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ABSTRACT

The graduated optimization approach is a method for finding global optimal so-
lutions for nonconvex functions by using a function smoothing operation with
stochastic noise. We show that stochastic noise in stochastic gradient descent
(SGD) has the effect of smoothing the objective function, the degree of which is
determined by the learning rate, batch size, and variance of the stochastic gradi-
ent. Using this finding, we propose and analyze a new graduated optimization
algorithm that varies the degree of smoothing by varying the learning rate and
batch size, and provide experimental results on image classification tasks with
ResNets that support our theoretical findings. We further show that there is an in-
teresting correlation between the degree of smoothing by SGD’s stochastic noise,
the well-studied “sharpness” indicator, and the generalization performance of the
model.

1 INTRODUCTION

1.1 BACKGROUND

The amazing success of deep neural networks (DNN) in recent years has been based on optimization
by stochastic gradient descent (SGD) (Robbins & Monro, 1951) and its variants, such as Adam
(Kingma & Ba, 2015). These methods have been widely studied for their convergence (Moulines &
Bach, 2011; Needell et al., 2014) (Fehrman et al., 2020; Bottou et al., 2018; Scaman & Malherbe,
2020; Loizou et al., 2021; Zaheer et al., 2018; Zou et al., 2019; Chen et al., 2019; Zhou et al., 2020;
Chen et al., 2021; Iiduka, 2022) and stability (Hardt et al., 2016; Lin et al., 2016; Mou et al., 2018;
He et al., 2019) in nonconvex optimization.

SGD updates the parameters as xt+1 := xt − η∇fSt
(xt), where η is the learning rate and ∇fSt

is the stochastic gradient estimated from the full gradient ∇f using a mini-batch St. Therefore,
there is only an ωt := ∇fSt(xt)−∇f(xt) difference between the search direction of SGD and the
true steepest descent direction. Some studies claim that it is crucial in nonconvex optimization. For
example, it has been proven that noise helps the algorithm to escape local minima (Ge et al., 2015; Jin
et al., 2017; Daneshmand et al., 2018; Vardhan & Stich, 2021), achieve better generalization (Hardt
et al., 2016; Mou et al., 2018), and find a local minimum with a small loss value in polynomial time
under some assumptions (Zhang et al., 2017). Several studies have also shown that performance can
be improved by adding artificial noise to gradient descent (GD) (Ge et al., 2015; Zhou et al., 2019;
Jin et al., 2021; Orvieto et al., 2022).

(Kleinberg et al., 2018) also suggests that noise smoothes the objective function. Here, at time t, let
yt be the parameter updated by GD and xt+1 be the parameter updated by SGD, i.e.,

yt := xt − η∇f(xt), xt+1 := xt − η∇fSt(xt) = xt − η(∇f(xt) + ωt).

Then, we obtain the following update rule for the sequence {yt},

Eωt [yt+1] = Eωt [yt]− η∇Eωt [f(yt − ηωt)] , (1)

where f is Lipschitz continuous and differentiable. Therefore, if we define a new function f̂(yt) :=

Eωt [f(yt − ηωt)], f̂ can be smoothed by convolving f with noise (see Definition 2.1, also (Wu,
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1996)), and its parameters yt can approximately be viewed as being updated by using the gradient
descent to minimize f̂ . In other words, simply using SGD with a mini-batch smoothes the function
to some extent and may enable escapes from local minima. (The derivation of equation (1) is in
Section A.)

Graduated Optimization. Graduated optimization is one of the global optimization methods that
search for the global optimal solution of difficult multimodal optimization problems. The method
generates a sequence of simplified optimization problems that gradually approach the original prob-
lem through different levels of local smoothing operations. It solves the easiest simplified problem
first, as the easiest simplification should have nice properties such as convexity or strong convexity;
after that, it uses that solution as the initial point for solving the second-simplest problem, then the
second solution as the initial point for solving the third-simplest problem and so on, as it attempts to
escape from local optimal solutions of the original problem and reach a global optimal solution.

This idea first appeared in the form of graduated non-convexity (GNC) by (Blake & Zisserman,
1987) and has since been studied in the field of computer vision for many years. Similar early
approaches can be found in (Witkin et al., 1987) and (Yuille, 1989). Moreover, the same concept
has appeared in the fields of numerical analysis (Allgower & Georg, 1990) and optimization (Rose
et al., 1990; Wu, 1996). Over the past 25 years, graduated optimization has been successfully ap-
plied to many tasks in computer vision, such as early vision (Black & Rangarajan, 1996), image
denoising (Nikolova et al., 2010), optical flow (Sun et al., 2010; Brox & Malik, 2011), dense corre-
spondence of images (Kim et al., 2013), and robust estimation (Yang et al., 2020; Antonante et al.,
2022; Peng et al., 2023). In addition, it has been applied to certain tasks in machine learning, such
as semi-supervised learning (Chapelle et al., 2006; Sindhwani et al., 2006; Chapelle et al., 2008),
unsupervised learning (Smith & Eisner, 2004), and ranking (Chapelle & Wu, 2010). Moreover,
score-based generative models (Song & Ermon, 2019; Song et al., 2021b) and diffusion models
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021a; Rombach et al., 2022), which are
currently state-of-the-art generative models, implicitly use the techniques of graduated optimiza-
tion. A comprehensive survey on the graduated optimization approach can be found in (Mobahi &
Fisher III, 2015b).

Several previous studies have theoretically analyzed the graduated optimization algorithm. (Mobahi
& Fisher III, 2015a) performed the first theoretical analysis, but they did not provide a practical al-
gorithm. (Hazan et al., 2016) defined a family of nonconvex functions satisfying certain conditions,
called σ-nice, and proposed a first-order algorithm based on graduated optimization. In addition,
they studied the convergence and convergence rate of their algorithm to a global optimal solution
for σ-nice functions. (Iwakiri et al., 2022) proposed a single-loop method that simultaneously up-
dates the variable that defines the noise level and the parameters of the problem and analyzed its
convergence. (Li et al., 2023) analyzed graduated optimization based on a special smoothing opera-
tion. Note that (Duchi et al., 2012) pioneered the theoretical analysis of optimizers using Gaussian
smoothing operations for nonsmooth convex optimization problems. Their method of optimizing
with decreasing noise level is truly a graduated optimization approach.

1.2 MOTIVATION

Equation (1) indicates that SGD smoothes the objective function (Kleinberg et al., 2018), but it is not
clear to what extent the function is smoothed or what factors are involved in the smoothing. There-
fore, we decided to clarify these aspects and identify what parameters contribute to the smoothing.
Also, once it is known what parameters of SGD contribute to smoothing, an implicit graduated op-
timization can be achieved by varying the parameters so that the noise level is reduced gradually.
Our goal was thus to construct an implicit graduated optimization framework using the smoothing
properties of SGD to achieve global optimization of deep neural networks.

1.3 CONTRIBUTIONS

1. SGD’s Smoothing Property (Section 3). We show that the degree of smoothing δ provided
by SGD’s stochastic noise depends on the quantity δ = ηC√

b
, where η is the learning rate, b is the

batch size, and C2 is the variance of the stochastic gradient (see Assumption 2.1). Accordingly, the
smaller the batch size b is and the larger the learning rate η is, the smoother the function becomes (see
Figure 1). This finding provides a theoretical explanation for several experimental observations. For
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Figure 1: Conceptual diagram of implicit graduated optimization for σm-nice function.

example, as is well known, training with a large batch size leads to poor generalization performance,
as evidenced by the fact that several prior studies (Hoffer et al., 2017; Goyal et al., 2017; You et al.,
2020) provided techniques that do not impair generalization performance even with large batch sizes.
This is because, if we use a large batch size, the degree of smoothing δ = ηC√

b
becomes smaller and

the original nonconvex function is not smoothed enough, so the sharp local minima do not disappear
and the optimizer is more likely to fall into one. (Keskar et al., 2017) showed this experimentally,
and our results provide theoretical support for it.

2. Relationship between degree of smoothing, sharpness, and generalizability (Section 4). To
support our theory that simply using SGD for optimization smoothes the objective function and that
the degree of smoothing is determined by δ = ηC/

√
b, we experimentally confirmed the relation-

ship between the sharpness of the function around the approximate solution to which the optimizer
converges and the degree of smoothing. We showed that the degree of smoothing is clearly able
to express the smoothness/sharpness of the function as well as the well-studied “sharpness” indi-
cator (Figure 2 (A)), and that it is more strongly correlated with generalization performance than
sharpness (Figure 2 (B) and (C)). Our results follow up on a previous study (Andriushchenko et al.,
2023) that found, through extensive experiments, correlations between generalization performance
and hyperparameters such as the learning rate, but no correlation between it and sharpness.
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Figure 2: (A) Sharpness versus degree of smoothing calculated from learning rate, batch size, and
the estimated variance of the stochastic gradient. (B) Test accuracy after 200 epochs ResNet18
training on the CIFAR100 dataset versus sharpness. (C) Test accuracy versus degree of smoothing.
The color shading in the scatter plots represents the batch size: the larger the batch size, the darker
the color of the plotted points. “lr” means learning rate.

