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Abstract

Reinforcement learning (RL) has become the dominant paradigm for improving
the performance of language models on complex reasoning tasks. Despite the
substantial empirical gains demonstrated by RL-based training methods like GRPO,
a granular understanding of why and how RL enhances performance is still lacking.
To bridge this gap, we introduce SPARKLE, a fine-grained analytic framework
to dissect the effects of RL across three key dimensions: (1) plan following and
execution, (2) knowledge integration, and (3) chain of subproblems. Using this
framework, we gain insights beyond mere accuracy. For instance, providing
models with explicit human-crafted, step-by-step plans can surprisingly degrade
performance on the most challenging benchmarks, yet RL-tuned models exhibit
greater robustness, experiencing markedly smaller performance drops than base
or SFT models. This suggests that RL may not primarily enhance the execution
of external plans but rather empower models to formulate and follow internal
strategies better suited to their reasoning processes. Conversely, we observe that
RL enhances models’ ability to integrate provided knowledge into their reasoning
process, yielding consistent gains across diverse tasks. Finally, we study whether
difficult problems—those yielding no RL signals and mixed-quality reasoning
traces—can still be effectively used for training. We introduce SparkleRL-PSS,
a multi-stage RL pipeline that reuses hard problems with partial step scaffolding,
guiding exploration effectively without additional data generation. Together, our
findings provide a principled foundation for understanding how RL shapes model
behavior, offering practical insights for building more adaptive, data-efficient, and
interpretable RL pipelines for reasoning tasks. Our code, data, and checkpoints are
available at: https://sparkle-reasoning.github.io/.

1 Introduction

Reasoning models are among the most exciting recent developments in the large language model
space. These models are able to perform mathematical and other forms of reasoning and achieve
excellent performance on a number of benchmarks [2, 15, 37, 47]. Reinforcement learning-based
training appears to be crucial to achieving these reasoning capabilities, leading to a proliferation of
papers proposing new RL-based training techniques, reasoning models, and evaluation benchmarks.

Despite this explosion of interest, precisely what capabilities are gained during RL training is not
clear. Most works studying RL for reasoning use a set of standardized benchmarks. While convenient,
tracking the gain in accuracy for a method on, for example, the AIME 2024 contest [32], ultimately
provides limited signal into what behaviors are enabled by RL. To make further progress, we argue
that it is necessary to develop a fine-grained understanding of the benefits of RL.
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Figure 1: Left: SparkleRL-PSS, a two-stage curriculum-style RL training with partial step
scaffolding—the hardest problems are revisited with auxiliary step-level hints to guide multi-stage
learning. Middle: Four types of auxiliary information (hints) used in this work: (1)Partial Step
Scaffolding (used in Stage 2 RL), (2) High-level Plan, (3) External Knowledge, and (4) Chain of
Subproblems (2-4 used in the SPARKLE analysis framework). Right: Net performance gains/losses
when models are evaluated with vs. without hints (2–4). While all models struggle on compositional
subproblems, RL-tuned models exhibit the greatest flexibility in leveraging auxiliary information—
whereas base performance drops sharply and SFT models show limited benefit.

To enable such analysis, we introduce SPARKLE, a fine-grained analysis framework that examines
key elements hypothesized to benefit from RL training. Specifically, we evaluate pre- and post-RL
tuned models along three dimensions: (1) plan-following and execution; (2) knowledge use; and (3)
problem decomposition. Our framework enables fine-grained assessment of reasoning behaviors,
revealing not just where RL enhances performance but also its limitations across different reasoning
components.

Existing benchmarks, which consist of problems, ground-truth answers, and occasionally reasoning
traces, are insufficient for the fine-grained analysis we perform. For example, testing a model’s
ability to follow a given plan requires access to planning annotations. To instantiate SPARKLE on
mathematical reasoning, we augment math datasets with planning skeletons, requisite knowledge
annotations, and candidate problem decompositions. A concrete example is shown in Figure 2. This
approach produces novel insights: for example, we observe that giving base and SFT models access
to human-crafted, correct plans can surprisingly degrade performance, while RL-tuned models
are more robust to these, but the plan is better provided as high-level. This suggests that part of the
benefits of RL are the flexibility to use multiple plausible plans.

We also investigate a second form of fine-grained analysis, related to problem difficulty. Prior work
has observed that RL often fails to exploit hard problems effectively, as these examples rarely yield
positive reward signals [49]. This has motivated filtering strategies that remove such problems—but
this wastes valuable training signal. Instead, we analyze problem difficulty and use the resulting
distinctions to develop a new multi-stage RL pipeline(SparkleRL-PSS) that exploits data of varied
difficulties. In the first stage, we perform RL on a broad set of diverse math problems, analogous to
Guo et al. [15]. In the second, we fine-tune the model further on identified hard problems. To further
help guide the model on these challenging cases, we give it access to partial solution augmentations
or hints without further data generation. This two-stage setup is designed to first give the model a
strong general reasoning boost, then hone its skills on the trickiest examples.

Together, SPARKLE and SparkleRL-PSS offer a comprehensive view of how RL shapes model
behavior both analytically and algorithmically. They show that RL enhances flexibility in plan
following and knowledge integration; however, performance degrades when models are forced to
follow concrete, human-crafted plans. Instead, RL-tuned models perform best when guided by
high-level plans that align with their internal reasoning dynamics, although robustness in solving
chained subproblems remains limited. These findings highlight concrete directions for developing
RL pipelines that are more adaptive, data-efficient, and interpretable for reasoning tasks. Our
contributions include:

• We introduce SPARKLE, a novel analysis framework to systematically evaluate plan
following, knowledge utilization, and subproblem solving in LLM reasoning.
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Figure 2: Illustration of the SPARKLE framework’s three-dimensional analysis approach. For each
problem (top), we construct three complementary components: a high-level planning skeleton (left)
capturing the overall solution strategy, relevant knowledge (middle) required for reasoning, and a
sequence of interconnected subproblems (right) that decompose the solution process. The augmented
benchmark enables a fine-grained understanding of reasoning capabilities and failure modes in LLMs.

• We construct SPARKLE benchmark, augmented with planning skeletons, knowledge
information and subproblem chains to support comprehensive reasoning analysis.

• A simple yet effective multi-stage RL training approach with partial step scaffolding
(SparkleRL-PSS) that reuses existing hard problems without additional data generation.

• We present comprehensive empirical findings that reveal which aspects of reasoning are
most enhanced by RL (e.g., flexibility in plan following and integrating knowledge into its
reasoning processes), which remain challenging (e.g., robustness in solving subproblems),
and the conditions under which RL provides the greatest benefits.

2 SPARKLE: A Three-Axis Framework for LLM Reasoning Evaluation

To precisely analyze LLM reasoning, we introduce SPARKLE, a framework that decomposes
reasoning along three axes: plan-following and execution, knowledge utilization, and subproblem
decomposition (Section 2.1), inspired by classic research in cognitive science on human reasoning and
problem solving [7, 30, 35, 44]. We also present a dataset constructed to instantiate this framework
and support systematic evaluation (Section 2.2). Together, the framework and dataset enable fine-
grained, interpretable analysis of key reasoning competencies in LLMs (Figure 2).

2.1 SPARKLE Analysis Framework Overview

Axis 1: planning and execution. When LLMs fail to solve challenging mathematical problems,
is the cause not knowing what to do—or an inability to carry out the steps? We evaluate models
on problems both 1) with and 2) without accompanying planning skeletons. The plan outlines the
major steps needed but omits the details that must be carried out by the model. In the former case,
the planning sketch alleviates the planning burden, allowing us to isolate and assess the model’s
execution capabilities (see a full example in Appendix B). By comparing performance under these
conditions, we can better understand whether RL fine-tuning primarily enhances strategic planning,
step-by-step execution, or both components of the reasoning process.
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Axis 2: knowledge utilization. Mathematical reasoning relies on access to factual knowledge—
including definitions, theorems, and formulas—and the ability to apply this knowledge: knowledge
defines the premises, while reasoning describes the logical operations performed on those premises.
Performance improvements from RL fine-tuning may stem from enhanced deductive reasoning
abilities, improved knowledge utilization, or a combination of both.

Inspired by prior works on transparent logical reasoning [6], our second evaluation axis addresses this
ambiguity by separating between knowledge retrieval and reasoning processes. Concretely, knowledge
in our setting refres to the collection of relevant facts, definitions, theorems, and lemmas necessary for
solving the problem, while reasoning encompasses the logical operations that manipulate and apply
this knowledge toward the answer. We systematically vary knowledge availability to separate these
roles. In one condition, the model must retrieve all relevant concepts itself. In the other, we explicitly
provide the necessary knowledge (e.g., statements of Fermat’s Little Theorem and the Chinese
Remainder Theorem, as in the example in Figure 2). This design allows us to identify knowledge-
related bottlenecks. A model that succeeds only when given knowledge has intact reasoning but
incomplete recall or because the information lies outside its training data. A model that still fails
despite having all the facts reveals limits in deductive ability.

Axis 3: chain of subproblems. Even when an LLM gives a correct final answer, it may contain
flawed intermediate steps [51]. To uncover where reasoning breaks down, we decompose problems
into a chain of subproblems and assess model performance incrementally. At each stage, the model is
shown the original problem, the subproblems solved so far, and the current subproblem. For example,
when answering Q3 (Figure 2), the model is shown the full prompt and the answers to Q1 and Q2.
Crucially, unlike the structured planning sketch in Axis 1, these subproblems are not prescriptive
instructions. Instead, they act as checkpoints—smaller, self-contained problems that are individually
solvable but collectively build toward the full solution. They provide no hints about what method
to use, only what question to answer. This framing allows us to identify the precise step where the
model’s reasoning fails, offering a fine-grained error analysis.

Remarks. We focus on these three axes as they capture core aspects of reasoning that can be
systematically and quantitatively evaluated (Section 5). These dimensions are not strictly orthogonal—
for example, retrieved knowledge can inform planning—but together they offer a practical and
interpretable framework for analyzing the impact of RL on reasoning behavior.

2.2 SPARKLE Benchmark Construction and Validation

Extant benchmarks—typically consisting of problems, answers, and reasoning traces—lack the
components needed to study RL along the three axes we have proposed. To address this, we augment
popular reasoning evaluation sets to produce the SPARKLE benchmark.

Pipeline overview. We construct our benchmark through a unified annotation pipeline that supports
all three evaluation axes. For each problem, we begin with its ground-truth solution and prompt a
high-capacity agent with access to the Internet (e.g., GPT-4.1 [36]) to: (1) extract a planning skeleton
summarizing key reasoning steps, (2) decompose the problem into a sequence of well-defined
subproblems with answers, and (3) identify relevant knowledge components (facts, definitions,
theorems, lemmas). The model is instructed to retrieve knowledge from reliable sources on the
Internet when necessary. To ensure annotation quality across all three dimensions, we employ a second
verification agent (e.g., GPT-4.1) that checks the outputs for correctness, coherence, completeness,
and pedagogical soundness. If any aspect fails, the annotations are regenerated. Finally, expert
validation is conducted by graduate students with advanced mathematics background to ensure that
the annotations faithfully capture the underlying reasoning and required knowledge.

