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ABSTRACT

Data augmentation is a fundamental technique in deep learning, widely applied
in both representation learning and automated data augmentation (AutoDA). In
representation learning, augmentations are used to construct contrastive views
for learning task-agnostic embeddings. While in AutoDA, the augmentations
are directly optimized to improve downstream task performance. However, both
paradigms have key limitations: representation learning typically follows a two-
stage pipeline with limited adaptability, and current AutoDA frameworks are
largely designed for image data, rendering them ineffective for capturing time se-
ries—specific features. To address these issues, we propose AutoDA-Timeseries,
the first general-purpose AutoDA framework tailored for time series. AutoDA-
Timeseries incorporates time series features into augmentation policy design and
adaptively optimizes both augmentation probability and intensity in a single-stage,
end-to-end manner. We conduct extensive experiments on five mainstream tasks,
including classification, long-term forecasting, short-term forecasting, regression,
and anomaly detection, showing that AutoDA-Timeseries consistently outper-
forms strong baselines across diverse models and datasets.

1 INTRODUCTION

Data augmentation refers to a series of transformations that generate high-quality artificial data
by manipulating existing samples, serving as a fundamental approach in deep learning to improve
model performance and robustness (Shorten & Khoshgoftaar, 2019; Wang et al.,|2024). Existing ap-
plications of data augmentation can be broadly categorized into two paradigms. The first paradigm
is representation learning, where augmentations are used to construct contrastive samples, enabling
models to learn task-agnostic representations (Chen et al., 2020; He et al.l |2020). The second
paradigm is automated data augmentation (AutoDA), which focuses on automatically searching
or generating augmentation strategies that directly optimize downstream model performance while
reducing the reliance on manual design and tuning (Cubuk et al., 2019; |2020).

In time series analysis tasks, data augmentation is equally indispensable due to data insufficiency
and homogeneity (Wen et al., 2020; Iwana & Uchida, 2021} [Iglesias et al., [2023). As illustrated
in Figure[I] these two application paradigms differ in their training pipelines when applied to time
series analysis tasks. In the representation learning paradigm, the encoder is first pretrained with
contrastive learning on augmented views, and then transferred to downstream tasks through a sepa-
rate fine-tuning stage, where the downstream model adapts to the learned representations (Yue et al.,
2022; [Luo et al.l [2023)). However, a key limitation of representation learning lies in the adaptabil-
ity of downstream models to the learned representations. For instance, recurrent neural networks
(RNNs) are inherently designed for sequence-to-sequence prediction (Sutskever et al.l 2014)), ex-
celling at modeling long-term dependencies and dynamic evolution rather than capturing invariant
representations emphasized by contrastive learning (Chen et al.,|2020). In contrast, AutoDA follows
a one-stage scheme where augmentations are jointly optimized with the downstream task. Aug-
mentation policies, including the choice probability and intensity of transformation, are adaptively
tuned during training, producing high-quality and diverse samples tailored to the downstream task
and directly enhancing downstream performance.

While representation learning frameworks suffer from limitations in adapting to downstream mod-
els, AutoDA provides a promising alternative by jointly optimizing augmentations with downstream
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Figure 1: Two application paradigms of time series data augmentation: representation learning and
AutoDA.

model training. However, existing AutoDA approaches have been predominantly developed for
image data and are not directly applicable to time series due to the inherent differences between
modalities. Even state-of-the-art (SOTA) of these AutoDA frameworks, including RA (Cubuk et al.,
2020), TA (Miiller & Hutter, 2021), UA (LingChen et al.| 2020), and A2Aug (L1 & Li, 2023)), still
face the following key challenges in the context of automated time series augmentation:

* Limited task generalization. Most existing AutoDA methods are validated on a single
task. This narrow evaluation setting overlooks the fact that augmentation policies may not
generalize well when applied to different time series tasks with distinct objectives.

* Neglect of time series characteristics. Existing AutoDA frameworks ignore time series-
specific features (e.g., autocorrelation, distribution, high-order features) when generating
augmentation policies. Their assumption that transformations preserve semantic validity as
in image domains fails for time series modality where critical time series features govern
augmentation effectiveness, and modality-agnostic approaches risk distorting intrinsic data
properties, yielding suboptimal strategies. For instance, frequency-warping-based augmen-
tations blindly applied without considering autocorrelation patterns may disrupt temporal
dependencies, degrading downstream classification or forecasting model performance.

* Lack of adaptive policy learning. Previous SOTA AutoDA frameworks rely on uniform
sampling to determine both the types and intensities of augmentation transformations, treat-
ing all transformations equally important without considering their varying impacts on time
series data. This uniform design fails to account for the fact that different transformations
and intensities may contribute unevenly to the effectiveness of the augmentation policy,
potentially leading to suboptimal or inappropriate augmentation policies.

To address these challenges, we propose a general-purpose automated data augmentation framework
for time series. It employs an augmentation data generator that learns a combination distribution of
selection probability and the intensity for each augmentation transformation, conditioned on the time
series features. AutoDA-Timeseries offers several advantages: First, it provides a unified one-stage
framework that jointly optimizes augmentation policies with downstream task objectives, ensuring
broad applicability across diverse time series tasks. Second, when choosing the optimal augmen-
tation policy for each time series, it integrates multiple time series features, making it suitable for
automated augmentation in the time series domain. Finally, the framework performs adaptive aug-
mentation of both probability and intensity, which can more properly reflect the distribution of the
optimal augmentation policy.

To summarize, our key contributions are as follows:
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* Comprehensive revisit of data augmentation application paradigms: we analyze the
limitations of existing paradigms, representation learning and automated data augmenta-
tion, highlighting their restricted adaptability and the absence of time series-specific de-
sign.

* AutoDA-Timeseries framework: we propose the first general-purpose automated data
augmentation framework for time series, which incorporates time series-specific features
into augmentation selection and jointly optimizes both augmentation model and down-
stream model in a single-stage, end-to-end manner.

» Extensive empirical validation: we conduct extensive experiments on five mainstream
tasks, demonstrating the superiority, robustness, and generalization of AutoDA-Timeseries
through detailed evaluations and visualizations.

2 RELATED WORK

Time series augmentation refers to a collection of advanced techniques designed to artificially ex-
pand and diversity existing time series datasets. Previous studies have surveyed various time series
augmentation transformations proposed for different downstream tasks, such as classification and
segmentation (Iwana & Uchida, |2021; Wen et al., 2020; |Alomar et al., [2023} Iglesias et al., 2023}
Mohammadi Foumani et al., [2024), or forecasting and anomaly detection (Wen et al.,|2020; [Iglesias
et al.| 2023} Semenoglou et al.,|2023). Representative transformations include jittering (Salamon &
Bellol 2017), rotation (Ohashi et al., 2017), scaling (Ohashi et al.,|2017), slicing (Pan et al.,|2020),
permuting (Um et al.l [2017), time warping (Le Guennec et al.| [2016), magnitude warping (Demir
et al., 2021), and several other techniques (Wen et al., 2020). Beyond the level of individual trans-
formations, recent research has further explored two broader paradigms for leveraging data augmen-
tation: representation learning and automated data augmentation (AutoDA).

Representation learning aims to learn task-agnostic representations that can transfer across diverse
downstream tasks. TS2Vec introduces hierarchical contrastive objectives together with contextual
consistency (Yue et al.,2022). InfoTS leverages the information bottleneck principle and employs
adaptive augmentations to generate diverse views, thereby learning more discriminative representa-
tions (Luo et al. 2023). AutoTCL proposes a contrastive learning framework with parametric aug-
mentations (Zheng et al.l [2024). AutoCL adaptively adjusts augmentation strength through cross-
scale temporal consistency constraints (Jing et al.,|2024). CAAP learns an adversarial augmentation
policy that produces task-aware perturbations guided by contrastive objectives (Chang et al., 2024)).
FreRA leverages frequency-domain statistics to adaptively decide augmentation direction and in-
tensity (Tian et al), [2025). Despite their effectiveness, most representation learning frameworks
adopt a two-stage pipeline. In the first stage, multiple augmented views of the same time series are
generated, and an encoder is trained using contrastive objectives to obtain task-agnostic representa-
tions. In the second stage, the pretrained encoder is transferred and adapted to downstream models.
However, these two stages are decoupled: the augmentation strategy and representation learning in
Stage 1 are optimized entirely for the contrastive objective and cannot perceive feedback from the
downstream model in Stage 2, particularly when the downstream model is not explicitly designed
to leverage such representations. As a result, the learned representations may not always align well
with the objectives or architectures of downstream models, which limits the performance gains in
practical scenarios.

AutoDA is proposed to generate optimal augmentation policies, mainly in computer vision (CV)
domain (Yang et al., |2023). Early studies proposed two-stage proxy-based frameworks, such as
TANDA (Ratner et al.,[2017)) and AutoAugment (Cubuk et al.,2019), where a smaller proxy model
was trained to evaluate candidate policies. Although effective, these methods are computationally
expensive and often fail to generalize due to the mismatch between proxy and downstream mod-
els (Cubuk et al.| [2020). ReAugment uses a variational masked autoencoder (VMAE) to reconstruct
masked raw samples and learn their underlying data distribution, then applies reinforcement learn-
ing to adjust the VMAE’s latent variable to generate augmented sequences that preserve the original
structure (Yuan et al.,|2024). More recent work has shifted toward one-stage non-proxy AutoDA
frameworks, which directly optimize augmentation policies with the downstream task. Represen-
tative approaches include RandAugment (Cubuk et al.| |2020), TrivialAugment (Miiller & Hutter,
2021), UniformAugment (LingChen et al., 2020), and A2Aug (Li & Li, 2023). These methods
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eliminate proxy models and instead rely on the simple randomization or ensemble strategies to re-
duce cost while improving downstream performance. However, applying such frameworks to time
series remains challenging, as they lack adaptive augmentation mechanisms and ignore modality-
specific features that are crucial for preserving intrinsic patterns (Christ et al.l 2018; [Lubba et al.,
2019).

3 METHODOLOGY

3.1 PROBLEM STATEMENT

Let D = {D;,Ds,...,D,,} be a time series dataset, where D; (i = 1...m) is a univariate or
multivariate time series. Let M denote a downstream model (e.g., a classifier) whose trainable
parameters are denoted as 6. We consider a set of time series augmentation transformations 7 =
{T\,T5,...,T,}, where T (j = 1...n) is an augmentation operator that can be applied to a given
time series D; to produce an augmented view of D,. Our goal is to design an automated time
series augmentation framework A, parameterized by 6 that outputs a policy P; = Ay(D;) for
each D; € D. P; consists of two vectors: (i) a probability vector p;, where p; ; € [0,1] is the
probability T} is selected; and (ii) a intensity vector t;, where ¢; ; > 0 is the intensity of T};. After
applying P; to D;, we can obtain the augmented time series P;(D;). By performing this operation
for the entire dataset D, we obtain the augmented dataset Ap(D), that is,

Ay(D) = {P,(D;)|D; € D}. (H

We then train the downstream model M on the augmented dataset by minimizing a task-related loss
as follows:
8% = argmin L(HM, Ag (D)), )
O rm
where L is the loss function of the specific task (e.g., mean squared error for forecasting, cross-
entropy for classification, etc.). Finally, we evaluate the trained model M using the original dataset

D, aiming to achieve superior performance with respect to the loss function L. The objective thus
becomes finding the optimal parameter 8* for the augmentation framework Ay:

0* = argminL (97\4, D). 3)
0

The automated time series augmentation is formulated as a joint optimization over both the augmen-
tation framework’s parameters 6 and the downstream model’s parameters 6 .
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Figure 2: Overall architecture of AutoDA-Timeseries.
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3.2 AUTODA-TIMESERIES OVERVIEW

As shown in the Figure 2] a time series feature-aware augmented data generator (denoted as Ay) is
composed of multiple stacked Augmentation Layers Agi), each of which is responsible for selecting
and applying one of the available transformations in the set 7 = {11, Ts, ..., T, }.