3. Implicit Graduated Optimization (Section 5). Since the degree of smoothing of the objective
function by stochastic noise in SGD is determined by δ = ηC√

b
, it should be possible to construct

an implicit graduated optimization algorithm by decreasing the learning rate and/or increasing the
batch size during training. Based on this theoretical intuition, we propose a new implicit graduated
optimization algorithm and σm-nice function which slightly extend σ-nice function. We also show

3
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that the algorithm for the σm-nice function converges to an ϵ-neighborhood of the global optimal
solution in O

(
1/ϵ2

)
rounds. In Section 5.2, we show experimentally that our implicit graduated

algorithm outperforms SGD using a constant learning rate and constant batch size. We also find that
methods which increase the batch size outperform those which decrease the learning rate when the
decay rate of the degree of smoothing is set at 1/

√
2.

2 PRELIMINARIES

Let N be the set of non-negative integers. For m ∈ N \ {0}, define [m] := {1, 2, . . . ,m}. Let
Rd be a d-dimensional Euclidean space with inner product ⟨·, ·⟩, which induces the norm ∥ · ∥. Id
denotes a d × d identity matrix. B(y; r) is the Euclidean closed ball of radius r centered at y, i.e.,
B(y; r) :=

{
x ∈ Rd : ∥x− y∥ ≤ r

}
. Let N (µ; Σ) be a d-dimensional Gaussian distribution with

mean µ ∈ Rd and variance Σ ∈ Rd×d. The DNN is parameterized by a vector x ∈ Rd, which is
optimized by minimizing the empirical loss function f(x) := 1

n

∑
i∈[n] fi(x), where fi(x) is the

loss function for x ∈ Rd and the i-th training data zi (i ∈ [n]). Let ξ be a random variable that does
not depend on x ∈ Rd, and let Eξ[X] denote the expectation with respect to ξ of a random variable
X . ξt,i is a random variable generated from the i-th sampling at time t, and ξt := (ξt,1, ξt,2, . . . , ξt,b)
is independent of (xk)

t
k=0 ⊂ R, where b (≤ n) is the batch size. The independence of ξ0, ξ1, . . .

allows us to define the total expectation E as E = Eξ0
Eξ1

· · ·Eξt
. Let Gξt

(x) be the stochastic
gradient of f(·) at x ∈ Rd. The mini-batch St consists of b samples at time t, and the mini-batch
stochastic gradient of f(xt) for St is defined as ∇fSt

(xt) :=
1
b

∑
i∈[b] Gξt,i(xt).

Definition 2.1 (Smoothed function). Given a function f : Rd → R, define f̂δ : Rd → R to be
the function obtained by smoothing f as f̂δ(x) := Eu∼L [f(x− δu)] , where δ > 0 represents
the degree of smoothing and u is a random variable from a any light-tailed distribution L with
Eu∼L [∥u∥] ≤ 1. Also, x⋆ := argmin

x∈Rd

f(x) and x⋆
δ := argmin

x∈Rd

f̂δ(x).

Note that, in the definition of the smoothed function f̂δm , (Hazan et al., 2016) defined that the ran-
dom variable u follows a uniform distribution from the unit Euclidean ball. In contrast, from exper-
imental results in Section H, we define the random variable u to follow any light-tailed distribution.
Since the uniform distribution is a light-tailed distribution (see Section H.1), our Definition 2.1 con-
tains Definition 4.1 of (Hazan et al., 2016) and does not conflict with it. The graduated optimization
algorithm uses several smoothed functions with different noise levels. There are a total of M noise
levels (δm)m∈[M ] and smoothed functions (f̂δm)m∈[M ] in this paper. The largest noise level is δ1

and the smallest is δM (see also Figure 1). For all m ∈ [M ], (x̂(m)
t )t∈N is the sequence generated

by an optimizer to minimize f̂δm . Here, this paper refers to the graduated optimization approach
with explicit smoothing operations (Definition 2.1) as “explicit graduated optimization” and to the
graduated optimization approach with implicit smoothing operations as “implicit graduated opti-
mization”. All previous studies (see Section 1.1) have considered explicit graduated optimization,
and we consider implicit graduated optimization for the first time.

We make the following assumptions:

Assumption 2.1. (A1) f : Rd → R is continuously differentiable and Lg-smooth, i.e., for all x,y ∈
Rd, ∥∇f(x) − ∇f(y)∥ ≤ Lg∥x − y∥. (A2) f : Rd → R is an Lf -Lipschitz function, i.e., for all
x,y ∈ Rd, |f(x)− f(y)| ≤ Lf∥x−y∥. (A3) Let (xt)t∈N ⊂ Rd be the sequence generated by SGD.
(i) For each iteration t, Eξt [Gξt(xt)] = ∇f(xt). (ii) There exists a nonnegative constant C2 such
that Eξt

[
∥Gξt(xt)−∇f(xt)∥2

]
≤ C2. (A4) For each iteration t, SGD samples a mini-batch St ⊂

S and estimates the full gradient ∇f as ∇fSt(xt) :=
1
b

∑
i∈[b] Gξt,i(xt) =

1
b

∑
{i : zi∈St} ∇fi(xt).

The proof of Lemmas 2.1 and 2.2 can be found in Appendix C.

Lemma 2.1. Suppose that (A3)(ii) and (A4) hold for all t ∈ N; then,
Eξt

[
∥∇fSt

(xt)−∇f(xt)∥2
]
≤ C2

b .

Lemma 2.2. Let f̂δ be the smoothed version of f ; then, for all x ∈ Rd,
∣∣∣f̂δ(x)− f(x)

∣∣∣ ≤
Eu[∥u∥]δLf .
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The graduated optimization algorithm is a method in which the degree of smoothing δ is gradually
decreased. Let us consider the case where the degree of smoothing δ is constant throughout the
training. Here, a larger degree of smoothing should be necessary to make many local optimal solu-
tions of the objective function f disappear and lead the optimizer to the global optimal solution. On
the other hand, Lemma 2.2 implies that the larger the degree of smoothing is, the further away the
smoothed function will be from the original function. Therefore, there should be an optimal value
for the degree of smoothing that balances the tradeoffs, because if the degree of smoothing is too
large, the original function is too damaged and thus cannot be optimized properly, and if it is too
small, the function is not smoothed enough and the optimizer falls into a local optimal solution. This
knowledge is useful because the degree of smoothing due to stochastic noise in SGD is determined
by the learning rate and batch size (see Section 3), so when a constant learning rate and constant
batch size are used, the degree of smoothing is constant throughout the training (see Section 4).

3 SGD’S SMOOTHING PROPERTY

This section discusses the smoothing effect of using stochastic gradients. From Lemma 2.1, we have

Eξt [∥ωt∥] ≤
C√
b
,

due to ωt := ∇fSt
(xt) − ∇f(xt). The ωt for which this equation is satisfied can be expressed

as ωt =
C√
b
ut, where Eξt [∥ut∥] ≤ 1. Here, we assume that ωt in image classification tasks with

CNN-based models follows a light-tailed distribution in accordance with experimental observations
in several previous studies (Zhang et al., 2020; Kunstner et al., 2023) and our experimental results
(see Section H.2). Therefore, ωt ∼ L̂ and thereby ut ∼ L, where L̂ and L are light-tailed distribu-
tions and L is a scaled version of L̂. Then, using Definition 2.1, we further transform equation (1)
as follows:

Eωt
[yt+1] = Eωt

[yt]− η∇Eωt
[f(yt − ηωt)]

= Eωt [yt]− η∇Eut∼L

[
f

(
yt −

ηC√
b
ut

)]
= Eωt

[yt]− η∇f̂ ηC√
b

(yt). (2)

This shows that Eωt
[f(yt − ηωt)] is a smoothed version of f with a noise level ηC/

√
b and its pa-

rameter yt can be approximately updated by using the gradient descent to minimize f̂ ηC√
b

. Therefore,

we can say that the degree of smoothing δ by the stochastic noise ωt in SGD is determined by the
learning rate η, the batch size b, and the variance of the stochastic gradient C2 and that optimizing
the function f with SGD and optimizing the smoothed function f̂ ηC√

b

with GD are equivalent in the

sense of expectation.

There are still more discoveries that can be made from the finding that simply by using SGD for
optimization, the objective function is smoothed and the degree of smoothing is determined by
δ = ηC/

√
b.

