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ABSTRACT

The graduated optimization approach is a method for finding global optimal so-
lutions for nonconvex functions by using a function smoothing operation with
stochastic noise. We show that stochastic noise in stochastic gradient descent
(SGD) has the effect of smoothing the objective function, the degree of which is
determined by the learning rate, batch size, and variance of the stochastic gradi-
ent. Using this finding, we propose and analyze a new graduated optimization
algorithm that varies the degree of smoothing by varying the learning rate and
batch size, and provide experimental results on image classification tasks with
ResNets that support our theoretical findings. We further show that there is an in-
teresting correlation between the degree of smoothing by SGD’s stochastic noise,
the well-studied “sharpness” indicator, and the generalization performance of the
model.

1 INTRODUCTION

1.1 BACKGROUND

The amazing success of deep neural networks (DNN) in recent years has been based on optimization
by stochastic gradient descent (SGD) (Robhins"& Monrd, T95T) and its variants, such as Adam
(Kingma & Ba, P0T5). These methods have been widely studied for their convergence (Monlines &
Bach, PO11; Needellef all, 014) (Eehrman_ef all, 2020; Boffon ef all, ZOTR; Scaman_& Malherhé,
20200 Loiwzon et all, PO21; Zaheer ef all, POIY; Zon et all, POTY; Chen ef all, PO1Y9; Zhon ef all, PO2(;
Chen ef all, 2021); liduka, 2027) and stability (Hardfef all, ZOT6; Cinef all, DOTA; Mon ef all, POTX;
He’efall, POTY) in nonconvex optimization.

SGD updates the parameters as ;11 := &; — NV fs, (x;), where 7 is the learning rate and V fs,
is the stochastic gradient estimated from the full gradient V f using a mini-batch ;. Therefore,
there is only an w; := V fs, (@) — V f(x:) difference between the search direction of SGD and the
true steepest descent direction. Some studies claim that it is crucial in nonconvex optimization. For
example, it has been proven that noise helps the algorithm to escape local minima (Geefall, POTS; Iinl
ef all, 201T7; Daneshmand ef all, POTY; Vardhan & Sfich, 2(021]), achieve better generalization (Hard{
ef all, DOTH; Mon ef all, PD0TR), and find a local minimum with a small loss value in polynomial time
under some assumptions (Zhang et all, PZ0T7). Several studies have also shown that performance can
be improved by adding artificial noise to gradient descent (GD) (Ge“efall, DOTS; Zhou ef all, DOTY;
[in_efall, PO21; Orviefaef all, PO27).

(KIeinberg et all, P0TH) also suggests that noise smoothes the objective function. Here, at time ¢, let
y; be the parameter updated by GD and x;; be the parameter updated by SGD, i.e.,

yr =z —nVf(xy), i1 :=x — Vs, () = 2 — n(Vf(28) + wy).
Then, we obtain the following update rule for the sequence {y;},

Ewt [yt+1] = Ewt [yt] - WVEM [f(yt - th)] ’ (D

where f is Lipschitz continuous and differentiable. Therefore, if we define a new function f (ye) ==
Eo,[f(y: — nw:)], f can be smoothed by convolving f with noise (see Definition I, also (Wii,
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1996)), and its parameters y; can approximately be viewed as being updated by using the gradient

descent to minimize f. In other words, simply using SGD with a mini-batch smoothes the function
to some extent and may enable escapes from local minima. (The derivation of equation () is in
Section [Al.)

Graduated Optimization. Graduated optimization is one of the global optimization methods that
search for the global optimal solution of difficult multimodal optimization problems. The method
generates a sequence of simplified optimization problems that gradually approach the original prob-
lem through different levels of local smoothing operations. It solves the easiest simplified problem
first, as the easiest simplification should have nice properties such as convexity or strong convexity;
after that, it uses that solution as the initial point for solving the second-simplest problem, then the
second solution as the initial point for solving the third-simplest problem and so on, as it attempts to
escape from local optimal solutions of the original problem and reach a global optimal solution.

This idea first appeared in the form of graduated non-convexity (GNC) by (Blake & Zisserman,
[987) and has since been studied in the field of computer vision for many years. Similar early
approaches can be found in (Wifkinef-all, T9R87) and (Yiulld, T98Y). Moreover, the same concept
has appeared in the fields of numerical analysis (Allgower & Georg, T990) and optimization (Rosd
ef-all, T990; Wii, T996). Over the past 25 years, graduated optimization has been successfully ap-
plied to many tasks in computer vision, such as early vision (Black & Rangarajan, T996), image
denoising (Nikolova ef-all, 20T0), optical flow (Sunefall, POT0; Brox & Malik, P0TT), dense corre-
spondence of images (Kim_ef-all, P0T3), and robust estimation ([Yang et all, Z020); Anfonantfe_ef all,
2077; Peng et all, P00773). In addition, it has been applied to certain tasks in machine learning, such
as semi-supervised learning (Chapelle et all, 2006; Sindhwani ef all, P006; Chapelle et all, ZO0R),
unsupervised learning (Smifh”& Fisned, P004)), and ranking (Chapelle & Wu, P010). Moreover,
score-based generative models (Song & Ermon, PTY; Song et all, P(7TH) and diffusion models
(Sohl-l)mkgtem et all, PO1Y; Ho et all, 2020; Song et all, 2Z021a; Rombach et all, ')U'),’)), which are
currently state-of-the-art generative models, implicitly use the techniques of graduated optimiza-
tion. A comprehensive survey on the graduated optimization approach can be found in (Mobahi &
Fisher 111, POTSA).

Several previous studies have theoretically analyzed the graduated optimization algorithm. (Maobahi
& Fisher 111, P0OT54) performed the first theoretical analysis, but they did not provide a practical al-
gorithm. (Hazanef all, 20T6) defined a family of nonconvex functions satisfying certain conditions,
called o-nice, and proposed a first-order algorithm based on graduated optimization. In addition,
they studied the convergence and convergence rate of their algorithm to a global optimal solution
for o-nice functions. (Iwakiriefall, 2027) proposed a single-loop method that simultaneously up-
dates the variable that defines the noise level and the parameters of the problem and analyzed its
convergence. (Liefall, P073) analyzed graduated optimization based on a special smoothing opera-
tion. Note that (Duchief-all, POT7) pioneered the theoretical analysis of optimizers using Gaussian
smoothing operations for nonsmooth convex optimization problems. Their method of optimizing
with decreasing noise level is truly a graduated optimization approach.

1.2 MOTIVATION

Equation () indicates that SGD smoothes the objective function (Kleinberg et all, Z0TX), but it is not
clear to what extent the function is smoothed or what factors are involved in the smoothing. There-
fore, we decided to clarify these aspects and identify what parameters contribute to the smoothing.
Also, once it is known what parameters of SGD contribute to smoothing, an implicit graduated op-
timization can be achieved by varying the parameters so that the noise level is reduced gradually.
Our goal was thus to construct an implicit graduated optimization framework using the smoothing
properties of SGD to achieve global optimization of deep neural networks.

1.3 CONTRIBUTIONS

1. SGD’s Smoothing Property (Section 8). We show that the degree of smoothing § provided

by SGD’s stochastic noise depends on the quantity § = %, where 7 is the learning rate, b is the

batch size, and C? is the variance of the stochastic gradient (see Assumption Z-T). Accordingly, the
smaller the batch size b is and the larger the learning rate 7 is, the smoother the function becomes (see
FigureM). This finding provides a theoretical explanation for several experimental observations. For
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Figure 1: Conceptual diagram of implicit graduated optimization for o,,,-nice function.

example, as is well known, training with a large batch size leads to poor generalization performance,
as evidenced by the fact that several prior studies (Hoffer ef-all, POT7; Goyal et all, Z0T7; Yon ef all,
2020) provided techniques that do not impair generalization performance even with large batch sizes.
This is because, if we use a large batch size, the degree of smoothing § = "—\/CE becomes smaller and

the original nonconvex function is not smoothed enough, so the sharp local minima do not disappear
and the optimizer is more likely to fall into one. (Keskarefall, POT7) showed this experimentally,
and our results provide theoretical support for it.

