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Abstract
We study distributed contextual linear bandits
with stochastic contexts, where N agents act co-
operatively to solve a linear bandit-optimization
problem with d-dimensional features over the
course of T rounds. For this problem, we derive
the first ever information-theoretic lower bound
Ω(dN) on the communication cost of any algo-
rithm that performs optimally in a regret mini-
mization setup. We then propose a distributed
batch elimination version of the LinUCB algo-
rithm, DisBE-LUCB, where the agents share in-
formation among each other through a central
server. We prove that the communication cost
of DisBE-LUCB matches our lower bound up to
logarithmic factors. In particular, for scenarios
with known context distribution, the communica-
tion cost of DisBE-LUCB is only Õ(dN) and its
regret is Õ(

√
dNT ), which is of the same order

as that incurred by an optimal single-agent algo-
rithm for NT rounds. We also provide similar
bounds for practical settings where the context
distribution can only be estimated. Therefore, our
proposed algorithm is nearly minimax optimal
in terms of both regret and communication cost.
Finally, we propose DecBE-LUCB, a fully decen-
tralized version of DisBE-LUCB, which operates
without a central server, where agents share infor-
mation with their immediate neighbors through a
carefully designed consensus procedure.

1. Introduction
In the contextual bandit problem, a learning agent repeat-
edly makes decisions based on contextual information, with
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the goal of learning a policy that maximizes their total re-
ward over time. This model captures simple reinforcement
learning tasks in which the agent must learn to make high-
quality decisions in an uncertain environment, but does not
need to engage in long-term planning. Contextual bandit
algorithms are deployed in online personalization systems
such as medical trials and product recommendation in e-
commerce (Agarwal et al., 2016; Tewari and Murphy, 2017).
For example, by modelling personalized recommendation
of articles as a contextual bandit problem, a learning algo-
rithm sequentially selects articles to be recommended to
users based on contextual information about the users and
articles, while continuously updating its article-selection
strategy based on user-click feedback to maximize total user
clicks (Li et al., 2010).
Distributed cooperative learning is a paradigm where multi-
ple agents collaboratively learn a shared prediction model.
More recently, researchers have explored the potential of
contextual bandit algorithms in distributed systems, such
as in robotics, wireless networks, the power grid and
medical trials (Li et al., 2013; Avner and Mannor, 2019;
Berkenkamp et al., 2016; Sui et al., 2018). For exam-
ple, in sensor/wireless networks (Avner and Mannor, 2019)
and channel selection in radio networks (Liu and Zhao,
2010a;b;c), a collaborative behavior is required for decision-
makers/agents to select better actions as individuals.
While a distributed nature is inherent in certain systems,
distributed solutions might also be preferred in broader set-
tings, as they can lead to speed-ups of the learning process.
This calls for extensions of the traditional single-agent ban-
dit setting to networked systems. In addition to speeding
up the learning process, another desirable goal of each dis-
tributed learning algorithm is communication efficiency. In
particular, keeping the communication as rare as possible in
collaborative learning is of importance. The notion of com-
munication efficiency in distributed learning paradigms is
directly related to the issue of efficient environment queries
made in single-agent settings. In many practical single-
agent scenarios, where the agent sequentially makes active
queries about the environment, it is desirable to limit these
queries to a small number of rounds of interaction, which
helps to increase the parallelism of the learning process and
reduce the management cost. In recent years, to address
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such scenarios, a surge of research activity in the area of
batch online learning has shown that in many popular online
learning tasks, a very small number of batches may achieve
minimax optimal learning performance, and therefore it is
possible to enjoy the benefits of both adaptiveity and paral-
lelism (Ruan et al., 2021; Han et al., 2020; Gao et al., 2019).
In light of the connection between communication cost in
distributed settings and the number of environment queries
in single-agent settings, a careful use of batch learning meth-
ods in multi-agent learning scenarios may positively affect
the communication efficiency by limiting the number of nec-
essary communication rounds. In this paper, we first prove
an information-theoretic lower bound on the communica-
tion cost of distributed contextual linear bandits, and then
leverage such batch learning methods to design an algorithm
with a small communication cost that matches this lower
bound while guaranteeing optimal regret.
Notation. Throughout this paper, we use lower-case letters
for scalars, lower-case bold letters for vectors, and upper-
case bold letters for matrices. The Euclidean norm of x is
denoted by∥x∥2. We denote the transpose of any column
vector x by x⊤. For any vectors x and y, we use ⟨x,y⟩
to denote their inner product. Let A be a positive semi-
definite d × d matrix and ν ∈ Rd. The weighted 2-norm
of ν with respect to A is defined by ∥ν∥A =

√
ν⊤Aν.

For a positive integer n, [n] denotes the set {1, 2, . . . , n},
while for positive integers m ≤ n, [m : n] denotes the set
{m,m+ 1, . . . , n}. For square matrices A and B, we use
A ⪯ B to denote B−A is positive semi-definite. We denote
the minimum and maximum eigenvalues of A by λmin(A)
and λmax(A). We use ei to denote the i-th standard basis
vector. I(X;Y ) denotes the mutual information between
two random variables X and Y . Finally, we use standard Õ
notation for big-O notation that ignores logarithmic factors.

1.1. Problem formulation
We consider a network of N agents acting cooperatively to
efficiently solve a K-armed stochastic linear bandit prob-
lem. Let T be the total number of rounds. At each round
t ∈ [T ], each agent i is given a decision set X i

t = {xi
t,a :

a ∈ [K]} ⊂ Rd, drawn independently from a distribution
Di

t. We assume that Di
t = D for all (i, t) ∈ [N ]× [T ]. Here,

xi
t,a is a mapping from action a and the contextual informa-

tion agent i receives at round t to the d-dimensional space.
We call xi

t,a the feature vector associated with action a and
agent i at round t. Agent i selects action ai,t ∈ [K], and
observes the reward yit = ⟨θ,xi

t,ai,t
⟩ + ηit, where θ ∈ Rd

is an unknown vector and ηit is an independent zero-mean
additive noise. The agents are also allowed to communicate
with each other. Both the action selection and the com-
municated information of each agent may only depend on
previously played actions, observed rewards, decision sets,
and communication received from other agents. Throughout

the paper, we rely on the following assumption.

Assumption 1. Without loss of generality, ∥θ∥2 ≤ 1,
∥xi

t,a∥2≤ 1,
∣∣yit∣∣ ≤ 1 for all (a, i, t) ∈ [K] × [N ] × [T ].

Also, the distribution D is known to the agents.

The boundedness assumption is standard in the linear bandit
literature (Chu et al., 2011; Dani et al., 2008; Huang et al.,
2021). Moreover, our results can be readily extended to the
settings where the assumption on the boundedness of yit is
relaxed by assuming the noise variables ηit are conditionally
σ-subGaussiam for a constant σ ≥ 0. As such, a high prob-
ability bound on ηit and consequently yit can be established,
which is desired in our analysis for establishing confidence
intervals in Appendix B.1.
Our assumption on the knowledge of D is fairly well-
motivated. A standard argument is based on having loads
of unsupervised data in real-world scenarios. For exam-
ple, Google, Amazon, Netflix, etc, have collected massive
amounts of data about users, products, and queries, suffi-
ciently describing the joint distributions. Given this, even if
the features change (for a given user or product, etc.), their
distributions can be computed/sampled from as the features
are computed via a deterministic feature map. In light of
this, Hanna et al. (2022a) recently studied contextual linear
bandits with known context distribution. We further relax
this assumption in Remark 4.3 in Section 4.2.
Goal. The performance of the network is measured via the
cumulative regret of all agents in T rounds, defined as

RT := E[
∑T

t=1

∑N
i=1⟨θ,xi

∗,t⟩ − ⟨θ,xi
t⟩], (1)

where the expectation is taken over the random variables
X i

t , (i, t) ∈ [N ] × [T ] with joint distribution
⊗N,T

i,t=1 Di
t,

xi
t and xi

∗,t ∈ argmaxx∈X i
t
⟨θ,x⟩ are the feature vectors

associated with the action chosen by agent i at round t and
the best possible action, respectively.
For simplicity, in our algorithms the communication cost
is measured as the number of communicated real numbers
over the course of T rounds. In Section 3, we also discuss
variants of our methods where the communication cost is
measured as the number of communicated bits.
The goal is to design a distributed collaborative algorithm
that minimizes the cumulative regret, while maintaining
an efficient coordination protocol with a small communi-
cation cost. Specifically, we wish to achieve a regret close
to Õ(

√
dNT ) that is incurred by an optimal single-agent

algorithm for NT rounds (the total number of arm pulls)
while the communication cost is Õ(dN) with only a mild
(logarithmic) dependence on T .
A motivating example. In news article recommendation,
the candidate actions correspond to K news articles. At
round t, an individual user visits an online news platform
that has N servers employing the same recommender sys-
tems to recommend news articles from an article pool. The
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Setting Algorithm Regret Communication cost Communication
cost lower
bound

Contexts are fixed over time
horizon and agents

DELB with server
(Wang et al., 2019)

O
(
d
√
NT log T

)
O

(
(dN + d log log d) log T

)
Contexts adversarially
vary over time horizon
and agents

DisLinUCB with
server (Wang et al.,
2019)

O
(
d
√
NT log2 T

)
O

(
d3N1.5

)

FedUCB with server
(Dubey and Pent-
land, 2020)

O
(
d
√
NT log2 T

)
O

(
d3N1.5

)

Contexts adversarially vary
over agents

Fed-PE with server
(Huang et al., 2021)

O
(√

dNT log(KNT )
)

O
(
(d2 + dK)N log T

)
Contexts stochastically
vary over time horizon
and agents (this work)

DisBE-LUCB with
server

O
(√

dNT log d log2 (KNT )
)

O
(
dN log log(NT )

)
Ω(dN)

DecBE-LUCB with-
out server

O
(
NS +

√
dN(T + S) log d log2 (KNT )

)
O

(
SδmaxdN log log(NT )

)

Table 1. N : number of agents; K: number of arms; T : time horizon; d: dimension of the feature vectors; S = log(dN)√
1/|λ2|

;|λ2|: the second

largest eigenvalue of communication matrix in absolute value; δmax is the maximum degree of the graph representing agents’ network.
The lower bound for the communication cost is interpreted as follows: For any algorithm with expected communication cost less than dN

64
,

there exists a contextual linear bandit instance with stochastic contexts, for which the algorithm’s regret is Ω(N
√
dT ). See Theorem 3.1.

contextual information of the user, the articles and the
servers at round t is modeled by X i

t = {xi
t,a : a ∈ [K]},

characterizing user’s reaction to each recommended article
a (e.g., click/not click) by server i, and the probability of
clicking on a is modeled by ⟨θ,xi

t,a⟩, which corresponds
to the expected reward. On the distributed side, these N
servers collaborate with each other by sharing information
about the feedback they receive from the users after rec-
ommending articles in an attempt to speed up learning the
users’ preferences. In this example, the individual users and
articles can often be viewed as independent samples from
the population which is characterized by distribution D.

1.2. Contributions
We establish a lower bound on the communication cost of
distributed contextual linear bandits. We propose algorithms
with optimal regret and communication cost matching our
lower bound (up to logarithmic factors) and growing linearly
with d and N while those of previous best-known algorithms
scale super linearly either in d or N . Below, we elaborate
more on our contributions:
Minimax lower bound for the communication cost. As
our main technical contribution, in Section 3, we prove the
first information-theoretic lower bound on the communica-
tion cost (measured in bits) of any algorithm achieving an
optimal regret rate for the distributed contextual linear ban-
dit problem with stochastic contexts. In particular, we prove
that for any distributed algorithm with expected commu-
nication cost less than dN

64 , there exists a contextual linear
bandit problem instance with stochastic contexts for which
the algorithm’s regret is Ω(N

√
dT ).