Why the Use of Large Batch Sizes Leads to Solutions Falling into Sharp Local Minima. It is
known that training with large batch sizes leads to a persistent degradation of model generalization
performance. In particular, (Keskar et al., 2017) showed experimentally that learning with large
batch sizes leads to sharp local minima and worsens generalization performance. According to
equation (2), using a large learning rate and/or a small batch size will make the function smoother.
Thus, in using a small batch size, the sharp local minima will disappear through extensive smoothing,
and SGD can reach a flat local minimum. Conversely, when using a large batch size, the smoothing
is weak and the function is close to the original multimodal function, so it is easy for the solution
to fall into a sharp local minimum. Thus, we have theoretical support for what (Keskar et al., 2017)
showed experimentally, and our experiments have yielded similar results (see Figure 3 (a) and (e)).

Why Decaying Learning Rates and Increasing Batch Sizes are Superior to Fixed Learning
Rates and Batch Sizes. From equation (2), the use of a decaying learning rate or increasing batch
size during training is equivalent to decreasing the noise level of the smoothed function, so using

5
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a decaying learning rate or increasing the batch size is an implicit graduated optimization. Thus,
we can say that using a decaying learning rate (Loshchilov & Hutter, 2017; Hundt et al., 2019; You
et al., 2019; Lewkowycz, 2021) or increasing batch size (Byrd et al., 2012; Friedlander & Schmidt,
2012; Balles et al., 2017; De et al., 2017; Bottou et al., 2018; Smith et al., 2018) makes sense in
terms of avoiding local minima and provides theoretical support for their experimental superiority.

4 RELATIONSHIP BETWEEN DEGREE OF SMOOTHING, SHARPNESS, AND
GENERALIZABILITY

The smoothness of the function, and in particular the sharpness of the function around the approxi-
mate solution to which the optimizer converged, has been well studied because it has been thought
to be related to the generalizability of the model. In this section, we reinforce our theory by ex-
perimentally observing the relationship between the degree of smoothing and the sharpness of the
function.

Several previous studies (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017; Izmailov et al.,
2018; Li et al., 2018; Andriushchenko et al., 2023) have addressed the relationship between the
sharpness of the function around the approximate solution to which the optimizer converges and
the generalization performance of the model. In particular, the hypothesis that flat local solutions
have better generalizability than sharp local solutions is at the core of a series of discussions, and
several previous studies (Keskar et al., 2017; Liang et al., 2019; Tsuzuku et al., 2020; Petzka et al.,
2021; Kwon et al., 2021) have developed measures of sharpness to confirm this. In this paper, we use
“adaptive sharpness” (Kwon et al., 2021; Andriushchenko et al., 2023) as a measure of the sharpness
of the function that is invariant to network reparametrization, highly correlated with generalization,
and generalizes several existing sharpness definitions. In accordance with (Andriushchenko et al.,
2023), let S be a set of training data; for arbitrary model weights w ∈ Rd, the worst-case adaptive
sharpness with radius ρ ∈ R and with respect to a vector c ∈ Rd is defined as

Sρ
max(w, c) := ES

[
max

∥δ⊙c−1∥p≤ρ
f(w + δ)− f(w)

]
,

where ⊙/−1 denotes elementwise multiplication/inversion. Thus, the larger the sharpness value is,
the sharper the function around the model weight w becomes, with a smaller sharpness leading to
higher generalizability.

We trained ResNet18 (He et al., 2016) with the learning rate η ∈ {0.01, 0.05, 0.1, 0.1} and batch size
b ∈ {21, . . . , 213} for 200 epochs on the CIFAR100 dataset (Krizhevsky, 2009) and then measured
the worst-case l∞ adaptive sharpness of the obtained approximate solution with radius ρ = 0.0002
and c = (1, 1, . . . , 1)⊤ ∈ Rd. Our implementation was based on (Andriushchenko et al., 2023)
and the code used is available on our anonymous Github. Figure 3 plots the relationship between
measured sharpness and the batch size b and the learning rate η used for training as well as the degree
of smoothing δ calculated from them. Figure 3 also plots the relationship between test accuracy,
sharpness, and degree of smoothing. Three experiments were conducted per combination of learning
rate and batch size, with a total of 156 data plots. The variance of the stochastic gradient C2 included
in the degree of smoothing δ = ηC/

√
b used values estimated from theory and experiment (see

Appendix B for details).

Figure 3 (a) shows that the larger the batch size is, the larger the sharpness value becomes, whereas
(b) shows that the larger the learning rate is, the smaller the sharpness becomes, and (c) shows
a greater the degree of smoothing for a smaller sharpness. These experimental results guarantee
the our theoretical result that the degree of smoothing δ is proportional to the learning rate η and
inversely proportional to the batch size b, and they reinforce our theory that the quantity ηC/

√
b is

the degree of smoothing of the function. Figure 3 (d) also shows that there is no clear correlation
between the generalization performance of the model and the sharpness around the approximate
solution. This result is also consistent with previous study (Andriushchenko et al., 2023). On the
other hand, Figure 3 (e) shows an excellent correlation between generalization performance and the
degree of smoothing; generalization performance is clearly a concave function with respect to the
degree of smoothing. Thus, a degree of smoothing that is neither too large nor too small leads to
high generalization performance. This experimental observation can be supported theoretically (see
Lemma 2.2). That is, if the degree of smoothing is a constant throughout the training, then there

6
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Figure 3: (a) Sharpness around the approximate solution after 200 epochs of ResNet18 training on
the CIFAR100 dataset versus batch size used. (b) Sharpness versus learning rate used. (c) Sharpness
versus degree of smoothing calculated from learning rate, batch size and estimated variance of the
stochastic gradient. (d) Test accuracy after 200 epochs training versus sharpness. (e) Test accuracy
versus degree of smoothing. The solid line represents the mean value, and the shaded area represents
the maximum and minimum over three runs. The color shade in the scatter plots represents the batch
size; the larger the batch size, the darker the color of the plotted points. “lr” means learning rate.
The experimental results that make up the all graphs are all identical.

should be an optimal value for the loss function value or test accuracy; for the training of ResNet18
on the CIFAR100 dataset, for example, 0.1 to 1 was the desired value (see Figure 3 (e)). For degrees
of smoothing smaller than 0.1, the generalization performance is not good because the function is not
sufficiently smoothed so that locally optimal solutions with sharp neighborhoods do not disappear,
and the optimizer falls into this trap. On the other hand, a degree of smoothing greater than 1 leads
to excessive smoothing and smoothed function becomes too far away from the original function
to be properly optimized; the generalization performance is not considered excellent. In addition,
the optimal combination of learning rate and batch size that practitioners search for by using grid
searches or other methods when training models can be said to be a search for the optimal degree
of smoothing. If the optimal degree of smoothing can be better understood, the huge computational
cost of the search could be reduced.

(Andriushchenko et al., 2023) observed the relationship between sharpness and generalization per-
formance in extensive experiments and found that they were largely uncorrelated, suggesting that
the sharpnesss may not be a good indicator of generalization performance and that one should avoid
blanket statements like “flatter minima generalize better”. Figure 3 (d) and (e) show that there is no
correlation between sharpness and generalization performance, as in previous study, while there is
a correlation between degree of smoothing and generalization performance. Therefore, we can say
that degree of smoothing may be a good indicator to theoretically evaluate generalization perfor-
mance, and it may be too early to say that “flatter minima generalize better” is invalid.

5 IMPLICIT GRADUATED OPTIMIZATION

In this section, we construct an implicit graduated optimization algorithm that varies the learning
rate η and batch size b so that the degree of smoothing δ = ηC/

√
b by stochastic noise in SGD

gradually decreases and then analyze its convergence.

7
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5.1 ANALYSIS OF IMPLICIT GRADUATED OPTIMIZATION ALGORITHM

In order to analyze the graduated optimization algorithm, Hazan et al. defined σ-nice functions
(see Definition I.1), a family of nonconvex functions that has favorable conditions for a graduated
optimization algorithm to converge to a global optimal solution (Hazan et al., 2016). We define the
following function, which is a slight extension of the σ-nice function. See Section I for details on
its extension.
Definition 5.1 (σm-nice function). Let M ∈ N, m ∈ [M ], and γ ∈ [0.5, 1). A function f : Rd → R
is said to be σm-nice if the following two conditions hold:

(i) For all δm > 0 and all x⋆
δm

, there exists x⋆
δm+1

such that:
∥∥∥x⋆

δm
− x⋆

δm+1

∥∥∥ ≤ δm+1 := γδm.

(ii) For all δm > 0, the function f̂δm(x) over N(x⋆
δm

; 3δm) is σm-strongly convex.

