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Abstract

Out-of-Distribution (OOD) detection is critical for the reliable operation of open-
world intelligent systems. Despite the emergence of an increasing number of OOD
detection methods, the evaluation inconsistencies present challenges for tracking
the progress in this field. OpenOOD v1 initiated the unification of the OOD detec-
tion evaluation but faced limitations in scalability and scope. In response, this paper
presents OpenOOD v1.5, a significant improvement from its predecessor that en-
sures accurate and standardized evaluation of OOD detection methodologies at large
scale. Notably, OpenOOD v1.5 extends its evaluation capabilities to large-scale
datasets (ImageNet) and foundation models (e.g., CLIP and DINOv2), and expands
its scope to investigate full-spectrum OOD detection which considers semantic and
covariate distribution shifts at the same time. This work also contributes in-depth
analysis and insights derived from comprehensive experimental results, thereby en-
riching the knowledge pool of OOD detection methodologies. With these enhance-
ments, OpenOOD v1.5 aims to drive advancements and offer a more robust and
comprehensive evaluation benchmark for OOD detection research. A longer ver-
sion of this paper is available at https://arxiv.org/pdf/2306.09301.pdf.

1 Introduction

For intelligent recognition systems to reliably operate in the open world, it is crucial for them to have
the capability of detecting and handling unknown inputs. This problem is commonly formulated as
Out-of-Distribution (OOD) detection [1] or Open-Set Recognition (OSR) [2]. In the context of image
classification, OOD detection seeks to enable the identification of images that do not belong to any of
the known, in-distribution (ID) categories of the classifier.

Recent years have witnessed a surge of over a hundred papers on OOD detection [3]. Despite the
increasing attention and the importance of this research problem, tracking the progress in the field
has been hindered by three evaluation pitfalls that are often overlooked by researchers: 1) confusing
terminologies, 2) inconsistent datasets, and 3) erroneous practices (we refer readers to Appendix A
for a detailed discussion). As a result, the OOD detection community has a pressing need for a unified
test platform and benchmark for accurate evaluation of current and future methodologies. One work
that comes close to this goal is the first version of OpenOOD [4], which yet is limited in scale and
scope. For example, OpenOOD v1’s evaluation was mostly performed on small-scale datasets like
MNIST [5] and CIFAR [6, 7], while larger datasets such as ImageNet [8] obviously carry greater
importance [9, 10, 11, 12, 13, 14].
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Building upon OpenOOD v1, in this work we present OpenOOD v1.5 which features fair and accurate
evaluation of OOD detection on a larger scale and with a broader scope. Concretely, we make the
following extensions and contributions.1

Large-scale experiments and results. In addition to the small datasets included in v1, OpenOOD
v1.5 provide extensive experiment results for nearly 40 methods (and their combinations) on
ImageNet-1K, which serve as a comprehensive reference for later works. To facilitate future research
on large-scale settings with affordable computational cost, we also introduce a new benchmark
constructed with ImageNet-200, a subset of ImageNet-1K. Furthermore, we evaluate two large-scale
foundation models (CLIP [15] and DINOv2 [16]) to provide initial inspection of their performance
on OOD detection tasks.

Investigation on full-spectrum detection. Besides the standard setting considered in v1, OpenOOD
v1.5 (for the first time) closely studies full-spectrum OOD detection [17], an important setting that
considers OOD generalization [18, 19] and OOD detection simultaneously. Compared with the
standard setting which is studied by most existing works, we show that full-spectrum detection poses
significant challenge for all current approaches.

New insights. With comprehensive results from OpenOOD v1.5, we are able to provide several
valuable observations. For example, we identify that there is no single winner that always outperforms
others across multiple datasets. Meanwhile, we observe that data augmentations [20, 21, 22, 19, 23,
24] help with OOD detection in both standard and full-spectrum setting. Our insights help assess the
current state of OOD detection and provide future directions for the community.