DisBE-LUCB. We propose a distributed batch elimination
contextual linear bandit algorithm (DisBE-LUCB): the time
steps are grouped into M pre-defined batches and at each

time step, each agent first constructs confidence intervals
for each action’s reward, and the actions whose confidence
intervals completely fall below those of other actions are
eliminated. Throughout each batch, each agent uses the
same policy to select actions from the surviving action
sets. At the end of each batch, the agents share information
through a central server and update the policy they use in
the next batch. We prove that while the communication
cost of DisBE-LUCB is only Õ(dN), it achieves a regret
Õ(

√
dNT ), which is of the same order as that incurred

by a near optimal single-agent algorithm for NT rounds .
This shows that DisBE-LUCB is nearly minimax optimal
in terms of both regret and communication cost. We high-
light that while DisBE-LUCB is inspired by the single-agent
batch elimination style algorithms (Ruan et al., 2021) in an
attempt to save on communication as much as possible, a
direct use of confidence intervals used in such algorithms
would fail to guarantee optimal communication cost Õ(dN)
and require more communication by a factor of O(d). We
address this issue by introducing new confidence intervals
in Lemma 4.4. Details are given in Section 4.
DecBE-LUCB. Finally, we propose a fully decentralized
variant of DisBE-LUCB without a central server, where
the agents can only communicate with their immediate
neighbors given by a communication graph. Our algorithm,
called decentralized batch elimination linear UCB (DecBE-
LUCB), runs a carefully designed consensus procedure to
spread information throughout the network. For this algo-
rithm, we prove a regret bound that captures both the degree
of selected actions’ optimality and the inevitable delay in
information-sharing due to the network structure while the
communication cost still grows linearly with d and N . See
Section 4.4.
We complement our theoretical results with numerical simu-
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lations under various settings in Section 5.

2. Related Work
Distributed MAB. Multi-armed bandit (MAB) in multi-
agent distributed settings has received attention from several
academic communities. In the context of the classical K-
armed MAB, Martı́nez-Rubio et al. (2019); Landgren et al.
(2016a;b; 2018) proposed decentralized algorithms for a
network of N agents that can share information only with
their immediate neighbors, while Szörényi et al. (2013)
studied the MAB problem on peer-to-peer networks.
Distributed contextual linear bandits. The most closely
related works on distributed linear bandits are those of Wang
et al. (2019); Dubey and Pentland (2020); Huang et al.
(2021); Korda et al. (2016); Hanna et al. (2022b). In partic-
ular, Wang et al. (2019) investigate communication-efficient
distributed linear bandits, where the agents can communi-
cate with a server by sending and receiving packets. They
propose two algorithms, namely, DELB and DisLinUCB,
for fixed and time-varying action sets, respectively. The
works of Dubey and Pentland (2020); Huang et al. (2021)
consider the federated linear contextual bandit model and
the former focuses on federated differential privacy. In the
latter, the contexts denote the specifics of the agents and
are different but fixed during the entire time horizon for
each agent. In the former, however, the contexts contain the
information about both the environment and the agents, in
the sense that contexts associated with different agents are
different and vary during the time horizon. To put these in
the context of an example, consider a recommender system.
Both Dubey and Pentland (2020) and Huang et al. (2021)
consider a multi-agent model, where each agent is associ-
ated with a different user profile. Huang et al. (2021) fix a
user profile for an agent, while Dubey and Pentland (2020)
consider a time-varying user profile. Therefore, Huang et al.
(2021) capture the variation of contexts over agents, whereas
it is captured over both agents and time horizon in Dubey
and Pentland (2020). A regret and communication cost com-
parison between DisBE-LUCB, DecBE-LUCB and other
baseline algorithms is given in Table 1.
Batch elimination in distributed bandits. An important
line of work related to communication efficiency in dis-
tributed bandits studies practical single-agent scenarios us-
ing batch elimination methods, in which a very small num-
ber of batches achieve minimax optimal learning perfor-
mance (Ruan et al., 2021; Han et al., 2020; Gao et al., 2019).
Our proposed algorithms are inspired by the single-agent
BatchLinUCB-DG proposed in Ruan et al. (2021) in an at-
tempt to save on communication as much as possible. That
said, a direct use of confidence intervals in Ruan et al. (2021)
would fail to guarantee optimal communication cost Õ(dN)
and require more communication by a factor of O(d). We
address this issue by introducing new confidence intervals,

used in our algorithms, in Lemma 4.4.
Minimax lower bound on communication cost. We are
unaware of any lower bound on the communication cost
scaling with both d and N for contextual linear bandits in
the distributed/federated learning setting. To the best of our
knowledge, our work is the first to establish such a minimax
lower bound and to propose algorithms with optimal regret
and communication cost matching this lower bound up to
logarithmic factors. Recently, Li et al. (2022) proved a Ω(N)
communication lower bound for asynchronous federated
contextual linear bandits. However, their lower bound does
not include the dependency on d, which is of importance in
our work and emphasizes how our proposed algorithm opti-
mally improves the communication cost of existing methods.
In addition, Wang et al. (2019) previously proved a Ω(N)
communication lower bound for distributed MAB.

3. Lower Bound on Communication Cost
In this section, we derive an information-theoretic lower
bound on the communication cost of the distributed contex-
tual linear bandits with stochastic contexts. In particular,
we prove that for any distributed contextual linear bandit
algorithm with stochastic contexts that achieves the optimal
regret rate Õ(

√
dNT ), the expected amount of communica-

tion must be at least Ω(dN). This is formally stated in the
following theorem.

Theorem 3.1. Let T ≥ 4d log(8). For any algorithm
with expected communication cost (measured in bits) less
than dN

64 , there exists a contextual linear bandit instance
with stochastic contexts, for which the algorithm’s regret is
Ω(N

√
dT ).

3.1. Proof of Theorem 3.1
We start with a lower bound for a single-agent Bayesian
two-armed bandit problem where the agent is given side
information that contains a small amount of information
about the optimal action.

Lemma 3.2. Let µ1 = (∆, 0) and µ2 = (−∆, 0) and
consider the single-agent Bayesian two-armed Gaussian
bandit with mean µ uniformly sampled from {µ1,µ2} and
a∗ = argmaxa∈{1,2} µa, which is a random variable. Sup-
pose additionally that the agent has access to a random
element M with I(M ; a∗) ≤ 1/16. Then, for any policy π,

BRT (π) ≥ ∆T

1

2
−

√
1

2

(
1

16
+ 4T∆2

) ,

where BRT (π) = Eµ∼Unif{µ1,µ2}[RT (π,µ)] and
RT (π,µ) is the regret suffered by policy π in the Gaus-
sian two-armed bandit with means µ.

Remark 3.3. We assume in Lemma 3.2 that the agent has
access to the message M from the beginning. The same
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bound continues to hold in the strictly harder problem where
the agent has sequential access to a sequence of messages
M1, . . . ,MT with I({Mt}Tt=1; a∗) ≤ 1/16.

The proof is presented in Appendix A. This lemma em-
phasizes the role of extra information a single agent might
receive throughout the learning process on its performance,
and therefore, it is key in proving Theorem 3.1. Specifically,
since Lemma 3.2 makes no assumption on how the agent re-
ceives the extra information about the learning environment,
we can prove Theorem 3.1 by employing this lemma and a
reduction from single-agent bandit to multi-agent bandit as
explained in what follows.
The construction. We consider a bandit instance where
K = 2 and the decision sets are drawn uniformly from{
(e1, e2), (e3, e4), . . . , (ed−1, ed)

}
. Let Θ = {θ ∈ Rd :

(θ2j−1,θ2j) ∈ {(∆, 0), (−∆, 0)}, ∀j ∈ [d2 ]}. We call
(θ2j−1,θ2j) by j-th block of reward vector.
Bayesian regret. As in Lemma 3.2, we prove the minimax-
style lower bound using the Bayesian regret. Let θ be sam-
pled uniformly from Θ and π be a fixed multi-agent policy.
The multi-agent Bayesian regret is

BRT = E[
∑T

t=1

∑N
i=1⟨θ,xi

∗,t⟩ − ⟨θ,xi
t⟩] ,

where the expectation integrates over the randomness in
both θ and the corresponding history induced by the inter-
action between π and the environment determined by θ. By
Yao’s minimax principle, there exists a θ ∈ Θ such that
the expected regret is at least BRT , so it suffices to lower
bound the Bayesian regret. For the remainder of the proof
E[·] and P(·) correspond to the expectation and probability
measure on θ and the history. For technical reasons, we
assume that these probability spaces are defined to include
an infinite interaction between the agents and environment.
Of course, this is only used in the analysis.
Reduction from single-agent to multi-agent. Let Mij be
the mutual information between messages agent i receives
in T rounds and (θ2j−1,θ2j). By assumption,

N∑
i=1

d
2∑

j=1

Mij ≤
N∑
i=1

E[Total number of bits agent i receives]

≤ dN

64
. (2)

Let S be the set of dN
4 pairs (i, j) ∈ [N ]× [d2 ] with smallest

Mij . From (2) and the definition of S, we observe that for
every pair (i, j) ∈ S, we have

Mij ≤
dN

64dN
4

=
1

16
.

Let Bijt be the indicator that the context is such that agent i
interacts with j-th block in round t, which is

Bijt = 1(xi
t,1 = e2j−1) .

Note that {Bijt}∞t=1 are independent and E[Bijt] = 2/d.
Let Tij = {t : Bijt = 1} and T ◦

ij be the first T◦ elements of
Tij with T◦ = T/d. Let

Rij =
∑
t∈T ◦

ij

⟨θ,xi
∗,t⟩ − ⟨θ,xi

t⟩

be the regret of agent i during the rounds in T ◦
ij in bandit

instance θ. Note that T ◦
ij may contain rounds larger than T .

Nevertheless,

BRT ≥
∑N

i=1

∑d/2
j=1 E[Rij1(T ◦

ij ⊂ {1, . . . , T})]
≥
∑

(i,j)∈S E[Rij1(T ◦
ij ⊂ {1, . . . , T})]

=
∑

(i,j)∈S E[Rij ]− E[Rij1(T ◦
ij ̸⊂ {1, . . . , T})] .

Suppose that (i, j) ∈ S. Now, E[Rij ] is exactly the
Bayesian regret of some policy interacting with the Bayesian
two-armed bandit defined in Lemma 3.2 for T◦ rounds. Fur-
thermore, the mutual information between the optimal ac-
tion in this bandit and the messages passed to the agent is at
most Mij ≤ 1/16. Hence, by Lemma 3.2 and Remark 3.3,

E[Rij ] ≥ ∆T◦

1

2
−

√
1

2

(
1

16
+ 4T◦∆2

) .

On the other hand,

E[Rij1(T ◦
ij ̸⊂ {1, . . . , T})] ≤ 2∆T◦P(T ◦

ij ̸⊂ {1, . . . , T})

= 2∆T◦P
(∑T

t=1 Bijt < T◦

)
.

By Chernoff’s bound, T ≥ 4d log(8) and E[Bijt] = 2/d,

2P
(∑T

t=1 Bijt < T◦

)
= 2P

(∑T
t=1 Bijt < T/d

)
≤ 2 exp

(
−T/(4d)

)
≤ 1

4
.

Therefore, with ∆ = 0.0695
√

d
T , we have

BRT ≥ dNT◦∆

4

1

4
−

√
1

2

(
1

16
+ 4T◦∆2

)
≥ N

√
dT

1250
= Ω

(
N
√
dT
)
,

which concludes the proof of Theorem 3.1.

4. An Optimal Algorithm
Following the communication cost lower bound in pre-
vious section, we now present an algorithm called, Dis-
tributed Batch Elimination Linear Upper Confidence Bound
(DisBE-LUCB), whose communication cost matches the
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lower bound up to logarithmic factors while achieving an op-
timal regret rate. DisBE-LUCB employs a central server to
which, the agents send local updates and it then aggregates
and broadcasts the updated global values of interest. We
also discuss Decentralized Batch Elimination Linear Upper
Confidence Bound (DecBE-LUCB), a modified version of
DisBE-LUCB in the absence of a central server, where each
agent can only communicate with its immediate neighbors.