The k-th augmentation layer generates an augmentation policy consisting of (i) a series of probability

( )  indicating the likelihood of choosing transformation 7} and (ii) a series of intensity t( ) to apply
a chosen transformation. By stacking these augmentation layers the framework can explore a variety
of transformation sequences, allowing for more diverse and potentially useful augmented data. The
final output augmented time series is used to train a single downstream model in a single-stage,
end-to-end manner, with a composite loss to update the parameters in the augmented data generator
together with the downstream model.

3.3 TIME SERIES FEATURE EXTRACTION

Following prior work (Q1u et al., [2024)), we extracted 24 descriptive statistics for each time series in
the original dataset, forming a feature vector F; = f.(D;), where f.(-) denotes our feature extrac-
tion function. These features are effective across various time series classification and forecasting
tasks (Lubba et al.,[2019;|Qiu et al.,[2024). In our design, the feature vector F'; remains unchanged
and static across layers to preserve the global context of the original time series, preventing distortion
from sequential augmentations while stabilizing training.

3.4 STACKED AUGMENTATION LAYERS

Our framework Ay is composed of K sequential augmentation layers: Ay = A(l) ) A( oA

Each layer A(k) receives (i) the input time series D(-kfl)

(k—

from previous layer (raw time series D; for

the first layer), (ii) the previous probability vector p; D (initialized as zeros), and (iii) the global

feature vector F';. It then generates the probability p( ) and intensity t( ) via MLPs fr () and f(k)
k _
p) = 1) (p, D Fy), e

1) = 19 (D Fy). 5)

A transformation 7., is then sampled in each layer by a Gumbel-Softmax (Jang et al., [2016)) ap-
proximation (denoted o), which ensures that the framework remains differentiable. The selected

) (k

transformation 7., is applied to ngf with intensity ¢; ) _to generate the augmented time series:

Trk = 0Ogs (Ta pz )7 (6)
DY =1, (DI 1(h). M

By stacking these augmentation layers, the framework performs sequential transformations. The

final output DEK) = Ap(D;) is fed to the downstream model. All layer parameters are jointly
optimized with the downstream model via a composite loss backpropagation.

3.5 STRATEGIES FOR EXPLORATION AND EXPLOITATION

To balance exploration (experimenting with diverse transformations) and exploitation (converging
on effective augmentations), we incorporate the following strategies:

3.5.1 LEARNABLE GUMBEL-SOFTMAX TEMPERATURE

We adopt a learnable temperature parameter in the Gumbel-Softmax distribution to control the ran-
domness of transformation sampling (Jang et al.,[2016). Each augmentation layer maintains its own
temperature, and all temperatures are optimized purely via backpropagation. A higher temperature
encourages exploration by making the selection probabilities more uniform, while gradually low-
ering the temperature increases determinism and helps the model converge to the most promising
transformation choices.
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3.5.2 CoOMPOSITE LOSS FUNCTION

To maintain diversity in the transformation probability distribution, we encourage the augmentation
layer to output diverse transformation probabilities. Therefore, in addition to the task-specific loss,
we introduce diversity loss terms. To address the weight setting problem for multiple losses, inspired
by previous work (Liebel & Korner;,|2018]), we employ learnable weights in the final composite loss
Lcomposite as follows:

1
Lcomposite = Z |:2 2L + hl(l +w ):| ) 3
2=1,2,3
where: (1) L, is the task-specific loss, e.g., mean squared error for forecasting, or cross-entropy for
classification. (2) L, is an intra-layer diversity loss to encourage diverse transformations within a

layer, which is defined as:
(k)
E E; [ } ; 9

*) ¢ rr

where K is the number of augmentation layers, E;[-] means averaging over samples, p;

is the augmentation probability vector for D; at the k-th layer, and H (pl(-k))
entropy calculated as follows:

denotes the Shannon

Zp log(p") + ), (10)

where 7 is the number of transformations, and € is a small constant added for numerical stability
(set to 1071 in our implementation). (3) Lz is an inter-layer diversity loss, which measures the
divergence between the augmentation probability distribution of the current layer and that of the
previous layer and is defined as:

K
Ly = Y B (KL )] (an
k=2

b KL ) = 05 o (457) 1o ()], 0 i e el
weights to achieve trade-off between dlver51ty and task performance during the training.

This composite loss enables the augmented data generator and the downstream model to be jointly
optimized in a fully end-to-end manner.

3.5.3 RAW TRANSFORM BIAS
To avoid overfitting to augmented data, we add a bias term p,;, that selects the raw data with proba-
bility p,p:
7. = )% (T, pf’j)) with probability (1 — p,p),
F Ty with probability p,,

where 77 denotes the Raw (no transformation) operator.

4 EXPERIMENTS

We conduct extensive experiments to systematically evaluate the effectiveness of AutoDA-
Timeseries on five mainstream time series analysis tasks: classification, long-term forecasting,
short-term forecasting, regression, and anomaly detection. Beyond quantitative comparisons with
state-of-the-art baselines, we also provide in-depth analyses and insights into AutoDA-Timeseries.

4.1 EXPERIMENT SETUP

Implementation Table |I| summarizes the benchmarks, evaluation metrics, and representative
downstream models for each task. Following prior works (Zheng et al., [2024), we evaluate on rep-
resentative downstream models and extend the scope by incorporating both classical and advanced
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architectures, covering convolutional, recurrent, Transformer-based, and generative paradigms, to
assess the generalizability of AutoDA-Timeseries. More detailed descriptions can be found in Ap-

pendix

Table 1: Summary of benchmarks, evaluation metrics, and representative downstream models.

Tasks | Benchmarks | Metrics | Downstream Models
Classification | UEA (26 subsets) | Accuracy | TCN, ROCKET
Long-term: ETT (4 subsets),
Forecasting Exchange, Weather MSE, MAE RNN, Autoformer
| Short-term: M4 (6 subsets) | SMAPE, MASE, OWA |
Regression | UEA & UCR (6 subsets) | MSE, MAE | CNN, MLP

Anomaly Detection | MSL, SMAP, SMD Precision, Recall, F1-score UNet, VAE

Baselines We compare AutoDA-Timeseries with three groups
of baselines to ensure a comprehensive and fair evaluation. We Long term Forecasting

(MSE)

use NoAug as the control group, which does not apply any aug-

mentation. For representation learning, we adopt InfoTS (Luo| _
et al., [2023)), AutoTCL (Zheng et al.l [2024), and TS2Vec (Yue smaPe)

et al.,|2022), which leverage data augmentation to construct con-

trastive views and learn task-agnostic representations in a two-

stage manner. For automated data augmentation, we con- i e
sider four state-of-the-art methods: RandAugment (Cubuk et al.,
2020), UniformAugment (LingChen et al., 2020), TrivialAug-
ment (Miller & Hutter, |2021), and A2Aug (Li & Li, 2023).

More detailed descriptions of these baselines can be found in Figure 3: Overall comparison of
Appendix [B] AutoDA-Timeseries with base-

lines across five time series tasks.

Classification
(Accuracy)

— i i ~— Unif AutoTCL (2024)

NoAug (C

4.2 RESULTS

Figure [3| presents an overall comparison of AutoDA-Timeseries

with state-of-the-art baselines across five time series tasks. We observe that AutoDA-Timeseries
consistently achieves the best performance, covering the largest area in the radar plot. Next, we
provide a more detailed analysis for each task.

4.2.1 CLASSIFICATION

Setups Time series classification aims to assign a discrete label to each sample, which can be either
a univariate or multivariate time series (Ismail Fawaz et al.,[2019). We evaluate 26 subsets selected
from the UEA archive (Bagnall et al.| [2018), covering diverse domains such as audio recognition,
human activity recognition, and healthcare monitoring. Following prior work (Liu et al.} 2024), we
use accuracy as the evaluation metric, and adopt TCN (Bai et al.| |2018) and ROCKET (Dempster
et al.| 2020) as representative downstream models.

Results As shown in Figure ] AutoDA-Timeseries achieves the best accuracy, reaching 0.730
(+6.7%) with TCN and 0.721 (+5.2%) with ROCKET, significantly surpassing the NoAug control.
Traditional AutoDA methods (RandAugment, UniformAugment, and TrivialAugment) yield lim-
ited or even negative gains, highlighting the gap in directly transferring image-based augmentation
policies to time series. Representation learning methods show instability: TS2Vec suffers severe
degradation, while AutoTCL and InfoTS achieve only marginal gains. These results suggest that
the augmentation policies of AutoDA-Timeseries can consistently boost classification accuracy and
generalize across different downstream models.
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Figure 4: Classification accuracy comparison of AutoDA-Timeseries and baselines on TCN ( )

and ROCKET (blue). “+.” in the method names denotes *Augment. Full results are provided in
Table [T5]and Table[T6]in the Appendix.

4.2.2 LONG- AND SHORT-TERM FORECASTING

Setups Time series forecasting is a fundamental task with wide applications in weather, traffic,
energy, and finance. We evaluate AutoDA-Timeseries on both long- and short-term forecasting. For
long-term forecasting, we use ETT (4 subsets) (Zhou et al.,[2021), Exchange (Lai et al., [2018), and
Weather (Wetterstation)), with MSE and MAE as metrics, following prior works (Wu et al., [2022)).
For short-term forecasting, we adopt the M4 competition setup with six subsets (Spyros Makridakis,
2018), using SMAPE, MASE, and OWA as metrics. Representative downstream models include
RNN-based forecasters and Autoformer (Wu et al.,|2021)).

Results As shown in Tables [2]and [3] AutoDA-Timeseries achieves the best results on both long-
and short-term forecasting. For long-term forecasting, AutoDA-Timeseries attains the lowest MSE
and MAE on both RNN and Autoformer. We also observe that representation learning suffers larger
relative degradation on RNN than on Autoformer, as Autoformer is more compatible with learned
representations. For short-term forecasting, AutoDA-Timeseries again outperforms all baselines on
RNN and Autoformer.

Table 2: Comparison of long-term forecasting performance across baselines and AutoDA-

Timeseries. “*.” in the method names denotes *«Augment. Full results are provided in Table
and Table[T§]in the Appendix.

Downstream ‘ . ‘ Methods
Model Metrics
| NoAug | InfoTS | AutoTCL | TS2Vec | Rand. | Uniform. | Trivial. | A2Aug | Ours
RNN MSE | 05408 | 1.5163 1.4888 13851 | 0.5114 | 04416 | 05193 | 0.6342 | 0.3968
MAE | 05381 | 15423 1.5167 14151 | 05117 | 04389 | 05148 | 0.6347 | 0.3930
Autoformer | MSE | 24274 | 22761 | 2.2872 21240 | 24055 | 25116 | 23758 | 2.0155 | 1.9098
MAE | 24883 | 23323 | 22626 21779 | 24655 | 25755 | 24254 | 20617 | 1.9548

Table 3: Comparison of short-term forecasting performance across baselines and AutoDA-
Timeseries. “*.” in the method names denotes x«Augment.