The σm-nice property implies that optimizing the smoothed function f̂δm is a good start for op-
timizing the next smoothed function f̂δm+1 , which has been shown to be sufficient for graduated
optimization (Hazan et al., 2016). We will take this route and consider an implicit graduated opti-
mization algorithm for σm-nice functions.

Algorithm 1 embodies the framework of implicit graduated optimization with SGD for σm-nice
functions, while Algorithm 2 is used to optimize each smoothed function; it should be GD (see
(2)). Note that our implicit graduated optimization (Algorithm 1) is achieved by SGD with decaying
learning rate and/or increasing batch size.

Algorithm 1 Implicit Graduated Optimization
Require: ϵ,x1 ∈ B(x⋆

δ1
; 3δ1), η1 > 0, b1 ∈ [n], γ ≥ 0.5

δ1 := η1C√
b1
, α0 := min

{
1

16Lf δ1
, 1√

2σδ1

}
,M := logγ α0ϵ

for m = 1 to M + 1 do
if m ̸= M + 1 then
ϵm := σmδ2m/2, Tm := Hm/ϵm
κm/

√
λm = γ (κm ∈ (0, 1], λm ≥ 1)

end if
xm+1 := GD(Tm,xm, f̂δm , ηm)
ηm+1 := κmηm, bm+1 := λmbm
δm+1 := ηm+1C√

bm+1

end for
return xM+2

Algorithm 2 Gradient Descent

Require: Tm, x̂
(m)
1 , f̂δm , η > 0

for t = 1 to Tm do
x̂
(m)
t+1 := x̂

(m)
t − η∇f̂δm(xt)

end for
return x̂

(m)
Tm+1

From the definition of σm-nice function, the smoothed function f̂δm is σm-strongly convex in
B(x⋆

δm
; 3δm). Also, the learning rate used by Algorithm 2 to optimize f̂δm should always be con-

stant. Therefore, let us now consider the convergence of GD with a constant learning rate for a
σm-strongly convex function f̂δm . The proof of Theorem 5.1 is in Appendix F.1.

Theorem 5.1 (Convergence analysis of Algorithm 2). Suppose that f̂δm : Rd → R is a σm-strongly

convex and Lg-smooth and η < min
{

1
σm

, 2
Lg

}
. Then, the sequence (x̂

(m)
t )t∈N generated by Algo-

rithm 2 satisfies

min
t∈[T ]

f̂δm

(
x̂
(m)
t

)
− f̂δm(x⋆

δm) ≤ Hm

T
= O

(
1

T

)
, (3)

where Hm :=
9(1−σmη)δ2m

2η +
3Lfδm

η(2−Lgη)
is a nonnegative constant.

Theorem 5.1 shows that Algorithm 2 can reach an ϵm-neighborhood of the optimal solution x⋆
δm

of
f̂δm in approximately Tm := Hm/ϵm iterations. The next proposition is crucial to the success of
Algorithm 1 and guarantees the soundness of the σm-nice function (The proof is in Appendix F.2).
Proposition 5.1. Let f be a σm-nice function and δm+1 := γδm. Suppose that γ ∈ [0.5, 1) and
x1 ∈ B(x⋆

δ1
; 3δ1). Then for all m ∈ [M ], ∥xm − x⋆

δm
∥ < 3δm.

8
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xm is the approximate solution obtained by optimization of the smoothed function f̂δm−1
with Al-

gorithm 2 and is the initial point of optimization of the next smoothed function f̂δm . Therefore,
Proposition 5.1 implies that γ ∈ [0.5, 1) must hold for the initial point of optimization of f̂δm to
be contained in the strongly convex region of f̂δm . Therefore, from Theorem 5.1 and Proposition
5.1, if f is a σm-nice function and x1 ∈ B(x⋆

δ1
; 3δ1) holds, the sequence (xm)m∈[M ] generated by

Algorithm 1 never goes outside of the σm-strongly convex region B(x⋆
δm

; 3δm) of each smoothed
function f̂δm (m ∈ [M ]) .

The next theorem guarantees the convergence of Algorithm 1 with the σm-nice function (The proof
of Theorem 5.2 is in Appendix F.3).
Theorem 5.2 (Convergence analysis of Algorithm 1). Let ϵ ∈ (0, 1) and f : Rd → R be an Lf -
Lipschitz σm-nice function. Suppose that we run Algorithm 1; then after O

(
1/ϵ2

)
rounds, the

algorithm reaches an ϵ-neighborhood of the global optimal solution x⋆.

Note that Theorem 5.2 provides a total complexity including those of Algorithm 1 and Algorithm 2,
because Algorithm 1 uses Algorithm 2 at each m ∈ [M ].

5.2 NUMERICAL RESULTS

The experimental environment is in Appendix G and the code is available at https://
anonymous.4open.science/r/new-sigma-nice.

We compared four types of SGD for image classification: 1. constant learning rate and constant
batch size, 2. decaying learning rate and constant batch size, 3. constant learning rate and increasing
batch size, 4. decaying learning rate and increasing batch size, in training ResNet34 (He et al., 2016)
on the ImageNet dataset (Deng et al., 2009) (Figure 4), ResNet18 on the CIFAR100 dataset (Figure 5
in Appendix G), and WideResNet-28-10 (Zagoruyko & Komodakis, 2016) on the CIFAR100 dataset
(Figure 6 in Appendix G). Therefore, methods 2, 3, and 4 are our Algorithm 1. All experiments were
run for 200 epochs. In methods 2, 3, and 4, the noise decreased every 40 epochs, with a common
decay rate of 1/

√
2. That is, every 40 epochs, the learning rate of method 2 was multiplied by 1/

√
2,

the batch size of method 3 was doubled, and the learning rate and batch size of method 4 were
respectively multiplied by

√
3/2 and 1.5. Note that this 1/

√
2 decay rate is γ in Algorithm 1 and it

satisfies the condition in Proposition 5.1. The initial learning rate was 0.1 for all methods, which was
determined by performing a grid search among [0.01, 0.1, 1.0, 10]. The noise reduction interval was
every 40 epochs, which was determined by performing a grid search among [10, 20, 25, 40, 50, 100].
A history of the learning rate or batch size for each method is provided in the caption of each figure.
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Figure 4: Accuracy score for the testing and loss function value for training versus the number
of epochs (left) and the number of parameter updates (right) in training ResNet34 on the Ima-
geNet dataset. The solid line represents the mean value, and the shaded area represents the max-
imum and minimum over three runs. In method 1, the learning rate and batch size were fixed
at 0.1 and 256, respectively. In method 2, the learning rate was decreased every 40 epochs as[
0.1, 1

10
√
2
, 0.05, 1

20
√
2
, 0.025

]
and the batch size was fixed at 256. In method 3, the learning rate

was fixed at 0.1, and the batch size was increased as [32, 64, 128, 256, 512]. In method 4, the
learning rate was decreased as

[
0.1,

√
3

20 , 0.075,
3
√
3

80 , 0.05625
]

and the batch size was increased as
[32, 48, 72, 108, 162].
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For methods 2, 3, and 4, the decay rates are all 1/
√
2, and the decay intervals are all 40 epochs,

so throughout the training, the three methods should theoretically be optimizing the exact same
five smoothed functions in sequence. Nevertheless, the local solutions reached by each of the three
methods are not exactly the same. All results indicate that method 3 is superior to method 2 and
that method 4 is superior to method 3 in both test accuracy and training loss function values. This
difference can be attributed to the different learning rates used to optimize each smoothing function.
Among methods 2, 3, and 4, method 3, which does not decay the learning rate, maintains the highest
learning rate 0.1, followed by method 4 and method 2. In all graphs, the loss function values are
always small in that order; i.e., the larger the learning rate is, the lower loss function values become.
Therefore, we can say that the noise level δ, expressed as ηC√

b
, needs to be reduced, while the learning

rate η needs to remain as large as possible. Alternatively, if the learning rate is small, then a large
number of iterations are required. Thus, for the same rate of change and the same number of epochs,
an increasing batch size is superior to a decreasing learning rate because it can maintain a large
learning rate and can be made to iterate a lot when the batch size is small.

Theoretically, the noise level δm should gradually decrease and become zero at the end, so in our
algorithm 1, the learning rate ηm should be zero at the end or the batch size bm should match the
number of data sets at the end. However, if the learning rate is 0, training cannot proceed, and if
the batch size is close to a full batch, it is not feasible from a computational point of view. For this
reason, the experiments described in this paper are not fully graduated optimizations; i.e., full global
optimization is not achieved. In fact, the last batch size used by method 2 is around 128 to 512,
which is far from a full batch. Therefore, the solution reached in this experiment is the optimal one
for a function that has been smoothed to some extent, and to achieve a global optimization of the
DNN, it is necessary to increase only the batch size to eventually reach a full batch, or increase the
number of iterations accordingly while increasing the batch size and decaying the learning rate.