4.1. Overview of DisBE-LUCB
Before describing how DisBE-LUCB operates for every
agent i ∈ [N ], we note that all agents run DisBE-LUCB con-
currently. In DisBE-LUCB, the time steps are grouped into
M pre-defined batches by a grid T = {T0, T1, . . . , TM},
where 0 = T0 ≤ T1 ≤ . . . ≤ TM , T ≤ TM and
Tm = Tm − Tm−1 is the length of batch m. Our
choice of grid implies that for any m ≥ 3, we have
Tm = (a2

m−1−1d
1
2 /N

1
2 )

1

2m−2 . Parameter a is chosen
such that TM = T and TM =

∑
m∈[M ] Tm ≥ TM = T ,

and therefore our choice of grid T is valid. At rounds
t ∈ [Tm−1 + 1 : Tm] during batch m ∈ [M ], agent i first
constructs confidence intervals for each action’s reward, and
the actions whose confidence intervals completely fall be-
low those of other actions are eliminated. We denote the set
of feature vectors associated with the surviving actions by
X i(m)

t = ∩m−1
k=0 E(X i

t ; (Λ
i
k,θ

i
k, β)), where

E(X i
t ; (Λ

i
k,θ

i
k, β)) := {x ∈ X i

t : ⟨θi
k,x⟩

+ β∥x∥(Λi
k)

−1 ≥ ⟨θi
k,y⟩ − β∥y∥(Λi

k)
−1 , ∀y ∈ X i

t }.

Here, {Λi
k}

m−1
k=0 and {θi

k}m−1
k=0 are agent i’s statistics used

in computation of X (i)m
t for t ∈ [Tm−1 + 1 : Tm]. They

are initialized to λI and 0 and will be updated at the end
of each batch (will be specified how shortly). Let πi

0 be an
arbitrary initial policy used in the first batch. Throughout
batch m ∈ [M ], agent i uses the same policy πi

m−1 to select
actions from the surviving actions set. At the end of batch
m ∈ [M ], agent i ∈ [N ] sends ui

m =
∑Tm−1+Tm/2

t=Tm−1+1 xi
ty

i
t to

the server who broadcasts
∑N

i=1 u
i
m to all the agents. Then,

agent i updates policy πi
m (used in the next batch) and the

following components that are key in the construction of the
surviving actions set in the next batch as follows:

Λi
m = λI +

NTm

2
EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤], (3)

θi
m = (Λi

m)−1∑N
j=1 u

j
m, (4)

where λ > 0 is a regularization constant and when condi-
tioned on the first (m− 1) batches, Di

m is the distribution
based on which the sets of surviving feature vectors X i(m)

t

for all t ∈ [Tm−1 + 1 : Tm] are generated.
Statistics Λi

m and θi
m are used in defining new confi-

dence intervals in Lemma 4.4. We highlight that a direct

Algorithm 1 DisBE-LUCB for agent i

1: Input: N , d, δ, T , M,λ

2: Initialization: a =
√
T (NT/d)

1

2(2M−1−1) , T1 = T2 =
a
√
d/N , Tm = ⌊a

√
Tm−1⌋, θi

0 = 0, Λi
0 = λI ,

T0 = 0, Tm = Tm−1 + Tm, λ = 5 log(4dT/δ),
β = 6

√
log(2KNT/δ) +

√
λ, arbitrary policy πi

0

3: for m = 1, . . . ,M do
4: for t = Tm−1 + 1, . . . ,min{Tm, T} do
5: Construct X i(m)

t = ∩m−1
k=0 E

(
X i

t ; (Λ
i
k,θ

i
k, β)

)
.

6: Play arm ai,t associated with feature vector xi
t ∼

πi
m−1

(
X i(m)

t

)
and observe yit.

7: end for
8: Send ui

m =
∑Tm−1+Tm/2

t=Tm−1+1 xi
ty

i
t to the server.

9: Receive
∑N

j=1 u
j
m from the server.

10: Compute/construct Λi
m and θi

m as in (3) and
(4), respectively, Si

m as in (5), and πi
m =

ExpPol
(

2λ
NTm

,Si
m

)
, where ExpPol is presented in

Appendix D.
11: end for

use of existing standard confidence intervals in the liter-
ature such as the ones in Ruan et al. (2021) would fail
to guarantee optimal communication cost Õ(dN) and re-
quire more communication by a factor of d 1. Using ma-
trix concentration inequalities, we address this issue by
replacing matrix λI +

∑Tm−1+Tm/2
t=Tm−1+1

∑N
i=1 x

i
tx

i
t
⊤, which

would have been used if Algorithm 5 in Ruan et al. (2021)
had been directly extended to a multi-agent one, with
λI + (NTm/2)EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤]. This allows

agent i to communicate only d values (ui
m) while achieving

Õ(
√
dNT ) regret as will be shown in Theorem 4.1. As

the final step of batch m, agent i implements ExpPol with
inputs 2λ

NTm
,Si

m, where

Si
m = {X i(m+1)

t }Tm

t=Tm−1+Tm/2+1. (5)

ExpPol, which is presented in Algorithm 4 in Appendix
D and is inspired by Algorithm 3 in Ruan et al. (2021),
computes policy πi

m that will be used to select actions from
the sets of surviving actions in the next batch. This choice of
policy coupled with the definition of Λi

m in (3) guarantees
that at all rounds t ∈ [T1 + 1 : T ], the length of the longest
confidence interval in the surviving sets, which is an upper
bound on the instantaneous regret of agent i at round t, can
be bounded by O(

√
d/NT ). This allows us to achieve the

optimal O(
√
dNT ) regret, while other exploration policies,

such as the G-optimal design results in a O(d
√
NT ) regret.

1d2 + d values per agent, i.e., ui
m and

∑Tm−1+Tm/2

t=Tm−1+1 xi
tx

i
t
⊤.
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4.2. Theoretical Results for DisBE-LUCB
We present our theoretical results for DisBE-LUCB, show-
ing that it is nearly minimax optimal in terms of both regret
and communication cost. The proof is given in Appendix B.

Theorem 4.1. Fix M = 1 + log(log(NT/d)/2 + 1)
in Algorithm 1. Suppose Assumption 1 holds. If
T ≥ Ω(d22 log2(NT/δ) log2 d log2(dλ−1)), then with
probability at least 1 − 2δ, it holds that RT ≤

O
(√

dNT log d log2(KNT/δλ) log log
(
NT/d

))
, and

Communication Cost ≤ O(dN log log(NT/d)), where the
communication cost is measured by the number of real num-
bers communicated by the agents.

We remark that simple tricks may significantly reduce the
exponent constant in constraint T ≥ dO(1). For example,
first running a simpler version of DisBE-LUCB, in which
the exploration policy is the G-optimal design πG(X i(m)

t ),
for
√

T/dN rounds and then switching to DisBE-LUCB
would reduce the exponent to 10.

Remark 4.2. For the sake of Algorithm 1’s presentation,
we find it instructive to consider the communication cost as
the number of real numbers communicated in the network.
However, it is more realistic if we translate it into the total
number of communicated bits. It would also allow us to
make a fair comparison with the lower bound in Theorem
3.1 as it is stated in terms of number of communicated
bits. Therefore, if we slightly modify Algorithm 1 such
that instead of communicating vectors ui

m in Line 8, agent
i first rounds each entry of ui

m with precision ϵ0 and then
sends the rounded vector to the server, then O(log(1/ϵ0))
number of bits is sufficient to communicate each entry of the
rounded vectors ui

m. Our analysis in Appendix B.3 shows
that compared to bounds in Theorem 4.1, by selecting ϵ0 =
O(1/(N

√
dT )), the communication cost of this slightly

modified version of DisBE-LUCB, which is measured in
bits, is O

(
dN log log

(
NT/d

)
log(dNT )

)
and its regret

is same as DisBE-LUCB’s.

Remark 4.3. As mentioned in Section 4.1, a direct use of
confidence intervals in Ruan et al. (2021) would fail to
guarantee optimal communication cost Õ(dN) and require
more communication by a factor of d. Thus, we use new
confidence intervals (see Lemma 4.4) so that DisBE-LUCB
would enjoy an optimal communication rate. The assump-
tion on the knowledge of D is required in the computa-
tion of Λi

m in (3) used in these new confidence intervals.
However, in practice, distribution D is not fully known
and can only be estimated; therefore, Λi

m cannot be com-
puted without any error. We relax this assumption and
consider more realistic settings where each agent i can
estimate matrix Λi

m in batch m up to an ϵm error, i.e.,
(1 − ϵm)Λi

m ⪯ Λ̃i
m ⪯ (1 + ϵm)Λi

m, where Λ̃i
m is an es-

timation of Λi
m and ϵm ∈ (0, 1)2. In Appendix B.4, we

show that for sufficiently small values of ϵm ≤ 1/
√
NTm,

a multiplicative factor (1 − maxm∈[M ] ϵm)−1 appears in
the regret bound while the communication cost remains
unchanged.

4.3. Proof Sketch of Theorem 4.1
We first introduce the following lemma that constructs con-
fidence intervals for the expected rewards.

Lemma 4.4 (Confidence intervals for DisBE-LUCB). Sup-
pose Assumption 1 holds. For δ ∈ (0, 1), let β =
6
√
log(2KNT/δ)+

√
λ. Then for all x ∈ X i

t , i ∈ [N ], t ∈
[T ],m ∈ [M ], with probability at least 1− δ, it holds that∣∣∣⟨x,θi

m − θ⟩
∣∣∣ ≤ β∥x∥(Λi

m)−1 .

We prove this lemma by first employing appropriate matrix
concentration inequalities to lower bound Λi

m by matrix
1
2

∑Tm−1+Tm/2
t=Tm−1+1

∑N
i=1 x

i
tx

i
t
⊤. Carefully replacing Λi

m with
its lower bound and using Azuma’s inequality, we establish
confidence intervals stated in the lemma. This lemma is
key in ensuring an optimal communication rate Õ(dN), as
a direct use of confidence intervals in Ruan et al. (2021)
fails to guarantee optimal communication cost and requires
Õ(d2N) communication. See Appendix B.1 for proof.
Thanks to our choice of T1 and T2, and the fact that expected
value of the rewards are bounded in [−1, 1], the regret of first
two batches is bounded by O(

√
dNT ). For each batch m ≥

3, the confidence intervals imply that for all t ∈ [Tm−1 +1 :

Tm], xi
t,∗ ∈ X i(m)

t with high probability, and allow us to
bound the instantaneous regret rit = E[⟨θ,xi

∗,t⟩ − ⟨θ,xi
t⟩]

by 4βEX∼Di
m−1

[maxx∈X

√
x⊤(Λi

m−1)
−1x]. Note that

learning of θi
m and πi

m are done through disjoint sets of
samples, i.e., A = [Tm−1 + 1 : Tm−1 + Tm/2] and
B = [Tm−1 + Tm/2 + 1 : Tm], respectively. This
is because Di

m depends on θi
m, which is learned from

A, and we have to make B disjoint from A so as to
ensure that elements in Si

m are independently sampled
from Di

m. Therefore, Theorem 5 in Ruan et al. (2021)

guarantees that EX∼Di
m−1

[maxx∈X

√
x⊤(Λi

m−1)
−1x] ≤

Õ(
√
d/(NTm−1)). Finally, these combined with our

choice of grid T = {T0, T1, . . . , TM} and M = 1 +
log(log(NT/d)/2+1) lead us to a regret bound Õ(

√
dNT ).

Moreover, communications happen only at the end of
each batch, whose number is M , and agents only share
d-dimensional vectors ui

m. Therefore, communication cost
is dNM = O(dN log log(NT/d)).

2This is a weaker condition compared to the component-wise
condition (1− ϵm)Λi

m ≤ Λ̃i
m ≤ (1 + ϵm)Λi

m.
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Figure 1. The shaded regions show standard deviation around the mean. Standard deviation for communication cost of DisBE-LUCB is
zero, because communication cost = dNM and parameters determining M are known upfront (see Theorem 4.1).