Downstream ‘ . ‘ Methods
Model Metrics
‘ ‘ NoAug | InfoTS | AutoTCL ‘ TS2Vec ‘ Rand. Uniform. | Trivial. | A2Aug Ours
SMAPE 11.384 12.454 13.143 13.832 12.910 11.962 11.482 11.980 11.068
RNN MASE 1.774 1.864 2.027 2,624 | 2536 1.778 1.736 1.985 1.644
OWA 0.883 0.981 1.009 1.142 1.139 0.906 0.877 0.961 0.838
SMAPE | 57.854 | 47.219 38.875 39.389 63.573 69.034 59.541 39.456 | 39.425
Autoformer MASE 14.865 15.216 10.406 7.790 48.076 16.301 15.729 7.818 7.762
OWA 6.020 3.359 4.154 3.482 14.915 6.807 6.308 3.499 3.490
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4.2.3 REGRESSION

Setups Time series regression predicts a continuous scalar from an input time series, differing
from classification (discrete labels) and forecasting (future values) (Tan et al.,|2021). In particular, it
generalizes forecasting by relaxing the requirement that the target must depend primarily on recent
values, and has broad applications such as heart rate estimation from physiological signals (Reiss
et al., |2019) or crop yield prediction from satellite observations (Yebra et al., 2018). We evaluate
six subsets from the UEA & UCR archives (Tan et al.,2020), using MSE and MAE as metrics, with
CNN and MLP as downstream models.

Results Regression inherently relies on precise continuous value mappings, making it highly sen-
sitive to the quality of augmented data. As shown in Table ] AutoDA-Timeseries achieves state-of-
the-art performance across diverse regression datasets, verifying the effectiveness of its task-adaptive
augmentation strategy.

Table 4: Comparison of regression performance across baselines and AutoDA-Timeseries. “x.” in
the method names denotes *Augment. Full results are provided in Table [I9) and Table 20]in the
Appendix.

Downstream ‘ . ‘ Methods
Model Metrics
| NoAug | InfoTS | AutoTCL | TS2Vec | Rand. | Uniform. | Trivial. | A2Aug | Ours
CNN MSE | 09285 | 1.1025 1.1290 1.0892 | 1.0951 | 14714 | 0.8875 | 1.6016 | 0.8921
MAE | 0.6821 | 0.7386 | 0.7343 0.7211 | 07545 | 07477 | 0.6814 | 0.7160 | 0.6731
MLP MSE | 12937 | 14036 | 14197 13441 | 12196 | 14032 | 12744 | 12157 | 1.0350
MAE | 07010 | 0.7352 | 0.7348 0.7320 | 0.6695 | 0.7433 | 0.6729 | 0.6652 | 0.6420

4.2.4 ANOMALY DETECTION

Setups Time series anomaly detection aims to identify rare or abnormal patterns that deviate from
normal temporal dynamics. The main challenge lies in the scarcity and diversity of anomaly sam-
ples, making data augmentation particularly crucial. We follow standard benchmarks (Hundman
et al.,[2018} [Su et al., 2019) and use F1-score as the primary metric. Representative models include
UNet (Gao et al., 2020) and VAE (Xu et al., 2018).

Results As shown in Table [5] anomaly detection is highly sensitive to augmentation, since inap-
propriate transformations may erase or mimic rare anomalies, making them harder to detect. Nev-
ertheless, AutoDA-Timeseries consistently achieves superior results on both models, showing that
adaptive policies enhance model robustness and generalize to augmentation-sensitive tasks.

Table 5: Comparison of anomaly detection performance across baselines and AutoDA-Timeseries.
“x.” in the method names denotes «Augment. Full results are provided in Table 21| and Table 22]in
the Appendix.

Do\&r:)sszam | Metrics | Methods
| NoAug | InfoTS | AutoTCL | TS2Vec | Rand. | Uniform. | Trivial. | A2Aug | Ours
UNet | FI | 06991 | 06912 | 06944 | 06173 | 0.6844 | 07171 | 0.6886 | 06993 | 0.7478
VAE | Fl1 | 05592 | 04887 | 04871 | 04914 | 05610 | 04973 | 04945 | 0.5591 | 0.5761

4.3 MODEL ANALYSIS

Adaptive Augmentation Policy Visualization We investigate how augmentation policies evolve
during training by visualizing augmentation operator probabilities and entropy across layers (Fig-
ure [5). The results reveal a clear layer-wise differences. Layer O rapidly converges to a few op-
erators (e.g., Raw augmentation), reflecting deterministic exploitation, while upper layers maintain
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Figure 5: Adaptive augmentation policy. Top: operator distribution over training epochs. Bottom:
entropy dynamics showing convergence in lower layers and diversity in higher layers.

higher entropy and more diverse policies. This pattern illustrates the exploitation-exploration trade-
off (Sutton et all, [1998)), where lower layers stabilize the augmentation policies and upper layers
remain adaptive, providing a complementary balance between stability and diversity.

Feature-Space Consistency under Augmentation We examine whether augmentations preserve
time series features as shown in Figure[6] The catch22 features of augmented data remain highly
consistent with those of the raw data, indicating that AutoDA-Timeseries maintains essential char-
acteristics and further supports our motivation of incorporating time series feature extraction (Sec-

tion [3.3).

Raw Time Series

ETThl

4‘0 S‘D E‘G
Augmented Time Series

0 20 40 60 80
Raw Time Series — catch22 Augmented Time Series — catch22

Figure 6: Feature-space consistency under augmentation.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed AutoDA-Timeseries, a general-purpose framework that adaptively learns
augmentation policies conditioned on time series features and jointly optimizes them with down-
stream models. Experiments across diverse tasks verify its superiority and clear advantages over
existing augmentation paradigms. In future work, we aim to extend the framework to real-world
time series applications, which often involve diverse domains and complex dynamics.

6 ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or practices that would raise
ethical concerns. We confirm compliance with the ICLR Code of Ethics.
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7 REPRODUCIBILITY STATEMENT

All the source code is provided in the supplementary material for reproduction. They will also
be open-sourced after acceptance of this paper. Please refer to README . md in the supplementary
material for detailed reproduction steps.
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A IMPLEMENTATION DETAILS

All experiments were conducted on a workstation equipped with a single NVIDIA GeForce RTX
3080 Ti GPU (12 GB memory). To evaluate the effectiveness of AutoDA-Timeseries, we conduct
experiments on a wide range of benchmark datasets across five mainstream tasks, including clas-
sification, long-term forecasting, short-term forecasting, regression, and anomaly detection. The
detailed statistics of the datasets are provided in Tables[6] [7] and [§]

We adopt 7 widely used time-series transformations in the augmentation set 7. Specifically, the
augmentation set includes: Raw (no augmentation applied), Jittering (Salamon & Bellol 2017,
Scaling (Ohashi et al.| 2017), TimeWarp (Le Guennec et al.| |2016), Resample (Cao et al., |2020),
FreqWarp (Jaitly & Hinton, 2013), and MagWarp (Demir et al., 2021).

We conducted experiments on the validation set across multiple datasets with K = {1,2,3,4,5},
and selected the hyperparameter value that performs well on most datasets, namely K = 3. There-
fore, in the main experiments, all datasets use K = 3.
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Table 6: Summary of benchmark datasets for time series classification.

Datasets | Code | Classes | Dims | Length | Test Size | Train Size | Type
ArticularyWordRecognition AWR 25 9 144 300 275 Motion
AtrialFibrillation AF 3 2 640 15 15 ECG
BasicMotions BM 4 6 100 40 40 HAR
Cricket CR 12 6 1197 72 108 HAR
DuckDuckGeese DDG 5 1345 270 50 50 Audio
EigenWorms EW 5 6 17984 131 128 Motion
Epilepsy EP 4 3 206 138 137 HAR
ERing ER 6 4 65 270 30 HAR
EthanolConcentration EC 4 3 1751 263 261 Spectro
FaceDetection FD 2 144 62 3524 5890 EEG
FingerMovements M 2 28 50 100 316 EEG
HandMovementDirection HMD 4 10 400 74 160 EEG
Handwriting HW 26 3 152 850 150 HAR
Heartbeat HB 2 61 405 205 204 Audio
Libras LIB 15 2 45 180 180 HAR
LSST LSST 14 6 36 2466 2459 Astronomy
MotorImagery MI 2 64 3000 100 278 EEG
NATOPS NATOPS 6 24 51 180 180 HAR
PEMS-SF PEMS-SF 7 963 144 173 267 Transportation
PenDigits PD 10 2 8 3498 7494 Motion
PhonemeSpectra PS 39 11 217 3353 3315 Audio
RacketSports RS 4 6 30 152 151 HAR
SelfRegulationSCP1 SCP1 2 6 896 293 268 EEG
SelfRegulationSCP2 SCP2 2 7 1152 180 200 EEG
StandWalkJump SW1J 3 4 2500 15 12 ECG
UWaveGestureLibrary Uw 8 3 315 320 120 HAR

Table 7: Summary of benchmark datasets for time series regression.

Datasets | Code | Dims | Length | Test Size | Train Size | Type

AppliancesEnergy AE 24 144 42 96 Energy

FloodModeling1 FM1 1 266 202 471 Environment
FloodModeling2 FM2 1 266 167 389 Environment
FloodModeling3 FM3 1 266 184 429 Environment
LiveFuelMoistureContent LFEMC 7 365 1510 3493 Environment
IEEEPPG IEEEPPG 5 1000 1328 1768 Healthcare

B BASELINE DESCRIPTIONS

To comprehensively evaluate the performance of the AutoDA-Timeseries framework, the following
baselines were applied to the same downstream models:

* NoAug: No augmentation was applied; the downstream model was trained directly on the
raw dataset.

» TS2Vec (Yue et al., |2022): TS2Vec is a universal representation learning framework de-
signed for time series, which enables representation learning across multiple semantic lev-
els. It achieves this by hierarchically distinguishing positive and negative samples at both
the instance and temporal dimensions, thereby capturing rich contextual information for
diverse downstream tasks.

* InfoTS (Luo et al., [2023)): InfoTS is a contrastive learning-based method for time series
augmentation. It generates two augmented views of the input using parameterized trans-
formations and learns representations by maximizing mutual information between them.
InfoTS applies instance-level contrastive loss to retain fine-grained semantic identity, par-
ticularly useful for downstream classification tasks.

* AutoTCL (Zheng et al., 2024): AutoTCL proposes a parametric framework for time series
contrastive learning. It constructs two views using a learnable augmentation module, and
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Table 8: Summary of benchmark datasets for time series forecasting and anomaly detection. The
“Dataset Size” column reports the number of samples in the training, validation, and testing splits,

respectively.

Tasks | Datasets | Dims | Length Dataset Size |  Type (Frequency)
ETTml, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) Electricity (15 mins)
Long-term Forecasting ETThl, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Electricity (15 mins)
Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) Weather (10 mins)
Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Exchange rate (Daily)
M4-Yearly 1 6 (23000, 0, 23000) Demographic
M4-Quarterly 1 8 (24000, 0, 24000) Finance
Short-term Forecasting M4-Monthly 1 18 (48000, 0, 43000) Industry
M4-Weekly 1 13 (359, 0, 359) Macro
M4-Daily 1 14 (4227, 0, 4227) Micro
M4-Hourly 1 48 (414, 0, 414) Other
MSL 55 100 (44653, 11664, 73729) Spacecraft
Anomaly Detection SMAP 25 100 (108146, 27037, 427617) Spacecraft
SMD 38 100 (566724, 141681, 708420) Server Machine

maximize their alignment via InfoNCE loss. The augmentation parameters are optimized
with a bi-level meta-learning strategy to enhance task performance.