SPARKLE benchmark statistics. SPARKLE is created from diverse mathematical problem
benchmarks including AIME24 [32], AMC23 [31], MATH500 [17], GSM8K [5], and
OlympiadBench [16] (test splits). Each problem is augmented with planning information derived
from ground-truth reasoning traces, relevant knowledge components, and a sequence of subproblems
curated via the pipeline described above. An example of the augmented problem is illustrated in
Figure 2. We also annotate the difficulty level using AoPS Competition Ratings [1] and mathematical
domain (e.g., linear algebra, geometry, number theory). The resulting SPARKLE benchmark contains
2,564 open-ended questions spanning 10 difficulty levels and 9 domains. More details are provided
in Appendix B.
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3 Problem Difficulty and Its Implications on Reinforcement Learning

The SPARKLE framework enabled us to conduct a fine-grained evaluation of how reinforcement
learning affects the reasoning capabilities of LLMs. This evaluation, however, did not examine
problem difficulty. We now tackle this axis, again seeking insights into RL behavior.

A prominent belief is that performing RL on problems that are too challenging (e.g., beyond current
frontier models, or too complex for low-capacity models) is not useful because models are unlikely
to obtain any reward. Such samples are filtered out—at the cost of reducing our dataset size. We
study this phenomenon, asking: Can difficult problems still contribute meaningfully to learning? To
perform this study, we use two training setups:

RL from base LLMs. In the first setup, we fine-tune a base LLM using RL on mathematical
problems. This setup mirrors standard approaches used in recent RLHF-style training pipelines where
the reward is derived from correctness or other problem-specific heuristics. This setup serves as
our baseline, offering insights into how general-purpose (single-stage) RL affects reasoning across
a wide range of problem difficulties. In particular, we adopt Group Relative Policy Optimization
(GRPO) [39], a variant of Proximal Policy Optimization (PPO) [38]. It has demonstrated remarkable
performance on common benchmarks [15, 29] and is more computationally efficient than PPO. More
details about GRPO are provided in Appendix C.

Multi-stage RL from base LLMs. To further probe how RL shapes reasoning under different
conditions, focusing on varying difficulty, we introduce a second, more structured setup that aligns
with curriculum learning principles [34]2. In this multi-stage variant, we continue RL fine-tuning
from the first-stage model checkpoint, on a subset of difficult problems selected from the full training
set. This stage is designed to further enhance the model’s ability by learning from challenging
samples. Within this setup, we explore three curriculum variants: (1) Mixed Difficulty uses a random
mixture of easy and hard problems to maintain exposure diversity; (2) Hard-Only restricts training to
difficult problems, concentrating learning on high-complexity cases; and (3) Hard-Augmented (ours;
SparkleRL-PSS) introduces partial solution scaffolding—such as intermediate steps or hints—to help
the model navigate complex reasoning paths more effectively. These controlled variants allow us to
assess how RL interacts with problem difficulty and solution augmentation. Additionally, we study
how difficulty interacts with the planning, execution, and knowledge axes defined by our SPARKLE
framework.

4 Experimental Setup

Next we provide the detail for the experiments we perform using the evaluation principles and
approaches from Sections 2 and 3. First, to remove the potentially confounding effects of supervised
fine-tuning (SFT), we apply RL directly to base pretrained LLMs. This complements prior studies on
the impacts of SFT and the interplay of SFT and RL [4, 52].

Reward design. We use a rule-based reward following Guo et al. [15], which also mitigates the
reward hacking problem of using a reward model [9, 10, 12]. We evaluate both answer correctness
and solution format using the formula below:

R(ŷ, y) =


2, if answer_correct(ŷ, y) ∧ format_correct(ŷ)
1, if answer_correct(ŷ, y) ∧ ¬format_correct(ŷ)
−1, otherwise

where ŷ represents the model’s generated answer, y is the reference answer, answer_correct(·)
evaluates numerical equivalence, and format_correct(·) assesses adherence to expected answer
format. This encourages the model to answer correctly with encouraged format correctness.

Training details. For Stage 1, we use the training set from DeepScaleR-Preview [29], which contains
40K math questions spanning a wide range from AIME (1984-2023), AMC (pre-2023), MATH [17],
Still [42], and Omni-MATH [11]. Our SparkleRL-Stage 1 model is trained on these 40K problems
using GRPO. To curate the training set for Stage 2, we first identify 6.5K most challenging problems

2While difficulty-based sampling can be integrated into single-stage GRPO training by rejecting samples that
are too easy or difficult based on their estimated advantages as done in DAPO [53], we opt for a two-stage setup
to disentangle general RL effects from curriculum-driven improvements.

5



Model AIME24 AMC23 MATH500 GSM8K OlympiadBench Avg.
Qwen-2.5-Math-7B-Base 16.67 42.50 44.03 42.53 28.65 35.23
SparkleRL-Stage 1 46.67↑30.00 67.50↑25.00 80.00↑35.97 91.77↑49.24 39.11↑10.46 65.01
SparkleRL-Stage 2-hard 41.67↑25.00 65.94↑23.44 80.50↑36.47 92.45↑49.92 37.39↑8.74 63.59
SparkleRL-Stage 2-mix 40.00↑23.33 63.44↑20.94 80.78↑36.75 92.52↑49.99 38.85↑10.20 63.12
SparkleRL-Stage 2-pss 50.42↑33.75 71.25↑28.75 81.00↑36.97 92.38↑49.85 40.11↑11.46 67.03

Table 1: Performance comparison of Qwen-2.5-Math-7B and tuned models from multi-stage RL. We
report results of metric Avg@8. We bold the best results.

that the best Stage 1 model fails to solve after 20 attempts. We then validate this subset using a
GPT-4.1-based Web Agent [36], followed by human verification to further filter out items with flawed
solutions. This results in a curated set of 5.7K difficult problems. For problems lacking reasoning
traces, we adopt reference solutions from NuminaMath [27].

For Stage 2, we initialize from SparkleRL-Stage 1 and explore three fine-tuning variants. SparkleRL-
Stage 2-mix is trained on a mixture of easy and hard problems. SparkleRL-Stage 2-hard is trained on
the 5.7K most difficult problems identified from Stage 1. SparkleRL-Stage 2-pss is trained on the
same set of difficult problems, but with partial solution augmentation: each reasoning trace is divided
into four semantic chunks, and for each problem, we construct multiple examples by providing
between 0 and 4 chunks as additional input context (Figure 1, left).3 The model is then prompted to
complete the reasoning and arrive at the final answer.

5 Results

We present our main findings. Our evaluation focuses on both high-level performance outcomes and
a fine-grained analysis of reasoning capabilities, guided by the following key questions:

• Multi-Stage RL and Role of Problem Difficulty (Section 5.1): How effective is multi-stage
RL at improving reasoning performance? How do problem difficulties impact RL? We show
that appropriately structured hard problems can provide additional benefits.

• Sample Efficiency (Section 5.2): Does RL improve the model’s ability to solve problems
with fewer samples? We show that RL-tuned models achieve higher performance at lower
attempts compared to base models.

• Plan Following and Execution (Section 5.3): How does RL impact the ability to follow
externally provided plans? We find that RL-tuned models demonstrate improved flexibility
in plan following yet often perform better with self-generated planning strategies.

• Knowledge Integration (Section 5.4): Can RL enhance a model’s ability to use external
knowledge? Our results reveal that RL-tuned models show significant improvements when
provided with supplementary knowledge, while base models struggle.

• Subproblem Resolution (Section 5.5): Does RL improve the model’s ability to
systematically solve decomposed problems? We observe that while RL substantially
improves overall performance, all models still struggle with detailed subproblem resolution.

• Scaling Reasoning Benefits with Task Difficulty (Section 5.6): How do the benefits of
knowledge and planning guidance vary with problem difficulty? We demonstrate that
knowledge integration becomes increasingly valuable as problem difficulty rises.

5.1 Are Difficult Problems Still Valuable for RL training?

Table 1 presents a performance comparison between Qwen-2.5-Math-7B and several RL-tuned
variants across five benchmarks, reporting Avg@8 scores. Stage-1 training on the full dataset
establishes strong reasoning, achieving substantial gains across all benchmarks (an average
of 29.78% improvement). For the second stage, we systematically investigate the impact of
problem difficulty on RL training through three variants: training exclusively on hard problems,
using a mixture of easy and hard problems, and employing hard problems augmented with
partial solutions (as detailed in Sec. 3). The results reveal that while further training on harder

3The CoT traces used for partial-step scaffolding are of mixed quality and come directly from the existing
datasets, so no additional data generation or external distillation is performed.
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problems or mixed-difficulty problems improves performance on simpler tasks like GSM8K
(difficulty level 1/10) and MATH500 (difficulty level 1.5/10), performance decreases on more
challenging benchmarks. Contrary to prior work suggesting that GRPO cannot benefit from the
hardest problems due to absent positive reward signals [49], we demonstrate that hard problems
remain valuable when appropriately structured. Specifically, while training solely on hard
problems yields modest additional gains, augmenting them with partial solution guidance proves
most effective, consistently improving performance across all benchmarks by enabling models
to navigate complex reasoning paths more systematically.4 This approach yields an average
improvement of 2.02% over Stage 1 and a new peak of 50.42% on the most challenging task
AIME24—performance comparable to SoTA pure RL-tuned 32B models (50% on AIME24 [53]).
Statistical significance tests confirming these improvements are provided in Appendix H.

Figure 3: Pass@k comparison between
Qwen-2.5-Math-7B, SparkleRL-Stage 1,
and SparkleRL-Stage 2.

5.2 Does RL Improve Sample Efficiency?

Figure 3 presents pass@k results across models. In the
following sections, we use SparkleRL-Stage 2-pss as the
representative model for Stage 2 since it demonstrates
the best performance among the three variants. We
observe two key patterns: (1) multi-stage RL with
partial solution augmentation (SparkleRL-Stage 2-pss)
consistently outperforms single-stage training, achieving
higher performance at lower k values compared to both
Stage 1 and the base model; and (2) as k increases,
the performance gap between all three models gradually
narrows. However, improved sampling efficiency alone
cannot fully explain the observed gains. These gains may
reflect fundamental shifts in model behavior. What is
really happening under the hood? Next, we dig deeper to
uncover the specific capabilities enhanced by RL by dissecting reasoning through SPARKLE.