2. Relationship between degree of smoothing, sharpness, and generalizability (Section d). To
support our theory that simply using SGD for optimization smoothes the objective function and that
the degree of smoothing is determined by 6 = 1C/+/b, we experimentally confirmed the relation-
ship between the sharpness of the function around the approximate solution to which the optimizer
converges and the degree of smoothing. We showed that the degree of smoothing is clearly able
to express the smoothness/sharpness of the function as well as the well-studied “sharpness” indi-
cator (Figure @ (A)), and that it is more strongly correlated with generalization performance than
sharpness (Figure & (B) and (C)). Our results follow up on a previous study (Andrinshchenka efall,
2073) that found, through extensive experiments, correlations between generalization performance
and hyperparameters such as the learning rate, but no correlation between it and sharpness.

(A) sharpness vs degree of smoothing (B) test accuracy vs sharpness (C) test accuracy vs degree of smoothing
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Figure 2: (A) Sharpness versus degree of smoothing calculated from learning rate, batch size, and
the estimated variance of the stochastic gradient. (B) Test accuracy after 200 epochs ResNet18
training on the CIFAR100 dataset versus sharpness. (C) Test accuracy versus degree of smoothing.
The color shading in the scatter plots represents the batch size: the larger the batch size, the darker
the color of the plotted points. “Ir”” means learning rate.

3. Implicit Graduated Optimization (Section H). Since the degree of smoothing of the objective

function by stochastic noise in SGD is determined by § = "—\/CE, it should be possible to construct

an implicit graduated optimization algorithm by decreasing the learning rate and/or increasing the
batch size during training. Based on this theoretical intuition, we propose a new implicit graduated
optimization algorithm and o,,,-nice function which slightly extend o-nice function. We also show
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that the algorithm for the o,,-nice function converges to an e-neighborhood of the global optimal
solution in O (1 / 62) rounds. In Section B2, we show experimentally that our implicit graduated
algorithm outperforms SGD using a constant learning rate and constant batch size. We also find that
methods which increase the batch size outperform those which decrease the learning rate when the
decay rate of the degree of smoothing is set at 1/ V2.

2 PRELIMINARIES

Let N be the set of non-negative integers. For m € N\ {0}, define [m] := {1,2,...,m}. Let
R? be a d-dimensional Euclidean space with inner product (-, -), which induces the norm || - ||. I4
denotes a d x d identity matrix. B(y;r) is the Euclidean closed ball of radius r centered at y, i.e.,
B(y;r) = {x € R?: ||& — y| < r}. Let N'(u; 2) be a d-dimensional Gaussian distribution with
mean g € R? and variance ¥ € R?*?, The DNN is parameterized by a vector € R¢, which is
optimized by minimizing the empirical loss function f(z) := 1 > iepn fi(x), where fi(x) is the
loss function for = € R< and the i-th training data 2; (i € [n]). Let £ be a random variable that does
not depend on & € R?, and let E¢[X] denote the expectation with respect to £ of a random variable
X. &, is arandom variable generated from the i-th sampling at time ¢, and &; := (&1, &2, - - -, &ep)
is independent of (x)}_, C R, where b (< n) is the batch size. The independence of &, &1, . ..
allows us to define the total expectation E as E = Eg Eg, ---Eg,. Let Gg, () be the stochastic
gradient of f(-) at x € R%. The mini-batch S; consists of b samples at time ¢, and the mini-batch
stochastic gradient of f(w,) for S, is defined as V fs, (z¢) := 7 Diepp) Gers (@)

Definition 2.1 (Smoothed function). Given a function f: R¢ — R, define ﬁ;: R? — R to be
the function obtained by smoothing f as fs(x) = Buyr [f(x — 0u)], where § > 0 represents
the degree of smoothing and w is a random variable from a any light-tailed distribution L with
Eorr [|[ul]] < 1. Also, &* := argminf(x) and x} := argmin f5(z).
zcRd zeRd

Note that, in the definition of the smoothed function fo , (Hazan_ef all, PUOTAH) defined that the ran-
dom variable u follows a uniform distribution from the unit Euclidean ball. In contrast, from exper-
imental results in Section H, we define the random variable w to follow any light-tailed distribution.
Since the uniform distribution is a light-tailed distribution (see Section HI), our Definition T con-
tains Definition 4.1 of (Hazanefall, POTE) and does not conflict with it. The graduated optimization
algorithm uses several smoothed functions with different noise levels. There are a total of M noise

levels (6,m)me[ar) and smoothed functions ( fém)me[ a in this paper. The largest noise level is &;

and the smallest is dz(see also Figure M). For all m € [M], (:i:,E’”’)teN is the sequence generated
by an optimizer to minimize f(;m. Here, this paper refers to the graduated optimization approach
with explicit smoothing operations (Definition ITl) as “explicit graduated optimization™ and to the
graduated optimization approach with implicit smoothing operations as “implicit graduated opti-
mization”. All previous studies (see Section [Tl) have considered explicit graduated optimization,
and we consider implicit graduated optimization for the first time.

We make the following assumptions:

Assumption 2.1. (A]) f: R? — R is continuously differentiable and Lg-smooth, i.e., forall x,y €
R |V f(x) — V()| < Lyllz — yl|. (A2) f: RY — R is an Ly-Lipschitz function, i.e., for all
z,y €RL |f(z) — f(y)| < Ly||lz—yl|. (A3) Let (x¢)1en C R? be the sequence generated by SGD.
(i) For each iteration t, B¢, [Gg, (x+)] = V f(x). (ii) There exists a nonnegative constant C* such
that B, [||Ge, () — V f(x¢)||?] < C?. (A4) For each iteration t, SGD samples a mini-batch S, C
S and estimates the full gradient V f as V fs, (@) := ¢ Diepp) Ger (@) = 3 Dol zesy VSil@).

The proof of Lemmas 1 and 2 can be found in Appendix O.

Lemma 2.1. Suppose that (A3)(ii) and (A4) hold for all t € N;  then,
2

Ee, [V s () = Vf(2,)|*] < G-

Lemma 2.2. Let fs be the smoothed version of f; then, for all x € RY, ﬁ;(:c) — f(x)| <
Eu[llul[}6Ly.
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The graduated optimization algorithm is a method in which the degree of smoothing § is gradually
decreased. Let us consider the case where the degree of smoothing ¢ is constant throughout the
training. Here, a larger degree of smoothing should be necessary to make many local optimal solu-
tions of the objective function f disappear and lead the optimizer to the global optimal solution. On
the other hand, Lemma 2 implies that the larger the degree of smoothing is, the further away the
smoothed function will be from the original function. Therefore, there should be an optimal value
for the degree of smoothing that balances the tradeoffs, because if the degree of smoothing is too
large, the original function is too damaged and thus cannot be optimized properly, and if it is too
small, the function is not smoothed enough and the optimizer falls into a local optimal solution. This
knowledge is useful because the degree of smoothing due to stochastic noise in SGD is determined
by the learning rate and batch size (see Section B), so when a constant learning rate and constant
batch size are used, the degree of smoothing is constant throughout the training (see Section B).