* RandAugment (Cubuk et al.,2020): RandAugment is a proxy-free automated augmentation
framework that has achieved state-of-the-art (SOTA) performance in image classification
tasks, significantly optimizing performance compared to proxy-based frameworks.

* TrivialAugment (Miiller & Hutter] 2021): TrivialAugment is a tuning-free, proxy-free au-
tomated augmentation framework that has demonstrated SOTA performance in image clas-
sification tasks.

* UniformAugment (LingChen et all 2020): UniformAugment is a proxy-free AutoDA
framework achieving high efficiency and comparable performance in image classification
tasks with theoretical supports.

* A2Aug (Li & Li, |2023): A2Aug is a proxy-free AutoDA framework that trains multiple
downstream models in parallel with different augmentation transforms and combines their
outputs via ensemble learning, achieving SOTA performance in image classification tasks.

For CV-based AutoDA baseline, We did not naively apply these methods. Instead, we performed a
rigorous time-series—specific adaptation of each method. Specifically, we made three categories of
modifications:

* Replacing image operations with time-series transformations. The original RandAug-
ment/TrivialAugment families rely on image operations such as rotation, shear, and color
jitter, which are not meaningful for time series. To ensure fairness, we replaced their aug-
mentation set with standard time-series transformations such as jittering, scaling, time-
warping, etc. This guarantees that all baselines and our method use the same valid aug-
mentation set.

Preserving each method’s original sampling logic. We strictly retained the core
augmentation-selection mechanisms of each method: RandAugment preserves its N ran-
dom operations + global magnitude M formulation. UniformAugment uniformly samples
both operations and magnitudes. TrivialAugment samples one operation and magnitude
per sample, following its original design. A2Aug learns augmentation weights jointly and
ensembles operator logits adaptively.

Ensuring identical downstream settings for all baselines. For fair comparison, all base-
lines use the same downstream models (RNN, Autoformer, etc.), the same data splits, se-
quence lengths, and batch sizes as AutoDA-Timeseries.

For time series-based representation learning baselines, we take the following measures to ensure
fairness:

* First, all representation learning methods (TS2Vec, InfoTS, AutoTCL) are implemented
using their official open-source repositories. We strictly follow their default hyperparame-
ter configurations, including the number of training epochs, batch size, optimizer settings,
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and the built-in augmentation pipeline. We do not modify any internal architectural com-
ponents or training procedures. This ensures that the results are fully reproducible and not
influenced by implementation choices on our side.

» Second, unlike image-based AutoDA baselines, time-series representation learning meth-
ods already include augmentation operators specifically designed for sequential data. To
ensure fairness, we preserve the exact augmentation transformations defined in their offi-
cial codebases. This prevents any methodological bias that might arise from altering or
replacing their augmentation primitives.

* Finally, to guarantee fairness in downstream evaluation, all baselines adopt the same down-
stream configuration used in AutoDA-Timeseries. The downstream model architecture is
kept identical across all methods, and every method is evaluated under the same data splits.
For representation learning baselines, we follow their standard protocol: the encoder is first
pretrained, and then frozen during downstream training while only the prediction head is
optimized.

C ABLATION STUDIES

To verify the effectiveness of our key insights and the architecture designs introduced in Section 3]
we conducted ablation studies. We remove each component from a complete AutoDA-Timeseries
and evaluate their impacts by performance degradation.

The results are presented in Figure[7]and Table[I0] As shown in Figure[7] most points lie above the
diagonal, indicating that incorporating time series features, joint optimization, dynamic temperature,
and composite loss consistently improves the performance of AutoDA-Timeseries on the classifica-
tion task compared to their ablated versions. These results validate the necessity of the overall
framework design, showing that each component contributes positively to the final performance,
while removing any of them leads to performance degradation.

As shown in Table[I0] first, disabling Time Series Features increased the MSE by up to 14.4%, which
underscores the need for these features to guide augmentation, verifying our insight of performing
augmentation policy generation conditioned on time series features. Second, removing Joint Opti-
mization of probabilities and intensities led to an increase in MSE of up to 7.6%, which emphasizes
the importance of generating the optimal combination of transformation types and strengths. Fi-
nally, the exploration-exploitation balancing strategies, including Dynamic Temperature and Com-
posite Loss, all demonstrate clear effectiveness, reducing MSE by up to 7.4% and 8.1% relative to
their ablated counterparts. Overall, these findings emphasize that each component is essential for
the framework’s performance and effectiveness in automated time series augmentation.

To verify that AutoDA-Timeseries meaningfully adapts augmentation strategies to time series dy-
namics, we conducted an ablation study based on the three major categories of Catch2?2 features as
shown in Table[J] Specifically, different subsets of Catch22 capture key dynamic properties of time
series:

* Linear and nonlinear autocorrelation features (e.g., CO_flecac, CO_FirstMin_ac) describe
temporal dependency;

* Distribution-shape features (e.g., DN_HistogramMode_5, DN_HistogramMode_10) reflect
whether the sequence contains sparse anomalies, skewness, or kurtosis;

* Differential-based features (e.g., SB_BinaryStats_diff_longstretchO) capture local fluctua-
tions, short-term variation strength, and long-term stationarity.

We removed each of these feature categories respectively and evaluated performance across 9 UEA
datasets using ROCKET as the downstream model. The results show that removing any category
consistently leads to a noticeable performance drop. This indicates that temporal-structure features
play an essential role in guiding the learned augmentation policy: the model does not simply ap-
ply general augmentation patterns, but instead relies on time-series-specific dynamic attributes to
adjust both augmentation selection probabilities and augmentation strengths, thereby achieving true
adaptation to time series dynamics.
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Figure 7: Ablation study of AutoDA-Timeseries on TCN for classification.

Table 9: Ablation study on Catch22 feature groups.

Dataset | Ours | Remove Autocorrelation | Remove Distribution | Remove Differencing
AWR 0.9800 0.9400 0.9467 0.9800
BM 1 1 1 1
CR 1 0.9861 0.9444 1
EP 0.9783 0.9275 0.9348 0.9203
ER 0.9741 0.9185 0.9296 0.9407
HB 0.7756 0.7610 0.7415 0.7512
RS 0.8947 0.8947 0.8421 0.8026
SCP1 0.8840 0.8464 0.8294 0.8328
uw 0.9313 0.9031 0.9125 0.9188
Average Accuracy | 0.9353 0.9086 0.8979 0.9052

D HYPER-PARAMETER SENSITIVITY

AutoDA-Timeseries involves two key hyper-parameters: the number of augmentation layers k and
the raw transform bias p,.;, which jointly determine the size of the augmentation search space and
the proportion of raw samples retained during training. Specifically, the former controls how many
transformations are applied sequentially to each sample, where larger values increase data diversity
but may also introduce excessive noise. The latter assigns a probability to directly selecting the raw
input, which acts as a regularizer to prevent overfitting to overly augmented samples.

As shown in Figure 8] both hyper-parameters have limited impact on performance across different
tasks. Specifically, increasing k yields stable results, with moderate values providing the best trade-
off between diversity and reliability. For the raw transform bias, incorporating a small proportion of
raw samples consistently stabilizes training and avoids degradation, highlighting the importance of
balancing augmented and authentic data. Overall, these results indicate that AutoDA-Timeseries is
robust to the choice of hyper-parameters.

In addition, our current implementation initializes the augmentation distribution using a uniform
prior with an additional raw-transform bonus. To evaluate the sensitivity of our framework to this
initialization, we conduct a controlled study on both classification (ROCKET-based, evaluated with
accuracy) and long-term forecasting (RNN-based, evaluated with MSE and MAE) settings under
four initial augmentation distributions:

* Uniform distribution + raw-transform bonus (the default setting in our paper);

¢ Pure uniform distribution;

* Random distribution sampled from Dirichlet(av = 1), which centers around the uniform
distribution with moderate variance;

* Random distribution sampled from Dirichlet(ov = 2), which produces samples closer to
uniform but still with variability.

As shown in Table [TT] and [T2] the final performance differences remain consistently small across
all augmentation distributions. These results demonstrate that our framework is insensitive to the
choice of the initial augmentation distribution, and that the learned augmentation policy remains
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Table 10: Ablation study of AutoDA-Timeseries on RNN for long-term forecasting.

Design | w/o Time Series Features | w/o Joint Optimization | w/o Dynamic Temperature | w/o Composite Loss | AutoDA-Timeseries
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 | 0.5071 0.4738 0.4884 0.4728 0.4903 0.4721 0.4906 0.4730 0.4849 0.4715
= | 192 | 0.5697 0.4989 0.5592 0.5310 0.5540 0.5019 0.5529 0.5262 0.5536  0.5046
£ | 336 | 0.5876 0.5133 0.5468 0.4956 0.6049 0.5227 0.5843 0.5440 0.5552 0.4902
= | 720 | 0.5804 0.5209 0.5648 0.5174 0.6232 0.5458 0.6026 0.5635 0.5777 0.5161
| Avg | 05612 0.5017 | 0.5398 0.5042 | 0.5681 0.5106 | 0.5576 0.5267 | 0.5429 0.4956
96 | 0.6013 0.5031 0.4749 0.4758 0.4635 0.4486 0.5090 0.4957 0.4714  0.4500
E | 192 | 0.7106 0.5381 0.5179 0.5072 0.5207 0.4987 0.5336 0.5110 0.5107 0.4630
g 336 | 0.7354 0.5542 0.5574 0.5246 0.5689 0.4900 0.5552 0.5210 0.5628 0.4881
m | 720 | 0.7612 0.5737 0.6083 0.5499 0.6203 0.5544 0.6219 0.5579 0.6071 0.5237
| Avg | 0.7021 0.5423 | 0.5396 0.5144 | 0.5434 0.4979 | 0.5549 0.5214 | 0.5380  0.4812
o | 96 ]0.1236 0.2528 0.1188 0.2413 0.1319 0.2494 0.1299 0.2551 0.1086  0.2328
21192 | 0.2238 0.3412 0.2607 0.3632 0.2201 0.3353 0.2135 0.3287 0.2049 0.3234
% 336 | 0.3745 0.4458 0.3945 0.4605 0.3610 0.4354 0.3989 0.4632 0.3582  0.4360
& | 720 | 0.9984 0.7622 0.9839 0.7570 0.9810 0.7562 0.9866 0.7582 0.6920  0.6493
| Avg | 0.4301 0.4505 | 0.4395 0.4555 | 0.4235 0.4441 | 0.4322 0.4513 | 0.3409  0.4104
_ | 96 |0.1842 0.2353 0.2066 0.2440 0.2066 0.2427 0.2053 0.2490 0.1736 0.2191
2| 192 | 0.2286 0.2676 0.2483 0.2824 0.2407 0.2825 0.2474 0.2882 0.2263 0.2636
S| 336 | 0.2948 0.3153 0.3168 0.3287 0.3132 0.3236 0.3032 0.3209 0.2761 0.3050
Z | 720 | 0.3678 0.3617 0.4195 0.3992 0.3554 0.3517 0.3739 0.3692 0.3536  0.3534
| Avg | 0.2689 0.2950 | 0.2978 03136 | 0.2790 0.3001 | 0.2825 03068 | 0.2574  0.2853

stable and robust regardless of how the distribution is initialized. This indicates that the training
dynamics of AutoDA-Timeseries are sufficiently strong to overcome any prior biases introduced at
initialization.

Long-term Forecasting
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Figure 8: Performance of AutoDA-Timeseries under different hyper-parameter settings across rep-
resentative tasks.