6 CONCLUSION

We proved that SGD with a mini-batch stochastic gradient has the effect of smoothing the function,
and the degree of smoothing is greater with larger learning rates and smaller batch sizes. This shows
theoretically that smoothing with large batch sizes is makes it easy to fall into sharp local minima and
that using a decaying learning rate and/or increasing batch size is implicitly graduated optimization,
which makes sense in the sense that it avoids local optimal solutions. Based on these findings, we
proposed a new graduated optimization algorithm that uses a decaying learning rate and increasing
batch size and analyzed it. We conducted experiments whose results showed the superiority of our
recommended framework for image classification tasks on CIFAR100 and ImageNet. In addition,
we observed that the degree of smoothing of the function due to stochastic noise in SGD can express
the degree of smoothness of the function as well as sharpness does, and that the degree of smoothing
is a good indicator of the generalization performance of the model.

7 PREVIOUS STUDIES AND OUR NOVELTY

As shown in equation (1), Kleinberg et al. suggested that stochastic noise in SGD smoothes the
objective function (Kleinberg et al., 2018), but the degree to which it did so was not analyzed. We
theoretically derived the degree of smoothing and experimentally observed the relationship with
sharpness to ensure its correctness, which is a novel and valuable result.

We have shown that the degree of smoothing by stochastic noise in SGD is determined by δ =
ηC/

√
b. This result may remind readers of previous studies (Goyal et al., 2017; Smith et al., 2018;

Xie et al., 2021) that investigated the dynamics of SGD and demonstrated how the ratio η/b affects
the training dynamics. We should emphasize that our η/

√
b is derived from a completely different

point of view, and in particular, the finding that the quantity ηC/
√
b contributes to the smoothing of

the objective function can only be obtained from our theory.

We use the σm-nice function which slightly extend σ-nice function proposed by (Hazan et al., 2016)
to analyze the implicit graduated optimization algorithm. Technically, the difference between our
work and theirs is that they optimize each smoothed function with projected gradient descent with
a decaying learning rate, whereas we optimize with gradient descent with a constant learning rate
given our theoretical motivation (see (2)). Furthermore, all previous studies (see Section 1.1), in-
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cluding the work of Hazan et al. consider explicit graduated optimization. Our implicit graduated
optimization with stochastic noise in the optimizer is a completely new idea, and this is the first
paper to apply the graduated optimization algorithm to the training of deep learning models on a
modern dataset such as ImageNet.
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A DERIVATION OF EQUATION (1)

Let yt be the parameter updated by gradient descent (GD) and xt+1 be the parameter updated by
SGD at time t, i.e.,

yt := xt − η∇f(xt),

xt+1 := xt − η∇fSt
(xt)

= xt − η(∇f(xt) + ωt).

Then, we have

xt+1 := xt − η∇fSt(xt)

= (yt + η∇f(xt))− η∇fSt
(xt)

= yt − ηωt, (4)

from ωt := ∇fSt
(xt)−∇f(xt). Hence,

yt+1 = xt+1 − η∇f(xt+1)

= yt − ηωt − η∇f(yt − ηωt).

By taking the expectation with respect to ωt on both sides, we have, from Eωt [ωt] = 0,

Eωt
[yt+1] = Eωt

[yt]− η∇Eωt
[f(yt − ηωt)] ,

where we have used Eωt
[∇f(yt − ηωt)] = ∇Eωt

[f(yt − ηωt)], which holds for a Lipschitz-
continuous and differentiable f (Shapiro et al., 2009, Theorem 7.49). In addition, from (4) and
Eωt

[ωt] = 0, we obtain

Eωt
[xt+1] = yt.

Therefore, on average, the parameter xt+1 of the function f arrived at by SGD coincides with the
parameter yt of the smoothed function f̂(yt) := Eωt

[f(yt − ηωt)] arrived at by GD.

B ESTIMATION OF VARIANCE OF STOCHASTIC GRADIENT

In Section 4, we need to estimate the variance C2 of the stochastic gradient in order to plot the
degree of smoothing δ = ηC/

√
b. In general, this is difficult to measure, but several previous

studies (Imaizumi & Iiduka, 2024; Sato & Iiduka, 2024) have provided the following estimating
formula. For some ϵ > 0, when training until 1

T

∑T
k=1 E

[
∥∇f(xk)∥2

]
≤ ϵ2, the variance of the

stochastic gradient can be estimated as

C2 <
b⋆ϵ2

η
,

where b⋆ is the batch size that minimizes the amount of computation required for training and η
is learning rate used in training. We determined the stopping condition ϵ for each learning rate,
measured the batch size that minimized the computational complexity required for the gradient
norm of the preceding t steps at time t to average less than ϵ in training ResNet18 on the CIFAR100
dataset, and estimated the variance of the stochastic gradient by using an estimation formula (see
Table 1). Table 2 shows the results of a similar experiment for the training WideResNet(WRN)-28-
10 on the CIFAR100 dataset.
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Table 1: Learning rate η and threshold ϵ used for
training, measured optimal batch size b⋆ and es-
timated variance of the stochastic gradient C2 in
training ResNet18 on the CIFAR100 dataset.

η ϵ b⋆ C2

0.01 1.0 27 12800
0.05 0.5 29 1280
0.1 0.5 210 1280
0.5 0.5 210 256

Table 2: Learning rate η and threshold ϵ used for
training, measured optimal batch size b⋆ and es-
timated variance of the stochastic gradient C2 in
training WRN-28-10 on the CIFAR100 dataset.

η ϵ b⋆ C2

0.01 1.0 22 400
0.05 0.5 22 20
0.1 0.5 22 10
0.5 0.5 22 2

C PROOFS OF THE LEMMAS IN SECTION 2

C.1 PROOF OF LEMMA 2.1

Proof. (A3)(ii) and (A4) guarantee that

Eξt

[
∥∇fSt(xt)−∇f(xt)∥2

]
= Eξt

∥∥∥∥∥1b
b∑

i=1

Gξt,i(xt)−∇f(xt)

∥∥∥∥∥
2


= Eξt

∥∥∥∥∥1b
b∑

i=1

Gξt,i(xt)−
1

b

b∑
i=1

∇f(xt)

∥∥∥∥∥
2


= Eξt

∥∥∥∥∥1b
b∑

i=1

(
Gξt,i(xt)−∇f(xt)

)∥∥∥∥∥
2


=
1

b2
Eξt

∥∥∥∥∥
b∑

i=1

(
Gξt,i(xt)−∇f(xt)

)∥∥∥∥∥
2


=
1

b2
Eξt

[
b∑

i=1

∥∥Gξt,i(xt)−∇f(xt)
∥∥2]

≤ C2

b
.

This completes the proof.

C.2 PROOF OF LEMMA 2.2

Proof. From Definition 2.1 and (A2), we have, for all x,y ∈ Rd,∣∣∣f̂δ(x)− f(x)
∣∣∣ = |Eu [f(x− δu)]− f(x)|

= |Eu [f(x− δu)− f(x)]|
≤ Eu [|f(x− δu)− f(x)|]
≤ Eu [Lf∥(x− δu)− x∥]
= δLfEu [∥u∥]
≤ δLf .

This completes the proof.

D LEMMAS ON SMOOTHED FUNCTION

The following Lemmas concern the properties of smoothed functions f̂δ .

18
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Lemma D.1. Suppose that (A1) holds; then, f̂δ defined by Definition 2.1 is also Lg-smooth; i.e., for
all x,y ∈ Rd, ∥∥∥∇f̂δ(x)−∇f̂δ(y)

∥∥∥ ≤ Lg∥x− y∥.

Proof. From Definition 2.1 and (A1), we have, for all x,y ∈ Rd,∥∥∥∇f̂δ(x)−∇f̂δ(y)
∥∥∥ = ∥∇Eu [f(x− δu)]−∇Eu [f(y − δu)]∥

= ∥Eu [∇f(x− δu)]− Eu [∇f(y − δu)]∥
= ∥Eu [∇f(x− δu)−∇f(y − δu)]∥
≤ Eu [∥∇f(x− δu)−∇f(y − δu)∥]
≤ Eu [Lg ∥(x− δu)− (y − δu)∥]
= Eu [Lg ∥x− y∥]
= Lg∥x− y∥.

This completes the proof.

Lemma D.2. Suppose that (A2) holds; then f̂δ is also an Lf -Lipschitz function; i.e., for all x,y ∈
Rd, ∣∣∣f̂δ(x)− f̂δ(y)

∣∣∣ ≤ Lf∥x− y∥.