3 SGD’S SMOOTHING PROPERTY
This section discusses the smoothing effect of using stochastic gradients. From Lemma 271l we have

B, lol] < =

b
due to wy := Vs, (xt) — Vf(x:). The w; for which this equation is satisfied can be expressed
as wy = %ut, where E¢, [||u.||] < 1. Here, we assume that w; in image classification tasks with
CNN-based models follows a light-tailed distribution in accordance with experimental observations
in several previous studies (Zhang et all, P020; Kunstner_ef all, P023) and our experimental results
(see Section HZ). Therefore, w; ~ £ and thereby w; ~ L, where £ and £ are light-tailed distribu-
tions and £ is a scaled version of £. Then, using Definition I, we further transform equation (I
as follows:

Ewt [yt+1] = ]Ewt [yt] - UVEwt [f(yt - th)]

=Ky, [yt] = nVEy,~r {f (yt - T/Cl;utﬂ

=Eu, [y:] — ”Vf”v% (ye). )

This shows that E,,, [f(y; — nw;)] is a smoothed version of f with a noise level C'/v/b and its pa-
rameter y; can be approximately updated by using the gradient descent to minimize f,c . Therefore,

v
we can say that the degree of smoothing ¢ by the stochastic noise w; in SGD is determined by the
learning rate 7, the batch size b, and the variance of the stochastic gradient C? and that optimizing

the function f with SGD and optimizing the smoothed function f 128 with GD are equivalent in the
b

sense of expectation.

There are still more discoveries that can be made from the finding that simply by using SGD for
optimization, the objective function is smoothed and the degree of smoothing is determined by

§ =nC/V/b.

Why the Use of Large Batch Sizes Leads to Solutions Falling into Sharp Local Minima. It is
known that training with large batch sizes leads to a persistent degradation of model generalization
performance. In particular, (Keskar et all, POT7) showed experimentally that learning with large
batch sizes leads to sharp local minima and worsens generalization performance. According to
equation (D), using a large learning rate and/or a small batch size will make the function smoother.
Thus, in using a small batch size, the sharp local minima will disappear through extensive smoothing,
and SGD can reach a flat local minimum. Conversely, when using a large batch size, the smoothing
is weak and the function is close to the original multimodal function, so it is easy for the solution
to fall into a sharp local minimum. Thus, we have theoretical support for what (Keskaref all, POT7)
showed experimentally, and our experiments have yielded similar results (see Figure B (a) and (e)).

Why Decaying Learning Rates and Increasing Batch Sizes are Superior to Fixed Learning
Rates and Batch Sizes. From equation (I), the use of a decaying learning rate or increasing batch
size during training is equivalent to decreasing the noise level of the smoothed function, so using
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a decaying learning rate or increasing the batch size is an implicit graduated optimization. Thus,
we can say that using a decaying learning rate (Coshchilov-& Huffer, DOT7; Hundf ef-all, POTY; Yo
efall, 20T19; LewkowycZ, P(02T) or increasing batch size (Byrd et all, P0T7; Friedlander & Schmidi,
POT172; Balles_ef-all, DOT7; De et all, POT7; Boffon_ef all, POTX; Smifh ef all, POTX) makes sense in
terms of avoiding local minima and provides theoretical support for their experimental superiority.

4 RELATIONSHIP BETWEEN DEGREE OF SMOOTHING, SHARPNESS, AND
GENERALIZABILITY

The smoothness of the function, and in particular the sharpness of the function around the approxi-
mate solution to which the optimizer converged, has been well studied because it has been thought
to be related to the generalizability of the model. In this section, we reinforce our theory by ex-
perimentally observing the relationship between the degree of smoothing and the sharpness of the
function.

Several previous studies (Hochreifer & Schmidhnbed, T997; Keskar ef all, P017; [zmailov_ef all,
DOTE; Cicefall, POTR; Andrmshchenko et all, 2073) have addressed the relationship between the
sharpness of the function around the approximate solution to which the optimizer converges and
the generalization performance of the model. In particular, the hypothesis that flat local solutions
have better generalizability than sharp local solutions is at the core of a series of discussions, and
several previous studies (Keskar ef all, D0T/; Liang et all, Z0TY; Csnzuku ef all, P020; Pefzka et all,
2071, Kwon efall, P071]) have developed measures of sharpness to confirm this. In this paper, we use
“adaptive sharpness” (Kwon ef all, P021); Andrinshchenka ef all, 2073) as a measure of the sharpness
of the function that is invariant to network reparametrization, highly correlated with generalization,
and generalizes several existing sharpness definitions. In accordance with (Andrinshchenko ef all,
2023), let S be a set of training data; for arbitrary model weights w € RY, the worst-case adaptive
sharpness with radius p € R and with respect to a vector ¢ € R? is defined as

Shx(w,e) :=Eg max f(w+4d)— f(w)],
6©etp<p
where ©/~! denotes elementwise multiplication/inversion. Thus, the larger the sharpness value is,
the sharper the function around the model weight w becomes, with a smaller sharpness leading to
higher generalizability.

We trained ResNet18 (Heef all, P0T6) with the learning rate n € {0.01,0.05,0.1,0.1} and batch size
b e {21,...,213} for 200 epochs on the CIFAR100 dataset (Krizhevskyl, 2009) and then measured
the worst-case [, adaptive sharpness of the obtained approximate solution with radius p = 0.0002
and ¢ = (1,1,...,1)T € R Our implementation was based on (Andriushchenka ef all, 2023)
and the code used is available on our anonymous Github. Figure 3 plots the relationship between
measured sharpness and the batch size b and the learning rate 7 used for training as well as the degree
of smoothing § calculated from them. Figure B also plots the relationship between test accuracy,
sharpness, and degree of smoothing. Three experiments were conducted per combination of learning
rate and batch size, with a total of 156 data plots. The variance of the stochastic gradient C? included
in the degree of smoothing § = 7C/v/b used values estimated from theory and experiment (see
Appendix B for details).

Figure B (a) shows that the larger the batch size is, the larger the sharpness value becomes, whereas
(b) shows that the larger the learning rate is, the smaller the sharpness becomes, and (c) shows
a greater the degree of smoothing for a smaller sharpness. These experimental results guarantee
the our theoretical result that the degree of smoothing § is proportional to the learning rate 7 and

inversely proportional to the batch size b, and they reinforce our theory that the quantity 7C/v/b is
the degree of smoothing of the function. Figure B (d) also shows that there is no clear correlation
between the generalization performance of the model and the sharpness around the approximate
solution. This result is also consistent with previous study (Andriushchenko efall, Z023). On the
other hand, Figure B (e) shows an excellent correlation between generalization performance and the
degree of smoothing; generalization performance is clearly a concave function with respect to the
degree of smoothing. Thus, a degree of smoothing that is neither too large nor too small leads to
high generalization performance. This experimental observation can be supported theoretically (see
Lemma 7). That is, if the degree of smoothing is a constant throughout the training, then there
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Figure 3: (a) Sharpness around the approximate solution after 200 epochs of ResNet18 training on
the CIFAR100 dataset versus batch size used. (b) Sharpness versus learning rate used. (¢) Sharpness
versus degree of smoothing calculated from learning rate, batch size and estimated variance of the
stochastic gradient. (d) Test accuracy after 200 epochs training versus sharpness. (e) Test accuracy
versus degree of smoothing. The solid line represents the mean value, and the shaded area represents
the maximum and minimum over three runs. The color shade in the scatter plots represents the batch
size; the larger the batch size, the darker the color of the plotted points. “lr” means learning rate.
The experimental results that make up the all graphs are all identical.

should be an optimal value for the loss function value or test accuracy; for the training of ResNet18
on the CIFAR100 dataset, for example, 0.1 to 1 was the desired value (see Figure B (e)). For degrees
of smoothing smaller than 0.1, the generalization performance is not good because the function is not
sufficiently smoothed so that locally optimal solutions with sharp neighborhoods do not disappear,
and the optimizer falls into this trap. On the other hand, a degree of smoothing greater than 1 leads
to excessive smoothing and smoothed function becomes too far away from the original function
to be properly optimized; the generalization performance is not considered excellent. In addition,
the optimal combination of learning rate and batch size that practitioners search for by using grid
searches or other methods when training models can be said to be a search for the optimal degree
of smoothing. If the optimal degree of smoothing can be better understood, the huge computational
cost of the search could be reduced.