2 Overview of OpenOOD v1.5

In this section, we briefly introduce the 1) problem statement, 2) evaluation metrics, and 3) supported
benchmarks and methods of OpenOOD v1.5. Due to space limit, we leave extensive details in the
supplemental, including evaluation protocol (Appendix C), breakdown of datasets and methods
(Appendices D and E), and experiment setup (Appendix F). Note that we focus on OOD detection in
the context of multi-class image classification in this work.

Standard OOD detection. Given an image classification problem, there will always exist a pre-
defined set of semantic categories/labels YID, which is considered in-distribution (ID). In an open
world, an OOD label space YOOD = {y|y /∈ YID} also exists. In the case of a CIFAR-10 classifier, for
example, YID = {airplane, bird, ..., truck}, and YOOD = {apple, mountain, ...}. At inference
time, for any image x with ground-truth label y, an ideal classifier with OOD detection capability
should behave in a way that: 1) it can identify whether y ∈ YID or y ∈ YOOD, and 2) if y ∈ YID, it
classifies x to one of the ID categories accurately. While the second goal is fundamental for any
image classifier, the first goal is the unique focus of OOD detection.

Full-spectrum OOD detection. Standard OOD detection essentially studies the semantic distribution
shifts (between YID and YOOD); it yet ignores another type of distribution shifts that are prevalent in
real-world, i.e., covariate shifts [18, 25, 19]. Full-spectrum detection [17] fills this gap by further
taking covariate-shifted ID images (csID) into the picture. Note that in the context of OOD detection,
csID images are still in-distribution since their semantic labels are still within YID (e.g., a blurry dog
image should be recognized as dog nonetheless). A concrete illustration of full-spectrum detection is
shown in Figure 5 in the supplemental.

Evaluation metrics. OOD detection is a binary classification problem. Following convention [1],
we treat the “anomalous” OOD samples as positive and the “normal” ID samples as negative. We
use three well established metrics: 1) area under the receiver operating characteristic (AUROC), 2)
area under the Precision-Recall curve (AUPR), and 3) false positive rate at 95% true positive rate
(FPR@95). AUROC and AUPR are threshold-independent measurements, while FPR@95 reflects
the performance at a specific threshold. In the manuscript we report AUROC as the main metric,
while full results are available in this online document.

Benchmarks. OpenOOD v1.5 supports 6 benchmarks, including 4 for standard detection and 2
for full-spectrum detection. The standard benchmarks are constructed by taking CIFAR-10 [6],

1As a benchmarking tool that continuously evolves, OpenOOD v1.5 also introduces several new features and
updates that make itself more accurate, and easier to use. We describe them in Appendix B.
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Table 1: Main results from OpenOOD v1.5 on standard OOD detection. In this table we use AUROC
as the metric for OOD detection. Whenever applicable, we report the average number and the
corresponding standard deviation obtained from 3 training runs. The best result within each group is
bolded. Notes on missing results are in Appendix F. Full result table including other metrics and
per-dataset statistics can be found in an online document, which we hide for now for double-blind
review.

CIFAR-10 (ResNet-18) CIFAR-100 (ResNet-18) ImageNet-200 (ResNet-18) ImageNet-1K (ResNet-50)
Near-OOD Far-OOD ID Acc. Near-OOD Far-OOD ID Acc. Near-OOD Far-OOD ID Acc. Near-OOD Far-OOD ID Acc.

