.9948	0.5557	0.7131	0.1491	0.3137	0.2022	0.4887
AutoTCL (2024)	0.9012	0.3894	0.5438	0.9948	0.5558	0.7132	0.1509	0.3158	0.2042	0.4871
TS2Vec (2022)	0.9084	0.4017	0.5571	0.9948	0.5558	0.7132	0.1508	0.3154	0.2040	0.4914
Rand. (2020)	0.9021	0.4151	0.5685	0.9863	0.8447	0.9100	0.1512	0.3163	0.2046	0.5610
Uniform. (2020)	0.9043	0.4203	0.5739	0.9949	0.5559	0.7133	0.1512	0.3164	0.2046	0.4973
Trivial. (2021)	0.9011	0.4125	0.5660	0.9948	0.5558	0.7132	0.1509	0.3160	0.2043	0.4945
A2Aug (2023)	0.9001	0.4102	0.5635	0.9905	0.8393	0.9087	0.1517	0.3168	0.2052	0.5591
Ours	0.9032	0.4224	0.5756	0.9731	0.9225	0.9471	0.1521	0.3172	0.2056	0.5761

1564

1565

Figure 13: Forecasting showcase on ETTh1 dataset with horizon 96 using RNN as the downstream model.

Figure 14: SCP1 augmentation showcase 1 across three layers.

Figure 15: SCP1 augmentation showcase 2 across three layers.