(Andriushchenka ef-all, P023) observed the relationship between sharpness and generalization per-
formance in extensive experiments and found that they were largely uncorrelated, suggesting that
the sharpnesss may not be a good indicator of generalization performance and that one should avoid
blanket statements like “flatter minima generalize better”. Figure B (d) and (e) show that there is no
correlation between sharpness and generalization performance, as in previous study, while there is
a correlation between degree of smoothing and generalization performance. Therefore, we can say
that degree of smoothing may be a good indicator to theoretically evaluate generalization perfor-
mance, and it may be too early to say that “flatter minima generalize better” is invalid.

5 IMPLICIT GRADUATED OPTIMIZATION

In this section, we construct an implicit graduated optimization algorithm that varies the learning
rate 77 and batch size b so that the degree of smoothing § = 7C/+/b by stochastic noise in SGD
gradually decreases and then analyze its convergence.
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5.1 ANALYSIS OF IMPLICIT GRADUATED OPTIMIZATION ALGORITHM

In order to analyze the graduated optimization algorithm, Hazan et al. defined o-nice functions
(see Definition [Tl), a family of nonconvex functions that has favorable conditions for a graduated
optimization algorithm to converge to a global optimal solution (Hazan et all, POTG). We define the
following function, which is a slight extension of the o-nice function. See Section H for details on
its extension.

Definition 5.1 (7,,,-nice function). Let M € N, m € [M], and ~y € [0.5,1). A function f: R* — R
is said to be o, -nice if the following two conditions hold:

*

St < 6m+1 = /‘Iém

(i) For all 6,, > 0 and all wgm, there exists :cj§m+1 such that: ngm —x

(ii) For all 6., > 0, the function ﬁ;m (x) over N (wgm; 30, ) IS Oy -strongly convex.

The o,,-nice property implies that optimizing the smoothed function fgm is a good start for op-
timizing the next smoothed function f,;m +1» Which has been shown to be sufficient for graduated
optimization (Hazan ef all, 2OTH). We will take this route and consider an implicit graduated opti-
mization algorithm for o,,,-nice functions.

Algorithm @ embodies the framework of implicit graduated optimization with SGD for o,,,-nice
functions, while Algorithm @ is used to optimize each smoothed function; it should be GD (see
(@)). Note that our implicit graduated optimization (Algorithm M) is achieved by SGD with decaying
learning rate and/or increasing batch size.

Algorithm 1 Implicit Graduated Optimization
Require: ¢,z € B(x} ;301),m >0,b1 € [n],7 > 0.5

(51 = :7/1%,040 = min {m, ﬁ} ,M = log,y Qp€
form=1to M + 1do Algorithm 2 Gradient Descent

if m %_M +512 th2enT B Require: 7, :&ﬁm% fs..,m>0
€m = Om m/ sy tm o -— m/Em fort=1to Tm do
o/ Ao = (R € (0,1], Ay > 1) &\l = &™) — Vs, (z1)
end if - X end for
Tm1 1= GD(Ly, T, f5,,1m) return & ™)
Tim+1 ‘= EmTm, bm+1 = Ambm Tt

5 1= Nm+1C
m vV bm+1
end for

return ;o

From the definition of ,,-nice function, the smoothed function fs,, is ,,-strongly convex in

B(zxj ;30,). Also, the learning rate used by Algorithm D to optimize fgm should always be con-
stant. Therefore, let us now consider the convergence of GD with a constant learning rate for a

om-strongly convex function f[;m. The proof of Theorem B1lis in Appendix EI.
Theorem 5.1 (Convergence analysis of Algorithm D). Suppose that fgm :R? = Ris a o,,-strongly

convex and L4-smooth and ) < min {%, L% . Then, the sequence (j;gm)) teN generated by Algo-
rithm O satisfies
oA . (m)) A N H,, - 1

min T — T <—=0|= 3

mnin Joun ( i fon(®5,) < — (T : 3)

2
where H,, := 9(1“;;”)% 1 n(gzLj gmn) is a nonnegative constant.

9

Theorem Bl shows that Algorithm [ can reach an €,,-neighborhood of the optimal solution '} ~of

f(;m in approximately T,,, := H,,/e,, iterations. The next proposition is crucial to the success of
Algorithm [ and guarantees the soundness of the o,,,-nice function (The proof is in Appendix E2).

Proposition 5.1. Let f be a o,,-nice function and 6,11 := Y6m. Suppose that v € [0.5,1) and
xy € B(xj ;3061). Then for allm € [M], |2, — x5, || < 35,.
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&, is the approximate solution obtained by optimization of the smoothed function fgm_l with Al-
gorithm [ and is the initial point of optimization of the next smoothed function f5 Therefore,
Proposition B implies that v € [0.5,1) must hold for the initial point of optimization of fgm to
be contained in the strongly convex region of f(;m. Therefore, from Theorem B and Proposition
B, if f is a 0,,,-nice function and & € B (a:j;l ;301) holds, the sequence (&, )me|rr) generated by
Algorithm [ never goes outside of the o,,-strongly convex region B(:cgm ; 30,,) of each smoothed

function fs, (m € [M]).

The next theorem guarantees the convergence of Algorithm [ with the o,,,-nice function (The proof
of Theorem B2 is in Appendix E3).

Theorem 5.2 (Convergence analysis of Algorithm 0). Let ¢ € (0,1) and f: RY — R be an Ly-
Lipschitz o,,-nice function. Suppose that we run Algorithm W; then after O (1 / 62) rounds, the
algorithm reaches an e-neighborhood of the global optimal solution x*.

Note that Theorem B2 provides a total complexity including those of Algorithm [ and Algorithm D,
because Algorithm [ uses Algorithm @ at each m € [M].

5.2 NUMERICAL RESULTS

The experimental environment is in Appendix @ and the code is available at https://
anonymous.4open.scilence/r/new—sigma—nice.

We compared four types of SGD for image classification: 1. constant learning rate and constant
batch size, 2. decaying learning rate and constant batch size, 3. constant learning rate and increasing
batch size, 4. decaying learning rate and increasing batch size, in training ResNet34 (He_efall, DUTH)
on the ImageNet dataset (Deng et all, 2009) (Figure Bl), ResNet18 on the CIFAR100 dataset (Figure B
in Appendix ), and WideResNet-28-10 (Zagoruyko & Komodakis, P0T6) on the CIFAR100 dataset
(Figure B in Appendix Q). Therefore, methods 2, 3, and 4 are our Algorithm [l. All experiments were
run for 200 epochs. In methods 2, 3, and 4, the noise decreased every 40 epochs, with a common
decay rate of 1/+/2. That is, every 40 epochs, the learning rate of method 2 was multiplied by 1/1/2,
the batch size of method 3 was doubled, and the learning rate and batch size of method 4 were
respectively multiplied by v/3/2 and 1.5. Note that this 1//2 decay rate is  in Algorithm [ and it
satisfies the condition in Proposition Bl. The initial learning rate was 0.1 for all methods, which was
determined by performing a grid search among [0.01, 0.1, 1.0, 10]. The noise reduction interval was
every 40 epochs, which was determined by performing a grid search among [10, 20, 25,40, 50, 100].
A history of the learning rate or batch size for each method is provided in the caption of each figure.