5.3 How does RL Impact Plan Following?

Figure 4: Performance comparison of Qwen-2.5-Math-7B, SparkleRL-Stage 1, and SparkleRL-Stage
2 with and without additional planning information. RL-tuned models (Stage 1 and Stage 2) maintain
performance with planning guidance, while the base model shows performance degradation in four
out of five benchmarks when provided with plans. AIME24 exhibits the most pronounced effect
where even RL-tuned models perform better without externally imposed plans.

RL-tuned models demonstrate improved flexibility in plan following and execution. Planning is
integral for problem-solving. Surprisingly, we find that a valid plan, derived from human solutions, is
not necessarily a good plan for models to execute. Without externally imposed constraints, models can
generate more reliable planning structures, such as functional Python code. Using predefined planning
templates, while seemingly advantageous, paradoxically increases the likelihood of overlooking

4It is crucial to provide complete reasoning chunks rather than only the initial steps, as partial augmentations
may limit the benefit of guided reasoning.
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corner cases, resulting in incorrect final answers (Table 3). Figure 4 quantifies these effects across
benchmarks. The base model’s performance drops in every task except GSM8K. For elementary
tasks like GSM8K (difficulty 1/10), the base model already possesses basic planning ability and
benefits from explicit step-by-step instructions. For example, when the base model fails by attempting
simultaneous calculations, it succeeds once guided to decompose the steps.

RL-tuned models, however, display stronger plan-following flexibility. Their performance remains
stable or improves slightly with additional plans—except on the most difficult task, AIME24, both
Stage 1 and Stage 2 see performance drop (e.g., Stage 2 decreases from 50.4% to 47.9%). Importantly,
RL-tuned models consistently perform best when allowed to develop their own planning strategies
rather than following human-derived ones. This suggests that RL fosters internal strategies aligned
with the model’s reasoning dynamics, while externally imposed plans may conflict with the heuristics
learned during training.

Additional SFT experiments (Appendix G) confirm that RL enhances plan-following flexibility
beyond instruction following and Appendix E reports additional results for the 32B model.

5.4 Does RL Improve Knowledge Utilization?

Figure 5: Comparison of Qwen-2.5-Math-7B, SparkleRL-Stage 1, and SparkleRL-Stage 2 with
and without knowledge information. The base model shows consistent performance degradation
(avg. 5.4% decrease) when provided with external knowledge, RL-tuned models show significant
performance improvements (4.3% and 4.2% avg. gains for Stage 1 and Stage 2 models, respectively).

RL-tuned models exhibit enhanced knowledge integration capabilities despite inherent
knowledge limitations. Figure 5 compares the performance of Qwen-2.5-Math-7B, SparkleRL-Stage
1, SparkleRL-Stage 2-pss with and without access to supplementary knowledge. The base model’s
performance consistently declines when given external knowledge (average drop of 5.4% across
five tasks), indicating fundamental limitations in its ability to incorporate external information into
its reasoning process efficiently. In contrast, both RL-tuned variants show substantial gains when
provided with the same knowledge—averaging improvements of 4.3% (Stage 1) and 4.2% (Stage
2). This is a critical distinction between base and RL-tuned models and suggests that while these
RL-tuned models still exhibit knowledge limitations, they have developed robust mechanisms for
integrating new information during inference. A practical takeaway: rather than relying solely on
continued RL fine-tuning—which may risk catastrophic forgetting—providing targeted external
knowledge is a simple and effective way to enhance performance on knowledge-intensive tasks.

Appendix E further shows that for the 32B model, knowledge augmentation provides larger gains
than planning for RL-tuned variants.

5.5 Can RL Solve Decomposed Hard Problems?

RL-tuned models still struggle with detailed subproblem resolution. To test whether RL improves
systematic problem decomposition, we compare performance on full problems versus their constituent
subproblems. Figure 6 shows results for Qwen-2.5-Math-7B, SparkleRL-Stage 1 and SparkleRL-
Stage 2-pss on original problems vs. their ability to solve all subproblems of those same problems.

Let P be a problem which can be decomposed into K subproblems {s1, s2, . . . , sK}. The
subproblem success rate SSR(P ) is defined as: 1 if the model correctly solves all subproblems
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Figure 6: Comparison of Qwen-2.5-Math-7B, SparkleRL-Stage 1, and SparkleRL-Stage 2 with
original problems and average subproblem success rate. Results show a consistent performance gap
between solving complete problems and successfully addressing all constituent subproblems.

and 0 otherwise. For a set of N problems {P1, P2, ..., PN}, the average subproblem success rate
is ¯SSR = 1

N

∑N
i=1 SSR(Pi). Across all tasks, both base and RL-tuned models show a large gap

between original accuracy and ¯SSR. On AIME24—the hardest benchmark—Qwen-2.5-Math-7B
reaches 16.7% accuracy on full problems but only 3.3% on subproblems; SparkleRL-Stage 2-pss
achieves 50.4% on full problems but just 17.5% on subproblems. Viewed alongside the planning
results in Figure 4, this suggests that RL-tuned models benefit from high-level planning guidance but
remain weak at detailed decomposition and resolution. Even when subproblems appear simpler in
isolation, the difficulty lies in solving every component consistently. Overall, current RL methods
favor autonomous high-level strategies that align with a model’s internal dynamics, while effective
decomposed problem solving would likely require new methods tailored to ensure consistency
across subproblems.

5.6 A Closer Look at Knowledge and Planning by Difficulty Level

(a) With and without additional planning information.
RL-tuned models maintain stable across difficulties;
base model degrades as difficulty increases.

(b) With and without knowledge information.
Knowledge augmentation benefits RL-tuned models
more, especially on harder problems.

Figure 7: Base model vs. RL-tuned model pass@1 by difficulty level.

Knowledge integration becomes increasingly valuable as problem difficulty rises, while planning
benefits remain relatively constant. Figure 7a and 7b show how planning and knowledge
augmentation varies with problem difficulty. Across levels 1–8 (where sample sizes are reliable),
supplementary knowledge consistently outperforms planning, and this advantage grows as tasks
become harder. For example, at level 7 (41 problems), knowledge augmentation improves RL-
tuned performance by +4.9% while planning reduces accuracy by -4.9%; at level 8 (40 problems),
knowledge yields a dramatic +42.5% gain compared to +15% from planning. Weighted across levels,
knowledge provides an average improvement of +4.53%, compared to +2.50% from planning.

For RL-tuned models, these results highlight that external knowledge is a key driver of performance
on complex problems, while planning contributes smaller and less consistent gains. In contrast,
base models show the opposite pattern: planning often harms performance as difficulty increases,
and knowledge yields only modest improvements. This asymmetry indicates that base models
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are less capable of leveraging auxiliary information effectively, whereas RL-tuned models develop
mechanisms to integrate knowledge in ways that meaningfully enhance performance.

Together, these findings reinforce our broader thesis: RL fundamentally reshapes how models process
and integrate auxiliary information. As difficulty increases, this ability becomes a key differentiator
between base and RL-tuned models, particularly in knowledge-intensive reasoning tasks.

6 Related Work

Understanding Reinforcement Learning for LLM Reasoning. Gradient-based policy optimization
algorithms [15, 38, 39] with verifiable objectives have shown remarkable performance on reasoning-
intensive tasks [2, 37, 47]. Curriculum-based methods [3, 24, 41, 57], such as difficulty-aware
sampling, have been used to improve SFT and RL training for LLMs [19, 26, 48, 53]. Despite these
advances, the mechanism by which RL shapes reasoning remains an open question. Previous studies
have explored the interplay between SFT and RL in text-based [52] and visual environments [4],
but they only involve a single-stage RL and do not dissect RL’s effects beyond overall accuracy.
Yue et al. [54] argued that RL-tuned models mainly reweight reasoning paths rather than creating new
capabilities. Several recent surveys provide broader overviews of this evolving area [21, 33, 50, 56].
Our work moves beyond accuracy metrics for LLM reasoning under multi-stage RL.

Diverse Aspects of LLM Reasoning. Reasoning in LLMs has attracted significant attention in recent
years [20, 22]. At its core, reasoning is a cognitive process that integrates evidence, arguments, and
logic to reach conclusions or judgments. Research in cognitive science [7, 30, 35, 44] highlights
the interplay of knowledge, planning, and problem decomposition as fundamental components of
human problem solving. In the context of LLMs, knowledge retrieval and utilization [14, 25, 43],
subproblem decomposition [8, 23, 46, 58], and planning [45] have also been explored individually.
However, it remains largely underexplored how RL shapes these crucial dimensions—a critical gap
we address in this work.

Mathematical Reasoning Benchmarks. Mathematical problem-solving has become a central
testbed for evaluating LLM reasoning capabilities [11, 27, 29, 42]. While earlier benchmarks such
as GSM8K [5] and MATH [18] target grade-school and competition-level mathematics, newer
models perform strongly on these tasks, necessitating harder benchmarks such as AMC12 and
AIME [32]. Recent models show impressive results: OpenAI-o3 model scored 91.6% in AIME2024,
and DeepSeek-R1 [28] reached 97.3% on MATH500. Nevertheless, most of these benchmarks—
despite their utility—provide only coarse-grained signals of reasoning ability with little insight into
internal processes, motivating our more fine-grained diagnostic framework.

7 Discussion and Conclusion

We investigated if and how reinforcement learning shapes the reasoning capabilities of LLMs. To this
end, we proposed SPARKLE, a fine-grained analytic framework that decomposes reasoning into plan
following, knowledge integration, and subproblem solving. By augmenting existing mathematical
reasoning benchmarks with human verification, we built the SPARKLE benchmark for detailed
analysis. Our findings show that RL improves flexibility in plan following and knowledge utilization,
yet compositional subproblem solving remains fragile. Interestingly, human-crafted plans can hinder
RL-tuned models, which prefer autonomous, high-level strategies aligned with their internal reasoning.
In contrast, lightweight external knowledge injection proves more beneficial, particularly for difficult
tasks. We further introduce SparkleRL-PSS, a multi-stage RL pipeline that reuses hard problems with
partial step scaffolding—avoiding new data generation while effectively guiding exploration.

Looking forward, we highlight two promising directions: (1) Data perspective: developing methods
to make diverse and imperfect data to provide effective guiding signals for RL, while aligning models’
intrinsic reasoning strategies; and (2) Training perspective: systematically incorporating auxiliary
hints for difficult problems, such as high-level plans, modular knowledge, or subproblem cues, into
RL training to induce richer and more adaptive reasoning behavior. Overall, our framework, method,
and findings shed light on if and how RL contributes to reasoning, offering practical insights for
developing more intelligent, data-efficient, and interpretable RL pipelines for LLMs.
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A Limitations and Societal Impacts

Limitations While our analysis offers a detailed empirical view of how multi-stage RL shapes
reasoning across plan following and execution, knowledge use, and problem decomposition, several
limitations remain. We typically focus on structured reasoning problems (e.g., math), and it
may require adaptation for domains with less structured and explicit decomposition. The dataset
construction process, though expert-validated, depends on human annotation and may face scalability
challenges. Lastly, our findings are empirical; developing theoretical tools to characterize internal
reasoning strategies remains an important direction for future work.