- Post-hoc Inference Methods

OpenMax [2] (CVPR’16) 87.62(±0.29) 89.62(±0.19) 95.06(±0.30) 76.41(±0.25) 79.48(±0.41) 77.25(±0.10) 80.27(±0.10) 90.20(±0.17) 86.37(±0.08) 74.77 89.26 76.18
MSP [1] (ICLR’17) 88.03(±0.25) 90.73(±0.43) 95.06(±0.30) 80.27(±0.11) 77.76(±0.44) 77.25(±0.10) 83.34(±0.06) 90.13(±0.09) 86.37(±0.08) 76.02 85.23 76.18
TempScale [26] (ICML’17) 88.09(±0.31) 90.97(±0.52) 95.06(±0.30) 80.90(±0.07) 78.74(±0.51) 77.25(±0.10) 83.69(±0.04) 90.82(±0.09) 86.37(±0.08) 77.14 87.56 76.18
ODIN [27] (ICLR’18) 82.87(±1.85) 87.96(±0.61) 95.06(±0.30) 79.90(±0.11) 79.28(±0.21) 77.25(±0.10) 80.27(±0.08) 91.71(±0.19) 86.37(±0.08) 74.75 89.47 76.18
MDS [28] (NeurIPS’18) 84.20(±2.40) 89.72(±1.36) 95.06(±0.30) 58.69(±0.09) 69.39(±1.39) 77.25(±0.10) 61.93(±0.51) 74.72(±0.26) 86.37(±0.08) 55.44 74.25 76.18
MDSEns [28] (NeurIPS’18) 60.43(±0.26) 73.90(±0.27) 95.06(±0.30) 46.31(±0.24) 66.00(±0.69) 77.25(±0.10) 54.32(±0.24) 69.27(±0.57) 86.37(±0.08) 49.67 67.52 76.18
RMDS [29] (arXiv’21) 89.80(±0.28) 92.20(±0.21) 95.06(±0.30) 80.15(±0.11) 82.92(±0.42) 77.25(±0.10) 82.57(±0.25) 88.06(±0.34) 86.37(±0.08) 76.99 86.38 76.18
Gram [30] (ICML’20) 58.66(±4.83) 71.73(±3.20) 95.06(±0.30) 51.66(±0.77) 73.36(±1.08) 77.25(±0.10) 67.67(±1.07) 71.19(±0.24) 86.37(±0.08) 61.70 79.71 76.18
EBO [31] (NeurIPS’20) 87.58(±0.46) 91.21(±0.92) 95.06(±0.30) 80.91(±0.08) 79.77(±0.61) 77.25(±0.10) 82.50(±0.05) 90.86(±0.21) 86.37(±0.08) 75.89 89.47 76.18
OpenGAN [32] (ICCV’21) 53.71(±7.68) 54.61(±15.51) 95.06(±0.30) 65.98(±1.26) 67.88(±7.16) 77.25(±0.10) 59.79(±3.39) 73.15(±4.07) 86.37(±0.08) N/A N/A N/A
GradNorm [33] (NeurIPS’21) 54.90(±0.98) 57.55(±3.22) 95.06(±0.30) 70.13(±0.47) 69.14(±1.05) 77.25(±0.10) 72.75(±0.48) 84.26(±0.87) 86.37(±0.08) 72.96 90.25 76.18
ReAct [9] (NeurIPS’21) 87.11(±0.61) 90.42(±1.41) 95.06(±0.30) 80.77(±0.05) 80.39(±0.49) 77.25(±0.10) 81.87(±0.98) 92.31(±0.56) 86.37(±0.08) 77.38 93.67 76.18
MLS [10] (ICML’22) 87.52(±0.47) 91.10(±0.89) 95.06(±0.30) 81.05(±0.07) 79.67(±0.57) 77.25(±0.10) 82.90(±0.04) 91.11(±0.19) 86.37(±0.08) 76.46 89.57 76.18
KLM [10] (ICML’22) 79.19(±0.80) 82.68(±0.21) 95.06(±0.30) 76.56(±0.25) 76.24(±0.52) 77.25(±0.10) 80.76(±0.08) 88.53(±0.11) 86.37(±0.08) 76.64 87.60 76.18
VIM [11] (CVPR’22) 88.68(±0.28) 93.48(±0.24) 95.06(±0.30) 74.98(±0.13) 81.70(±0.62) 77.25(±0.10) 78.68(±0.24) 91.26(±0.19) 86.37(±0.08) 72.08 92.68 76.18
KNN [12] (ICML’22) 90.64(±0.20) 92.96(±0.14) 95.06(±0.30) 80.18(±0.15) 82.40(±0.17) 77.25(±0.10) 81.57(±0.17) 93.16(±0.22) 86.37(±0.08) 71.10 90.18 76.18
DICE [34] (ECCV’22) 78.34(±0.79) 84.23(±1.89) 95.06(±0.30) 79.38(±0.23) 80.01(±0.18) 77.25(±0.10) 81.78(±0.14) 90.80(±0.31) 86.37(±0.08) 73.07 90.95 76.18
RankFeat [35] (NeurIPS’22) 79.46(±2.52) 75.87(±5.06) 95.06(±0.30) 61.88(±1.28) 67.10(±1.42) 77.25(±0.10) 56.92(±1.59) 38.22(±3.85) 86.37(±0.08) 50.99 53.93 76.18
ASH [13] (ICLR’23) 75.27(±1.04) 78.49(±2.58) 95.06(±0.30) 78.20(±0.15) 80.58(±0.66) 77.25(±0.10) 82.38(±0.19) 93.90(±0.27) 86.37(±0.08) 78.17 95.74 76.18
SHE [14] (ICLR’23) 81.54(±0.51) 85.32(±1.43) 95.06(±0.30) 78.95(±0.18) 76.92(±1.16) 77.25(±0.10) 80.18(±0.25) 89.81(±0.61) 86.37(±0.08) 73.78 90.92 76.18
- Training Methods (w/o Outlier Data)