Training ResNet34 on ImageNet dataset Training ResNet34 on ImageNet dataset

o
2

60

3

—— l.constant Ir and constant batch size | 3
—— 2.only decaying Ir

3.only increasing batch size
—— 4.hybrid

—— l.constant Ir and constant batch size | 3
—— 2.only decaying Ir

3.only increasing batch size
—— 4.hybrid

g 8 g

accuracy score for test
g v ¢ g @

loss function value for training
accuracy score for test
loss function value for training

0 a0 80 120 160 200 0 20000 40000 60000 80000 100000 120000 140000 160000
epoch the number of parameter updates

Figure 4: Accuracy score for the testing and loss function value for training versus the number
of epochs (left) and the number of parameter updates (right) in training ResNet34 on the Ima-
geNet dataset. The solid line represents the mean value, and the shaded area represents the max-
imum and minimum over three runs. In method 1, the learning rate and batch size were fixed
at 0.1 and 256, respectively. In method 2, the learning rate was decreased every 40 epochs as
[0.1, ﬁ, 0.05, ﬁ, 0.025} and the batch size was fixed at 256. In method 3, the learning rate
was fixed at 0.1, and the batch size was increased as [32,64,128,256,512]. In method 4, the
learning rate was decreased as {0.1 V3 0.075, 33 0.05625} and the batch size was increased as

’» 90 » 780
32,48, 72,108, 162].
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For methods 2, 3, and 4, the decay rates are all 1/ \/2, and the decay intervals are all 40 epochs,
so throughout the training, the three methods should theoretically be optimizing the exact same
five smoothed functions in sequence. Nevertheless, the local solutions reached by each of the three
methods are not exactly the same. All results indicate that method 3 is superior to method 2 and
that method 4 is superior to method 3 in both test accuracy and training loss function values. This
difference can be attributed to the different learning rates used to optimize each smoothing function.
Among methods 2, 3, and 4, method 3, which does not decay the learning rate, maintains the highest
learning rate 0.1, followed by method 4 and method 2. In all graphs, the loss function values are
always small in that order; i.e., the larger the learning rate is, the lower loss function values become.
Therefore, we can say that the noise level , expressed as "Ti, needs to be reduced, while the learning

rate 7 needs to remain as large as possible. Alternatively, if the learning rate is small, then a large
number of iterations are required. Thus, for the same rate of change and the same number of epochs,
an increasing batch size is superior to a decreasing learning rate because it can maintain a large
learning rate and can be made to iterate a lot when the batch size is small.

Theoretically, the noise level §,,, should gradually decrease and become zero at the end, so in our
algorithm [, the learning rate 7, should be zero at the end or the batch size b, should match the
number of data sets at the end. However, if the learning rate is 0, training cannot proceed, and if
the batch size is close to a full batch, it is not feasible from a computational point of view. For this
reason, the experiments described in this paper are not fully graduated optimizations; i.e., full global
optimization is not achieved. In fact, the last batch size used by method 2 is around 128 to 512,
which is far from a full batch. Therefore, the solution reached in this experiment is the optimal one
for a function that has been smoothed to some extent, and to achieve a global optimization of the
DNN, it is necessary to increase only the batch size to eventually reach a full batch, or increase the
number of iterations accordingly while increasing the batch size and decaying the learning rate.

6 CONCLUSION

We proved that SGD with a mini-batch stochastic gradient has the effect of smoothing the function,
and the degree of smoothing is greater with larger learning rates and smaller batch sizes. This shows
theoretically that smoothing with large batch sizes is makes it easy to fall into sharp local minima and
that using a decaying learning rate and/or increasing batch size is implicitly graduated optimization,
which makes sense in the sense that it avoids local optimal solutions. Based on these findings, we
proposed a new graduated optimization algorithm that uses a decaying learning rate and increasing
batch size and analyzed it. We conducted experiments whose results showed the superiority of our
recommended framework for image classification tasks on CIFAR100 and ImageNet. In addition,
we observed that the degree of smoothing of the function due to stochastic noise in SGD can express
the degree of smoothness of the function as well as sharpness does, and that the degree of smoothing
is a good indicator of the generalization performance of the model.

7 PREVIOUS STUDIES AND OUR NOVELTY

As shown in equation (), Kleinberg et al. suggested that stochastic noise in SGD smoothes the
objective function (Kleinberg et all, P0TX), but the degree to which it did so was not analyzed. We
theoretically derived the degree of smoothing and experimentally observed the relationship with
sharpness to ensure its correctness, which is a novel and valuable result.

We have shown that the degree of smoothing by stochastic noise in SGD is determined by § =
nC/ /b. This result may remind readers of previous studies (Goyal et all, Z01T7; Smifh ef all, PUTSR;
Xieef-all, PO2T) that investigated the dynamics of SGD and demonstrated how the ratio 7/b affects
the training dynamics. We should emphasize that our 1/ Vb is derived from a completely different
point of view, and in particular, the finding that the quantity nC'/ /b contributes to the smoothing of
the objective function can only be obtained from our theory.

We use the o,,,-nice function which slightly extend o-nice function proposed by (Hazanef all, PUTH)
to analyze the implicit graduated optimization algorithm. Technically, the difference between our
work and theirs is that they optimize each smoothed function with projected gradient descent with
a decaying learning rate, whereas we optimize with gradient descent with a constant learning rate
given our theoretical motivation (see ([)). Furthermore, all previous studies (see Section ), in-
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cluding the work of Hazan et al. consider explicit graduated optimization. Our implicit graduated
optimization with stochastic noise in the optimizer is a completely new idea, and this is the first
paper to apply the graduated optimization algorithm to the training of deep learning models on a
modern dataset such as ImageNet.
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A DERIVATION OF EQUATION ()

Let y; be the parameter updated by gradient descent (GD) and x;4; be the parameter updated by
SGD at time ¢, i.e.,

Yy = x, —nVf(x),
xiy1 = x — NV fs, ()
=z —(Vf(e) +wy).

Then, we have

xpy1 =2 — NV fs, (x4)
= (ye +nVf(z)) —nVis, ()
=Y — NWy, 4

from w; := Vfs, (x:) — Vf(x:). Hence,

Y1 = Tpy1 — NV f(@141)
=y — nwi — NV f(Ys — nwy).

By taking the expectation with respect to w; on both sides, we have, from E,,, [w:] = 0,

Ew, [Yi+1] = Ew, [Yt] = nVEw, [f(y: — nw)],

where we have used E,, [V f(y; — nw;)] = VE,, [f(y: — nwy)], which holds for a Lipschitz-
continuous and differentiable f (Shapiro et all, 009, Theorem 7.49). In addition, from (@) and
E., [w¢] = 0, we obtain

Ew, [®111] = Y-

Therefore, on average, the parameter x; 1 of the function f arrived at by SGD coincides with the
parameter y; of the smoothed function f(y;) := E, [f(y+ — nw;)] arrived at by GD.

B ESTIMATION OF VARIANCE OF STOCHASTIC GRADIENT

In Section B, we need to estimate the variance C? of the stochastic gradient in order to plot the
degree of smoothing § = 7C/v/b. In general, this is difficult to measure, but several previous
studies (Imaizumi_& Tiduka, P024; Safo_& Tiduka, 2024) have provided the following estimating
formula. For some ¢ > 0, when training until % >/ E[||Vf(z)||?] < €2 the variance of the
stochastic gradient can be estimated as

b*2
o<’
n

where b* is the batch size that minimizes the amount of computation required for training and 7
is learning rate used in training. We determined the stopping condition e for each learning rate,
measured the batch size that minimized the computational complexity required for the gradient
norm of the preceding ¢ steps at time ¢ to average less than € in training ResNet18 on the CIFAR100
dataset, and estimated the variance of the stochastic gradient by using an estimation formula (see
Table M). Table D shows the results of a similar experiment for the training WideResNet(WRN)-28-
10 on the CIFAR100 dataset.
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Table 1: Learning rate 1 and threshold € used for Table 2: Learning rate 7 and threshold € used for
training, measured optimal batch size b* and es- training, measured optimal batch size b* and es-
timated variance of the stochastic gradient C2 in  timated variance of the stochastic gradient C? in

training ResNet18 on the CIFAR100 dataset. training WRN-28-10 on the CIFAR100 dataset.
n € b* C? N e b C?
0.01 1.0 27 12800 0.01 1.0 22 400
005 05 2° 1280 005 05 22 20
0.1 05 219 1280 0.1 05 22 10
05 05 219 256 05 05 22 2

C PROOFS OF THE LEMMAS IN SECTION [

C.1 PROOF OF LEMMA 1

Proof. (A3)(ii) and (A4) guarantee that

Eﬁt [vaSt (wt) - Vf(élit)HQ] = Eﬁt 5 Z Gﬁt,z‘(mt) - Vf(wt)