Societal Impacts Our work contributes tools and insights for building more transparent and
interpretable reasoning models. By identifying how RL enhances specific reasoning behaviors, our
framework can guide more targeted and efficient model development, especially in high-stakes
domains such as education or science. While our datasets are math-focused and not privacy-sensitive,
applying this methodology to broader domains will require careful attention to fairness and alignment.
We hope this framework encourages more robust and trustworthy training practices for reasoning-
capable LLMs.

B SPARKLE Dataset Details

Following Section 2.2, we present more details for the constructed SparkleRL datasets.

SPARKLE is created based on diverse mathematical problem benchmarks including AIME24 [32],
AMC23 [31], MATH500 [17], GSM8K [5], and OlympiadBench [16] (test splits). Each problem
is augmented with planning information derived from the groundtruth reasoning traces, relevant
knowledge components, and a sequence of subproblems curated via the pipeline introduced in
Section 2.2. We also annotate the difficulty level (template shown in Figure 8) and mathematical
domain following [11] (e.g., linear algebra, geometry, number theory). The resulting SPARKLE
benchmark contains 2,564 open-ended questions spanning 10 difficulty levels and 9 domains.

B.1 A full example of the SPARKLE dataset

We present a complete example of the SPARKLE benchmark in Figure 9. For the problem "One
of Euler’s conjectures...", we include its answer "144" and step-by-step solution "Taking the given
equation modulo 2,3, and 5...". We also add its difficulty level of "4" (averaged from three GPT-4.1
ratings), the domain "Number Theory → Congruences", and a high-level solution plan "Step 1:
Analyze the modular properties...", related knowledge "Fact: Euler’s sum of powers conjecture
posited...", and smaller subproblems "Q1: What remainder patterns emerge...". This enable a finer-
grained evaluation of how reasoning models work and where they fail across different difficulty levels
and domains.

Template for Labeling Difficulty Level

<system_role>
You are an expert grader for mathematics problems. Given a Problem and a Solution, estimate the
problem’s difficulty on a 1–10 scale according to the AoPS standard.
Below is the AoPS standard for difficulty estimation:
<requirements>
All levels are estimated and refer to averages. The following is a rough standard based on the USA
tier system AMC 8 – AMC 10 – AMC 12 – AIME – USAMO/USAJMO – IMO, representing Middle
School – Junior High – High School – Challenging High School – Olympiad levels. Other contests can
be interpolated against this.
Notes: Multiple-choice tests like the AMC are rated as though they are free-response. Test-takers can
use the answer choices as hints and therefore correctly answer more AMC questions than Mathcounts or
AIME problems of similar difficulty. Some Olympiads are taken in two sessions, with two similarly
difficult sets of questions numbered as one set. For these, the first half of the test (questions 1–3) is of
similar difficulty to the second half (questions 4–6).
Scale
1: Problems strictly for beginners, on the easiest elementary or middle-school levels (MOEMS,
MATHCOUNTS Chapter, AMC 8 1–20, AMC 10 1–10, AMC 12 1–5, and others that involve
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standard techniques introduced up to the middle-school level); most traditional middle/high-school word
problems.
2: For motivated beginners; harder questions from the previous categories (AMC 8 21–25, harder
MATHCOUNTS States questions, AMC 10 11–20, AMC 12 5–15, AIME 1–3); traditional middle/high-
school word problems with more complex problem solving.
3: Advanced-beginner problems that require more creative thinking (harder MATHCOUNTS Nationals
questions, AMC 10 21–25, AMC 12 15–20, AIME 4–6).
4: Intermediate-level problems (AMC 12 21–25, AIME 7–9).
5: More difficult AIME problems (10–12); simple proof-based Olympiad-style problems (early JBMO
questions, easiest USAJMO 1/4).
6: High-level AIME-style questions (13–15); introductory Olympiad-level questions (harder USAJMO
1/4 and easier USAJMO 2/5; easier USAMO and IMO 1/4).
7: Tougher Olympiad-level questions; may require more technical knowledge (harder USAJMO 2/5 and
most USAJMO 3/6; extremely hard USAMO and IMO 1/4; easy–medium USAMO and IMO 2/5).
8: High-level Olympiad problems (medium–hard USAMO and IMO 2/5; easiest USAMO and IMO
3/6).
9: Expert Olympiad problems (average USAMO and IMO 3/6).
10: Historically hard problems, generally unsuitable for even very hard competitions (such as the IMO)
due to being exceedingly tedious, long, and difficult (e.g., very few students worldwide are capable of
solving them).
Examples
For reference, here are problems from each of the difficulty levels 1–10:
1: Jamie counted the number of edges of a cube, Jimmy counted the number of corners, and Judy
counted the number of faces. They then added the three numbers. What was the resulting sum?
1: Let trapezoid ABCD be such that AB ∥ CD. Additionally, AC = AD = 5, CD = 6, and
AB = 3. Find BC.
1: How many integer values of x satisfy |x| < 3π?
1: The whole number N is divisible by 7. N leaves a remainder of 1 when divided by 2, 3, 4, or 5.
What is the smallest possible value of N?
1: The value of a two-digit number is 10 times the sum of its digits. The units digit is 1 more than twice
the tens digit. Find the number.
1: The coordinates of △ABC are A(5, 7), B(11, 7), and C(3, y) with y > 7. The area of △ABC is
12. What is y?
1: How many different three-digit whole numbers can be formed using the digits 4, 7, and 9, assuming
that no digit is repeated?
1.5: A number is called flippy if its digits alternate between two distinct digits. For example, 2020 and
37373 are flippy, but 3883 and 123123 are not. How many five-digit flippy numbers are divisible by
15?
1.5: A rectangular box has integer side lengths in the ratio 1 : 3 : 4. Which of the following could be
the volume of the box?
1.5: Two lines with slopes 1

4
and 5

4
intersect at (1, 1). What is the area of the triangle formed by these

two lines and the vertical line x = 5?
2: A fair six-sided die is repeatedly rolled until an odd number appears. What is the probability that
every even number appears at least once before the first occurrence of an odd number?
2: A small airplane has 4 rows of seats with 3 seats in each row. Eight passengers have boarded the
plane and are distributed randomly among the seats. A married couple is next to board. What is the
probability there will be two adjacent seats in the same row for the couple?
2: Suppose that 2009

2014
+ 2019

n
= a

b
, where a, b, and n are positive integers with a

b
in lowest terms. What

is the sum of the digits of the smallest positive integer n for which a is a multiple of 1004?
2.5: A, B, C are three piles of rocks. The mean weight of the rocks in A is 40 pounds, in B is 50
pounds, in the combined piles A and B is 43 pounds, and in the combined piles A and C is 44 pounds.
What is the greatest possible integer value for the mean, in pounds, of the rocks in the combined piles B
and C?
2.5: For some positive integer k, the repeating base-k representation of the (base-ten) fraction 7

51
is

0.23k = 0.232323 . . .k. What is k?
3: Triangle ABC with AB = 50 and AC = 10 has area 120. Let D be the midpoint of AB, and let E
be the midpoint of AC. The angle bisector of ∠BAC intersects DE and BC at F and G, respectively.
What is the area of quadrilateral FDBG?
3: Wayne has 3 green buckets, 3 red buckets, 3 blue buckets, and 3 yellow buckets. He randomly
distributes 4 hockey pucks among the green buckets, with each puck equally likely to be put in each
bucket. Similarly, he distributes 3 pucks among the red buckets, 2 among the blue buckets, and 1 among
the yellow buckets. Once he is finished, what is the probability that a green bucket contains more pucks
than each of the other 11 buckets?
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3: An object in the plane moves from one lattice point to another. At each step, the object may move
one unit to the right, left, up, or down. If the object starts at the origin and takes a ten-step path, how
many different points could be the final point?
3: Consider the integer

N = 9 + 99 + 999 + 9999 + · · ·+ 99 . . . 99︸ ︷︷ ︸
321 digits

.

Find the sum of the digits of N .
3: Let △LMN have side lengths LM = 15, MN = 14, and NL = 13. Let the angle bisector of
∠MLN meet the circumcircle of △LMN at a point T ̸= L. Determine the area of △LMT .
3.5: Find all three-digit numbers abc (with a ̸= 0) such that a2 + b2 + c2 is a divisor of 26.
3.5: Consider polynomials P (x) of degree at most 3, each of whose coefficients is in
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. How many such polynomials satisfy P (−1) = −9?
3.5: Find the number of integer values of k in the closed interval [−500, 500] for which the equation
log(kx) = 2 log(x+ 2) has exactly one real solution.
3.5: In a drawer there are at most 2009 balls, some white and the rest blue, which are randomly
distributed. If two balls are taken at the same time, the probability that the balls are both blue or
both white is 1

2
. Determine the maximum possible number of white balls in the drawer such that the

probability statement is true.
3.5: Find three isosceles triangles, no two of which are congruent, with integer sides, such that each
triangle’s area is equal to six times its perimeter.
4: Define a sequence recursively by x0 = 5 and

xn+1 =
x2
n + 5xn + 4

xn + 6

for all nonnegative integers n. Let m be the least positive integer such that

xm ≤ 4 +
1

220
.

In which of the following intervals does m lie?
4: An ant makes a sequence of moves on a cube where a move consists of walking from one vertex to
an adjacent vertex along an edge. Initially the ant is at a vertex of the bottom face and chooses one of
the three adjacent vertices as its first move. For all moves after the first, the ant does not return to its
previous vertex but chooses to move to one of the other two adjacent vertices. All choices are equally
likely. The probability that after exactly 8 moves the ant is at a vertex of the top face is m

n
, where m and

n are relatively prime positive integers. Find m+ n.
4: Find all real numbers a, b, c, d such that{

a+ b+ c+ d = 20,

ab+ ac+ ad+ bc+ bd+ cd = 150.

(A) [9, 26] (B) [27, 80] (C) [81, 242] (D) [243, 728] (E) [729,∞)
4: The vertices of an equilateral triangle lie on the hyperbola xy = 1, and a vertex of this hyperbola is
the centroid of the triangle. What is the square of the area of the triangle?
4: Isosceles trapezoid ABCD has parallel sides AD and BC, with BC < AD and AB = CD. There
is a point P in the plane such that PA = 1, PB = 2, PC = 3, and PD = 4. What is BC/AD?
4.5: Find, with proof, all positive integers n for which 2n + 12n + 2011n is a perfect square.
4.5: Find the minimum value of

f(x) = x2008 − 2x2007 + 3x2006 − 4x2005 + · · · − 2006x3 + 2007x2 − 2008x+ 2009

over all real numbers x.
4.5: Show that the equation a2b2 + b2c2 + 3b2 − c2 − a2 = 2005 has no integer solutions.
5: Triangle ABC has side lengths AB = 7, BC = 8, and CA = 9. Circle ω1 passes through B and
is tangent to line AC at A. Circle ω2 passes through C and is tangent to line AB at A. Let K be the
intersection of circles ω1 and ω2 not equal to A. Then AK = m

n
, where m and n are relatively prime

positive integers. Find m+ n.
5: A pair of integers (m,n) is called good if

m | (n2 + n) and n | (m2 +m).