4.4. Fully Decentralized Batch Elimination LUCB
In a scenario where there is no server and the agents are
allowed to communicate only with their immediate neigh-
bors, they can be represented by nodes of a graph. Applying
a carefully designed consensus procedure that guarantees
sufficient information mixing among the entire network, in
Appendix C, we propose a fully decentralized version of
DisBE-LUCB, called DecBE-LUCB. Communication cost
of DecBE-LUCB is greater than DisBE-LUCB’s by an extra
multiplication factor S = log(dN)δmax/

√
1/|λ2|, where

δmax is the maximum degree of the network’s graph and|λ2|
is the second largest eigenvalue of the communication ma-
trix in absolute value characterizing the graph’s connectivity
level. This is because at the last S rounds of each batch
m, agents communicate each entry of their estimations of
vector

∑N
j=1 u

j
m with their neighbors, whose number is at

most δmax, to ensure enough information mixing. More-
over, this results in DecBE-LUCB having no control over
the regret of the mixing rounds, and therefore an additional
term log(dN)NM/

√
1/|λ2|, which we call the delay effect,

in the regret bound. Note that the more connected the graph
is, the smaller |λ2| is. This aligns with the fact that the
more connected the graph is, the less number of mixing
rounds S is required. For example, fixing N = 20, for
chain, ring, star, random Erdős–Renyi graph with parameter
p = 0.5, and complete graphs, the values of |λ2| are 0.9918,
0.9674, 0.97, 0.67 (average over 100 instances), and 0, re-
spectively. As expected, for less connected graphs (Chain,
Ring, Star), |λ2| is close to 1 and for the fully connected
graph |λ2|= 0 and for a random graph |λ2| is not too small
nor too large. The theoretical guarantees of DecBE-LUCB
are summarized in table 1 and a detailed discussion is given
in Appendix C.

5. Experiments
In this section, we present numerical simulations to con-
firm our theoretical findings. We evaluate the performance
of DisBE-LUCB on synthetic data and compare it to that

of DisLinUCB proposed by Wang et al. (2019) that study
the most similar setting to ours. The results shown in Fig-
ure 1 depict averages over 20 realizations, for which we
have chosen K = 20, δ = 0.01 and T = 100000. For
each realization, the parameter θ is drawn from N (0, Id)
and then normalized to unit norm and noise variables are
zero-mean Gaussian random variables with variance 0.01.
The decision set distribution D is chosen to be uniform
over {X̃1, X̃2, . . . , X̃100}, where each X̃i is a set of K
vectors drawn from N (0, Id) and then normalized to unit
norm. While implementing DisBE-LUCB, in order to com-
pute EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤] for agent i at batch m, we

followed these steps: 1) for each j ∈ [100], we built
X̃ i(m)

j = ∩m−1
k=0 E(X̃j ; (Λ

i
k,θ

i
k, β)); 2) we took average

over all 100 matrices 1
100

∑
j∈[100] Ex∼πi

m−1(X̃
i(m)
j )

[xx⊤]

as D is a uniform distribution over {X̃1, X̃2, . . . , X̃100}. In
Figure 1a, fixing d = 4, we compare the per-agent re-
gret Rt/N of DisBE-LUCB and DisLinUCB for t ∈ [T ]
and for different values of N = 2 and N = 10, where
Rt =

∑t
s=1

∑N
i=1⟨θ,xi

∗,s⟩− ⟨θ,xi
s⟩ . Figure 1b compares

the communication cost of DisBE-LUCB and DisLinUCB
over T rounds when both algorithms are implemented for
fixed d = 4, and N varying from 2 to 20. Finally, Figure
1c compares the communication cost of DisBE-LUCB and
DisLinUCB over T rounds when both algorithms are imple-
mented for fixed N = 10, and d varying from 2 to 20. From
these three comparisons, we conclude that DisBE-LUCB
achieves a regret comparable with DisLinUCB, at a signifi-
cantly smaller communication rate. The curves in Figures
1b and 1c verify the linear dependency of DisBE-LUCB’s
communication cost on N and d while communication cost
of DisLinUCB grows super-linearly with N and d (see Ta-
ble 1 for theoretical comparisons). Moreover, Figure 1a
emphasizes the value of collaboration in speeding up the
learning process. As the number of agents increases, each
agent learns the environment faster as an individual.
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6. Conclusion
We proved an information-theoretic lower bound on the
communication cost of any algorithm achieving an opti-
mal regret rate for the distributed contextual linear bandit
problem with stochastic contexts. We then proposed DisBE-
LUCB with optimal regret Õ(

√
dNT ) and communication

cost Õ(dN) which (nearly) matches our lower bound and
improves upon the previous best-known algorithms whose
communication cost scale super linearly either in d or N .
Finally, we proposed DecBE-LUCB, a fully decentralized
variant of DisBE-LUCB, without a central server where the
agents can only communicate with their immediate neigh-
bors given by a communication graph. We showed that the
structure of the network affects the regret performance via
a small additive term that depends on the spectral gap of
the underlying graph, while the communication cost still
grows linearly with d and N . As shown in Table 1, the
best communication cost achieved for settings with adver-
sarially varying contexts over time horizon and agents is
O(d3N1.5). There is no formal theory proving such bounds
are optimal for the adversarial context case. While our work
provides optimal theoretical guarantees for stochastically
varying contexts, it is not clear how to generalize these opti-
mal results to settings with adversarially varying contexts.
Therefore, an important future direction is to design optimal
algorithms and prove communication cost lower bounds for
scenarios with adversarial contexts.
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A. Proof of Lemma 3.2
Let µ ∼ Unif(µ1,µ2), where µ1 = [∆, 0]⊤,µ2 = [−∆, 0]⊤, z = {zt}Tt=1 be the set of arm 1’s reward, H = {at, yt}Tt=1

be the history over the course of T rounds, where at is the arm pulled and yt is the observed reward at round t, a∗ =
argmaxa∈{1,2} µa, and â ∼ Unif({a1, a2, . . . , aT }). We have

BRT (π) = E[RT (π,µ)] = E[
T∑

t=1

1(â ̸= a∗)∆]

= ∆TP(â ̸= a∗). (⋆)

Now, we lower bound P(â ̸= a∗) as follows

P(â ̸= a∗) =
∑

a∈{1,2}

P(a∗ = a)P(â ̸= a|a∗ = a)

=
∑

a∈{1,2}

P(a∗ = a)
[
P(â ̸= a) + P(â = a)− P(â = a|a∗ = a)

]
≥

∑
a∈{1,2}

P(a∗ = a)

[
P(â ̸= a)−

√
1

2
DKL(Pâ|a∗=a,Pâ)

]
(Pinsker’s inequality)

=
1

2
−

∑
a∈{1,2}

P(a∗ = a)

√
1

2
DKL(Pâ|a∗=a,Pâ)

≥ 1

2
−

√√√√1

2

∑
a∈{1,2}

P(a∗ = a)DKL(Pâ|a∗=a,Pâ) (Jensen’s inequality)

=
1

2
−
√

1

2
I(â; a∗)

≥ 1

2
−
√

1

2
I(M,H; a∗) (Data processing)

≥ 1

2
−
√

1

2

(
I(M ; a∗) + I(H; a∗)

)
≥ 1

2
−

√
1

2

(
1

16
+ I(H; a∗)

)
. (⋆⋆)

In our next step towards lower bounding P(â ̸= a∗), we upper bound I(H; a∗), as follows

I(H; a∗) ≤ I(z; a∗) (Data processing)

=
∑

a∈{1,2}

1

2
DKL(P(z|a∗ = a),P(z))

≤
∑

b∈{1,2}

∑
a∈{1,2}

1

2
DKL

(
P(z|a∗ = a),P(z|a∗ = b)

)
=

1

2
DKL

(
P(z|a∗ = 1),P(z|a∗ = 2)

)
+

1

2
DKL

(
P(z|a∗ = 2),P(z|a∗ = 1)

)
=

1

2

[
T (2∆)2 + T (2∆)2

]
= 4T∆2. (⋆⋆⋆)

Combining ⋆, ⋆⋆, and ⋆⋆⋆, we have

BRT (π) ≥ ∆T

1

2
−

√
1

2

(
1

16
+ 4T∆2

) ,

11
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which concludes the lemma.

B. Proof of Theorem 4.1
In this section, we give a complete outline of the proof of Theorem 4.1 which starts with the proof of Lemma 4.4.

B.1. Proof of Lemma 4.4
For each batch m ∈ [M ], let bm =

∑Tm−1+Tm/2
t=Tm−1+1

∑N
i=1 x

i
ty

i
t and Vm =

∑Tm−1+Tm/2
t=Tm−1+1

∑N
i=1 x

i
tx

i
t
⊤. We have

Λi
m = λI +

NTm

2
EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤]

= λI +
NTm

4

(
2EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤] + 6γI

)
− 1.5NTmγI. (6)

By choosing γ =
3 log( 4dT

δ )

NTm
and λ = 5 log

(
4dT
δ

)
, combining (6) and Lemma E.3, for all m ∈ [M ], with probability at least

1− δ/2, we have

Λi
m ⪰

(
λ− 5 log

(
4dT

δ

))
I +

1

2

Tm−1+Tm/2∑
t=Tm−1+1

N∑
i=1

xi
tx

i
t

⊤

=
1

2
Vm. (7)

Moreover, for a fixed x ∈ X i
t and (i, t) ∈ [N ]× [T ], let zj,it,m = x⊤ (Λi

m

)−1
(
xj
ty

j
t − EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤]θ
)

. Thus,
we have ∣∣∣∣〈x,θi

m − θ
〉∣∣∣∣ =

∣∣∣∣∣
〈
x,
(
Λi
m

)−1

bm − θ

〉∣∣∣∣∣
=

∣∣∣∣∣
〈
x,
(
Λi
m

)−1

bm

〉
−
〈
x,
(
Λi
m

)−1

Λi
mθ

〉∣∣∣∣∣
≤

∣∣∣∣∣
〈
x,
(
Λi
m

)−1

bm

〉
−
〈
x,
(
Λi
m

)−1 (
Λi
m − λI

)
θ

〉∣∣∣∣∣+
∣∣∣∣λ⟨x,(Λi

m

)−1

θ⟩
∣∣∣∣

≤

∣∣∣∣∣x⊤
(
Λi
m

)−1
(
bm − NTm

2
EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤]θ

)∣∣∣∣∣+√
λ∥x∥(Λi

m)
−1

(Cauchy Schwarz inequality and Assumption 1)

=

∣∣∣∣∣∣
Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

zj,it,m

∣∣∣∣∣∣+√
λ∥x∥(Λi

m)
−1 .