This completes the proof. O

C.2 PROOF OF LEMMA 2

Proof. From Definition I71 and (A2), we have, for all «, y € R¢,

fs(@) = f(@)| = |Eo [f(z — 6u)] - f(=)]
= [Ew [f (@ — 6u) — f(2)]]
<Ey [[f(z = 0u) — f(z)]]
<Ey [Lfl[(® - du) — 2|]
= 0L By [[|u]
< 5Lf.
This completes the proof. O

D LEMMAS ON SMOOTHED FUNCTION

The following Lemmas concern the properties of smoothed functions fg.
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Lemma D.1. Suppose that (Al) holds, then, fg defined by Definition 21 is also L 4-smooth; i.e., for
all ¢,y € RY,

|Vis(@) = Visw)|| < Lollz — yl

Proof. From Definition 1 and (A1), we have, for all x,y € R4,

|Vis(@) = Vfstw)| = IVE [f (@ — u)] - VE [f(y - sw)]|
= [[Ew [Vf (2 — 6u)] — By [V f(y — du)]|
= [[Bu [Vf(z —0u) = Vf(y — du)]|
SEL[|VF(z = 0u) = V(y - du)l]
< Eu [Ly [[(z — 0u) — (y — du)|]
= Eu [Lg |2 — yl]
= Lyl -y

This completes the proof. O

Lemma D.2. Suppose that (A2) holds, then f5 is also an L ¢-Lipschitz function; i.e., for all x,y €
R¢,

fs(@) = fsw)| < Lyl — yl.

Proof. From Definition I_T and (A2), we have, for all «,y € R,

Fa(@) = Fs(y)| = [Bu [ (@ = ou)] — Eu [f(y — u)]
= [Eu [f (@ — 6u) — f(y — du)]]
By [[f (2 — du) — f(y — du)]
w Lyl (z = 0u) — (y — du)]
wlLy 2 —yl]
= Lille -yl
This completes the proof. O

Lemmas DT and D2 imply that the Lipschitz constants L ¢ of the original function f and L, of V f
are taken over by the smoothed function f5 and its gradient V f;s for all § € R.

E LEMMAS USED IN THE PROOFS OF THE THEOREMS

Lemma E.1. Suppose that fgm : R = R is 0,,-strongly convex and ﬁ:ifi = :i:§’”> — ntg¢. Then,
forallt € N,

A (m) 7 *) < l_o—mntX —LX @ 2
fo,, (7)) = fs,, (") < T, T t+1 + 9 lgell

*

where g, =V fs (&™), X, == [|&™ — %, and xj is the global minimizer of fs,.-

Proof. Lett € N. The definition of @ET{ guarantees that

(m) *”2 ”( - (m)

”thrl m*”Q

—ntgt) -
= &™) — 2*||? — 2 (@™ — x5, g0) + 12]lge]>.

From the o,,,-strong convexity of f(;

m?

r R ~(m Om | ~(m
2t 2m (fs,(@5,) = fo (@) = Sl - a;

2< ™ —

Hwt-&-l - 336,”

m m

2) +nlgell”
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Hence,
P (m) 1- TmMt || »(m) * 12 1 ~(m)
fs,. (& s — |z, —=x — — &, — x}
@) = fs,. (@3, < o £ 5ol o @41 — 5,

This completes the proof.

- (m (™)

2, 2
12+ Ziigi.

O

Lemma E.2. Suppose that f5 ‘R = Ris L4-smooth and & +1 = &; ~ — MG Then, for all

teN,

" (1—L"m>llvfam( Y2 < fi, @0) — i, (@),

where g; 1= Vf5 (2, p(m )) and xj, is the global minimizer of f(sm-

Proof. From the Lg4-smoothness of the ﬁ; and the definition of &, +1), we have, forall ¢t € N,

Fsn @) < f5,. (@) + (V s, (@), &7 — ”>+JH &7 —

IN

. A tm L
o (@) = (T s, (@) >>,gt>+g—”t||gt||2

< Fon @) (1— g”t)w,f (&™)

Therefore, we have
L n m r ~(m m
o (122 ) 197, @I < i (07) - o (42,

This completes the proof.

(m) - (m)

&™ |2

O

Lemma E.3. Suppose that f5m ‘RT 5 Ris Ly-smooth, &, | =&, ~ — miGy, and ny =1 < ng

Then, forallt € N,

*ZH a:l]? < %
o T’

where g, == V fs,. (:E:,Em)) and x5, is the global minimizer of fs

m*

Proof. According to Lemma E7, we have

n(l—L) IVE@™)2 < Fs..(@0™) = i, (27).

Summing over ¢, we find that

T 7 ~
0 (1-220) 3 S0, @ < 2 @)~ Jon &)

2 )T

t=1
2
Hence, from n < I,

li lgul = - (f5., @) = fs, (5,))
T n(2—LgnT '

Here, from the L -Lipschitz continuity of f5

fon (@) = fs..(x3,) < Lyl|a\™ —

where we have used mgm) € B(xj, ;35 ). Therefore, we have

*ZH a|? = %
n(2—Lyn)T"

This completes the proof.
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F PROOF OF THE THEOREMS AND PROPOSITIONS

F.1 PROOF OF THEOREM Bl

Proof. Lemma El guarantees that

; ~(m)y 7 * < l_UrrzntX _ 1 X @ 2
fo, (@) = fs,,(25,,) < Tam Nt gyt + o llgell
1-—- amT) Om 2
=— (X} — X —X —
o (Xt = Xpp1) = 5 Xer + ||9t||

From n < min {i Ll} and Lemma E73, by summing over ¢ we find that

T T
1 7 ~(m) 7 * 1- OmT] Om 2
T2 (Fon @17 = fon(a3,)) < =5 7 (X1 = Xr) = 3 2 Xt gr Z lgel

1—o0.,n
57 X1t o7 Z llge||?

<
- 2T
< 9(1 —o,,m) 52, 1 . 3L 6, 1
- 21 T n@2-Lgn) T
=:H, =:Hy
(Hy + Hy) =
~———
=:H,,
_ H7n/
==
where we have used X; = [|2{"™) — x} ||* < 962, and H,, > 0 is a nonnegative constant. From

the convexity of F,

Hence,

T
i (AN Hy, 1
In addition, since the minimum value is smaller than the mean, we have

. H, 1
_ * < Mmoo — 1.
o (Fou (57) = s (@3,)) < - =0 (T)
This completes the proof. O

F.2 PROOF OF PROPOSITION B

Proof. This proposition can be proved by induction. Since we assume @1 € N (x3 ;301), we have
|y — || < 301,

which establishes the case of m = 1. Now let us assume that the proposition holds for any m > 1.

Accordingly, the initial point x,, for the optimization of the m-th smoothed function fgm and its
global optimal solution x5 are both contained in the its o,,,-strongly convex region N (:cg 5 30.m)-

Thus, after T,,, := H,, /€, iterations, Algorithm @ (GD) returns an approximate solution afcgﬁz) b=
T +1, and the following holds from Theorem BT
R R H,, 0,02 om0
_ * < — mYm _ mYm+1 .

21



Under review as a conference paper at ICLR 2025

Hence, from the o, -strongly convexity of fgm,

Om *

62
TmeH —z ImOm41

. dm+1
< 52 cle, [[Tmp —xf, || < nj;_

Therefore, from the o,,-niceness of f and v € [0.5,1),

[®mir — 5, | < l@mpr — 25, | + 25, — 25, .

Om
< 4 (J0m] = Ge)
Om Om
- +l + < 1 - 5m%»l)
Y gl
2
()
v
S 35m+1~
This completes the proof. O

F.3 PROOF OF THEOREM B2

The following proof uses the technique presented in (Hazan ef-all, ZO16).