Given relatively prime integers a, b > 1, prove that there exists a good pair (m,n) with a | m and
b | n, but a ∤ n and b ∤ m. 5: Let ABCD be a convex quadrilateral with ∠DAC = ∠BDC = 36◦,
∠CBD = 18◦, and ∠BAC = 72◦. The diagonals intersect at point P . Determine the measure of
∠APD.
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5: Call a positive real number groovy if it can be written in the form
√
n+

√
n+ 1 for some positive

integer n. Show that if x is groovy, then for any positive integer r, the number xr is also groovy.
5: Find all prime numbers p, q, r such that p

q
− 4

r+1
= 1.

5: There are a+ b bowls arranged in a row, numbered 1 through a+ b, where a and b are given positive
integers. Initially, each of the first a bowls contains an apple, and each of the last b bowls contains a
pear. A legal move consists of moving an apple from bowl i to bowl i+ 1 and a pear from bowl j to
bowl j − 1, provided that the difference i− j is even. Multiple fruits may occupy the same bowl. The
goal is to end with the first b bowls each containing a pear and the last a bowls each containing an apple.
Show that this is possible if and only if the product ab is even.
5: Solve the equation 3x − 5y = z2 in positive integers.
5: Find all triples (a, b, c) of real numbers such that

a+ b+ c =
1

a
+

1

b
+

1

c
, a2 + b2 + c2 =

1

a2
+

1

b2
+

1

c2
.

5.5: Semicircle Γ has diameter AB of length 14. Circle ω lies tangent to AB at a point P and intersects
Γ at points Q and R. If QR = 3

√
3 and ∠QPR = 60◦, then the area of △PQR equals a

√
b

c
, where

a and c are relatively prime positive integers, and b is a positive integer not divisible by the square of
any prime. Find a + b + c. 5.5: Triangle ABC has ∠BAC = 60◦, ∠CBA ≤ 90◦, BC = 1, and
AC ≥ AB. Let H , I , and O be the orthocenter, incenter, and circumcenter of △ABC, respectively.
Assume that the area of pentagon BCOIH is maximized. What is ∠CBA?
6: Given an acute triangle ABC. The incircle of △ABC touches BC,CA,AB at D,E, F ,
respectively. The angle bisector of ∠A meets DE and DF at K and L, respectively. Suppose
AA1 is an altitude of △ABC, and let M be the midpoint of BC. (a) Prove that BK and CL are
perpendicular to the angle bisector of ∠BAC. (b) Show that A1KML is cyclic.
6: Let ABCD be a convex quadrilateral. Let I = AC ∩BD, and let E, H , F , and G lie on AB, BC,
CD, and DA, respectively, such that EF ∩GH = I . If M = EG ∩AC and N = HF ∩AC, show
that

AM

IM
· IN

CN
=

IA

IC
.

6: A 4× 4 table is divided into 16 white unit square cells. Two cells are neighbors if they share a side.
A move consists of choosing a cell and toggling the colors of its neighbors. After exactly n moves all
16 cells are black. Find all possible values of n.
6: A magic 3 × 5 board can toggle its cells between black and white. Define a pattern to be an
assignment of black or white to each of the 15 cells (so there are 215 patterns total). Every day after
Day 1, at the beginning of the day, the board creates a new pattern. However, the board always wants
to be unique and will die if any two of its patterns are fewer than 3 cells different from each other.
Furthermore, the board dies if it becomes all white. If the board begins with all cells black on Day 1,
compute the maximum number of days it can stay alive.
6: Let a, b, c be positive real numbers such that a+ b+ c = 4 3

√
abc. Prove that

2(ab+ bc+ ca) + 4min(a2, b2, c2) ≥ a2 + b2 + c2.

6: Let MN be a line parallel to side BC of triangle ABC, with M on AB and N on AC. The lines
BN and CM meet at P . The circumcircles of triangles BMP and CNP meet again at Q ̸= P . Prove
that ∠BAQ = ∠CAP .
6: Let P be a convex n-gon with n ≥ 3. Any set of n− 3 diagonals of P that do not intersect in the
interior of the polygon determines a triangulation of P into n− 2 triangles. If P is regular and there
is a triangulation consisting only of isosceles triangles, find all possible values of n. 6: Let Γ be the
circumcircle of acute triangle ABC. Points D and E are on segments AB and AC, respectively, such
that AD = AE. The perpendicular bisectors of BD and CE intersect the minor arcs AB and AC of Γ
at points F and G, respectively. Prove that lines DE and FG are either parallel or coincide.
6: Let △ABC be an acute triangle with circumcircle ω, and let H be the intersection of the altitudes of
△ABC. Suppose the tangent to the circumcircle of △HBC at H intersects ω at points X and Y , with
HA = 3, HX = 2, and HY = 6. The area of △ABC can be written in the form m

√
n, where m and

n are positive integers, and n is squarefree. Find m+ n.
6.5: Let

P (x) = 24x24 +

23∑
j=1

(24− j)
(
x24−j + x24+j).

Let z1, z2, . . . , zr be the distinct zeros of P (x), and let z2k = ak + bki for k = 1, 2, . . . , r, where
i =

√
−1 and ak, bk ∈ R. Let

r∑
k=1

|bk| = m+ n
√
p,
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where m,n, p are integers and p is squarefree. Find m+ n+ p.
6.5: Rectangles BCC1B2, CAA1C2, and ABB1A2 are erected outside an acute triangle ABC.
Suppose that

∠BC1C + ∠CA1A+ ∠AB1B = 180◦.

Prove that lines B1C2, C1A2, and A1B2 are concurrent.
7: We say that a finite set S in the plane is balanced if, for any two distinct points A,B ∈ S , there exists
a point C ∈ S such that AC = BC. We say that S is centre-free if for any three points A,B,C ∈ S,
there is no point P ∈ S such that PA = PB = PC. Show that for all integers n ≥ 3, there exists a
balanced set consisting of n points. Determine all integers n ≥ 3 for which there exists a balanced
centre-free set consisting of n points.
7: Two rational numbers m

n
and n

m
are written on a blackboard, where m and n are relatively prime

positive integers. At any point, Evan may pick two of the numbers x and y written on the board and
write either their arithmetic mean x+y

2
or their harmonic mean 2xy

x+y
on the board as well. Find all pairs

(m,n) such that Evan can write 1 on the board in finitely many steps.
7: A 9× 12 rectangle is partitioned into unit squares. The centers of all the unit squares, except for the
four corner squares and the eight squares sharing a side with one of them, are colored red. Is it possible
to label these red centers C1, C2, . . . , C96 in such a way that the following two conditions are both
fulfilled: (i) the distances C1C2, . . . , C95C96, C96C1 are all equal to

√
13; (ii) the closed broken line

C1C2 · · ·C96C1 has a center of symmetry?
7: Three nonnegative real numbers r1, r2, r3 are written on a blackboard. These numbers have the
property that there exist integers a1, a2, a3, not all zero, satisfying a1r1 + a2r2 + a3r3 = 0. We may
perform the following operation: find two numbers x ≤ y on the blackboard, erase y, and write y − x
in its place. Prove that after finitely many such operations, we can obtain at least one 0.
7: Find the least possible area of a concave set in the 7-D plane that intersects both branches of the
hyperparabola xyz = 1 and both branches of the hyperbola xwy = −1. (A set S in the plane is called
convex if for any two points in S the line segment connecting them is contained in S.)
7: Find all integers n ≥ 3 such that the following property holds: if we list the divisors of n! in
increasing order as 1 = d1 < d2 < · · · < dk = n!, then

d2 − d1 ≤ d3 − d2 ≤ · · · ≤ dk − dk−1.

7: Let P (x) be a polynomial of degree n > 1 with integer coefficients, and let k be a positive integer.
Consider the polynomial Q(x) = P (P (· · ·P (x) · · · ))︸ ︷︷ ︸

k times

. Prove that there are at most n integers t such

that Q(t) = t.
7.5: Let Z be the set of integers. Find all functions f : Z → Z such that

xf(2f(y)− x) + y2f(2x− f(y)) =
f(x)2

x
+ f(yf(y))

for all x, y ∈ Z with x ̸= 0.
8: For each positive integer n, the Bank of Cape Town issues coins of denomination 1

n
. Given a finite

collection of such coins (not necessarily of different denominations) with total value at most 99 + 1
2

,
prove that it is possible to split this collection into 100 or fewer groups such that each group has total
value at most 1. 8: Denote by S the set of all positive integers. Find all functions f : S → S such that

f
(
f2(m) + 2f2(n)

)
= m2 + 2n2 for all m,n ∈ S.

8: Prove that any monic polynomial of degree n with real coefficients is the average of two monic
polynomials of degree n with n real roots. 8: Let H be an n× n matrix all of whose entries are ±1 and
whose rows are mutually orthogonal. Suppose H has an a× b submatrix whose entries are all 1. Show
that ab ≤ n.
8: Let m be a positive integer. A triangulation of a polygon is m-balanced if its triangles can be colored
with m colors so that the sum of the areas of all triangles of the same color is the same for each color.
Find all positive integers n for which there exists an m-balanced triangulation of a regular n-gon. (A
triangulation of a convex polygon P with n ≥ 3 sides is any partition of P into n− 2 triangles by n− 3
diagonals of P that do not intersect in the polygon’s interior.) 8: Given an integer m, prove that there
exist odd integers a, b and a positive integer k such that

2m = a19 + b99 + k · 21000.
8: Let S1, S2, . . . , S100 be finite sets of integers whose intersection is nonempty. For each nonempty
T ⊆ {S1, . . . , S100}, the size of the intersection of the sets in T is a multiple of |T |. What is the least
possible number of elements that lie in at least 50 sets?
8.5: Let I be the incenter of acute triangle ABC with AB ̸= AC. The incircle ω of ABC is tangent to
sides BC, CA, and AB at D, E, and F , respectively. The line through D perpendicular to EF meets
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ω at R. Line AR meets ω again at P . The circumcircles of triangles PCE and PBF meet again at Q.
Prove that lines DI and PQ meet on the line through A perpendicular to AI .
9: Let k be a positive integer and let S be a finite set of odd primes. Prove that there is at most one
way (up to rotation and reflection) to place the elements of S around a circle such that the product of
any two neighbors is of the form x2 + x + k for some positive integer x. 9: For any a > 0, define
the set S(a) = {⌊an⌋ | n = 1, 2, 3, . . .}. Show that there are no three positive reals a, b, c such that
S(a) ∩ S(b) = S(b) ∩ S(c) = S(c) ∩ S(a) = ∅ and S(a) ∪ S(b) ∪ S(c) = {1, 2, 3, . . .}. 9: Given a
positive integer n and real numbers a1 < a2 < · · · < an such that

∑n
i=1

1
ai

≤ 1, prove that for any
x > 0, (

n∑
i=1

1

a2
i + x

)2

≥ 1

2a1(a1 − 1) + 2x
.