Note that

E
[
zj,it,m

]
= E

[
x⊤
(
Λi
m

)−1
(
xj
t (x

j
t

⊤
θ + ηjt )− EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤]θ

)]
= 0,

(Noise ηjt is zero-mean and independent of xj
t )

By Azuma’s inequality, for a fixed x ∈ X i
t and (i, t) ∈ [N ]× [T ], we have

P


∣∣∣∣∣∣
Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

zj,it,m

∣∣∣∣∣∣ ≥ α∥x∥(Λi
m)

−1

 ≤ 2exp

−α2∥x∥2(Λi
m)

−1

2cim

 , (8)

12
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where

cim =

Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

∣∣∣∣x⊤
(
Λi
m

)−1 (
xj
ty

j
t − EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤]θ
)∣∣∣∣2

≤ 2

Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

∣∣∣∣x⊤
(
Λi
m

)−1

xj
ty

j
t

∣∣∣∣2 +NTm

∣∣∣∣x⊤
(
Λi
m

)−1

EX∼Di
m
Ex∼πi

m−1(X )[xx
⊤]θ

∣∣∣∣2

≤ 2

Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

∣∣∣∣x⊤
(
Λi
m

)−1

xj
t

∣∣∣∣2 + 4

NTm

∣∣∣∣x⊤
(
Λi
m

)−1 (
Λi
m − λI

)
θ

∣∣∣∣2 (Assumption 1)

= 2

Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

x⊤
(
Λi
m

)−1

xj
tx

j
t

⊤ (
Λi
m

)−1

x+
4

NTm

∣∣∣∣x⊤θ − λx⊤
(
Λi
m

)−1

θ

∣∣∣∣2

≤ 2x⊤
(
Λi
m

)−1

Vm

(
Λi
m

)−1

x+

4∥θ∥2Λi
m

NTm
+

4λ

NTm

∥x∥2(Λi
m)

−1

(Cauchy Schwarz inequality and Assumption 1)

≤ 4x⊤
(
Λi
m

)−1

Λi
m

(
Λi
m

)−1

x+

4∥θ∥2Λi
m

NTm
+

4λ

NTm

∥x∥2(Λi
m)

−1 (Conditioned on the event in Eqn. (7))

≤
(
6 +

8λ

NTm

)
∥x∥2(Λi

m)
−1 , (9)

where the last inequity follows from the fact that

∥θ∥2Λi
m
≤∥θ∥22 λmax

(
Λi
m

)
≤ λ+

NTm

2
. (Assumption 1)

Combining (8) and (9), and by a union bound, we have

P

∣∣∣∣〈x,θi
m − θ

〉∣∣∣∣ ≤
6

√
log

(
2KNT

δ

)
+
√
λ

∥x∥(Λi
m)

−1 , ∀x ∈ X i
t , i ∈ [N ], t ∈ [T ],m ∈ [M ]

 ≥ 1− δ. (10)

B.2. Completing the proof of Theorem 4.1
Next, we state the following lemma, which we borrow from Theorem 5 in Ruan et al. (2021) and is used in the proof analysis
of Theorem 4.1.

Lemma B.1 (Ruan et al. (2021)). Let X1,X2, . . . ,XL ∼ D be i.i.d drawn from a distribution D and input of Algorithm 4
and let π be the output policy of Algorithm 4. For any λ ∈ (0, 1), we have

P
[
Vλ

D(π) ≤ O
(√

d log d log(λ−1)
)]

≥ 1− exp
(
O(d3 log d log(dλ−1))− Ld−2c2−16

)
,

where we define the λ-deviation of policy π over D by

Vλ
D(π) := EX∼D

[
max
x∈X

√
x⊤
(
λI + EX∼DEy∼π(X )[yy⊤]

)−1

x

]
. (11)

Corollary B.2. As a direct corollary of Lemma B.1, if T ≥ Ω
(
d22 log2(NT

δ ) log2 d log2(dNTλ−1)
)

, then for all m ≥ 2

and i ∈ [N ], with probability at least 1− δ, it holds that

V
( 2λ
NTm

)

Di
m

(πi
m−1) ≤ O(

√
d log d log(NTλ−1)). (12)

13
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Now, we focus on the regret of the i-th agent at m-th batch for any m ≥ 3. Let Di
m be the distribution based on which

the surviving sets X i(m)
t for all t ∈ [Tm−1 + 1 : Tm] are generated when conditioned on the first m− 1 batches. For any

t ∈ [Tm−1 + 1 : Tm], conditioned on the event that the confidence intervals in Lemma 4.4 hold, we have

rit = E
[
⟨θ,xi

∗,t⟩ − ⟨θ,xi
t⟩
]

≤ E

[
⟨θi

m−1,x
i
∗,t⟩ − ⟨θi

m−1,x
i
t⟩+ β

∥∥∥xi
∗,t

∥∥∥
(Λi

m−1)
−1

+ β
∥∥∥xi

t

∥∥∥
(Λi

m−1)
−1

]
(Lemma 4.4)

≤ 2βE

[∥∥∥xi
∗,t

∥∥∥
(Λi

m−1)
−1

+
∥∥∥xi

t

∥∥∥
(Λi

m−1)
−1

]
(xi

∗,t ∈ X i(m)
t )

≤ 4βE

[
max

x∈X i(m)
t

∥x∥(Λi
m−1)

−1

]

≤ 4βEX∼Di
m

[
max
x∈X

∥x∥(Λi
m−1)

−1

]
≤ 4βEX∼Di

m−1

[
max
x∈X

∥x∥(Λi
m−1)

−1

]

≤ 8β√
NTm−1

EX∼Di
m−1

max
x∈X

√
x⊤
(

2λ

NTm−1
I + EX∼Di

m−1
Ey∼πi

m−2(X )[yy
⊤]

)−1

x


=

8β√
NTm−1

V
( 2λ
NTm−1

)

Di
m−1

(πi
m−2), (13)

where the third inequality follows from our established confidence intervals in Lemma 4.4 guaranteeing that xi
∗,t ∈ X i(m)

t

for all (i, t,m) ∈ [N ]× [Tm−1 + 1 : Tm]× [M ] with probability at least 1− δ. Now, continuing form (13), we bound the
cumulative regret of batches m ≥ 3, as follows:

T∑
t=T2+1

N∑
i=1

rit ≤
M∑

m=3

8βNTm√
NTm−1

V
( 2λ
NTm−1

)

Di
m−1

(πi
m−2)

≤ 8β
√
dN log d log(NTλ−1)

M∑
m=2

Tm√
Tm−1

(Conditioned on the event in Eqn. (12))

= 8βMa
√

dN log d log(NTλ−1). (14)

Next, we bound cumulative regret of the first two batches. Under Assumption 1, during the first two batches, the instantaneous
regret of each agent i at any round t is at most 2. Therefore

T2∑
t=1

N∑
i=1

rit ≤ 2NT2 = 4a
√
dN. (15)

Note that for any m ≥ 3, we can write Tm as

Tm = aT
1
2
m−1 = a

3
2T

1
4
m−2 = . . . = a

2m−2−1

2m−3 T
1

2m−2

2

Tm = a
1

2m−2 a
2m−2−1

2m−3

(
T2

a

) 1

2m−2

= a
2m−1−1

2m−2

(√
d

N

) 1

2m−2

=

(
a2

m−1−1d
1
2

N
1
2

) 1

2m−2

.

14
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Our choice of a in the algorithm ensures that for any M > 0, TM = T and
∑M

m=1 Tm ≥ TM = T , and thus the choice of

grid {T1, . . . , TM} is valid. If we let M = 1 + log

(
log(NT

d )
2 + 1

)
, from (14) and (15), we conclude that, with probability

at least 1− 2δ, it holds that

RT ≤ 4
√
dNT

(
NT

d

) 1

2(2M−1−1)

+ 8βM
√
dNT log d log(NTλ−1)

(
NT

d

) 1

2(2M−1−1)

≤ O

√dNT log d log2
(
KNT

δλ

)
log log

(
NT

d

) . (16)

B.3. Communication cost as number of bits transmitted
In this section, we consider the number of bits transmitted in a slightly modified version of DisBE-LUCB. To this end,
we make the following minor modification to DisBE-LUCB. Let ϵ0 be an additional input to the algorithm. In Line 9 of
DisBE-LUCB, agent i sends vector ũi

m which is an ϵ0-precise rounded version of ui
m. In particular, if it rounds each entry

of ui
m with precision ϵ0, vector ũi

m will be obtained. Now, we observe how this extra rounding step affects confidence

intervals in Lemma 4.4. In fact, we are interested in upper bounds on
∣∣∣∣〈x, θ̃i

m − θ
〉∣∣∣∣, where θ̃

i

m =
(
Λi
m

)−1∑N
i=1 ũ

i
m.

For δ ∈ (0, 1), let β = 6

√
log
(

2KNT
δ

)
+

√
λ. Then for all x ∈ X i

t , i ∈ [N ], t ∈ [T ],m ∈ [M ], with probability at least

1− δ, it holds that∣∣∣∣〈x, θ̃i

m − θ
〉∣∣∣∣ = ∣∣∣∣〈x, θ̃i

m − θi
m + θi

m − θ
〉∣∣∣∣

≤
∣∣∣∣〈x, θ̃i

m − θi
m

〉∣∣∣∣+∣∣∣∣〈x,θi
m − θ

〉∣∣∣∣
≤
(∥∥∥θ̃i

m − θi
m

∥∥∥
Λi

m

+ β

)
∥x∥(Λi

m)
−1 (Lemma 4.4 and Cauchy Schwarz inequality)

≤
(√

λmax(Λi
m)
∥∥∥θ̃i

m − θi
m

∥∥∥
2
+ β

)
∥x∥(Λi

m)
−1

≤
(
N
√
dTϵ0 + β

)
∥x∥(Λi

m)
−1 . (17)

Therefore, letting ϵ0 = β

N
√
dT

, we have ∣∣∣∣〈x, θ̃i

m − θ
〉∣∣∣∣ ≤ 2β∥x∥(Λi

m)
−1 , (18)

which implies that replacing β in DisBE-LUCB with 2β, will result in the same order of regret as that of DisBE-LUCB for our
modified algorithm. Moreover, since for transmission of each real number log(dNT ) bits is used, the communication cost
of our modified algorithm in terms of number of bits is same as that stated in Theorem 4.1 with an additional multiplicative
factor log(dNT ).

B.4. Relaxing the Assumption on Knowledge of D
In this section, we relax this assumption and consider more realistic settings where each agent i can estimate matrix Λi

m in
batch m up to an ϵm error, i.e.,

(1− ϵm)Λi
m ⪯ Λ̃i

m ⪯ (1 + ϵm)Λi
m, (19)

where Λ̃i
m is an estimation of Λi

m. Given this estimation, we define

θ̃
i

m =
(
Λ̃i
m

)−1 N∑
j=1

uj
m, (20)

15
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as the new estimation of θ computed by agent i at batch m in this modified version of DisBE-LUCB.
We note that if the inequalities hold component-wise, i.e., (1 − ϵm)Λi

m ≤ Λ̃i
m ≤ (1 + ϵm)Λi

m, this concludes that (19)
holds. This is because for any positive semi-definite matrices A, B, and C such that A = B+C, we have:

A ⪰ B, A ⪰ C. (21)

This combined with the fact that all (1−ϵm)Λi
m, Λ̃i

m, and (1+ϵm)Λi
m are positive semi-definite symmetric matrices ensures

that (19) holds if (1− ϵm)Λi
m ≤ Λ̃i

m ≤ (1 + ϵm)Λi
m, and therefore, (19) is a weaker assumption than the component-wise

assumption (1− ϵm)Λi
m ≤ Λ̃i

m ≤ (1 + ϵm)Λi
m.

Now, we define corresponding modified confidence intervals in the following lemma.

Lemma B.3. Suppose ∥θ∥2 ≤ 1,
∥∥∥xi

t,a

∥∥∥
2
≤ 1,

∣∣yit∣∣ ≤ 1 for all (a, i, t) ∈ [K] × [N ] × [T ] and ϵm ≤
√

λ
NTm

for all

m ∈ [M ]. For δ ∈ (0, 1), let βm = 6

√
log( 2KNT

δ )
1−ϵm

+ 4
√
λ. Then for all x ∈ X i

t , i ∈ [N ], t ∈ [T ],m ∈ [M ], with

probability at least 1− δ, it holds that
∣∣∣∣〈x, θ̃i

m − θ
〉∣∣∣∣ ≤ βm∥x∥(Λ̃i

m)
−1 .