Proof. According to 6,11 := m19 and tm. — ~, we have

A/ bm41 Am

1C
Vb1

M-1

=

Therefore, from M := log, (age) + 1 and §; :=

on = 017
= (510[06
mCage

N

According to Theorem &I,

E [féM (®ar4+1) — fou (-’EEM)} <em
= ooy

_ <\/O'A,[17100£06)2
Vi
From Lemmas D2 and 2,

f@ars2) = f@") = {f@ari2) = fon @ars2) |+ { Fon @) = F@) |+ { Fons @ar42) = fo (@)}
< {F@ars2) = Frrlmrria)} +{ = f@)} + { fous @ar42) = Fo (@3, }
< GurLy + oLy + { o @ars2) = fou(w5,)}
=20mLs + {féM (@nr+2) = fon ($M+1)} + {féM (@ar41) = fou ($§M)}

< 20mLy + Ly lloarse = @aall+ {fow @aria) = fous (@5, }

o (m*)
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Then, we have

f(:IJM+2) — f(:E*) < 25MLf + 6Lf(5M +em
= 8Lf5M + €,

where we have used ||@ 12 — @pr1|| < 65as since Tpspo, a1 € N(x*;305). Therefore,

f(®n42) — f2")< BLmCaoe + (WWCQUG)Q

Vb Vb
< 8Lf’l710a06 + (ﬁmCaoe)Q
T Vb Vi
<e€

— : Vb1 Vb1
where we have used o := min { T6L;mC* VaonC |

Let Tty be the total number of queries made by Algorithm [; then,

M+1 M+1
H,, H,,
ﬂotal = § B = E 552 .
m=1 " m=1 m

Here, from the proof of Theorem Bl (see Section El), we define Hy > 0 as follows:

1—0,,n)62 L6, 1— 52 L6
Hm — 9( g 77) m + 3 f S 9( 0177) 1 + 3 fO1 — H4
27 n(2 — Lgn) 27 n(2 — Lgn)

Thus, from 67y = d10a0¢,

M+1 M+1 M+1
H,, 1 1 H4(M + 1)
Tiotal = <H < H. =
ol Tnzz:l 0'771,67277, * 7nz::1 7”5727'7, * 'miz:l (715%/[ (716%/[

Hy(M+1) 1

= 555 — 0|3

o165a5€ €
This completes the proof. O

G FULL EXPERIMENTAL RESULTS

The experimental environment was as follows: NVIDIA GeForce RTX 4090 x2GPU and Intel Core
19 13900KF CPU. The software environment was Python 3.10.12, PyTorch 2.1.0 and CUDA 12.2.

TN

Training ResNet18 on CIFAR100 dataset Training ResNet18 on CIFAR100 dataset

—— Lconstant Ir and constant batch size | 1
—— 2.0nly decaying Ir

3.0nly increasing batch size Z
—— 4.hybrid E

3
g
<
s

\“4\\‘ g
2

0.01 @

8

0.005

0.002

—— l.constant Ir and constant batch size 1
—— 2.only decaying Ir

3.only increasing batch size
— 4.hybrid

0 40 80 120 160 200 0 50000 100000 150000 200000 250000
epoch the number of parameter updates

Figure 5: Accuracy score for testing and loss function value for training versus the number of epochs
(left) and the number of parameter updates (right) in training ResNet18 on the CIFAR100 dataset.
The solid line represents the mean value, and the shaded area represents the maximum and minimum
over three runs. In method 1, the learning rate and the batch size were fixed at 0.1 and 128, respec-

. . 1 1
tively. In method 2, the learning rate decreased every 40 epochs as {0.1, 073" 0.05, 203" 0.025}

and the batch size was fixed at 128. In method 3, the learning rate was fixed at 0.1, and the
batch size was increased as [16, 32,64, 128, 256]. In method 4, the learning rate was decreased

as [0.1, ‘2/—05, 0.075, %, 0.05625} and the batch size was increased as [32, 48, 72,108, 162].
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Training WideResNet-28-10 on CIFAR100 dataset Training WideResNet-28-10 on CIFAR100 dataset

—— 1L.constant Ir and constant batch size
—— 2.only decaying Ir

3.only increasing batch size
—— 4.hybrid

—— L.constant Ir and constant batch size
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3.only increasing batch size
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0.002
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epoch the number of parameter updates

Figure 6: Accuracy score for testing and loss function value for training versus the number of
epochs (left) and the number of parameter updates (right) in training WideResNet-28-10 on the
CIFARI100 dataset. The solid line represents the mean value, and the shaded area represents the
maximum and minimum over three runs. In method 1, the learning rate and batch size were
fixed at 0.1 and 128, respectively. In method 2, the learning rate was decreased every 40 epochs
as [0.17 ﬁ, 0.05, Ti/ﬁ’ 0.025} and the batch size was fixed at 128. In method 3, the learning
rate was fixed at 0.1, and the batch size was increased as [8,16,32,64,128]. In method 4, the
learning rate was decreased as {0.1 Y3 0.075, 33 0.05625} and the batch size was increased as

’ 20 » 780
8,12, 18,27, 40].

For the sake of fairness, we provide here a version of Figures B-B with the number of gradient
queries on the horizontal axis (see Figure [-8). Since b stochastic gradients are computed per epoch,
the number of gradient queries is 7'b, where 1" means the number of steps and b means the batch
size.

Training ResNet18 on CIFAR100 dataset
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" \
[o)}
—— 1.constant Ir and constant batch size [1 E
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the number of gradient queries le7

Figure 7: Accuracy score for testing and loss function value for training versus the number of gradi-
ent queries in training ResNet18 on the CIFAR100 dataset. The solid line represents the mean value,
and the shaded area represents the maximum and minimum over three runs. In method 1, the learning
rate and the batch size were fixed at 0.1 and 128, respectively. In method 2, the learning rate de-
creased every 40 epochs as in |0.1, ﬁ, 0.05, Tl\/i’ 0.025] and the batch size was fixed at 128. In
method 3, the learning rate was fixed at 0.1, and the batch size was increased as [16, 32, 64, 128, 256].
In method 4, the learning rate was decreased as {0.1, %, 0.075, 38—\65, 0.05625} and the batch size
was increased as [32,48, 72,108, 162]. This graph shows almost the same results as Figure 8.
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Training WideResNet-28-10 on CIFAR100 dataset
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Figure 8: Accuracy score for testing and loss function value for training versus the number of
gradient queries in training WideResNet-28-10 on the CIFAR100 dataset. The solid line represents
the mean value, and the shaded area represents the maximum and minimum over three runs. In
method 1, the learning rate and batch size were fixed at 0.1 and 128, respectively. In method 2, the

) 10\/57 ) 20\/5)
was fixed at 128. In method 3, the learning rate was fixed at 0.1, and the batch size increased as

[8,16, 32,64, 128]. In method 4, the learning rate decreased as [O.l7 %, 0.075, %, 0.05625| and

the batch size increased as [8, 12, 18, 27, 40]. This graph shows almost the same results as Figure
B.

learning rate was decreased every 40 epochs as |0.1, —~,0.05, - 0.025} and the batch size

Training ResNet34 on ImageNet dataset
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Figure 9: Accuracy score for testing and loss function value for training versus the number of
gradient queries in training ResNet34 on the ImageNet dataset. The solid line represents the
mean value, and the shaded area represents the maximum and minimum over three runs. In
method 1, the learning rate and batch size were fixed at 0.1 and 256, respectively. In method

. 1 1
2, the learning rate was decreased every 40 epochs as |0.1, W,O.OS, M,O.OQ{’)} and the

batch size was fixed at 256. In method 3, the learning rate was fixed at 0.1, and the batch

size was increased as [32,64,128,256,512]. In method 4, the learning rate was decreased as
[0.1, \2/—5,0.075, %,0.05625] and the batch size was increased as [32,48,72,108,162]. This
graph shows almost the same results as Figure @.
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Figure 10: (a) Sharpness around the approximate solution after 200 epochs of WideResNet-28-10
training on the CIFAR100 dataset versus batch size used. (b) Sharpness versus learning rate used.
(¢) Sharpness versus degree of smoothing calculated from learning rate, batch size and estimated
variance of the stochastic gradient. (d) Test accuracy after 200 epochs training versus sharpness. (e)
Test accuracy versus degree of smoothing. The color shade in the scatter plots represents the batch
size; the larger the batch size, the darker the color of the plotted points. “Ir” means learning rate.
The experimental results that make up the all graphs are all identical. Dear Reviewers: These are
plots of the results of a single experiment. We can provide the results of multiple experiments
before camera ready.