9: Point D is selected inside acute triangle ABC so that ∠DAC = ∠ACB and ∠BDC = 90◦ +
∠BAC. Point E is chosen on ray BD so that AE = EC. Let M be the midpoint of BC. Show that
line AB is tangent to the circumcircle of triangle BEM .
9: Let n > 2 be an integer and let ℓ ∈ {1, 2, . . . , n}. A collection A1, . . . , Ak of (not necessarily
distinct) subsets of {1, 2, . . . , n} is called ℓ-large if |Ai| ≥ ℓ for all 1 ≤ i ≤ k. Find, in terms of n and
ℓ, the largest real number c such that

k∑
i=1

k∑
j=1

xixj
|Ai ∩Aj |2

|Ai| · |Aj |
≥ c

(
k∑

i=1

xi

)2

holds for all positive integers k, all nonnegative real numbers x1, . . . , xk, and all ℓ-large collections
A1, . . . , Ak of subsets of {1, 2, . . . , n}. (For a finite set S, |S| denotes its cardinality.)
9: Let ABC be a triangle with incenter I and excenters Ia, Ib, Ic opposite A, B, and C, respectively.
Given an arbitrary point D on the circumcircle of △ABC that does not lie on any of the lines IIa, IbIc,
or BC, suppose the circumcircles of △DIIa and △DIbIc intersect at two distinct points D and F . If
E is the intersection of lines DF and BC, prove that ∠BAD = ∠EAC.
9.5: An anti-Pascal triangle is an equilateral triangular array of numbers such that, except for the
numbers in the bottom row, each number is the absolute value of the difference of the two numbers
immediately below it. For example, the following is an anti-Pascal triangle with four rows which
contains every integer from 1 to 10.

4
2 6

5 7 1
8 3 10 9

Does there exist an anti-Pascal triangle with 2018 rows that contains every integer from 1 to 1 + 2 +
· · ·+ 2018? 9.5: Let ABC be an equilateral triangle. Let A1, B1, C1 be interior points of ABC such
that BA1 = A1C, CB1 = B1A, AC1 = C1B, and

∠BA1C + ∠CB1A+ ∠AC1B = 480◦.

Let BC1 and CB1 meet at A2, let CA1 and AC1 meet at B2, and let AB1 and BA1 meet at C2. Prove
that if triangle A1B1C1 is scalene, then the three circumcircles of triangles AA1A2, BB1B2, and
CC1C2 all pass through two common points.
10: Prove that there exists a positive constant c such that the following statement is true: Consider an
integer n > 1 and a set S of n points in the plane such that the distance between any two distinct points
in S is at least 1. Then there is a line ℓ separating S such that the distance from any point of S to ℓ is at
least cn−1/3. (A line ℓ separates a set of points S if some segment joining two points in S crosses ℓ.)
10: Turbo the snail plays a game on a board with 2024 rows and 2023 columns. There are hidden
monsters in 2022 of the cells. Initially, Turbo does not know where any of the monsters are, but he
knows that there is exactly one monster in each row except the first and last rows, and that each column
contains at most one monster. Turbo makes a series of attempts to go from the first row to the last
row. On each attempt, he chooses any cell in the first row, then repeatedly moves to an adjacent cell
sharing a side (he may return to a previously visited cell). If he reaches a cell with a monster, his attempt
ends and he is transported back to the first row to start a new attempt. The monsters do not move, and
Turbo remembers whether each visited cell contains a monster. If he reaches any cell in the last row, his
attempt ends and the game is over. Determine the minimum value of n for which Turbo has a strategy
that guarantees reaching the last row on the nth attempt or earlier, regardless of the locations of the
monsters.
10: Let Q be the set of rational numbers. A function f : Q → Q is called aquaesulian if the following
property holds: for every x, y ∈ Q,

f(x+ f(y)) = f(x) + y or f(f(x) + y) = x+ f(y).
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Show that there exists an integer c such that for any aquaesulian function f there are at most c different
rational numbers of the form f(r) + f(−r) for some rational r, and find the smallest possible value of
c.
10: Let n be a positive integer. A Nordic square is an n× n board containing all the integers from 1 to
n2, each used exactly once. Two different cells are adjacent if they share an edge. Every cell that is
adjacent only to cells containing larger numbers is called a valley. An uphill path is a sequence of one
or more cells such that: (i) the first cell in the sequence is a valley; (ii) each subsequent cell is adjacent
to the previous cell; and (iii) the numbers written in the cells in the sequence are in increasing order.
Find, as a function of n, the smallest possible total number of uphill paths in a Nordic square.
10: Let ABC be an equilateral triangle. Let A1, B1, C1 be interior points of ABC such that BA1 =
A1C, CB1 = B1A, AC1 = C1B, and

∠BA1C + ∠CB1A+ ∠AC1B = 480◦.

Let BC1 and CB1 meet at A2, let CA1 and AC1 meet at B2, and let AB1 and BA1 meet at C2. Prove
that if triangle A1B1C1 is scalene, then the three circumcircles of triangles AA1A2, BB1B2, and
CC1C2 all pass through two common points.
10: Let n be a positive integer. A Japanese triangle consists of 1 + 2 + · · · + n circles arranged
in an equilateral triangular shape such that, for each i = 1, 2, . . . , n, the ith row contains exactly i
circles, exactly one of which is colored red. A ninja path in a Japanese triangle is a sequence of n
circles obtained by starting in the top row, then repeatedly going from a circle to one of the two circles
immediately below it and finishing in the bottom row.
10: Let n > 1 be an integer and let a0, a1, . . . , an be nonnegative real numbers. Define Sk =∑k

i=0

(
k
i

)
ai for k = 0, 1, . . . , n. Prove that

1

n

n−1∑
k=0

S2
k − 1

n2

(
n∑

k=0

Sk

)2

≤ 4

45
(Sn − S0)

2.

</requirements>
The user will provide a problem and a solution. Your task is to estimate the problem’s difficulty
according to the AoPS scale described above.
Output only a single JSON object with the fields below. Do not include any extra text.

{
"difficulty": <an integer from 1 to 10, inclusive>,
"reasoning": "<a concise explanation of the steps and logic used to assign
the difficulty>"

}

If the difficulty seems borderline, choose the nearest integer (break exact ties upward).
</system_role>
<user_prompt>
MATH PROBLEM: {{math_problem}}
SOLUTION: {{solution}}
</user_prompt>

Figure 8: Instruction for grading problem difficulty level. {{math_problem}} and {{solution}}
will be replaced with the specific question and corresponding solution during evaluation.

C Experimental Details
This section provides additional details on our training and evaluation following Section 4.

Training and evaluation setup. We study two-stage RL. In Stage 1, we establish baseline model
performance using a learning rate of 1e-6 and a KL loss coefficient of 0.001. For Stage 2, we
investigate whether challenging problems remain valuable for a model already well-trained with
large-scale RL from Stage 1. To avoid substantial deviation from this well-trained model, we maintain
the same configurations from Stage 1, except for increasing the KL loss coefficient to 0.01 to apply
a stronger penalty on divergence. Throughout Stage 2, we use a sampling temperature of 0.6 and
generate 32 samples per problem, prompt template as shown in Figure 10. During evaluation, we use
a sampling temperature of 0.6 and a maximum context length of 16k tokens.
Training algorithm. To enhance the reasoning capabilities of our models, we employ Group
Relative Policy Optimization (GRPO) [39], a variant of Proximal Policy Optimization (PPO) [38]
that eliminates the need for a separate value model by estimating advantages through group-based
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Problem:

One of  was disproved in the 1960s by three American mathematicians when they showed there was a 
positive integer such that



Find the value of    .

Euler's conjectures

Step 1: Analyze the  
of both sides to determine possible 
congruences for n modulo small 
primes. 

Step 2: Apply  
to deduce the congruences of n 
modulo 2, 3, and 5. 

Step 3: Use the 

 to combine these 
congruences and find a specific 
congruence modulo 30.

Step 4: Generate candidate values for 
n that satisfy this congruence. 

Step 5: Estimate  for n by 
comparing the sum on the left-hand 
side to potential values of     , using 
inequalities. 

Step 6: Test specific values of n within 
the narrowed range to identify the 
value of n that satisfies the original 
equation.

modular properties

Fermat's Little Theorem

Chinese Remainder 
Theorem

upper bounds

Planning:
 Knowledge:
 Subproblems:

Fact: 
posited that at least n nth powers are 
needed to sum to another nth power.

Definitions: 1)  
involves integers wrapping around 
upon reaching a certain value, the 
modulus; 2) The 

 provides a way to solve 
systems of simultaneous congruences 
with pairwise coprime moduli.

Theorems: 1) : 
If p is a prime number and a is an 
integer not divisible by p, then    

             ; 2) 

: If one knows the 
remainders of the division of an 
integer n by several pairwise coprime 
integers, then one can determine 
uniquely the remainder of the 
division of n by the product of these 
integers.

Euler's sum of powers conjecture 

Modular arithmetic

Chinese Remainder 
Theorem

Fermat's Little Theorem

Chinese Remainder 
Theorem

Q1: What remainder patterns emerge 
when      is divided by the primes 2, 3, 
and 5?

Q2: Based on the result from Q1, what 
is n modulo 30?

Q3: What are values for n greater 
than 133 that satisfy n ≡ 24 mod 30?

Q4: What is an upper bound for n by 
comparing the sum                                         

       to     ?

Q5: What is the value of n that 
satisfies all previous conditions and 
the original equation?

Taking the given equation modulo 2, 3, and 5, respectively, we have



By either Fermat's Little Theorem (FLT) or inspection, we get



By either the Chinese Remainder Theorem (CRT) or inspection, we get                                 .

It is clear that n > 133, so the possible values for n are 144, 174, 204, ... Note that



from which                      .



If                 , then




which arrives at a contradiction. Therefore, we conclude that                  .