E GENERALIZATION ACROSS DATASETS

To further examine the generalizability of AutoDA-Timeseries, we conduct transfer experiments
across datasets, as summarized in Table @ Specifically, we train the downstream model together
with augmentation policies on ETTh1 and directly evaluate the trained model on ETTh2 and ETTm?2,
comparing with NoAug and UniformAugment baselines (the latter is included because it is the
second-best method under the RNN downstream model, only inferior to ours). As shown in the
upper block (ETTh1 — ETTh2), AutoDA-Timeseries consistently outperforms the baselines across
all forecasting horizons, achieving the lowest average MSE and MAE, which demonstrates that
the models trained with our framework generalize well to datasets with similar distribution. In the
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Table 11: Sensitivity of AutoDA-Timeseries to initial augmentation distributions on classification.

Dataset | Unifrom + Raw Bonus (Ours) | Uniform Dist. | Random Dist (o« = 1) | Random Dist (o = 2)
AWR 0.9800 0.9500 0.9733 0.9633
BM 1 1 1 1
CR 1 0.9861 0.9861 1
EP 0.9783 0.9638 0.9420 0.9638
ER 0.9741 0.9222 0.9556 0.9296
HB 0.7756 0.7756 0.7415 0.7366
RS 0.8947 0.8817 0.8882 0.9013
SCP1 0.8840 0.8703 0.8980 0.8805
uw 0.9313 0.9188 0.9270 0.9345
Average Accuracy 0.9353 0.9187 0.9235 0.9233

Table 12: Sensitivity of AutoDA-Timeseries to initial augmentation distributions on long-term fore-
casting.

Dataset | Pred_len | Metric | Unifrom + Raw Bonus (Ours) | Uniform Dist. | Random Dist (@ = 1) | Random Dist (o = 2)

\
% MSE 0.4849 0.5034 0.5098 0.5137
MAE 0.4715 0.4789 0.4795 0.4803
192 MSE 0.5536 0.5308 0.5387 0.5420
ETThl MAE 0.5046 0.4912 0.4951 0.4956
336 MSE 0.5552 0.5658 0.5728 0.5762
MAE 0.4902 0.5027 0.5065 0.5069
720 MSE 0.5777 0.5536 0.5692 0.5734
MAE 0.5161 0.5003 0.5135 0.5139
% MSE 0.3336 0.3590 0.3559 0.3559
MAE 0.3779 0.3918 0.3914 0.3914
192 MSE 0.4229 0.4250 0.4273 0.4273
ETTh2 MAE 0.4238 0.4277 0.4320 0.4321
336 MSE 0.4340 0.4453 0.4597 0.4593
N MAE 0.4392 0.4503 0.4582 0.4582
720 MSE 0.4213 0.4472 0.4546 0.4498
MAE 0.4431 0.4590 0.4591 0.4505
% MSE 0.4714 0.4787 0.4761 0.4763
MAE 0.4500 0.4581 0.4556 0.4539
192 MSE 0.5107 0.5077 0.5081 0.5280
ETTml1 MAE 0.4630 0.4601 0.4735 0.4691
336 MSE 0.5628 0.5612 0.5615 0.6471
MAE 0.4881 0.4851 0.4897 0.5084
720 MSE 0.6071 0.6132 0.6023 0.6459
MAE 0.5237 0.5305 0.5188 0.5584
% MSE 0.2019 0.2108 0.2156 0.2156
MAE 0.2850 0.2842 0.2896 0.2856
192 MSE 0.2601 0.2875 0.2827 0.2826
ETTm2 MAE 0.3225 0.3296 0.3265 0.3265
336 MSE 0.3136 0.3611 0.3480 0.3485
MAE 0.3545 0.3727 0.3635 0.3639
720 MSE 0.4197 0.4582 0.4328 0.4517
MAE 0.4165 0.4388 0.4358 0.4368

more challenging setting of ETThl — ETTm?2, where the source and target distributions differ sub-
stantially, the performance gap narrows, yet AutoDA-Timeseries remains competitive and clearly
superior to UniformAugment. These results highlight that AutoDA-Timeseries not only enhances
performance within a single dataset but also exhibits strong potential for cross-dataset generaliza-
tion, validating its robustness and applicability in real-world scenarios.

F MODEL EFFICIENCY

To further evaluate the practicality of AutoDA-Timeseries, we conduct efficiency experiments con-
sidering three factors: parameter size, training time (ms/iter), and accuracy. As shown in Figure 9]
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Table 13: Generalization performance of AutoDA-Timeseries on RNN under cross-dataset transfer
settings.

Settines NoAug UniformAugment | AutoDA-Timeseries
& MSE MAE | MSE MAE MSE MAE
o | 96 | 04761 0.4602 | 0.6486 0.5577 | 0.4431 0.4409
E 192 | 0.5418 0.4944 | 0.7172 0.5882 | 0.5146 0.4788
T 336 | 0.5566 0.5116 | 0.7366  0.6091 | 0.5374 0.4996
£ ] 720 | 0.5416 0.5115 | 0.7727  0.6315 | 0.5354 0.5052
=~
"] Avg | 0.5290 0.4944 | 0.7188  0.5966 | 0.5076 0.4811
2| 96 | 08668 0.6702 | 1.1370  0.7578 | 0.8663 0.6724
£ 192 | 1.0198 0.7361 | 1.3273  0.8305 | 1.0087 0.7338
UTJ 336 | 1.2997 0.8369 | 1.6327 0.9313 | 1.2791 0.8317
= 720 | 1.7294 09623 | 2.1243  1.0623 | 1.7105 0.9576
= | Avg | 1.2289 0.8014 | 1.5553  0.8955 | 1.2162 0.7989

AutoDA-Timeseries achieves a favorable balance between accuracy and efficiency. Compared with
NoAug, AutoDA-Timeseries brings consistent accuracy improvements with only moderate increases
in parameter size and training time. Compared with more complex baselines such as AutoTCL,
TS2Vec, and A2Aug, AutoDA-Timeseries delivers higher accuracy with significantly lower com-
putational overhead. Although simple augmentation baselines such as UniformAugment exhibit
shorter training times, they fail to match the performance of AutoDA-Timeseries. Overall, these
results highlight the advantage of AutoDA-Timeseries in achieving an effective accuracy-efficiency
trade-off, demonstrating its practicality for real-world time series applications.

To complete our analysis, we next present a formal analysis of AutoDA-Timeseries’s computational
complexity. During training, the computational complexity of the augmented model is O(K x
B x d x L), and the memory O(B x d x L). During inference, our framework does not invoke
the augmented model. Only the downstream model is used, so there is zero additional runtime or
memory cost introduced by AutoDA-Timeseries at inference time. We provide a detailed derivation
below.

The computational cost of AutoDA-Timeseries comes from two components: the policy generator
(probability and strength generators) and the augmentation operators in the augmentation set 7.

Time Complexity. The policy generator takes as input the flattened feature vector in R“*< and the
probability vector in R™ from the previous layer. Both are length-independent vectors. Therefore,
the cost for this part is O(B x (Cd+n)), where B is the dataset size, d is the channel dimension, C
is the number of feature dimensions, and n is the size of the augmentation set. This cost does
not depend on the sequence length L and is significantly smaller than the cost of applying the
augmentation operators.

The dominant cost comes from the augmentation operators. Most transformations used in AutoDA-
Timeseries (such as Jittering, Scaling, TimeWarp, and Resample) involve pointwise operations or
a single interpolation along the temporal axis. Since the operations are performed over all L time
steps and across all d channels, their cost per layer is O(dL). Combining the two parts, the total
time complexity of K stacked augmentation layers is O(K x B x d x L)+ O(B x (Cd+n)) ~
O(K x B x d x L), because the second term is much smaller than the first.

Memory Complexity. The memory cost consists of three components.

* The policy generator parameters. The MLP weights have size O(Cd 4 n), which does not
depend on L and is much smaller than the parameter size of downstream models such as
Autoformer, VAE, or TCN;

* The intermediate tensors during augmentation. At each layer the model stores the original
sequence and the augmented sequence. The extra memory cost is O(B x d x L). Aug-
mentation layers operate sequentially rather than in parallel. Therefore, the total additional
memory cost remains O(B x d x L), the same as a single layer;
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* Downstream model memory, which is shared across all methods and does not affect the
relative cost of AutoDA-Timeseries.
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Figure 9: Model efficiency comparison across datasets. The x-axis represents training time per
iteration, the y-axis shows accuracy, and the bubble size reflects model parameter size.

G ROBUSTNESS UNDER LIMITED TRAINING SAMPLES

In practical scenarios, obtaining sufficient labeled training samples is often challenging. A data
augmentation method that maintains strong performance under limited samples demonstrates better
generalization under limited training data (Wen et al.,[2020). To evaluate this property, we progres-
sively reduced the training set to 10%, 30%, 50%, 70%, and 100% of its original size, and compared
the performance of NoAug with AutoDA-Timeseries. We selected three representative tasks, in-
cluding classification, long-term forecasting, and anomaly detection. The model architectures and
hyperparameters were kept fixed, and we reported Accuracy, MSE, and F1-score for each task.

As shown in Figure [[0] AutoDA-Timeseries consistently outperforms NoAug under different frac-
tions of training data. The advantage is particularly evident in low-data regimes, where augmentation
substantially narrows the performance gap caused by limited supervision. Even when more data are
available, AutoDA-Timeseries remains competitive, indicating that learned augmentation strategies
not only alleviate data scarcity but also enhance robustness across varying data scales. This finding
suggests that AutoDA-Timeseries is not merely a remedy for data scarcity but a general mechanism
to enhance model generalization in diverse real-world scenarios.
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Figure 10: Performance comparison between NoAug and AutoDA-Timeseries under varying train-
ing data ratios (10%, 30%, 50%, 70%, 100%) across three representative tasks: classification (Ac-
curacy), long-term forecasting (MSE), and anomaly detection (F1-score).
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H WEIGHT DISTRIBUTION ANALYSIS

To further understand the effect of AutoDA-Timeseries on downstream model training, we ana-
lyze the weight distributions of models trained with and without augmentation, as they provide a
compact characterization of model stability and generalization. Figure [TT] presents kernel density
estimates of model parameters across five representative tasks, including classification (SelfRegu-
lationSCP2), long-term forecasting (ETTh1), short-term forecasting (M4), regression (FloodMod-
eling?), and anomaly detection (MSL). The distributions remain largely consistent in shape and
centered around zero, indicating that AutoDA-Timeseries does not introduce abnormal parameter
shifts or bias. Meanwhile, the five tasks exhibit distinct distributional patterns: ETTh1 and Flood-
Modeling2 show narrow and almost sparse distributions, while M4 presents wider tails that reflect
higher complexity. These results demonstrate that AutoDA-Timeseries adapts effectively to diverse
scenarios while preserving distributional stability.
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Figure 11: Comparison of weight distributions between models trained without augmentation
(blue, NoAug) and with AutoDA-Timeseries (red) across five tasks, demonstrating that AutoDA-
Timeseries preserves stable parameter distributions while adapting to task-specific characteristics.

I PRIVACY ANALYSIS

To assess whether releasing augmented datasets could expose sensitive information from the orig-
inal time series, we conducted statistical attack experiments to compare privacy vulnerability by
uniform (employed in RandAugment, UniformAugment, and TrivialAugment) or biased (employed
in AutoDA-Timeseries) augmentation selections. We try to reconstruct the original time series from
an augmented time series dataset generated from a set of augmentation transforms applied to the
original seed time series, and evaluate the privacy vulnerability by the RMSE between the ground
truth original time series and the reconstructed time series.

As detailed in Appendix a more deterministic reconstruction can be performed with known
equal probabilities of augmentation, while in contrast, reconstruction with unknown probabilities of
augmentation has to be modeled as a mixture-model estimation.