Proof. From Definition 2.1 and (A2), we have, for all x,y ∈ Rd,∣∣∣f̂δ(x)− f̂δ(y)
∣∣∣ = |Eu [f(x− δu)]− Eu [f(y − δu)]|

= |Eu [f(x− δu)− f(y − δu)]|
≤ Eu [|f(x− δu)− f(y − δu)|]
≤ Eu [Lf∥(x− δu)− (y − δu)∥]
= Eu [Lf ∥x− y∥]
= Lf∥x− y∥.

This completes the proof.

Lemmas D.1 and D.2 imply that the Lipschitz constants Lf of the original function f and Lg of ∇f

are taken over by the smoothed function f̂δ and its gradient ∇f̂δ for all δ ∈ R.

E LEMMAS USED IN THE PROOFS OF THE THEOREMS

Lemma E.1. Suppose that f̂δm : Rd → R is σm-strongly convex and x̂
(m)
t+1 := x̂

(m)
t − ηtgt. Then,

for all t ∈ N,

f̂δm(x̂
(m)
t )− f̂δm(x⋆) ≤ 1− σmηt

2ηt
Xt −

1

2ηt
Xt+1 +

ηt
2
∥gt∥2,

where gt := ∇f̂δm(x̂
(m)
t ), Xt := ∥x̂(m)

t − x⋆
δm

∥2, and x⋆
δm

is the global minimizer of f̂δm .

Proof. Let t ∈ N. The definition of x̂(m)
t+1 guarantees that

∥x̂(m)
t+1 − x⋆∥2 = ∥(x̂(m)

t − ηtgt)− x⋆∥2

= ∥x̂(m)
t − x⋆∥2 − 2ηt⟨x̂(m)

t − x⋆
δm , gt⟩+ η2t ∥gt∥2.

From the σm-strong convexity of f̂δm ,

∥x̂(m)
t+1 − x⋆

δm∥2 ≤ ∥x̂(m)
t − x⋆

δm∥2 + 2ηt

(
f̂δm(x⋆

δm)− f̂δm(x̂
(m)
t )− σm

2
∥x̂(m)

t − x⋆
δm∥2

)
+ η2t ∥gt∥2.
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Hence,

f̂δm(x̂
(m)
t )− f̂δm(x⋆

δm) ≤ 1− σmηt
2ηt

∥x̂(m)
t − x⋆

δm∥2 − 1

2ηt
∥x̂(m)

t+1 − x⋆
δm∥2 + ηt

2
∥gt∥2.

This completes the proof.

Lemma E.2. Suppose that f̂δm : Rd → R is Lg-smooth and x̂
(m)
t+1 := x̂

(m)
t − ηtgt. Then, for all

t ∈ N,

ηt

(
1− Lgηt

2

)
∥∇f̂δm(x̂

(m)
t )∥2 ≤ f̂δm(x̂

(m)
t )− f̂δm(x̂

(m)
t+1).

where gt := ∇f̂δm(x̂
(m)
t ) and x⋆

δm
is the global minimizer of f̂δm .

Proof. From the Lg-smoothness of the f̂δm and the definition of x̂(m)
t+1, we have, for all t ∈ N,

f̂δm(x̂
(m)
t+1) ≤ f̂δm(x̂

(m)
t ) + ⟨∇f̂δm(x̂

(m)
t ), x̂

(m)
t+1 − x̂

(m)
t ⟩+ Lg

2
∥x̂(m)

t+1 − x̂
(m)
t ∥2

= f̂δm(x̂
(m)
t )− ηt⟨∇f̂δm(x̂

(m)
t ), gt⟩+

Lgη
2
t

2
∥gt∥2

≤ f̂δm(x̂
(m)
t )− ηt

(
1− Lgηt

2

)
∥∇f̂δm(x̂

(m)
t )∥2.

Therefore, we have

ηt

(
1− Lgηt

2

)
∥∇f̂δm(x̂

(m)
t )∥2 ≤ f̂δm(x̂

(m)
t )− f̂δm(x̂

(m)
t+1).

This completes the proof.

Lemma E.3. Suppose that f̂δm : Rd → R is Lg-smooth, x̂(m)
t+1 := x̂

(m)
t − ηtgt, and ηt := η < 2

Lg
.

Then, for all t ∈ N,

1

T

T∑
t=1

∥gt∥2 ≤ 6Lfδm
η (2− Lgη)T

,

where gt := ∇f̂δm(x̂
(m)
t ) and x⋆

δm
is the global minimizer of f̂δm .

Proof. According to Lemma E.2, we have

η

(
1− Lgη

2

)
∥∇F (x

(m)
t )∥2 ≤ f̂δm(x̂

(m)
t )− f̂δm(x̂

(m)
t+1).

Summing over t, we find that

η

(
1− Lgη

2

)
1

T

T∑
t=1

∥∇f̂δm(x̂
(m)
t )∥2 ≤

f̂δm(x̂
(m)
1 )− f̂δm(x̂

(m)
T+1)

T
.

Hence, from η < 2
Lg

,

1

T

T∑
t=1

∥gt∥2 =
2
(
f̂δm(x̂

(m)
1 )− f̂δm(x⋆

δm
)
)

η (2− Lgη)T
.

Here, from the Lf -Lipschitz continuity of f̂δm ,

f̂δm(x̂
(m)
1 )− f̂δm(x⋆

δm) ≤ Lf∥x̂(m)
1 − x⋆

δm∥
≤ 3Lfδm,

where we have used x
(m)
1 ∈ B(x⋆

δm
; 3δm). Therefore, we have

1

T

T∑
t=1

∥gt∥2 =
6Lfδm

η (2− Lgη)T
.

This completes the proof.
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F PROOF OF THE THEOREMS AND PROPOSITIONS

F.1 PROOF OF THEOREM 5.1

Proof. Lemma E.1 guarantees that

f̂δm(x̂
(m)
t )− f̂δm(x⋆

δm) ≤ 1− σmηt
2ηt

Xt −
1

2ηt
Xt+1 +

ηt
2
∥gt∥2

=
1− σmη

2η
(Xt −Xt+1)−

σm

2
Xt+1 +

η

2
∥gt∥2.

From η < min
{

1
σm

, 2
Lg

}
and Lemma E.3, by summing over t we find that

1

T

T∑
t=1

(
f̂δm(x̂

(m)
t )− f̂δm(x⋆

δm)
)
≤ 1− σmη

2ηT
(X1 −XT+1)−

σm

2T

T∑
t=1

Xt+1 +
η

2T

T∑
t=1

∥gt∥2

≤ 1− σmη

2ηT
X1 +

η

2T

T∑
t=1

∥gt∥2

≤ 9 (1− σmη) δ2m
2η︸ ︷︷ ︸

=:H1

1

T
+

3Lfδm
η (2− Lgη)︸ ︷︷ ︸

=:H2

1

T

= (H1 +H2)︸ ︷︷ ︸
=:Hm

1

T

=
Hm

T
,

where we have used X1 := ∥x̂(m)
1 − x⋆

δm
∥2 ≤ 9δ2m and Hm > 0 is a nonnegative constant. From

the convexity of F ,

f̂δm

(
1

T

T∑
t=1

x̂
(m)
t

)
≤ 1

T

T∑
t=1

f̂δm(x̂
(m)
t ).

Hence,

f̂δm

(
1

T

T∑
t=1

x̂
(m)
t

)
− f̂δm(x⋆

δm) ≤ Hm

T
= O

(
1

T

)
.

In addition, since the minimum value is smaller than the mean, we have

min
t∈[T ]

(
f̂δm

(
x̂
(m)
t

)
− f̂δm(x⋆

δm)
)
≤ Hm

T
= O

(
1

T

)
.

This completes the proof.

F.2 PROOF OF PROPOSITION 5.1

Proof. This proposition can be proved by induction. Since we assume x1 ∈ N(x⋆
δ1
; 3δ1), we have

∥x1 − x⋆
δ1∥ < 3δ1,

which establishes the case of m = 1. Now let us assume that the proposition holds for any m > 1.
Accordingly, the initial point xm for the optimization of the m-th smoothed function f̂δm and its
global optimal solution x⋆

δm
are both contained in the its σm-strongly convex region N(x⋆

δm
; 3δm).