Reasoning:


Problem:


Answer: 144
 Domain: Number Theory → Congruences
Difficulty Level: 4


Figure 9: Full example of benchmark instantiated from the SPARKLE framework. Given each
problem and reasoning process (top), we construct a high-level planning skeleton (bottom left)
capturing the overall solution strategy, relevant knowledge (bottom middle) required for reasoning,
and a sequence of interconnected subproblems (bottom right) that decompose the solution process.
We also annotated difficulty level (middle middle) and domain (middle right). This enables a fine-
grained understanding of reasoning capabilities and failure modes in reasoning models.

reward normalization. This design improves efficiency and stability in RL fine-tuning for LLMs.
More specifically, for each question q, GRPO samples a group of outputs {o1, o2, . . . , oG} from the
old policy πθold , and optimizes the current policy πθ by maximizing the following objective:

JGRPO(θ) = Eq∼P (Q),{oi}G
i=1∼πθold (O|q)

[
ĴGRPO(θ)

]
(1)

where ĴGRPO(θ) is given by:

ĴGRPO(θ) =
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

[
min

(
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
Âi,t,

clip
(

πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

)
− βDKL[πθ ∥πref]

]
Here, G is the number of sampled outputs per prompt, oi is the i-th sampled output sequence, and
oi,t is the token at step t in that sequence. Âi,t is the advantage at token t, computed based on relative

23



Problem
Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends
every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh duck egg. How much
in dollars does she make every day at the farmers’ market?

Planning
First, determine the total number of eggs Janet has each day. Next, subtract the number of eggs Janet uses for
breakfast and baking. The result is the number of eggs available for sale. Then, multiply the number of eggs sold
by the price per egg to determine the daily revenue from egg sales.

Model answer w/o provided planning Model answer w provided planning
First, let’s determine how many eggs Janet sells at the
farmers’ market each day:
Since Janet’s ducks lay 16 eggs and she eats 3 eggs
and bakes 4 eggs to make muffins, she has 16 - 3 - 4 =
12 eggs to sell. [INCORRECT: Calculation failed, 16
- 3 - 4 should be 9]
Perez’s profit from selling these eggs:
Since Janet sells each egg for $2, her daily profit is 12
× $2 = $24.
Thus, the answer is $24 .

First, we determine the total number of eggs Janet has
each day. Since Janet’s ducks lay 16 eggs per day, the
total number of eggs per day is 16.
Next, we subtract the number of eggs Janet uses for
breakfast and baking. Janet eats 3 eggs for breakfast
every day and bakes muffins with 4 eggs every day, so
she uses 3 + 4 = 7 eggs for breakfast and baking.
The number of eggs available for sale is the total
number of eggs minus the number of eggs used for
breakfast and baking. So, the number of eggs available
for sale is 16 - 7 = 9.
Then, we multiply the number of eggs sold by the
price per egg to determine the daily revenue from egg
sales. Since Janet sells the remaining eggs at $2 per
fresh duck egg, the daily revenue from egg sales is 9
× $2 = $18.
The final result is 18 .
[CORRECT: Answer is 18]

Table 2: Comparison of solutions with and without planning information for the Qwen-2.5-Math-7B
model. The solution without planning information makes a calculation error and arrives at an incorrect
answer ($24), while the solution with planning framework correctly follows the structured approach
and reaches the correct answer ($18).

rewards of the outputs inside each group [39]. πref is the reference policy used for KL regularization,
ϵ is the PPO clipping threshold, and β is the KL divergence penalty.

Software and hardware. We build upon the verl framework [40] for RL training. Our evaluation
is based on a modified version of lm-evaluation-harness [13]. We conduct training and evaluation
using 8 NVIDIA H200, 15 NVIDIA A100-PCIE-40GB and 9 NVIDIA A100-SXM4-40GB GPUs,
with Python 3.10, PyTorch 2.4.0, and Transformers 4.47.1.

Prompts and instructions. Following Section 5, we present detailed examples that support our
findings. Figure 11 shows instructions for providing additional planning information, Figure 12
presents instructions for providing additional knowledge information, and Figures 13 and 14
demonstrate instructions for asking subproblems when handling the first subproblem and sequencing
subproblems, respectively.

D Detailed Examples on Plan Following

We present a detailed example illustrating how RL-tuned models respond to planning information
in Table 3. For challenging tasks like AIME problems, providing detailed planning information
can actually impair performance. When presented with the problem alone, the RL-tuned model
generates an appropriate solution strategy and arrives at the correct answer (809). However, when
supplied with human-derived planning guidance, the model faithfully follows the general framework
but fails to identify critical details—specifically, it overlooks that n ≡ 0 (mod 5) are also losing
position—ultimately yielding an incorrect result (405).
For simpler problems, both base and RL-tuned models benefit from additional planning when the
guidance aligns with their internal reasoning processes. As demonstrated in Table 2, the base
model leverages detailed planning information by decomposing the calculation 16− 3− 4, which
it incorrectly computes as 12 without guidance. With detailed planning information, the model
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Template for Training SparkleRL Models

A conversation between User and Assistant. The user asks a math question, and the Assistant
solves it step by step. The Assistant first thinks about the complete reasoning process in
the mind enclosed within <think> </think> tags. Then the Assistant provides a clear,
concise answer to the user within <answer> </answer> tags, with the final result enclosed
in \boxed{} notation.

For example:
<think>
reasoning process here
</think>
<answer>
The answer is \boxed{...}.
</answer>

User: {{question}} Assistant:

Figure 10: Instruction for training SparkleRL models. {{question}} will be replaced with the
specific question during training.

Template for Providing Additional Planning Information

A conversation between User and Assistant. The user asks a math question, and the Assistant
solves it step by step. The Assistant first thinks about the complete reasoning process in
the mind enclosed within <think> </think> tags. Then the Assistant provides a clear,
concise answer to the user within <answer> </answer> tags, with the final result enclosed
in \boxed{} notation.

For example:
<think>
reasoning process here
</think>
<answer>
The answer is \boxed{...}.
</answer>

User: {{question}}
Consider the following planning skeleton to guide your reasoning. You may adapt or extend
this outline as needed based on your analysis of the problem:
{{planning}}
Assistant:

Figure 11: Instruction for providing additional planning information. {{question}} will be replaced
with the specific question during evaluation, while {{planning}} is replaced with a high-level
solution plan for the given problem.

successfully breaks this into two steps: 3 + 4 = 7, followed by 16 − 7 = 9, yielding the correct
result.
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Template for Providing Additional Knowledge Information

A conversation between User and Assistant. The user asks a math question, and the Assistant
solves it step by step. The Assistant first thinks about the complete reasoning process in
the mind enclosed within <think> </think> tags. Then the Assistant provides a clear,
concise answer to the user within <answer> </answer> tags, with the final result enclosed
in \boxed{} notation.

For example:
<think>
reasoning process here
</think>
<answer>
The answer is \boxed{...}.
</answer>

User: {{question}}
The following is a reference knowledge base for concepts you might not be familiar with. If
you already understand these concepts, you don’t need to rely on this information. Otherwise,
you can refer to this as needed:
{{knowledge}}
Assistant:

Figure 12: Instruction for providing additional knowledge information. {{question}} will be
replaced with the specific question during evaluation, while {{knowledge}} is replaced with relevant
knowledge base content related to the problem.

Template for Asking the First Subproblem

A conversation between User and Assistant. The user asks a math question, and the Assistant
solves it step by step. The Assistant first thinks about the complete reasoning process in
the mind enclosed within <think> </think> tags. Then the Assistant provides a clear,
concise answer to the user within <answer> </answer> tags, with the final result enclosed
in \boxed{} notation.

For example:
<think>
reasoning process here
</think>
<answer>
The answer is \boxed{...}.
</answer>

User:
Main Problem:
{{main-problem}}
We’ll solve this incrementally. Your task is to solve only the current subproblem.

Current Subproblem:
{{current-subproblem}}
Provide a detailed solution showing your reasoning process. Express your final answer within
\boxed{}. Assistant:

Figure 13: Instruction template for handling the first subproblem. {{main-problem}} and
{{current-subproblem}} are replaced with the specific main problem and current subproblem
question during evaluation, respectively.
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Problem
Alice and Bob play the following game. A stack of n tokens lies before them. The players take turns with Alice
going first. On each turn, the player removes either 1 token or 4 tokens from the stack. Whoever removes the last
token wins. Find the number of positive integers n less than or equal to 2024 for which there exists a strategy
for Bob that guarantees that Bob will win the game regardless of Alice’s play.

Planning
First, determine which positions are winning and which are losing for Alice by simulating the game’s moves
and marking outcomes recursively for small values of n. Identify the pattern that arises for losing positions.
Generalize this pattern algebraically (modulo arithmetic). Count the number of losing positions (where Bob can
guarantee a win) for all n up to 2024 by applying the discovered pattern and summing such cases.

Model answer w/o provided planning Model answer w provided planning
To solve this problem, we need to analyze the game
and determine the winning and losing positions. A
position is a losing position if the player whose turn
it is to move will lose if both players play optimally.
[...]
We can use dynamic programming to determine the
winning and losing positions. Specifically, we can
create an array dp where dp[i] is True if the position
i is a winning position and False if it is a losing
position.
The base case is dp[0] = False, because if there
are no tokens left, the player whose turn it is to move
loses.
For each position i, we can check if there is a move
that leads to a losing position:
• If i ≥ 1 and dp[i-1] = False, then dp[i] =
True.

• If i ≥ 4 and dp[i-4] = False, then dp[i] =
True.

• Otherwise, dp[i] = False.
We will then count the number of losing positions for
Bob, i.e., the number of positions n ≤ 2024 for which
dp[n] = False.

# Initialize the dp array
dp = [False] * 2025

# Base case: dp[0] = False
dp[0] = False

# Fill the dp array
for i in range(1, 2025):

if i >= 1 and not dp[i-1]:
dp[i] = True

elif i >= 4 and not dp[i-4]:
dp[i] = True

else:
dp[i] = False

# Count losing positions for Bob
losing_positions_count = sum(

not dp[n] for n in range(1, 2025))

print(losing_positions_count)
# Output: 809

The number of positive integers n less than or equal
to 2024 for which there exists a strategy for Bob that
guarantees that Bob will win the game regardless of
Alice’s play is 809 . [CORRECT: the answer is 809.]

To solve this problem, we need to determine the
number of positive integers n ≤ 2024 for which Bob
has a guaranteed winning strategy. We can analyze
the game by considering the possible moves and the
resulting positions.
1. Define Winning and Losing Positions:
• A position n is a winning position if there is at

least one move that leads to a losing position for the
opponent.

• A position n is a losing position if every possible
move leads to a winning position for the opponent.

2. Base Cases:
• If n = 0, the player who is about to move loses

because there are no tokens left.
• If n = 1, the player can remove 1 token and win.
• If n = 4, the player can remove 4 tokens and win.
• If n = 5, the player can remove 1 token, leaving 4

tokens, which is a winning position for the opponent.
So, n = 5 is a losing position.