Proof. The proof closely follows the steps in the proof of Lemma 4.4. For each batch m ∈ [M ], let bm =∑Tm−1+Tm/2
t=Tm−1+1

∑N
i=1 x

i
ty

i
t and Vm =

∑Tm−1+Tm/2
t=Tm−1+1

∑N
i=1 x

i
tx

i
t
⊤. For a fixed x ∈ X i

t and (i, t) ∈ [N ] × [T ], let

zj,it,m = x⊤
(
Λ̃i
m

)−1 (
xj
ty

j
t − EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤]θ
)

. Thus, we have

∣∣∣∣〈x, θ̃i

m − θ
〉∣∣∣∣ =

∣∣∣∣∣
〈
x,
(
Λ̃i
m

)−1

bm − θ

〉∣∣∣∣∣
=

∣∣∣∣∣
〈
x,
(
Λ̃i
m

)−1

bm

〉
−
〈
x,
(
Λ̃i
m

)−1

Λ̃i
mθ

〉∣∣∣∣∣
=

∣∣∣∣∣
〈
x,
(
Λ̃i
m

)−1

bm

〉
−
〈
x,
(
Λ̃i
m

)−1 (
Λi
m − λI

)
θ

〉
+

〈
x,
(
Λ̃i
m

)−1 (
Λi
m − Λ̃i

m − λI
)
θ

〉∣∣∣∣∣
≤

∣∣∣∣∣
〈
x,
(
Λ̃i
m

)−1

bm

〉
−
〈
x,
(
Λ̃i
m

)−1 (
Λi
m − λI

)
θ

〉∣∣∣∣∣+
∣∣∣∣∣
〈
x,
(
Λ̃i
m

)−1 (
Λi
m − Λ̃i

m − λI
)
θ

〉∣∣∣∣∣
≤

∣∣∣∣∣x⊤
(
Λ̃i
m

)−1
(
bm − NTm

2
EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤]θ

)∣∣∣∣∣+ 4
√
λ∥x∥(Λ̃i

m)
−1

(Cauchy Schwarz inequality)

=

∣∣∣∣∣∣
Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

zj,it,m

∣∣∣∣∣∣+ 4
√
λ∥x∥(Λ̃i

m)
−1 , (22)
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where the second inequality follows from

∥θ∥(Λ̃i
m)

−1
(Λi

m−Λ̃i
m−λI)

2 =

√
θ⊤
(
Λ̃i
m

)−1 (
Λi
m − Λ̃i

m − λI
)2

θ

≤∥θ∥2

√
λmax

((
Λ̃i
m

)−1 (
Λi
m − Λ̃i

m − λI
)2)

≤

√
λmax

((
Λ̃i
m

)−1 (
Λi
m − Λ̃i

m

)2
+ λ2

(
Λ̃i
m

)−1
)

(∥θ∥2 ≤ 1)

≤

√
λmax

((
Λ̃i
m

)−1 (
Λi
m − Λ̃i

m

)2
+ λ2

(
Λ̃i
m

)−1
)

≤

√
λmax

((
Λ̃i
m

)−1 (
Λi
m − Λ̃i

m

)2)
+
√
λ (Cauchy Schwarz inequality)

≤ ϵm

√
λmax

(
Λ̃i
m

)
+
√
λ (Eqn. (19))

≤ 2ϵm

√
λmax

(
Λi
m

)
+
√
λ (Eqn. (19))

≤ ϵm
√

NTm + 3
√
λ

≤ 4
√
λ. (ϵm ≤

√
λ

NTm
)

Note that

E
[
zj,it,m

]
= E

[
x⊤
(
Λ̃i
m

)−1
(
xj
t (x

j
t

⊤
θ + ηjt )− EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤]θ

)]
= 0,

(Noise ηjt is zero-mean and independent of xj
t )

By Azuma’s inequality, for a fixed x ∈ X i
t and (i, t) ∈ [N ]× [T ], we have

P


∣∣∣∣∣∣
Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

zj,it,m

∣∣∣∣∣∣ ≥ α∥x∥(Λ̃i
m)

−1

 ≤ 2exp

−α2∥x∥2(Λ̃i
m)

−1

2cim

 , (23)
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where

cim =

Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

∣∣∣∣x⊤
(
Λ̃i
m

)−1 (
xj
ty

j
t − EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤]θ
)∣∣∣∣2

≤ 2

Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

∣∣∣∣x⊤
(
Λ̃i
m

)−1

xj
ty

j
t

∣∣∣∣2 +NTm

∣∣∣∣x⊤
(
Λ̃i
m

)−1

EX∼Di
m
Ex∼πi

m−1(X )[xx
⊤]θ

∣∣∣∣2

≤ 2

Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

∣∣∣∣x⊤
(
Λ̃i
m

)−1

xj
t

∣∣∣∣2 + 4

NTm

∣∣∣∣x⊤
(
Λ̃i
m

)−1 (
Λi
m − λI

)
θ

∣∣∣∣2

= 2

Tm−1+Tm/2∑
t=Tm−1+1

N∑
j=1

x⊤
(
Λ̃i
m

)−1

xj
tx

j
t

⊤ (
Λ̃i
m

)−1

x+
4

NTm

∣∣∣∣x⊤
(
Λ̃i
m

)−1 (
Λi
m

)
θ − λx⊤

(
Λ̃i
m

)−1

θ

∣∣∣∣2
≤ 2x⊤

(
Λ̃i
m

)−1

Vm

(
Λ̃i
m

)−1

x+
1

1− ϵm

(
4 +

8λ

NTm

)
∥x∥2(Λ̃i

m)
−1 (Cauchy Schwarz inequality)

≤ 4x⊤
(
Λ̃i
m

)−1

Λi
m

(
Λ̃i
m

)−1

x+
1

1− ϵm

(
4 +

8λ

NTm

)
∥x∥2(Λ̃i

m)
−1 (Conditioned on the event in Eqn. (7))

≤ 4

1− ϵm
x⊤
(
Λ̃i
m

)−1

x+
1

1− ϵm

(
4 +

8λ

NTm

)
∥x∥2(Λ̃i

m)
−1 ((1− ϵm)Λi

m ⪯ Λ̃i
m)

=
8

1− ϵm

(
1 +

λ

NTm

)
∥x∥2(Λ̃i

m)
−1

≤ 16

1− ϵm
∥x∥2(Λ̃i

m)
−1 , (24)

where the third inequity follows from the fact that

θ⊤
(
Λi
m

(
Λ̃i
m

)−1

Λi
m

)
θ ≤∥θ∥2 λmax

(
Λi
m

(
Λ̃i
m

)−1

Λi
m

)
≤ λmax

(
Λi
m

(
Λ̃i
m

)−1

Λi
m

)
(∥θ∥2 ≤ 1)

≤ 1

1− ϵm
λmax

(
Λi
m

)
((1− ϵm)Λi

m ⪯ Λ̃i
m)

≤ λ+NTm

1− ϵm
.

Combining (22), (23) and (24), and by a union bound, we have

P


∣∣∣∣〈x,θi

m − θ
〉∣∣∣∣ ≤

6

√√√√ log
(

2KNT
δ

)
1− ϵm

+ 4
√
λ

∥x∥(Λ̃i
m)

−1 , ∀x ∈ X i
t , i ∈ [N ], t ∈ [T ],m ∈ [M ]

 ≥ 1− δ. (25)

Now, we state the regret bound for DisBE-LUCB with Λ̃i
m and θ̃

i

m.

Theorem B.4. Fix M = 1 + log
(
log
(
NT/d

)
/2 + 1

)
. Under the setting of Lemma B.3, if T ≥

Ω
(
d22 log2(NT/δ) log2 d log2(dλ−1)

)
and β = maxm∈[M ] βm, then with probability at least 1 − 2δ, it holds that

RT ≤ O

(
1

1−maxm∈[M] ϵm

√
dNT log d log2

(
KNT
δλ

)
log log

(
NT
d

))
, where the communication cost is measured by the

number of real numbers communicated by the agents.
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Proof. The proof follows similar steps to those in the proof of Theorem 4.1.
We focus on the regret of the i-th agent at m-th batch for any m ≥ 3. Let Di

m be the distribution based on which the
surviving sets X i(m)

t for all t ∈ [Tm−1 + 1 : Tm] are generated when conditioned on the first m − 1 batches. For any
t ∈ [Tm−1 + 1 : Tm], conditioned on the event that the confidence intervals in Lemma 4.4 hold, we have

rit = E
[
⟨θ,xi

∗,t⟩ − ⟨θ,xi
t⟩
]

≤ E

[
⟨θ̃

i

m−1,x
i
∗,t⟩ − ⟨θ̃

i

m−1,x
i
t⟩+ β

∥∥∥xi
∗,t

∥∥∥
(Λ̃i

m−1)
−1

+ β
∥∥∥xi

t

∥∥∥
(Λ̃i

m−1)
−1

]
(Lemma B.3)

≤ 2βE

[∥∥∥xi
∗,t

∥∥∥
(Λ̃i

m−1)
−1

+
∥∥∥xi

t

∥∥∥
(Λ̃i

m−1)
−1

]
(xi

∗,t ∈ X i(m)
t )

≤ 4βE

[
max

x∈X i(m)
t

∥x∥(Λ̃i
m−1)

−1

]

≤ 4βEX∼Di
m

[
max
x∈X

∥x∥(Λ̃i
m−1)

−1

]
≤ 4βEX∼Di

m−1

[
max
x∈X

∥x∥(Λ̃i
m−1)

−1

]
≤ 4β√

1− ϵm
EX∼Di

m−1

[
max
x∈X

∥x∥(Λi
m−1)

−1

]
((1− ϵm)Λi

m ⪯ Λ̃i
m)

≤ 8β√
NTm−1(1− ϵm)

EX∼Di
m−1

max
x∈X

√
x⊤
(

2λ

NTm−1
I + EX∼Di

m−1
Ey∼πi

m−2(X )[yy
⊤]

)−1

x


=

8β√
NTm−1(1− ϵm)

V
( 2λ
NTm−1

)

Di
m−1

(πi
m−2), (26)

where the third inequality follows from our established confidence intervals in Lemma B.3 guaranteeing that xi
∗,t ∈ X i(m)

t

for all (i, t,m) ∈ [N ]× [Tm−1 + 1 : Tm]× [M ] with probability at least 1− δ. The rest of the proof follows the steps as
those in the proof of Theorem 4.1 with an additional 1√

1−ϵm
multiplicative factor in the bound.

Therefore, we conclude that, with probability at least 1− 2δ, it holds that

RT ≤ 4
√
dNT

(
NT

d

) 1

2(2M−1−1)

+ 8βM

√
dNT log d log(NTλ−1)

1−maxm∈[M ] ϵm

(
NT

d

) 1

2(2M−1−1)

≤ O

 1

1−maxm∈[M ] ϵm

√
dNT log d log2

(
KNT

δλ

)
log log

(
NT

d

) . (27)

C. Decentralized Batch Elimination LUCB without Server
In this environment, the agents are represented by the nodes of an undirected and connected graph G. Each agent i can send
and receive messages only to and from its immediate neighbors j ∈ N (i).
Definition C.1 (Communication Matrix). For an undirected connected graph G with N nodes, P ∈ RN×N is a symmetric
communication matrix if it satisfies the following three conditions: (i) Pi,j = 0 if there is no connection between nodes i
and j; (ii) the sum of each row and column of P is 1; (iii) the eigenvalues are real and their magnitude is less than 1, i.e.,
1 = |λ1|> |λ2|≥ . . . |λN |≥ 0.