As shown in Table four groups of reconstruction are performed for comparison. To ensure
fairness, G'1, G3, and (G4 utilize the same augmented time series dataset, and we control the G3 and
G4 to iterate with the same time consumption. Due to the context limitation, more details can be
found in Appendix

The results are presented in Figure [[2] First, G1 and G4, which simulate reconstructing from a
dataset generated by previous SOTA AutoDA frameworks, demonstrate a lower RMSE and time
consumption than G2 and G3. This indicates the risk to data privacy when releasing augmented
datasets with a fixed uniform augmentation policy. Second, the accuracy difference between G'3 and
G4 shows that the estimation of seed data can be easily misled when the augmentation probabilities
are also jointly estimated for a mixture model estimation, proving the effectiveness for augmenting
the time series without a fixed augmentation probability. Last, the RMSEs in G2 are higher than G3
and G4 with the same estimation model, indicating that the non-uniform augmentation probability
in augmentation policy does increase the difficulty of reconstructing the seed data.
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Table 14: Reconstruction experiment group setup.
AugProbs is whether the augmentation probabili- ¢
ties are equal, and ProbDist is whether this prob- £

01

ability distribution is fixed and known to the at- 2

Seconds (with logarithmic spacing)

tacker.
oot 0.1
0.0001
Group | Estimation | ProbDist | AugProbs re0s oot
Group 1 (G1) | Deterministic Fixed Uniform Groupl Groupz - Group3 - Greupd Groupt Groupz  Graup3EGroupt

Group 2 (G2) | Mixture-model | Unfixed | Non-uniform (a) Reconstruction RMSE (b) Estimation time
Group 3 (G3) | Mixture-model | Unfixed | Uniform

Group 4 (G4) | Mixture-model | Fixed Uniform Figure 12: Reconstruction RMSE and time con-
sumption to reconstruct the original time series.

I.1 RECONSTRUCT A SINGLE TIME SERIES FROM AUGMENTED TIME SERIES

This section discusses how to reconstruct the seed time series from augmented time series data based
on a seed time series and a set of augmentation transformations 7 = {Tj, 3 =1,2,... ,n} when
randomly sampling augmentation transforms and intensities.

Denote the original time series as c. Suppose the probability of selecting augmentation transform 7;;
is p;, the distribution of the augmented time series generated by T is Y;, and the distribution of the
entire generated dataset is X 4. Then:

E(X,) =Y _ piE(Yi(0)),

where E(X) is precisely the weighted mean expectation of all time series in the generated dataset,
denoted mean(X,) = pg. Next, the variance is given by:

Var(Xy) = E(VaT(Xg |pz)) + Var(E(Xg |pi)),

where
E(Var(Xg |pi)) = Zpi Var(Yi(c))

represents the weighted mean variance of all subsets generated by different augmentation transforms.

In previous AutoDA frameworks (Cubuk et al.;,|2020; Miiller & Hutter,|2021; LingChen et al.;,|2020),
the transformation operators are predefined and fixed. Consequently, the distributions Y; can be
easily derived apart from an unknown intensity range parameter ¢. Therefore, the distribution of
X, is determined by the original seed data c, the intensity range parameter ¢, and the probability
distribution {p; }. These three can be viewed as the prior for X, and hence can be estimated with the
observed samples of X, which correspond exactly to the time series in the augmented dataset. As a
result, if the augmentation transforms are selected with equal probabilities, ¢ can be easily estimated,
and the seed data c can be reconstructed accordingly, jeopardizing data privacy.

For illustration, consider a toy example with a specific seed time series ¢ and an augmentation
transform set comprising three transformations:

* Raw transform: Y;(c) = ¢

* Scaling transform: Y3(c) = ¢ - s, where the scaling factor s follows a uniform distribution
s~ U2t — 1,2t 4+ 1]

o Jittering transform: Y3(c) = ¢ + n, where the noise n follows a Gaussian distribution

n ~ N(0,t?)
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The expectation and variance of each subset are then:

EMW) =c,
Var(Y1) =0,

B(Y) =2t
Var(Ys) = 4t%¢?,

E(Y3) =c,
Var(Yz) =t

Hence, if the augmentation transforms are chosen with equal probability p; = ps = ps = =, the
expectation and variance of the entire augmented dataset are:

2t 2t+2
E(Xg):CJr cte 2+ c

3 3
2t+2\2 1 t2 — 8t
VCLT(Xg):(OJr%62+t2)/3+(62+4t262+62)/37( ; c) = §t2+¥8.

Since the average and variance of the augmented dataset can be computed easily, ¢ can be estimated,
and subsequently c can be inferred. By contrast, if the probability of augmentation selection is not
equal, the model forms a mixture model, making estimation significantly more complex.

1
3?

Abstractly, when the selection probabilities are not necessarily equal, one must re-estimate the
prior from observations of the distribution involving {p;}, ¢, and t. However, when the selection
probabilities are assumed to be equal, X, reduces to a distribution that contains only the unknown
priors c and ¢, which substantially reduces the difficulty of accurate prior estimation.

1.2 RECONSTRUCTION EXPERIMENT SETTINGS

Given a predefined set of augmentation transformations, we apply these transformations to time
series in the original dataset. Two types of datasets are generated with different strategies:

* The generated time series data of all different transformations are directly mixed into the
dataset Dy with equal probability.

* The generated time series data of all transformations are mixed into a synthetic dataset Do
according to a given probability vector.

From D; and D5 , the original seed metrics as prior parameters are estimated. For D;, we use New-
ton’s method to estimate the intensity range parameters and the original seed metrics, denoted as
Groupl. For Dy, since the probability vector prior is unknown, it formulates a mixture model esti-
mation. Thus, the Expectation-Maximization (EM) algorithm is applied to estimate the probability
and the prior parameters of the corresponding distribution iteratively. We generated a dataset with
unevenly sampled transformations and performed EM (denoted as Group?2).

To ensure fairness in comparison, we also established a comparison group of applying EM on D;,
learning the probability on its own (denoted as Group3), or estimating with a fixed probability
(denoted as Group4).

In the experiment, specific formal modifications have been made to some augmentation transforma-
tions to unify the problem form and accelerate the calculation. For example, the Raw transformation
is replaced with a Jittering transformation with a minimal Gaussian noise. In addition, we have
performed standard normalization on the original time series in advance to avoid the problem of
inconsistent scales.

J FULL RESULTS

To provide a complete view of the experiment outcomes, we report the detailed results of all down-
stream models across different tasks. Specifically, the classification results using TCN and ROCKET
are presented in Tables[T5|and[T6] while the long-term forecasting results with RNN and Autoformer
are summarized in Tables [T7] and [I8] For regression, we present the detailed results of CNN and
MLP in Tables[I9and 20 Finally, the anomaly detection results with UNet and VAE are provided
in Tables 21land 221
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Table 15: Detailed classification results with TCN across baselines and AutoDA-Timeseries. “x.” in
the method names denotes x«Augment.

InfoTS AutoTCL TS2Vec

Rand.

Uniform.

Trivial.

A2Aug

Datasets / Methods | NoAug (2023) (2024) (2022) (2020) (2020) (2021) (2023) Ours
AWR 0.8933 | 0.9767 0.9800 0.9367 | 09133 09100  0.9433  0.9833 0.9533
AF 0.3333 | 0.3333 0.4667 0.3333 | 0.4000 0.4667  0.3333 0.3333  0.4667
BM 1 1 1 0.5000 1 1 1 1 1
CR 0.9861 | 0.9861 0.9583 0.9583 | 0.9772  0.9028 1 0.9861 1
DDG 0.7200 | 0.5600  0.6000 0.2800 | 0.7400  0.7000  0.7000  0.6000  0.7200
EW 0.8168 | 0.8015 0.8168 0.7939 | 0.8321  0.6718  0.7634 0.8092 0.8702
EP 0.9783 | 0.9348 0.9420 0.9420 | 09783 09420  0.9783  0.9855 1
ER 0.7593 | 0.9185 0.8963 0.1667 | 0.8778  0.8815  0.8778 0.9037 0.9222
EC 0.4030 | 0.2548 0.2890 0.3080 | 0.3004 0.2776  0.3118 03156  0.4068
FD 0.5000 | 0.6302  0.5499 0.5182 | 0.5000  0.5006  0.5000 0.5000 0.5000
FM 0.5900 | 0.6000  0.5500 0.5400 | 0.5700  0.5700  0.5300 0.5700  0.6200
HMD 0.4730 | 0.4730  0.4324 0.1758 | 0.4189  0.4054  0.4324 04595 0.4730
HW 0.5847 | 0.3647 0.4600 0.2753 | 0.5588  0.0812  0.6118 0.6671 0.4918
HB 0.7854 | 0.7610  0.7512 0.7317 | 0.7659  0.7512  0.7756  0.7756 0.7854
LIB 0.8222 | 0.8278 0.6667 0.7222 | 0.7667  0.1389  0.8222  0.9111 0.8500
LSST 0.3990 | 0.6310  0.5114 0.6196 | 0.4185  0.3491 0.4091  0.6403 0.4124
Ml 0.6100 | 0.5000  0.6000 0.6200 | 0.6100  0.6200  0.6400  0.6200  0.6700
NATOPS 0.8333 | 0.9389  0.8389 0.8944 | 0.8500  0.8444  0.8389 0.8334 0.8889
PEMS-SF 0.8324 | 0.7861 0.6821 0.5491 | 0.7977  0.4046  0.7514 0.8728 0.8497
PD 0.8645 | 0.9237 0.9423 09140 | 09525 0.8716  0.9580 0.8971 0.9634
PS 0.2320 | 0.2741 0.0954 0.1700 | 0.1497  0.0790  0.1968 0.2103  0.1867
RS 0.9079 | 0.8882  0.8950 0.7566 | 0.9145  0.8882  0.9013 0.9211 0.9408
SCP1 0.8396 | 0.8703 0.8700 0.8567 | 0.8396  0.8601 0.8805 0.8669  0.8874
SCP2 0.5389 | 0.5667 0.5667 04611 | 0.5889  0.5667  0.5500 0.5611 0.6111
SWI 0.3333 | 0.4667 0.4667 0.3333 | 0.4667 0.4000  0.4667 0.4000 0.7333
UWGL 0.7656 | 0.9094  0.8840 0.8156 | 0.8531  0.7063  0.8061 0.8219 0.7875
Average Accuracy | 0.6847 | 0.6991 0.6812 0.5836 | 0.6939  0.6073  0.6915 0.7094 0.7304

K SHOWCASES

K.1 SHOWCASE OF FORECASTING CASES

To provide an intuitive understanding of how different augmentation strategies influence forecast-
ing performance, we present case studies on the ETTh1 dataset with a horizon of 96 steps, where
the downstream model is RNN. As shown in Figure [T3] the predictions from models trained with
AutoDA-Timeseries better capture the temporal dynamics and align more closely with the ground
truth compared to those from other baselines.

K.2 SHOWCASE OF AUGMENTATION CASES

We visualize augmentation cases on the SCP1 dataset to provide qualitative insights. Figure[I4]and
Figure T3] present two different samples, each showing the evolution of augmented time series across
three layers. The results indicate that the augmentation process preserves the global structure while
introducing diverse variations, demonstrating the effectiveness of AutoDA-Timeseries in generating
meaningful augmented data.
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Table 16: Detailed classification results with ROCKET across baselines and AutoDA-Timeseries.
“x.” in the method names denotes xAugment.