Thus, after Tm := Hm/ϵm iterations, Algorithm 2 (GD) returns an approximate solution x̂
(m)
Tm+1 =:

xm+1, and the following holds from Theorem 5.1:

f̂δm(xm+1)− f̂δm(x⋆
δm) ≤ Hm

Tm
= ϵm :=

σmδ2m
2

=
σmδ2m+1

2γ2
.
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Hence, from the σm-strongly convexity of f̂δm ,

σm

2
∥xm+1 − x⋆

δm∥2 ≤
σmδ2m+1

2γ2
, i.e., ∥xm+1 − x⋆

δm∥ ≤ δm+1

γ

Therefore, from the σm-niceness of f and γ ∈ [0.5, 1),

∥xm+1 − x⋆
δm+1

∥ ≤ ∥xm+1 − x⋆
δm∥+ ∥x⋆

δm − x⋆
δm+1∥

≤ δm+1

γ
+ (|δm| − δm+1)

=
δm+1

γ
+

(
δm+1

γ
− δm+1

)
=

(
2

γ
− 1

)
δm+1

≤ 3δm+1.

This completes the proof.

F.3 PROOF OF THEOREM 5.2

The following proof uses the technique presented in (Hazan et al., 2016).

Proof. According to δm+1 := ηm+1C√
bm+1

and κm√
λm

= γ, we have

δm+1 :=
ηm+1C√
bm+1

=
κmηmC√
λm

√
bm

=
κm√
λm

δm

= γδm.

Therefore, from M := logγ(α0ϵ) + 1 and δ1 := η1C√
b1

δM = δ1γ
M−1

= δ1α0ϵ

=
η1Cα0ϵ√

b1
.

According to Theorem 5.1,

E
[
f̂δM (xM+1)− f̂δM (x⋆

δM )
]
≤ ϵM

= σMδ2M

=

(√
σMη1Cα0ϵ√

b1

)2

From Lemmas D.2 and 2.2,

f(xM+2)− f(x⋆) =
{
f(xM+2)− f̂δM (xM+2)

}
+
{
f̂δM (x⋆)− f(x⋆)

}
+
{
f̂δM (xM+2)− f̂δM (x⋆)

}
≤
{
f(xM+2)− f̂δM (xM+2)

}
+
{
f̂δM (x⋆)− f(x⋆)

}
+
{
f̂δM (xM+2)− f̂δM (x⋆

δM )
}

≤ δMLf + δMLf +
{
f̂δM (xM+2)− f̂δM (x⋆

δM )
}

= 2δMLf +
{
f̂δM (xM+2)− f̂δM (xM+1)

}
+
{
f̂δM (xM+1)− f̂δM (x⋆

δM )
}

≤ 2δMLf + Lf ∥xM+2 − xM+1∥+
{
f̂δM (xM+1)− f̂δM (x⋆

δM )
}
.
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Then, we have

f(xM+2)− f(x⋆) ≤ 2δMLf + 6LfδM + ϵM

= 8LfδM + ϵM ,

where we have used ∥xM+2 − xM+1∥ ≤ 6δM since xM+2,xM+1 ∈ N(x⋆; 3δM ). Therefore,

f(xM+2)− f(x⋆)≤ 8Lfη1Cα0ϵ√
b1

+

(√
σMη1Cα0ϵ√

b1

)2

≤ 8Lfη1Cα0ϵ√
b1

+

(√
ση1Cα0ϵ√

b1

)2

≤ ϵ,

where we have used α0 := min
{ √

b1
16Lfη1C

,
√
b1√

2ση1C

}
.

Let Ttotal be the total number of queries made by Algorithm 1; then,

Ttotal =

M+1∑
m=1

Hm

ϵm
=

M+1∑
m=1

Hm

σδ2m
.

Here, from the proof of Theorem 5.1 (see Section F.1), we define H4 > 0 as follows:

Hm :=
9(1− σmη)δ2m

2η
+

3Lfδm
η(2− Lgη)

≤ 9(1− σ1η)δ
2
1

2η
+

3Lfδ1
η(2− Lgη)

=: H4

Thus, from δM = δ1α0ϵ,

Ttotal =

M+1∑
m=1

Hm

σmδ2m
≤ H4

M+1∑
m=1

1

σmδ2m
≤ H4

M+1∑
m=1

1

σ1δ2M
=

H4(M + 1)

σ1δ2M

=
H4(M + 1)

σ1δ21α
2
0ϵ

2
= O

(
1

ϵ2

)
.

This completes the proof.

G FULL EXPERIMENTAL RESULTS

The experimental environment was as follows: NVIDIA GeForce RTX 4090×2GPU and Intel Core
i9 13900KF CPU. The software environment was Python 3.10.12, PyTorch 2.1.0 and CUDA 12.2.
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Figure 5: Accuracy score for testing and loss function value for training versus the number of epochs
(left) and the number of parameter updates (right) in training ResNet18 on the CIFAR100 dataset.
The solid line represents the mean value, and the shaded area represents the maximum and minimum
over three runs. In method 1, the learning rate and the batch size were fixed at 0.1 and 128, respec-
tively. In method 2, the learning rate decreased every 40 epochs as

[
0.1, 1

10
√
2
, 0.05, 1

20
√
2
, 0.025

]
and the batch size was fixed at 128. In method 3, the learning rate was fixed at 0.1, and the
batch size was increased as [16, 32, 64, 128, 256]. In method 4, the learning rate was decreased
as
[
0.1,

√
3

20 , 0.075,
3
√
3

80 , 0.05625
]

and the batch size was increased as [32, 48, 72, 108, 162].
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Figure 6: Accuracy score for testing and loss function value for training versus the number of
epochs (left) and the number of parameter updates (right) in training WideResNet-28-10 on the
CIFAR100 dataset. The solid line represents the mean value, and the shaded area represents the
maximum and minimum over three runs. In method 1, the learning rate and batch size were
fixed at 0.1 and 128, respectively. In method 2, the learning rate was decreased every 40 epochs
as
[
0.1, 1

10
√
2
, 0.05, 1

20
√
2
, 0.025

]
and the batch size was fixed at 128. In method 3, the learning

rate was fixed at 0.1, and the batch size was increased as [8, 16, 32, 64, 128]. In method 4, the
learning rate was decreased as

[
0.1,

√
3

20 , 0.075,
3
√
3

80 , 0.05625
]

and the batch size was increased as
[8, 12, 18, 27, 40].

For the sake of fairness, we provide here a version of Figures 4-6 with the number of gradient
queries on the horizontal axis (see Figure 7-9). Since b stochastic gradients are computed per epoch,
the number of gradient queries is Tb, where T means the number of steps and b means the batch
size.
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Figure 7: Accuracy score for testing and loss function value for training versus the number of gradi-
ent queries in training ResNet18 on the CIFAR100 dataset. The solid line represents the mean value,
and the shaded area represents the maximum and minimum over three runs. In method 1, the learning
rate and the batch size were fixed at 0.1 and 128, respectively. In method 2, the learning rate de-
creased every 40 epochs as in

[
0.1, 1

10
√
2
, 0.05, 1

20
√
2
, 0.025

]
and the batch size was fixed at 128. In

method 3, the learning rate was fixed at 0.1, and the batch size was increased as [16, 32, 64, 128, 256].
In method 4, the learning rate was decreased as

[
0.1,

√
3

20 , 0.075,
3
√
3

80 , 0.05625
]

and the batch size
was increased as [32, 48, 72, 108, 162]. This graph shows almost the same results as Figure 5.
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Figure 8: Accuracy score for testing and loss function value for training versus the number of
gradient queries in training WideResNet-28-10 on the CIFAR100 dataset. The solid line represents
the mean value, and the shaded area represents the maximum and minimum over three runs. In
method 1, the learning rate and batch size were fixed at 0.1 and 128, respectively. In method 2, the
learning rate was decreased every 40 epochs as

[
0.1, 1

10
√
2
, 0.05, 1

20
√
2
, 0.025

]
and the batch size

was fixed at 128. In method 3, the learning rate was fixed at 0.1, and the batch size increased as
[8, 16, 32, 64, 128]. In method 4, the learning rate decreased as

[
0.1,

√
3

20 , 0.075,
3
√
3

80 , 0.05625
]

and
the batch size increased as [8, 12, 18, 27, 40]. This graph shows almost the same results as Figure
6.
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Figure 9: Accuracy score for testing and loss function value for training versus the number of
gradient queries in training ResNet34 on the ImageNet dataset. The solid line represents the
mean value, and the shaded area represents the maximum and minimum over three runs. In
method 1, the learning rate and batch size were fixed at 0.1 and 256, respectively. In method
2, the learning rate was decreased every 40 epochs as

[
0.1, 1

10
√
2
, 0.05, 1

20
√
2
, 0.025

]
and the

batch size was fixed at 256. In method 3, the learning rate was fixed at 0.1, and the batch
size was increased as [32, 64, 128, 256, 512]. In method 4, the learning rate was decreased as[
0.1,

√
3

20 , 0.075,
3
√
3

80 , 0.05625
]

and the batch size was increased as [32, 48, 72, 108, 162]. This
graph shows almost the same results as Figure 4.
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Figure 10: (a) Sharpness around the approximate solution after 200 epochs of WideResNet-28-10
training on the CIFAR100 dataset versus batch size used. (b) Sharpness versus learning rate used.
(c) Sharpness versus degree of smoothing calculated from learning rate, batch size and estimated
variance of the stochastic gradient. (d) Test accuracy after 200 epochs training versus sharpness. (e)
Test accuracy versus degree of smoothing. The color shade in the scatter plots represents the batch
size; the larger the batch size, the darker the color of the plotted points. “lr” means learning rate.
The experimental results that make up the all graphs are all identical. Dear Reviewers: These are
plots of the results of a single experiment. We can provide the results of multiple experiments
before camera ready.