We assume that P is known to the agents. We remark that P can be constructed with little global information about
the graph, such as its adjacency matrix and the graph’s maximal degree; For example, one can compute it as P =
IN − 1

δmax+1D
−1/2LD−1/2, where δmax is the maximum degree of the graph, L ∈ RN×N is the graph Laplacian, and

D ∈ RN×N is a diagonal matrix whose entries are the degrees of the nodes (see Duchi et al. (2011) for details).
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Running consensus. In order to share information about agents’ past actions among the network, we rely on running
consensus, e.g., (Lynch, 1996; Xiao and Boyd, 2004). The goal of running consensus is that after enough rounds of
communication, each agent has an accurate estimate of the average (over all agents) of the initial values of each agent.
Precisely, let ν0 ∈ RN be a vector, where each entry ν0,i, i ∈ [N ] represents agent’s i information at some initial round.
Then, running consensus aims at providing an accurate estimate of the average 1

N

∑
i∈[N ] ν0,i for each agent. It turns

out that the communication matrix P defined in Definition C.1 plays a key role in reaching consensus. The details are
standard in the rich related literature (Xiao and Boyd, 2004; Lynch, 1996). Here, we only give a brief explanation of the
high-level principles. Roughly speaking, a consensus algorithm updates ν0 by ν1 = Pν0, ν2 = Pν1 and so on. Note
that this operation respects the network structure since the updated value ν1,j is a weighted average of only ν0,j itself
and neighbor-only values ν0,i, i ∈ N (j). Thus, after S rounds, agent j has access to entry j of νS = PSν0. We adapt
polynomial filtering introduced in Martı́nez-Rubio et al. (2019); Seaman et al. (2017) to speed up the mixing of information
by following an approach whose convergence rate is faster than the standard multiplication method above. Specifically,
after S communication rounds, instead of PS , agents compute and apply to the initial vector ν0 an appropriate re-scaled
Chebyshev polynomial qS(P) of degree S of the communication matrix. Recall that Chebyshev polynomials are defined
recursively. It turns out that the Chebyshev polynomial of degree ℓ for a communication matrix P is also given by a recursive
formula as follows: qℓ+1(P) = 2wℓ

|λ2|wℓ+1
Pqℓ(P)− wℓ−1

wℓ+1
qℓ−1(P), where w0 = 0, w1 = 1/|λ2|, wℓ+1 = 2wℓ/|λ2|−wℓ−1,

q0(P) = I and q1(P) = P. Specifically, in a Chebyshev-accelerated gossip protocol (Martı́nez-Rubio et al., 2019), the
agents update their estimates of the average of the initial vector’s ν0 entries as follows:

νℓ+1 = (2wℓ)/(|λ2|wℓ+1)Pνℓ − (wℓ−1/wℓ+1)νℓ−1. (28)

DecBE-LUCB, presented in Algorithm 2, implements the Chebyshev-accelerated gossip protocol outlined above for every
entry of vectors ui

m =
∑Tm−1+Tm/2

t=Tm−1+1 xi
ty

i
t at the end of m-th batch.

The accelerated consensus algorithm, summarized in Algorithm 3, guarantees fast mixing of information thanks to the
following key property stated in Lemma 3 of Martı́nez-Rubio et al. (2019): for ϵ ∈ (0, 1) and any vector ν0 in the
N -dimensional simplex, it holds that

∥NqS(P)ν0 − 1∥2≤ ϵ, if S =
log(2N/ϵ)√
2 log(1/|λ2|)

. (29)

In view of this, DecBE-LUCB properly implements the accelerated consensus algorithm such that for every i ∈ [N ] and
m ∈ [M ], the vector ui

m is communicated within the network during the last S rounds of batch m. At round Tm + 1,
agent i has access to

∑N
j=1 ai,ju

j
m, where ai,j = N [qS(P)]i,j . Thanks to (29), ai,j is ϵ close to 1, thus, these are good

approximations of the true
∑N

j=1 u
j
m. Furthermore, the choice of grid T = {T0, T1, . . . , TM} in DecBE-LUCB is slightly

different than what used in DisBE-LUCB.

C.1. Theoretical guarantees of DecBE-LUCB
As the first step in regret analysis of DecBE-LUCB, we establish the following confidence intervals.

Lemma C.2 (Confidence intervals for DecBE-LUCB). Suppose Assumption 1 holds. Fix δ ∈ (0, 1) and let ϵ = β√
d

and
γ = 2β, where β is defined in Lemma 4.4. Then

P

∣∣∣∣∣
〈
x, θ̂

i

m − θ

〉∣∣∣∣∣ ≤ γ∥x∥(Λi
m)

−1 , ∀x ∈ X i
t , i ∈ [N ], t ∈ [T ],m ∈ [M ]

 ≥ 1− δ. (30)

20



Distributed Contextual Linear Bandits with Minimax Optimal Communication Cost

Algorithm 2 DecBE-LUCB for agent i

1: Input: N , d, δ, T , M , λ, ϵ

2: Initialization: S = log(2N/ϵ)√
2 log(1/|λ2|)

, a =
√
T + S

(
N(T+S)

d

) 1

2(2M−1−1) , T1 = T2 = a
√

d
N +S, Tm = ⌊a

√
Tm−1 − S+

S⌋, θi
0 = 0, Λi

0 = λI , T0 = 0, Tm = Tm−1 + Tm, λ = 5 log
(

4dT
δ

)
, γ = 12

√
log
(

2KNT
δ

)
+ 2

√
λ, arbitrary policy

πi
0

3: for m = 1, . . . ,M do
4: for t = Tm−1 + 1, . . . ,min{Tm, T} do

5: Let X i(m)
t = ∩m−1

k=0 E
(
X i

t ; (Λ
i
k, θ̂

i

k, γ)

)
6: Play arm ai,t associated with feature vector xi

t ∼ πm−1

(
X i(m)

t

)
and observe yit.

7: end forSet Ki
0 =

∑Tm−1+(Tm−S)/2
t=Tm−1+1 xi

ty
i
t

8: for t = Tm − S + 1 do

9: Let X i(m)
t = ∩m−1

k=0 E
(
X i

t ; (Λ
i
k, θ̂

i

k, γ)

)
10: Play arm ai,t associated with feature vector xi

t ∼ πm−1

(
X i(m)

t

)
and observe yit.

11: Send each entry of Ki
0, i.e., [Ki

0]n, ∀n ∈ [d] to your neighbors N (j) and receive the corresponding values from
them. For each n ∈ [d], update [Ki

1]n = Pi,i[Ki
0]n +

∑
j∈N (i) Pi,j [Kj

0]n
12: end for
13: Set s = 1
14: for t = Tm − S + 2, . . . , Tm do

15: Construct set X i(m)
t = ∩m−1

k=0 E
(
X i

t ; (Λ
i
k, θ̂

i

k, γ)

)
.

16: Play arm ai,t associated with feature vector xi
t ∼ πm−1

(
X i(m)

t

)
and observe yit. [Ki

s+1]n =

Comm([Ki
s]n, [Ki

s−1]n, s+ 1), ∀n ∈ [d]
17: s = s+ 1
18: end for
19: Compute/construct

Λi
m = λI +

N(Tm − S)

2
EX∼Di

m
Ex∼πi

m−1(X )[xx
⊤],

θ̂
i

m =
(
Λi
m

)−1

ūm,i,

Si
m =

{
X i(m+1)

t

}Tm

t=Tm−1+(Tm−S)/2+1
,

πi
m = ExpPol

(
2λ

N(Tm − S)
,Si

m

)
.

20: end for
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Proof. Recall the definition of θi
m in (4). For a fixed x ∈ X i

t and (i, t) ∈ [N ]× [T ], we have

∣∣∣∣∣
〈
x, θ̂

i

m − θ

〉∣∣∣∣∣ ≤
∣∣∣∣〈x,θi

m − θ
〉∣∣∣∣+

∣∣∣∣∣
〈
x, θ̂

i

m − θi
m

〉∣∣∣∣∣
≤
∣∣∣∣〈x,θi

m − θ
〉∣∣∣∣+∥x∥(Λi

m)
−2

∥∥∥∥∥∥ūm,i −
N∑
j=1

uj
m

∥∥∥∥∥∥
2

(Cauchy Schwarz inequality)

≤
∣∣∣∣〈x,θi

m − θ
〉∣∣∣∣+ ϵ

√
d∥x∥(Λi

m)
−1 (Assumption 1 and choice of S in (29))

=

∣∣∣∣〈x,θi
m − θ

〉∣∣∣∣+ β∥x∥(Λi
m)

−1 . (31)

Combining Lemma 4.4 and (31), we have

P

∣∣∣∣∣
〈
x, θ̂

i

m − θ

〉∣∣∣∣∣ ≤ 2β∥x∥(Λi
m)

−1 , ∀x ∈ X i
t , i ∈ [N ], t ∈ [T ],m ∈ [M ]

 ≥ 1− δ. (32)

Theorem C.3. Fix M = 1 + log

(
log

(
N(T+S)

d

)
2 + 1

)
, with S defined in (29) for ϵ = 6

√
log( 2dKNT

δ )
d in Algorithm 1.

Suppose Assumption 1 holds. If T ≥ Ω
(
d22 log2(NT

δ ) log2 d log2(dλ−1)
)

, then with probability at least 1− 2δ, it holds
that

RT ≤ O




N log(dN)√

1/|λ2|
+

√√√√√√√√dN

(
T +

log(dN)√
1/|λ2|

)
log d log2


KN

(
T + log(dN)√

1/|λ2|

)
δλ


 log log

(
NT

d

)
 , (33)

and

Communication Cost ≤ O

(
δmaxdN log(dN)√

log(1/|λ2|)

)
. (34)

Proof. The proof follows similar steps as those of Theorem 4.1’s proof. We focus on the regret of m-th batch for any m ≥ 3.
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For any i ∈ [N ], t ∈ [Tm−1 + 1 : Tm], conditioned on the event that the confidence intervals in Lemma C.2 hold, we have

rit = E
[
⟨θ,xi

∗,t⟩ − ⟨θ,xi
t⟩
]

≤ E

[
⟨θ̂

i

m−1,x
i
∗,t⟩ − ⟨θ̂

i

m−1,x
i
t⟩+ β

∥∥∥xi
∗,t

∥∥∥
(Λi

m−1)
−1

+ β
∥∥∥xi

t

∥∥∥
(Λi

m−1)
−1

]
(Lemma C.2)

≤ 2γE

[∥∥∥xi
∗,t

∥∥∥
(Λi

m−1)
−1

+
∥∥∥xi

t

∥∥∥
(Λi

m−1)
−1

]
(xi

∗,t ∈ X i(m)
t )

≤ 4γE

[
max

x∈X i(m)
t

∥x∥(Λi
m−1)

−1

]

≤ 4γEX∼Di
m

[
max
x∈X

∥x∥(Λi
m−1)

−1

]
≤ 4γEX∼Di

m−1

[
max
x∈X

∥x∥(Λi
m−1)

−1

]

≤ 8γ√
N(Tm−1 − S)

EX∼Di
m−1

max
x∈X

√
x⊤
(

2λ

N(Tm−1 − S)
I + EX∼Di

m−1
Ey∼πi

m−2(X )[yy
⊤]

)−1

x


=

8γ√
N(Tm−1 − S)

V
( 2λ
N(Tm−1−S)

)

Di
m−1

(πi
m−2), (35)

where the third inequality follows from our established confidence intervals in Lemma C.2 guaranteeing that xi
∗,t ∈ X i(m)

t

for all (i, t,m) ∈ [N ]× [Tm−1 + 1 : Tm]× [M ] with probability at least 1− δ. Now, continuing form (13), we bound the
cumulative regret of batches m ≥ 3, as follows:

T∑
t=T2+1

N∑
i=1

rit ≤ 2MSN +

M∑
m=3

Tm−S∑
t=Tm−1+1

N∑
i=1

rit

≤ 2MSN +
8γMN(Tm − S)√

N(Tm−1 − S)
V

( 2λ
N(Tm−1−S)

)

Di
m−1

(πi
m−2)

≤ 2MSN ++8γM
√
dN log d log(NTλ−1)

M∑
m=2

Tm − S√
Tm−1 − S

(Conditioned on the event in Eqn. (12))

= 2MSN + 8γMa
√
dN log d log(NTλ−1). (36)

Next, we bound cumulative regret of the first two batches. Under Assumption 1, during the first two batches, the instantaneous
regret of each agent i at any round t is at most 2. Therefore

T2∑
t=1

N∑
i=1

rit ≤ 2NT2 = 4a
√
dN. (37)

Note that the choice of a in the algorithm ensures that for any M > 0, TM = T and
∑M

m=1 Tm ≥ TM = T , and thus the

choice of grid {T1, . . . , TM} is valid. If we let M = 1 + log

(
log

(
N(T+S)

d

)
2 + 1

)
, from (36) and (37), we conclude that,
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with probability at least 1− 2δ, it holds that

RT ≤ 2MSN + 4
√
dN(T + S)

(
NT

d

) 1

2(2M−1−1)

+ 8γM
√
dNT log d log(NTλ−1)

(
N(T + S)

d

) 1

2(2M−1−1)

≤ O




N log(dN)√

1/|λ2|
+

√√√√√√√√dN

(
T +

log(dN)√
1/|λ2|

)
log d log2


KN

(
T + log(dN)√
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)
δλ


 log log

(
NT

d

)
 . (38)

C.2. Communication Step
In this section, we summarize the accelerated Chebyshev communication step, discussed above, in Algorithm 3, which
follows the same steps as those of the communication algorithm presented in Martı́nez-Rubio et al. (2019).