Datasets / Methods | NoAug InfoTS AutoTCL TS2Vec | Rand. Uniform. Trivial. A2Aug ours
(2023] (2024] (2022] (2021] (2023]

AWR 0.9667 | 0.9767  0.9800 0.9833 | 0.9567 0.9433  0.9733 0.9900 0.9800
AF 0.4000 | 0.5333  0.5333 0.4000 | 0.4000 0.3333  0.4000 0.4000 0.4667
BM 1 0.7750 1 1 1 1 1 1 1
CR 0.9583 | 0.8889  0.8889 0.5972 | 0.9306  0.8334 09861 0.9861 1

DDG 0.6600 | 0.7000  0.7000 0.2600 | 0.6600  0.6200  0.5800  0.7000 0.7000
EW 0.6107 | 0.6565  0.6183 0.5954 | 0.6031  0.5649  0.6565 0.7252 0.7328
EP 0.9638 | 0.5725  0.9275 0.8551 | 0.9058 0.7971  0.9565 0.9420 0.9783
ER 0.9444 | 09593  0.9556 0.8 0.9296  0.9037 09222 0.9556 0.9741
EC 0.2928 | 0.4297  0.4373 0.4297 | 02928  0.2852 03042 0.2548 0.3156
FD 0.6200 | 0.6393  0.6348 0.5497 | 0.6379  0.6266  0.6263  0.6510 0.6328
FM 0.5900 | 0.6300  0.6200 0.6000 | 0.6300  0.5800  0.6100 0.6100 0.6500

HMD 0.5270 | 0.5135  0.5405 0.1351 | 0.5135  0.5000  0.5541 0.5000 0.5541
HW 0.3600 | 0.2200  0.2212 0.1600 | 0.3047  0.1141  0.3447 0.4800 0.3588
HB 0.7610 | 0.7415  0.7366 0.6341 | 0.7805  0.7512  0.7561 0.7659 0.7756
LIB 0.6889 | 0.8500  0.8556 0.7056 | 0.5833  0.3500  0.6389 0.8222 0.7167

LSST 0.6006 | 0.3978  0.5016 0.6156 | 0.5921  0.5393  0.6123  0.6415 0.5933
MI 0.5800 | 0.5900  0.5800 0.6100 | 0.5600  0.5500  0.5600 0.5500 0.6500

NATOPS 0.9167 | 0.9000  0.9056 0.8833 | 0.8889  0.8278  0.9167 0.9167 0.9167
PEMS-SF 0.5376 | 0.7919  0.7746 0.3584 | 03873  0.1792  0.4682 0.6301 0.5607
PD 0.9634 | 0.9663  0.9696 0.9574 | 09520 09180  0.9634 0.9691 0.9711
PS 0.1837 | 0.1062  0.1118 0.1288 | 0.1697  0.1184  0.1828  0.2120 0.1670
RS 0.8750 | 0.7434  0.8816 0.7895 | 0.8421  0.8289  0.8421 0.8684  0.8947

SCP1 0.8737 | 0.7406  0.7372 0.5290 | 0.8771  0.8532  0.8771 0.8567 0.8840

SCP2 0.5500 | 0.4778  0.4833 0.5278 | 0.5389  0.5389  0.5278 0.5556 0.6111

SWIJ 0.5333 | 0.4667  0.4667 0.3333 | 0.7333  0.5333  0.5333  0.4000 0.7333

UWGL 0.8688 | 0.8406  0.8438 0.8875 | 0.8844  0.8594  0.8906 0.9156 0.9313

Average Accuracy | 0.6856 | 0.6630  0.6887 0.5895 | 0.6752  0.6134  0.6801 0.7038 0.7211

Table 17: Detailed long-term forecasting results with RNN across baselines and AutoDA-

Timeseries. “*.” in the method names denotes x«Augment.
Methods NoA InfoTS AutoTCL TS2Vec Rand. Uniform. Trivial. A2Aug Ours
s | omue_| |

Metrics | MSE MAE | MSE MAE MSE MAE MSE MAE | MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 | 0.6034 05234 | 09196 07253 08481 0.6904 06950 0.6141 | 0.5067 04882 05044 04809 06222 05465 0.6221 05614 04849 04715
= | 192 | 0.6314 05394 | 09829 07631 10001 07744 08538 06969 | 0.5392 05053 05362 04978 0.6615 05670 08087 0.6374 05536 0.5046
E | 336 | 0.5591 04909 | 10161 07772 11044 08068 1.0128 07856 | 0.6173 05278 05642 05090 0.6996 05821 0.6959 06165 05552 0.4902
D] 720 | 06498 05550 | 11145 0.8243 L1164 08273 11999 08308 | 0.6226 05462 0.6596 05694 07020 05962 07665 0.6735 05777 0.5161
| Avg | 06109 06134 | 1.0083 10378 10173 10736 09404 10222 | 05715 05930 05661 05867 06713 0.6877 07233 07570 0.5429 05622
96 | 04103 04206 | 13967 09731 15150 1.0029 10807 08338 | 0.4822 04594 03918 04034 05275 04727 07067 05417 03336 03779
Q| 192 | 0.6240 05461 | 18304 11280 27557 13260 17323 1.0532 | 0.5981 05093 04651 04430 0.6047 05068 12000 0.6587 04229 0.4238
E 336 | 07327 05923 | 23618 13095 23520 11934 19501 11481 | 0.6260 0.5289 04991 04695 05782 05110 11345 0.6889 04340 0.4392
S 720 | 07419 05981 | 33260 15914 25000 12913 34461 15999 | 05614 05084 05255 04877 05408 04980 07155 0.6156 04213 04431
| Avg | 06272 06995 | 22287 25061 22807 25359 20523 23762 | 0.5669 05952 04704 04966 05628 0.5746 09392 10167 0.4030 0.4261
96 | 07152 05315 | 07686 06304 07387 0.6327 05347 05128 | 07454 05465 05396 04725 06846 05271 05489 05058 0.4714  0.4500
T | 192 | 07856 05521 | 08374 06752 07922 06620 0.6322 05636 | 0.8462 0.5783 05621 04844 07650 05537 05858 05216 05107 0.4630
£ [ 336 | 08251 05704 | 08773 0.6974 08543 06969 07580 06367 | 09121 0.6033 05681 04923 08330 05821 07301 05872 0.5628 0.4881
5] 720 | 08740 05959 | 09345 07272 09600 07524 08575 0.6967 | 09820 0.6351 0.6040 05106 09094 0.6201 06301 05535 06071 05237
| Avg | 0.8000 08282 | 0.8545 08831 08363 0.8688 06956 07492 | 0.8714 09134 05685 05781 07980 0.8358 0.6237 06487 0.5380 0.5602
96 | 02648 03390 | 0.4430 05272 09089 07701 08549 07113 [ 02383 03200 02188 03017 02263 03087 03262 03857 0.2019 02850
S| 192 | 03512 03868 | 07770 07042 09957 08069 12348 09199 | 03011 03559 02769 03365 02857 03426 04879 04859 02601 0.3225
£ [ 336 | 04352 04307 | 14088 09832 10756 08514 14640 10058 | 04257 04249 03392 03733 03398 03738 06555 05522 03136 03545
| 720 | 05422 04829 | 25102 13234 18328 11009 24442 13223 | 0.5411 04820 0.5460 04654 0.4193 04166 08572 0.6174 04197 0.4163
| Avg | 03984 04429 | 12848 15653 12033 13014 14995 17143 | 03766 04226 03452 03874 03178 03483 05817 06669 0.2988 03311
o | 96 | 01687 02995 | 17382 10084 19485 11527 18184 1.0493 | 01540 02756 00540 02833 01572 02813 03931 04316 0.1086 02328
219202726 03835 | 18373 10733 21392 11981 20228 11680 | 02700 03676 02453 03629 02643 03693 04089 04511 0.2049 03234
£ | 336 | 04378 04931 22536 12062 23431 12796 22780 12362 | 04031 04623 03826 04607 04401 04838 10091 07111 03582 0.4360
Z 1720 | 10198 07766 | 27453 13081 26330 1.2828 24236 12374 | 0.8142 06828 09486 07415 10740 07864 0.6692 0.6393 0.6920 0.6493
| Avg | 04747 05767 | 2.1436 22787 22660 23718 21357 22415 | 04103 04958 04326 05255 04839 05928 06201 06957 0.3409 04184
96 | 02561 02801 | 12829 08239 10355 07405 06114 05761 | 02005 02452 01856 02355 01948 02383 01997 02492 0.1736 02191
5192 [ 03021 03154 | 13174 08486 1.0782 07719 07302 0.6208 | 0.2432 02792 02342 02740 02414 02786 02802 03134 02263 0.2636
S [336 | 03516 03464 | 17156 10304 14528 09040 11253 08158 | 02885 03099 02858 03081 02996 03185 03481 03841 02761 03050
2] 720 | 04254 03916 | 19970 11336 17517 10259 14813 09688 | 03558 0.3524 03613 03554 03926 03765 04400 04494 03536 03534
| Avg | 03338 03597 | 1.5782 16767 13296 14276 09871 11123 [ 02720 02958 02667 02938 02821 03112 03170 03561 02574 02853
1% Count | 0 | 0 0 0 | 1 4 1 2 52
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Table 18: Detailed long-term forecasting results with Autoformer

Timeseries. “*.” in the method names denotes xAugment.