3. Recursive Cases:
• For any n, if n − 1 or n − 4 is a losing position,

then n is a winning position.
• Otherwise, n is a losing position.
4. Pattern Recognition:
• We can observe that positions n that are congruent

to 2 mod 5 are losing positions. This is because
from any position n = 5k + 2, the only possible
moves lead to positions 5k + 1, 5k − 2, or 5k − 3,
all of which are winning positions for the opponent.
[Failed to identify that n ≡ 0 (mod 5) are also
losing positions]

5. Counting Losing Positions:
• We need to count the number of integers n ≤ 2024

that are congruent to 2 mod 5.
• The sequence of such numbers is
2, 7, 12, . . . , 2022.

• This is an arithmetic sequence with the first term
a = 2, common difference d = 5, and last term
l = 2022.

• The number of terms in the sequence is given by
2022−2

5
+ 1 = 2020

5
+ 1 = 404 + 1 = 405.

[INCORRECT: Should count positions n ≡ 0
mod 5 as well, yielding 2

5
of all positions]

So, the number of positive integers n ≤ 2024 for
which Bob has a guaranteed winning strategy is 405 .

Table 3: Comparison of solutions with and without planning information for a problem in AIME24
for the SparkleRL-Stage 2-aug model. The solution without planning information arrives at the
correct answer (809), while the solution attempting to follow the planning framework fails to identify
all losing positions and reaches an incorrect answer (405).
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Template for Asking subsequent Subproblems

A conversation between User and Assistant. The user asks a math question, and the Assistant
solves it step by step. The Assistant first thinks about the complete reasoning process in
the mind enclosed within <think> </think> tags. Then the Assistant provides a clear,
concise answer to the user within <answer> </answer> tags, with the final result enclosed
in \boxed{} notation.

For example:
<think>
reasoning process here
</think>
<answer>
The answer is \boxed{...}.
</answer>

User:
Main Problem:
{{main-problem}}
We’ll solve this incrementally. Your task is to solve only the current subproblem.

Below is reference information about subproblems that we have solved and you can refer to if
needed:
Subproblem: {previous-subproblem}
Subproblem Answer: {previous-subproblem-answer}

Current Subproblem:
{{current-subproblem}}
Provide a detailed solution showing your reasoning process. Express your final answer within
\boxed{}. Assistant:

Figure 14: Instruction template for handling subsequent subproblems. The placeholder
{{main-problem}} is replaced with the specific main problem, while {previous-subproblem}
and {previous-subproblem-answer} are replaced with all previously solved subproblems and
their corresponding answers. For k previous subproblems, these placeholders are repeated k times to
provide complete reference information. The placeholder {{current-subproblem}} is replaced
with the specific current subproblem question.
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Figure 15: Results with and without planning information for Qwen2.5-32B and Qwen2.5-32B-
SimpleRL-Zoo.

Figure 16: Results with and without knowledge information for Qwen2.5-32B and Qwen2.5-32B-
SimpleRL-Zoo.

E Ablation: Impact of Model Size
To study the impact of model size on RL, we conduct experiments with Qwen2.5-32B and Qwen2.5-
32B-SimpleRL-Zoo [55]. Unlike our multi-stage RL approach with larger datasets, the SimpleRL-Zoo
model is trained on an 8K dataset comprising GSM8K and MATH problems. The results are presented
in Figures 15 and 16. Consistent with our findings in Sections 5.3 and 5.4, we observe that knowledge
augmentation provides greater benefits than planning for RL-tuned models. Specifically, the vanilla
performance of Qwen2.5-32B-SimpleRL-Zoo averages 63.0% across the five tasks. When provided
with additional planning information, the average performance increases to 64.2% (a 1.2% gain),
while additional knowledge information yields 69.8% performance (a 6.8% improvement over vanilla
performance).
For the larger base model, we observe that both planning and knowledge augmentation provide
benefits. This may be due to increased model capacity that enables better utilization of auxiliary
information. However, base models exhibit significant sensitivity to prompt variations due to limited
instruction-following capabilities, resulting in high performance variance across different prompting
strategies. In contrast, RL-tuned models demonstrate much more stable performance across varying
instructions. For fair comparison, we report performance results in Figures 15 and 16 using the same
instructions in Figures 11 and 12.

F Ablation: SFT vs. RL for Stage 2 training
Following Section 3, our best Stage 2 training (Stage 2-pss) focuses on the most difficult questions,
where we augment the input with partial solutions. This choice is motivated by prior findings that RL
methods with outcome-based rewards such as GRPO struggle to benefit from the hardest problems
due to the scarcity of positive reward signals. A natural question then arises: if full solutions are
available, why not directly apply supervised fine-tuning (SFT) on them?
While appealing in principle, SFT is ineffective in our setting for two main reasons:

• Trace quality. The Stage 1 training set contains over 40K math problems, with solution
traces of highly variable quality—ranging from incomplete or noisy chain-of-thought outputs
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Model AIME24 AMC23 MATH500 GSM8K OlympiadBench
SparkleRL-Stage 1 46.67% 67.50% 80.00% 91.77% 39.11%
SparkleRL-Stage 2-pss 50.42% 71.25% 81.00% 92.38% 40.11%
SFT on hard problems with solutions 15.00% 53.44% 70.03% 88.30% 30.70%

Table 4: Performance comparison of SparkleRL models and SFT-tuned models. We bold the best
results in each column.

to clean human-written answers. Generating new traces by distilling from stronger LLMs is
possible, but it would incur substantial compute cost and require extensive human validation
to ensure correctness.

• Empirical evidence. We conducted an additional experiment applying SFT directly on these
noisy traces. As shown in Table 4, SFT leads to notable performance degradation compared
to SparkleRL-Stage 1, confirming that noisy full-solution supervision is detrimental.

We observe that SFT on hard problems from the SparkleRL-Stage 1 model leads to significant
performance degradation across benchmarks. In contrast, our Stage 2-pss method yields consistent
improvement.
In contrast, our Stage 2-pss method consistently improves performance across benchmarks. The
key difference is that we provide partial solutions for the hardest unsolved problems as input
augmentations, rather than fine-tuning on full solutions. This design keeps the model in an on-
policy setting, forcing it to continue reasoning rather than memorizing, which in turn strengthens the
RL signal and yields superior reasoning performance.

G Analyzing RL Gains: Instruction Following vs. Plan Following

To better understand the source of RL’s gains, we conducted experiments comparing supervised
fine-tuning (SFT) and RL in scenarios where models are provided with explicit planning information.
Specifically, we fine-tuned the base Qwen-2.5-Math-7B model on chain-of-thought (CoT) traces for
hard questions, followed by optional RL training. We also tested each model variant with and without
access to an externally provided plan. Results are shown in Table 5.

Model AIME24 AMC23 MATH500 GSM8K OlympiadBench Avg.
Qwen-2.5-Math-7B 16.67% 42.50% 44.03% 44.30% 28.65% 35.23%
Qwen-2.5-Math-7B (add.plan) 9.58% 30.94% 41.45% 46.92% 18.85% 29.55%
Qwen-2.5-Math-7B-SFT 15.42% 50.63% 68.55% 85.03% 31.44% 50.21%
Qwen-2.5-Math-7B-SFT (add. plan) 14.17% 50.31% 69.08% 88.84% 31.78% 50.83%
Qwen-2.5-Math-7B-SFT+RL 33.33% 64.06% 77.33% 91.58% 36.74% 60.61%
Qwen-2.5-Math-7B-SFT+RL (add. plan) 36.25% 67.19% 79.45% 94.47% 39.80% 63.43%

Table 5: Comparison of base, SFT, and RL models with and without additional planning information.
We bold the best results in each column.

We observe that:

• Overall, as expected, SFT improves over the base model in absolute accuracy, but remains
consistently below RL across all benchmarks.

• In terms of plan-following flexibility, SFT is not necessarily able to use a provided plan—
just like the base model, while RL-tuned models consistently leverage such plans to improve
performance.

• This finding suggests that RL improvements (at least in terms of plan use flexibility) cannot
be solely attributed to improved instruction following.

Together, these results confirm that the gains from RL go beyond what SFT provides, aligning with
our central claim that RL enhances flexibility in plan following through mechanisms distinct from
instruction following alone.
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H Statistical Significance of Performance Gains
To verify that the observed performance improvements of SparkleRL-PSS are statistically significant
for results in Table 1, we conducted a series of Welch’s two-sample t-tests comparing Stage 2-pss
model against Stage 1 model across all benchmarks.
Table 6 summarizes the comparative statistics.

Task t p-value Cohen’s d Sig.
AIME24 −3.81 0.0030 1.91 Yes
AMC23 −4.58 0.0006 2.29 Yes
MATH500 −7.98 < 0.0001 3.99 Yes
GSM8K −6.96 < 0.0001 3.48 Yes
OlympiadBench −6.15 < 0.0001 3.07 Yes

Table 6: Welch’s t-test results comparing Stage 1 vs. Stage 2-pss on all benchmarks. All differences
are statistically significant (p < 0.01).

These findings confirm that the performance improvements from Stage 1 to Stage 2-pss are statistically
significant and robust across all evaluated tasks.
In addition, to support the specific claim that “RL-tuned models consistently perform best when
allowed to develop their own planning strategies rather than following human-derived ones”, we
conducted a Welch’s t-test comparing SparkleRL Stage 2-pss with vs. without planning on AIME24.
The results indicate that providing human-derived plans leads to a statistically significant performance
drop (t = 3.38, p = 0.0052 < 0.05, d = −1.69, large effect size), reinforcing that autonomous
planning emerges as a more effective and generalizable strategy under RL fine-tuning.

31



NeurIPS Paper Checklist
The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.
Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.
The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.
IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims are well-supported by the comprehensive experiments and
analysis in Section 5 and further analysis results in the Appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide limitations in Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide experimental details needed in Apendix C to support the
reproducibility of our experiments. Datasets and codebase with detailed instructions will
also be released.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

Answer: [Yes]

Justification: Both datasets and our code with detailed instructions will be released.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?

Answer: [Yes]

Justification: All experimental details are included in Appendix C to facilitate understanding
of the results in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide full results in Appendix ??.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]

Justification: We provide hardware and software details in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read the NeurIPS Code of Ethics and made sure the paper
follows the NeurIPS Code of Ethics in every aspect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide detailed societal impacts in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly cites the original paper or sources whenever an asset is
used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Code, dataset and models will be released with well-documented instructions.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
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Justification: We have included the complete instructions given to our expert human
annotators in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We obtained proper ethical approvals before hiring expert human annotators to
validate our generated results, ensuring all participants were informed of potential risks and
provided consent according to institutional guidelines.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We mainly use LLM to summarize, judge and verify the generated data and
have provided a detailed discussion in Appendix B.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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