H DISCUSSION ON THE DEFINITION OF THE SMOOTHED FUNCTION

Recall the general definition of the smoothing of the function.

Definition H.1. Given a function f : Rd → R, define f̂δ : Rd → R to be the function obtained by
smoothing f as

f̂δ(x) := E
u∼N

(
0; 1√

d
Id

) [f(x− δu)] ,

where δ > 0 represents the degree of smoothing and u is a random variable from a Gaussian
distribution.

What probability distribution the random variable u ∈ Rd follows in the definition of smoothed
function varies in the literature. (Wu, 1996; Mobahi & Fisher III, 2015b; Iwakiri et al., 2022)
assumes a Gaussian distribution, while (Hazan et al., 2016) assumes a uniform distribution for the
sake of theoretical analysis. So what probability distribution the random variable u should follow in
order to smooth the function? This has never been discussed.

It is difficult to confirm from a strictly theoretical point of view whether the function f̂δ obtained by
using a random variable u that follows a certain probability distribution is smoother than the original
function f (more precisely, it is possible with a Gaussian distribution). Therefore, we smoothed a
very simple nonconvex function with random variables following several major probability distribu-
tions and compared it with the original function. We deal with one-dimensional Rastrigin’s function
(Törn & Zilinskas, 1989; Rudolph, 1990) and Drop-Wave function (Marcin Molga, 2005) defined
as follows:

(Rastrigin’s function) f(x) := x2 − 10 cos(2πx) + 10, (5)

(Drop-Wave function) f(x) := −1 + cos(12πx)

0.5x2 + 2
. (6)
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We smooth the above functions according to Definition 2.1 using random variables following light-
tailed distributions: Gaussian, uniform, exponential, and Rayleigh, and heavy-tailed distributions:
Pareto, Cauchy, and Levy. We have added the code for this smoothing experiment to our anonymous
Github. For more information on the parameters of each probability distribution, please see there.
First, Figure 11 plots the Rastrigin’s function and its smoothed version with a degree of smoothing
of δ = 0.5, using a random variable that follows several probability distributions.
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Figure 11: Rastrigin’s function (5) and its smoothed version using random variables following a
light-tailed distribution (left) and heavy-tailed distribution (right). The degree of smoothing is set
to 0.5. Note that right graph has the logarithmic vertical axis with a base of 10.

Figures 11 shows that smoothing using random variable from light-tailed distributions works, while
smoothing using random variable from heavy-tailed distributions does not. The reason for this
is thought to be that extremely large values tend to appear in heavy-tailed distributions, and the
function values are not stable.

Next, Figure 12 plots the Drop-Wave function and its smoothed version with a degree of smoothing
of δ = 0.5, using a random variable that follows several probability distributions.
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Figure 12: Drop-Wave function (6) and its smoothed version using random variables following a
light-tailed distribution (left) and heavy-tailed distribution (right). The degree of smoothing is set
to 0.5.

Figure 12 shows that, in contrast to Figure 11, the heavy-tailed distribution successfully smooths
the function as well as the light-tailed distribution. The reason for this lies in the definition of the
Drop-Wave function. The Drop-Wave function has an x2 term in its denominator, which prevents
the function value from exploding even when the heavy-tailed distribution provides extremely large
values, and thus the smoothing works.

In smoothing of the function, random variables have been defined to follow primarily a Gaussian
distribution (see Definition H.1), but these experimental results motivate us to extend it from a
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Gaussian distribution to a light-tailed distribution (see Definition 2.1). Note that we also provide the
interesting finding that, depending on the definition of the original function, random variables from
heavy-tailed distributions can also be useful for smoothing.

H.1 DISCUSSION ON THE LIGHT-TAILED DISTRIBUTION

According to (L.A. et al., 2020, Definition 3.1), the light-tailed distribution is defined as follows:
Definition H.2 (light-tailed distribution). A random variable X is said to be light-tailed if there
exists a c0 > 0 such that E [exp(λX)] < ∞ for all |λ| < c0.

This definition implies that the probability density function of the light-tailed distribution decreases
exponentially at the tail. The definition of function smoothing in the previous study (Hazan et al.,
2016, Definition 4.1) used a random variable that follows a uniform distribution. We can show that
the uniform distribution is light-tailed distribution.
Proposition H.1. The uniform distribution is light-tailed distribution.

Proof. Let X be a random variable which follows uniform distribution over the interval [a, b], where
a, b ∈ R (a ≤ b). Then, the probability density function fX(x) is defined as follows:

fX(x) =

{
1

b−a , if x ∈ [a, b],

0, otherwise.

For all λ ∈ R \ {0}, we have

E
[
eλX

]
=

∫ b

a

eλxfX(x)dx =
1

b− a

∫ b

a

eλxdx =
1

b− a
· 1
λ

[
eλx
]b
a
=

1

λ(b− a)

(
eλb − eλa

)
.

When λ = 0, we have
E
[
eλX

]
= E

[
e0
]
= 1.

Therefore, for all λ ∈ R, we obtain E
[
eλX

]
< ∞.

H.2 DISTRIBUTION OF SGD’S STOCHASTIC NOISE

We collected 1000 each of stochastic noise ωt := ∇fSt
(xt) − ∇f(xt) and tested whether each

element follows a light-tailed distribution. They were collected at the point where ResNet18 had
been trained on the CIFAR100 dataset (10,000 steps). The code used in this experiment is available
on our anonymous Github. ResNet18 has about 11M parameters, so ωt form an 11M-dimentional
vector. Figure 13 plots the results for the ωt elements from dimension 0 to dimension 100,000.
Figure 14 present the results for all elements. These results demonstrate that the SGD’s stochastic
noise ωt follows a light-tailed distribution.

I EXTENSION FROM σ-NICE FUNCTION TO σm-NICE FUNCTION

Hazan et al., proposed σ-nice function to analyze graduated optimization algorithm.
Definition I.1 (σ-nice function (Hazan et al., 2016)). Let M ∈ N and m ∈ [M ]. A function
f : Rd → R is said to be σ-nice if the following two conditions hold:

(i) For all δm > 0 and all x⋆
δm

, there exists x⋆
δm+1

such that:
∥∥∥x⋆

δm
− x⋆

δm+1

∥∥∥ ≤ δm+1 := δm
2 .

(ii) For all δm > 0, the function f̂δm(x) over N(x⋆
δm

; 3δm) is σ-strongly convex.

Recall our σm-nice function (Definition 5.1).
Definition I.2 (σm-nice function). Let M ∈ N, m ∈ [M ], and γ ∈ [0.5, 1). A function f : Rd → R
is said to be σm-nice if the following two conditions hold:

(i) For all δm > 0 and all x⋆
δm

, there exists x⋆
δm+1

such that:
∥∥∥x⋆

δm
− x⋆

δm+1

∥∥∥ ≤ δm+1 := γδm.

(ii) For all δm > 0, the function f̂δm(x) over N(x⋆
δm

; 3δm) is σm-strongly convex.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 13: Distribution of 1000 ωt elements from 0 to 100,000 dimensions.

In condition (i), we extended the decay rate of the degree of smoothing from a constant 0.5 to a
constant γ ∈ [0.5, 1). See Proposition 5.1 for the soundness of this extension. In condition (ii),
f̂δm was always defined to be σ-strongly convex in the definition of σ-nice function, which is a
rather strong assumption. In fact, the greater the degree of smoothing δm is, the smoother the
smoothed function f̂δm becomes and the smaller the strong convexity parameter may be. Here, let
σsmall be a strongly convexity parameter of f and 0 < σsmall < σbig, then the function f is not σbig-
strongly convex function. Therefore, the strongly convexity parameter should depend on the degree
of smoothing δm and we extend the strongly convexity parameter to σm from σ.
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Figure 14: Complete results for distribution of 1000 ωt elements. The distribution is plotted sepa-
rately for each 100,000 dimensions.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000 1200 1400
sharpness

30

40

50

60

70

te
st

 a
cc

ur
ac

y

(B) test accuracy vs sharpness

Figure 15: Graph for reviewer KvGj.
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