across baselines and AutoDA-

InfoTS AutoTCL TS2Vec Rand. Uniform. Trivial. A2Aug

Methods ‘ NoAug ‘ (2023] (2024] 2022] ‘ {2020 (2020] Qo021 (2023] Ours
Metics | MSE MAE | MSE MAE MSE MAE MSE MAE | MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
96 | 10263 07891 | 0.9841 07953 10033 08193 0.8845 0.7419 | 1.0260 07941 10410 08222 12331 08827 09523 07763 08732 07458
= | 192 | 09639 07761 | 09752 08126 09453 07937 0.8865 07404 | 10308 07904 10458 08234 1.1358 08145 09878 07885 09008 07534
E |33 | 10260 08071 | 09689 08024 09465 07928 0.9277 07409 | 10334 07899 10530 08263 12993 08882 09864 07791 10216 08191
S| 720 | 09688 07799 | 09452 07815 09263 07664 10308 0.8376 | 10245 07850 10575 08270 12908 08784 09392 07763 10215 08154
| Avg | 09963 09862 | 0.9684 09631 09554 09394 09324 09483 | 10287 10296 10493 10521 12398 12420 09664 09711 09543 0.9813
96 | 38442 15563 | 3.1187 13570 30869 13503 30069 13180 | 32213 14085 32230 14388 28329 13110 28021 12940 2.4034 12302
o | 192 | 27073 12526 | 31001 13430 31326 13536 32592 13796 | 32799 14174 32293 14499 32522 13950 2.9939 13380 27126 13442
E |33 | 0991 07931 | 30804 13340 31086 13462 29728 13322 | 32731 14067 32295 14515 32216 13838 32867 14342 27465 13848
B | 720 | 25324 12130 | 30378 13246 30566 13320 3.1065 13330 | 32630 14038 32516 14560 30298 14151 32314 14569 28374 14446
| Avg | 25200 2.0786 | 3.0843 30728 30962 30993 30864 3.1128 | 32593 32720 32334 32368 30841 3.1679 30785 31707 26750 2.7655
96 | 18310 11192 | 1.0957 07893 1.1103 0.8027 08148 07252 | 12186 08663 12275 08792 12325 08709 10236 07758 08689 0.7072
2| 192 | 17354 10828 | 11138 08536 11020 07935 0.8867 0.7623 | 12134 08631 12192 08771 12252 08678 10293 07854 11311 08390
| 336 | 16885 10605 | 11021 07957 1Is19 08530 08935 07615 | 12120 08622 12157 08765 12237 08674 09422 0I738 10529 08140
G| 720 | 16893 10515 | 10674 08193 11063 07960 0.9424 07811 | 12135 08637 12177 08791 12294 08729 L1114 08154 12272 08876
| Ave | 17361 17044 | 10948 10944 11179 11204 08844 09075 | 12146 12133 12200 12175 12277 12261 10266 10276 10700 1.1371
96 | 27817 13155 | 3.1061 13551 30206 14202 23535 13076 | 2.6729 12963 28379 13706 35723 14780 2.8887 13317 25533 12498
Q| 192 | 36055 15007 | 31309 13587 31350 13587 25970 13592 | 3.1856 14181 32365 14555 33879 14786 3.1428 13996 27021 13589
£ | 336 | 40774 16337 | 31818 13692 30447 13679 22067 11345 | 31680 14233 33635 14706 33197 14834 32642 13716 29306 13434
G| 720 | 3.0671 14349 | 311932 13696 30466 13920 33414 14279 | 29395 14353 33176 14655 32869 14884 3.1796 14394 2.6495 1.2698
| Avg | 33829 3.5833 | 3.1530 31636 30870 3.1091 26247 27150 | 29915 30977 31889 33059 33917 33315 31188 31955 27094 27614
| 9 | 3069 14659 | 47716 17676 47654 18026 47650 17686 | 2.5649 12911 22821 12414 15506 L0461 25712 13783 14143 09761
D 192 | 20449 1.1978 | 47517 17609 35271 15486 46947 17496 | 20318 11312 29111 14173 22307 12602 20573 12145 1.4095 0.9194
£ | 336 | 18875 11624 | 47606 17500 47626 17528 47386 17508 | 19907 11883 26509 13539 22047 1.1812 L6807 10388 15898 0.9914
20720 | 27725 13706 | 47999 17619 48315 17682 48138 17665 | 29641 13662 30918 14682 22418 12071 23173 12722 L6965 10897
| Ave | 24436 22350 | 47710 47707 44717 43737 47530 47490 | 23879 23289 27340 28846 20570 22257 2.1566 20184 15275 15653
| 9% | 36475 15226 | 04995 05151 0.6277 0.6023 03700 04085 | 37655 15601 36130 15279 3.0235 14159 16439 10193 12919 0.9329
5| 192 | 31727 14315 | 06173 05979 04497 04468 0.4087 04189 | 34958 15027 36112 15176 35880 15015 17755 10565 29921 13855
S| 336 | 3599 15274 | 06121 05925 06172 05957 04556 04541 | 35772 15229 34884 15027 33572 14611 17180 10404 27707 13381
2| 720 | 35249 15348 | 06123 05940 04358 04500 06198 0.5466 | 33654 14862 38626 15746 29488 13717 18466 10787 30353 1.4080
| Avg | 34855 34315 | 05853 06139 05326 05009 04635 04947 | 35510 34795 36438 36541 32544 32980 17460 17800 2.5225 29327

1% Count | 6 [ 1 6 29 [ 0 0 17

Table 19: Detailed regression results with CNN across baselines and AutoDA-Timeseries. “x.” in
the method names denotes *Augment.

Dataset Metri NoA InfoTS AutoTCL TS2Vec | Rand. Uniform. Trivial. A2Aug Ours
atasets etnes | NOAUg |\ B023)  (2024)  (2022) | (2020)  (2020)  (2021) (2023) u
AE MSE | 0.6424 | 0.6463  0.6461  0.6457 | 0.6424  0.6424  0.6425 0.6458 0.6423
MAE | 0.6347 | 0.6465 0.6461  0.6458 | 0.6361  0.6349  0.6362 0.6458 0.6375
EMI MSE | 0.7370 | 0.7965 0.7414  0.7982 | 0.7370  0.7390  0.7387 4.8129  0.6602
MAE | 0.6480 | 0.6473  0.6507  0.6591 | 0.6528  0.6555  0.6539 0.8405 0.6264
MO MSE | 07813 | 0.5699  2.1929  0.9154 | 0.5273  3.1468  0.4536 0.4685 0.3875
MAE | 03195 | 04305 04185 03684 | 0.2547 04643 02879 02652 0.2204
EM3 MSE | 0.8647 | 1.4001 14228 13215 | 12162 15773  0.8622 1.1040 1.2221
MAE | 0.6891 | 0.8537 0.8423  0.7890 | 0.8296 09066 0.7082 0.7535 0.8040
LEMC MSE | 09789 | 0.9790 0.9786  0.9791 | 1.7238 09789  0.9789 0.9789 0.9768
MAE | 0.7544 | 0.7541  0.7494  0.7563 | 1.0769 07537  0.7544 0.7541 0.7484
[EEEPPG | MSE | 15666 | 17569 17577 1.8753 | 17238 17439 16492 15992  1.4636
MAE | 1.0466 | 1.0993  1.0990  1.1079 | 1.0769  1.0709  1.0480 1.0371 1.0018
Avg MSE 0.9285 | 1.0248 12899  1.0892 | 1.0951 14714 0.8875 1.6016 0.8921
Avg MAE 0.6821 | 07386  0.7343  0.7211 | 0.7545  0.7477  0.6814 0.7160 0.6731
1% Count | 2 | o 0 0 0 0 2 0 10
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Table 20: Detailed regression results with MLP across baselines and AutoDA-Timeseries. “x.” in
the method names denotes *Augment.

S . InfoTS  AutoTCL TS2Vec | Rand. Uniform. Trivial. A2Aug

Datasets | Metrics | NoAug | o553y 2024y (2022) | (2020)  (2020)  (@021) (2023 OUrS
AE MSE | 0.6433 | 0.6425  0.6424  0.6435 | 0.6438  0.6425 0.6425 0.6438 0.6415
MAE | 0.6331 | 0.6318  0.6325  0.6298 | 0.6406 0.6335 0.6371 0.634 0.6354
e | MSE [ 02787 [ 06555 06619 06332 [ 03529 07047 03384 04155 02788
MAE | 04062 | 05960 0.6148 06018 | 0.4774 0.6518 04455 04733 0.3885
e | MSE [ 31369 [ 30071 30911 27806 | 23691 29632 29757 24156 17873
MAE | 05184 | 05029 04051 04494 | 0.3179 04729 04364 03604 0.3223
i3 | MSE [ 08488 | 12171 12412 12197 | 10149 12935 08554 09558 0.7675
MAE | 07416 | 0.8065 08744 08433 | 0.7046 0.8217  0.6666 0.6534 0.6530
LEMC | MSE [ 09790 [ 09789 09789 09789 [ 09790 09789 09790 09789 0.9673
MAE | 07530 | 07546  0.7545 07546 | 0.7528 0.7544 07533 0.7543 0.7505
EEEPPG | MSE | 18752 | 18306 19025 18085 | 19581 18361 18551 18846 17675
MAE | 11534 | 1.1195  1.1273 L1131 | 112390 1.1256  1.0984 1.1157 1.1022
Avg MSE 12937 | 14036 14197 13441 | 12196 14032 12744 12157 1.0350
Avg MAE 07010 | 07352 07348 07320 | 0.6695 0.7433  0.6729 0.6652 0.6420

“Count | 1 | 0 0 1 1 0 1 0 10

Table 21: Detailed anomaly detection results with UNet across baselines and AutoDA-Timeseries.
“x.” in the method names denotes *Augment.

Datasets \ MSL \ SMAP | SMD | Avg F1

Metrics | P R FI | P R FI | P R Fl
NoAug 0.6215 09475 07506 | 0.7734 0.9692 0.8603 | 0.3290 0.9323 0.4864 | 0.6991
InfoTS (2023} | 0.6226 0.9475 07515 | 0.7734 0.9646 0.8585 | 0.3207 0.8371 0.4637 | 0.6912

(
AutoTCL  (2024) | 0.6287 0.9458 0.7553 | 0.7677 0.9350 0.8431 | 0.3279 0.9297 0.4848 | 0.6944
TS2Vec  (2022) | 0.618 0.9387 0.7453 | 0.6856 0.5722 0.6238 | 0.3268 0.9236 0.4828 | 0.6173
Rand. (2020) | 0.6283 0.9436 0.7544 | 0.7714 0.8971 0.8295 | 0.3176  0.898  0.4692 | 0.6844
Uniform. (2020) | 0.7144 0.9884 0.8293 | 0.7841 0.9392 0.8547 | 0.3249 0.8318 0.4673 | 0.7171
Trivial.  (2021) | 0.6207 0.9448 0.7492 | 0.7679 0.9347 0.8431 | 0.3203 0.9080 0.4736 | 0.6886
A2Aug  (2023) | 0.6217 0.9475 0.7508 | 0.7743 0.9737 0.8626 | 0.3279 0.9279 0.4846 | 0.6993
Ours 0.7772  0.9906 0.8710 | 0.7888 0.9661 0.8685 | 0.3491 0.9045 0.5038 | 0.7478

Table 22: Detailed anomaly detection results with VAE across baselines and AutoDA-Timeseries.
“x.” in the method names denotes *Augment.

Datasets ‘ MSL ‘ SMAP ‘ SMD ‘
Avg F1
Metrics | P R FI | P R FI | P R Fl
NoAug 0.9015 0.4041 0.5581 | 0.9717 0.8652 0.9153 | 0.1507 0.3159 0.2041 | 0.5592
InfoTS 2023) | 0.9026 0.3962 0.5507 | 0.9948 0.5557 0.7131 | 0.1491 0.3137 0.2022 | 0.4887

(
AutoTCL  (2024) | 0.9012 0.3894 0.5438 | 0.9948 0.5558 0.7132 | 0.1509 0.3158 0.2042 | 0.4871
TS2Vec  (2022) | 0.9084 0.4017 0.5571 | 0.9948 0.5558 0.7132 | 0.1508 0.3154 0.2040 | 0.4914
Rand. (2020) | 0.9021 0.4151 0.5685 | 0.9863 0.8447 0.9100 | 0.1512 0.3163 0.2046 | 0.5610
Uniform. (2020) | 0.9043 0.4203 0.5739 | 0.9949 0.5559 0.7133 | 0.1512 0.3164 0.2046 | 0.4973
Trivial.  (2021) | 0.9011 0.4125 0.5660 | 0.9948 0.5558 0.7132 | 0.1509 0.3160 0.2043 | 0.4945

A2Aug  (2023) | 0.9001 0.4102 0.5635 | 0.9905 0.8393 0.9087 | 0.1517 0.3168 0.2052 | 0.5591
Ours 0.9032 0.4224 0.5756 | 0.9731 0.9225 0.9471 | 0.1521 0.3172 0.2056 | 0.5761
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Figure 13: Forecasting showcase on ETTh1 dataset with horizon 96 using RNN as the downstream
model.

Layer 0 Layer 0
30 60
20 50
10 w0
[ 30
-10 20
=20 10
3 200 P oo w0 5 200 o w0 w0
(a) Layer O (a) Layer O
Layer 1 Layer 1
30 80
2
60
10
o w
-10
20
0
3 200 a0 o0 %00 5 200 w00 s %00
(b) Layer 1 (b) Layer 1
Layer 2 Layer 2
30 80
0
60
10
0 w0
-10
20
0
5 200 200 o0 500 5 200 w00 o0 500
(c) Layer 2 (c) Layer 2

Figure 14: SCP1 augmentation showcase 1 Figure 15: SCP1 augmentation showcase 2
across three layers. across three layers.
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