H DISCUSSION ON THE DEFINITION OF THE SMOOTHED FUNCTION

Recall the general definition of the smoothing of the function.

Definition H.1. Given a function f: R¢ — R, define f(;: R? — R to be the function obtained by
smoothing f as

fé(m) = EUNN(();ﬁId) [f((li - 6“)] )

where 6 > 0 represents the degree of smoothing and w is a random variable from a Gaussian
distribution.

What probability distribution the random variable u € R? follows in the definition of smoothed
function varies in the literature. (Wii, 1996; Mobahi-& Fisher 111, DOTS5H; Iwakirief-all, P027)
assumes a Gaussian distribution, while (Hazan ef all, DOTH) assumes a uniform distribution for the
sake of theoretical analysis. So what probability distribution the random variable w should follow in
order to smooth the function? This has never been discussed.

It is difficult to confirm from a strictly theoretical point of view whether the function ﬁ; obtained by
using a random variable w that follows a certain probability distribution is smoother than the original
function f (more precisely, it is possible with a Gaussian distribution). Therefore, we smoothed a
very simple nonconvex function with random variables following several major probability distribu-
tions and compared it with the original function. We deal with one-dimensional Rastrigin’s function
(F6rn”& 7ilinskad, T989; Rudolph, 1990) and Drop-Wave function (Marcin Molgd, 2009) defined
as follows:

&)
(6)

(Rastrigin’s function) f(z) := 2? — 10 cos(27z) + 10,
1 12
(Drop-Wave function) f(z) := —%
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We smooth the above functions according to Definition -1l using random variables following light-
tailed distributions: Gaussian, uniform, exponential, and Rayleigh, and heavy-tailed distributions:
Pareto, Cauchy, and Levy. We have added the code for this smoothing experiment to our anonymous
Github. For more information on the parameters of each probability distribution, please see there.
First, Figure [ plots the Rastrigin’s function and its smoothed version with a degree of smoothing
of § = 0.5, using a random variable that follows several probability distributions.

Smoothed Function f, with light-tailed distributions Smoothed Function ?5 with heavy-tailed distributions

40
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Figure 11: Rastrigin’s function (H) and its smoothed version using random variables following a
light-tailed distribution (left) and heavy-tailed distribution (right). The degree of smoothing is set
to 0.5. Note that right graph has the logarithmic vertical axis with a base of 10.

Figures I shows that smoothing using random variable from light-tailed distributions works, while
smoothing using random variable from heavy-tailed distributions does not. The reason for this
is thought to be that extremely large values tend to appear in heavy-tailed distributions, and the
function values are not stable.

Next, Figure [ plots the Drop-Wave function and its smoothed version with a degree of smoothing
of § = 0.5, using a random variable that follows several probability distributions.

Smoothed Function ?5 with light-tailed distributions Smoothed Function ?5 with heavy-tailed distributions
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Figure 12: Drop-Wave function (B) and its smoothed version using random variables following a
light-tailed distribution (left) and heavy-tailed distribution (right). The degree of smoothing is set
to 0.5.

Figure T2 shows that, in contrast to Figure [, the heavy-tailed distribution successfully smooths
the function as well as the light-tailed distribution. The reason for this lies in the definition of the
Drop-Wave function. The Drop-Wave function has an 22 term in its denominator, which prevents
the function value from exploding even when the heavy-tailed distribution provides extremely large
values, and thus the smoothing works.

In smoothing of the function, random variables have been defined to follow primarily a Gaussian
distribution (see Definition HI), but these experimental results motivate us to extend it from a
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Gaussian distribution to a light-tailed distribution (see Definition I1). Note that we also provide the
interesting finding that, depending on the definition of the original function, random variables from
heavy-tailed distributions can also be useful for smoothing.

H.1 DISCUSSION ON THE LIGHT-TAILED DISTRIBUTION

According to (CLZA”efall, 021, Definition 3.1), the light-tailed distribution is defined as follows:

Definition H.2 (light-tailed distribution). A random variable X is said to be light-tailed if there
exists a c¢o > 0 such that E [exp(AX)] < oo for all || < co.

This definition implies that the probability density function of the light-tailed distribution decreases
exponentially at the tail. The definition of function smoothing in the previous study (Hazan efall,
20716, Definition 4.1) used a random variable that follows a uniform distribution. We can show that
the uniform distribution is light-tailed distribution.

Proposition H.1. The uniform distribution is light-tailed distribution.

Proof. Let X be a random variable which follows uniform distribution over the interval [a, b], where
a,b € R (a < b). Then, the probability density function fx (z) is defined as follows:

Fr(o) = {bla, ifx € [a, ],

0, otherwise.

For all A € R\ {0}, we have

E[eM] = /b e fx (z)da = L be)‘zdx _ 1 [e’\l]b _ (e*t — )
a b—a/, b—a e Ab—a)
When A = 0, we have
E [e’\X} =K [eo] =1.
Therefore, for all A € R, we obtain E [eAX ] < 00. O

H.2 DISTRIBUTION OF SGD’S STOCHASTIC NOISE

We collected 1000 each of stochastic noise w; = Vfs,(x:) — V f(x;) and tested whether each
element follows a light-tailed distribution. They were collected at the point where ResNet18 had
been trained on the CIFAR100 dataset (10,000 steps). The code used in this experiment is available
on our anonymous Github. ResNet18 has about 11M parameters, so w; form an 11M-dimentional
vector. Figure I3 plots the results for the w; elements from dimension 0 to dimension 100,000.
Figure [[4 present the results for all elements. These results demonstrate that the SGD’s stochastic
noise w; follows a light-tailed distribution.

I EXTENSION FROM ¢-NICE FUNCTION TO 7,,-NICE FUNCTION

Hazan et al., proposed o-nice function to analyze graduated optimization algorithm.

Definition I.1 (o-nice function (Hazan ef all, DOIR)). Let M € N and m € [M]. A function
f: R = R is said to be o-nice if the following two conditions hold:

(i) For all 6,, > 0 and all mg there exists a:(’§m+1 such that: ‘ wg — a:(’gmﬂ < a1 = %ﬂ.

(ii) For all 6,, > 0, the function fs5, (z) over N (x5, ;30m) is o-strongly convex.

Recall our o,,-nice function (Definition BI).

Definition 1.2 (o,,,-nice function). Let M € N, m € [M], and v € [0.5,1). A function f: R? — R
is said to be o,-nice if the following two conditions hold:

(i) For all 6r, > 0 and all 5, there exists x5 such that: ‘

x5 — $§m+1 <41 = Yom.-

(ii) For all §,,, > 0, the function fgm (x) over N (x5 ;3d,,) is op-strongly convex.
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Figure 13: Distribution of 1000 w; elements from O to 100,000 dimensions.

In condition (i), we extended the decay rate of the degree of smoothing from a constant 0.5 to a
constant v € [0.5,1). See Proposition B for the soundness of this extension. In condition (ii),
ﬁ;m was always defined to be o-strongly convex in the definition of o-nice function, which is a
rather strong assumption. In fact, the greater the degree of smoothing d,, is, the smoother the
smoothed function f(;m becomes and the smaller the strong convexity parameter may be. Here, let
Osmall be a strongly convexity parameter of f and 0 < oy < Obpig, then the function f is not org-
strongly convex function. Therefore, the strongly convexity parameter should depend on the degree
of smoothing §,,, and we extend the strongly convexity parameter to o, from o.
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(B) test accuracy vs sharpness
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Figure 15: Graph for reviewer KvG;j.
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