Algorithm 3 Comm for Agent i

1: Input: xnow, xprev, ℓ
2: Output: xi,next

3: Initialization: w0 = 0, w1 = 1/|λ2|, wr = 2wr−1/|λ2|−wr−2, ∀2 ≤ r ≤ S, xi,now = xnow, xi,prev = xprev

4: Send xi,now and receive the corresponding xj,now to and from j ∈ N (i) // Recall that all agents run Comm in parallel.

5: xi,next =
2wℓ−1

|λ2|wℓ
Pi,ixi,now + 2wℓ−1

|λ2|wℓ

∑
j∈N (i) Pi,jxj,now − wℓ−2

wℓ
xi,prev

Chebyshev polynomials (Young, 2014) are defined as T0(x) = 1, T1(x) = x and Tk+1(x) = 2xTk(x)− Tk−1(x). Define:

qℓ(P) =
Tℓ(P/|λ2|)
Tℓ(1/|λ2|)

. (39)

By the properties of Chebyshev polynomial (Arioli and Scott, 2014), it can be shown that:

qℓ+1(P) =
2wℓ

|λ2|wℓ+1
Pqℓ(P)− wℓ−1

wℓ+1
qℓ−1(P), (40)

where w0 = 1, w1 = 1/|λ2|, wℓ+1 = 2wℓ/|λ2|−wℓ−1, q0(P) = I and q1(P) = P. This implies that when agents
share an specific quantity, whose initial values given by agents are denoted by vector ν0 ∈ RN , by using the recursive
Chebyshev-accelerated updating rule, they have:

νℓ+1 =
2wℓ

|λ2|wℓ+1
Pνℓ −

wℓ−1

wℓ+1
νℓ−1. (41)

In light of the above mentioned recursive procedure, the accelerated communication step is summarized in Algorithm 3
below for agent i. We denote the inputs by: 1) xnow, which is the quantity of interest that agent i wants to update at the
current round, 2) xprev, which is the estimated value for a quantity of interest that agent i updated at the previous round, and
3) ℓ which is the current round of communication. Note that inputs are scalars, however matrices and vectors also can be
passed as inputs with Comm running for each of their entries.

D. Omitted Algorithms
In this section, we present a definition and necessary algorithms, that are borrowed from Ruan et al. (2021) and are used as
subroutines in DisBE-LUCB and DecBE-LUCB.
Definition D.1 (Ruan et al. (2021)). Fix α = logK. For a given positive semi-definite matrix M, we define the softmax
policy πS

M(X ) over a set X = {x1,x2, . . . ,xk} with k ≤ K with

πS
M(xi) =

(x⊤
i Mxi)

α∑k
i=1(x

⊤
i Mxi)α

. (42)
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Now, suppose we are given a set M =
{
(pi,Mi)

}n
i=1

such that pi ≥ 0 and
∑n

i=1 pi = 1. We define the mixed-softmax
policy πMS

M (X ) over X as

πMS
M (xi) =

{
πG(X ), with probability 1/2,

πS
Mi

(X ), with probability pi/2,
(43)

where πG(X ) is called G-optimal design and is the minimizer of g(π) = maxx∈X ∥x∥2V(π)−1 , where V(π) =∑
x∈X π(x)xx⊤; see Section 21 in Lattimore and Szepesvári (2020) for details.

Algorithm 4 ExpPol

1: Input: λ, S = {X1,X2, . . . ,XL}
2: Output: A mixed-softmax policy π Using Algorithm 5 find a core C ⊆ S such that

max
Xi∈C,x∈Xi

x⊤A(C)−1x > d5 (44)

and

|C|
L

< 1−O(d−2 log λ−1) (45)

where A(C) := λI + 1
L

∑
Xi∈C Ex∼πG(Xi)[xx

⊤], and for any set X ⊂ Rd, πG(X ) is called G-optimal design and is
the maximizer of g(π) = maxx∈X ∥x∥2V(π)−1 , where V(π) =

∑
x∈X π(x)xx⊤.

3: Return the mixed-softmax policy π by calling MixedSoftMax(λ, C).

Algorithm 5 CoreIdentification (Algorithm 4 in (Ruan et al., 2021))

1: Input: λ, S = {X1,X2, . . . ,XL}
2: Output: A core set C ⊆ S
3: Initialization: C1 = S
4: for ξ = 1, 2, . . . do
5: if maxXi∈Cξ,x∈Xi

x⊤A(Cξ)−1x > d5 then
6: Return Cξ.
7: else
8:

Cξ+1 =

{
Xi ∈ Cξ : max

x∈Xi

x⊤A(Cξ)−1x ≤ 1

2
d5
}
,

where A(C) := λI + 1
L

∑
Xi∈C Ex∼πG(Xi)[xx

⊤], and for any set X ⊂ Rd, πG(X ) is called G-optimal design
and is the maximizer of g(π) = maxx∈X ∥x∥2V(π)−1 , where V(π) =

∑
x∈X π(x)xx⊤.

9: end if
10: end for

E. Auxiliary Lemmas
Lemma E.1 (Tropp (2015), Theorem 5.1.1). Consider a finite sequence Xk of independent, random, Hermitian matrices
with common dimension d. Assume that 0 ≤ λmin(Xk) and λmax(Xk) ≤ L for each index k. Introduce the random matrix

Y =

n∑
k=1

Xk (46)

Define the minimum eigenvalue µmin and maximum eigenvalue µmax of the expectation E[Y]:

µmin = λmin(E[Y]), µmax = λmax(E[Y]). (47)
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Algorithm 6 MixedSoftMax

1: Input: λ, S = {X1,X2, . . . ,XL}
2: Output: A mixed-softmax policy π
3: Initialization: Q = 2d2 log d, X(i−1)L+j = Xj , ∀(i, j) ∈ [Q]× L, U0 = λQLI + Q

2

∑L
i=1 Ex∼πG(Xi)[xx

⊤], n = 1,
τn = ∅, Wn = U0

4: for s = 1, . . . , QL do
5: τn = τn ∪ {s}
6: Us = Us−1 + Ex∼πS

W
−1
n

(Xs)[xx
⊤], where πS

W−1
n
(Xs) is computed as in Definition D.1.

7: if detUs

detWn
> 2 then

8: n = n+ 1, τn = ∅, Wn = Us

9: end if
10: end for
11: pi =

I{|τi|≥L}|τi|∑n
i=1 I{|τi|≥L}|τi| and Mi = QLW−1

i , ∀i ∈ [n]

12: Return the mixed-softmax policy with parameters M =
{
(pi,Mi)

}n
i=1

as in Definition D.1.

Then

P
(
λmin(Y) ≤ (1− ε)µmin

)
≤ d

(
exp(−ε)

(1− ε)1−ε

)µmin
L

, for ε ∈ [0, 1) (48)

P
(
λmax(Y) ≥ (1 + ε)µmax

)
≤ d

(
exp(ε)

(1 + ε)1+ε

)µmax
L

, for ε ≥ 0. (49)

Lemma E.2. Suppose x1,x2, . . . ,xn ∼ D are d-dimensional vectors that are i.i.d. drawn from a distribution D and
∥xk∥2 ≤ L for all k ∈ [n] almost surely. Let γ = λmin

(
Ex∼D[xx

⊤]
)
> 0 be the smallest eigenvalue of the co-variance

matrix. We have that

P

 1

n

n∑
k=1

xkx
⊤
k ⪯ 2Ex∼D[xx

⊤]

 ≥ 1− d exp

(
−γn

3

)
. (50)

Proof. Let Σ = Ex∼D[xx
⊤] and yk = Σ

−1
2 xk for all k ∈ [n]. Also, we have λmax(yky

⊤
k ) =∥yk∥22 ≤ 1

γ almost surely,
and E[yky

⊤
k ] = I . Therefore, plugging ε = 1 in (49), we have

P

 1

n

n∑
k=1

xkx
⊤
k ⪯ 2Ex∼D[xx

⊤]

 = P

 1

n

n∑
k=1

yky
⊤
k ⪯ 2Σ

−1
2 Ex∼D[xx

⊤]Σ
−1
2


= P

 1

n

n∑
k=1

yky
⊤
k ⪯ 2I


= P

λmax

 n∑
k=1

yky
⊤
k

 ≤ 2n


≥ 1− d

(
e

4

)nγ

≥ 1− d exp

(
−γn

3

)
. (51)

Lemma E.3. Suppose x1,x2, . . . ,xn ∼ D are d-dimensional vectors that are i.i.d. drawn from a distribution D and
∥xk∥2 ≤ 1 for all k ∈ [n] almost surely. For any cutoff level γ > 0, we have

P

 1

n

n∑
k=1

xkx
⊤
k ⪯ 2Ex∼D[xx

⊤] + 6γI

 ≥ 1− 2d exp

(
−γn

3

)
. (52)
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Proof. Suppose Ex∼D[xx
⊤] =

∑d
i=1 λiνiν

⊤
i , where {νi}di=1 is a set of orthonormal basis. Let P+ =

∑d
i=1 νiν

⊤
i 1(λi ≥

γ) and P− =
∑d

i=1 νiν
⊤
i 1(λi < γ), so that P+P− = I . We observe that the eigenvalues of Ex∼D[P+xx

⊤P⊤
+] are

greater than or equal to γ when restricted to the space spanned by the P+. Therefore, by Lemmas E.2 and E.1 (Eqn. (49)),
we respectively have

P

 1

n

n∑
k=1

P+xkx
⊤
k P

⊤
+ ⪯ 2Ex∼D[P+xx

⊤P⊤
+]

 ≥ 1− d exp

(
−γn

3

)
(53)

P

 1

n

n∑
k=1

P−xkx
⊤
k P

⊤
− ⪯ 2γI

 ≥ 1− d exp

(
−γn

3

)
. (54)

Now, we observe that

1

n

n∑
k=1

xkx
⊤
k =

1

n

 n∑
k=1

P+xkx
⊤
k P

⊤
+ +

n∑
k=1

P+xkx
⊤
k P

⊤
− +

n∑
k=1

P−xkx
⊤
k P

⊤
+ +

n∑
k=1

P−xkx
⊤
k P

⊤
−


=

1

n

 n∑
k=1

P+xkx
⊤
k P

⊤
+ +

n∑
k=1

P+P+P−xkx
⊤
k P

⊤
− +

n∑
k=1

P−xkx
⊤
k P

⊤
−P

⊤
+P

⊤
+ +

n∑
k=1

P−xkx
⊤
k P

⊤
−


⪯ 1

n

 n∑
k=1

P+xkx
⊤
k P

⊤
+ +

n∑
k=1

P−xkx
⊤
k P

⊤
− +

n∑
k=1

P−xkx
⊤
k P

⊤
− +

n∑
k=1

P−xkx
⊤
k P

⊤
−


=

1

n

n∑
k=1

P+xkx
⊤
k P

⊤
+ +

3

n

n∑
k=1

P−xkx
⊤
k P

⊤
− (55)

Also, note that

Ex∼D[P+xx
⊤P⊤

+] = Ex∼D

[
xx⊤ −P+xx

⊤P⊤
− −P−xx

⊤P⊤
+ −P−xx

⊤P⊤
−

]
⪯ Ex∼D

[
xx⊤

]
. (56)

Therefore, combining (54) and (55) and (56), we have

P

 1

n

n∑
k=1

xkx
⊤
k ⪯ 2Ex∼D[xx

⊤] + 6γI

 ≥ 1− 2d exp

(
−γn

3

)
. (57)
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