ConfBranch [36] (arXiv’18) 89.84(±0.24) 92.85(±0.29) 94.88(±0.05) 71.60(±0.62) 68.90(±1.83) 76.59(±0.27) 79.10(±0.24) 90.43(±0.18) 85.92(±0.07) 70.66 83.94 75.63
RotPred [37] (NeurIPS’19) 92.68(±0.27) 96.62(±0.18) 95.35(±0.52) 76.43(±0.16) 88.40(±0.13) 76.03(±0.38) 81.59(±0.20) 92.56(±0.09) 86.37(±0.16) 76.52 90.00 76.55
G-ODIN [38] (CVPR’20) 89.12(±0.57) 95.51(±0.31) 94.70(±0.25) 77.15(±0.28) 85.67(±1.58) 74.46(±0.04) 77.28(±0.10) 92.33(±0.11) 84.56(±0.28) 70.77 85.51 74.85
CSI [39] (NeurIPS’20) 89.51(±0.19) 92.00(±0.30) 91.16(±0.14) 71.45(±0.27) 66.31(±1.21) 61.60(±0.46) N/A N/A N/A N/A N/A N/A
ARPL [40] (TPAMI’21) 87.44(±0.15) 89.31(±0.32) 93.66(±0.11) 74.94(±0.93) 73.69(±1.80) 70.70(±1.08) 82.02(±0.10) 89.23(±0.11) 83.95(±0.32) 76.30 85.50 75.87
MOS [41] (CVPR’21) 71.45(±3.09) 76.41(±5.93) 94.83(±0.37) 80.40(±0.18) 80.17(±1.21) 76.98(±0.20) 69.84(±0.46) 80.46(±0.92) 85.60(±0.20) 72.85 82.75 72.81
VOS [42] (ICLR’22) 87.70(±0.48) 90.83(±0.92) 94.31(±0.64) 80.93(±0.29) 81.32(±0.09) 77.20(±0.10) 82.51(±0.11) 91.00(±0.28) 86.23(±0.19) N/A N/A N/A
LogitNorm [43] (ICML’22) 92.33(±0.08) 96.74(±0.06) 94.30(±0.25) 78.47(±0.31) 81.53(±1.26) 76.34(±0.17) 82.66(±0.15) 93.04(±0.21) 86.04(±0.15) 74.62 91.54 76.45
CIDER [44] (ICLR’23) 90.71(±0.16) 94.71(±0.36) N/A 73.10(±0.39) 80.49(±0.68) N/A 80.58(±1.75) 90.66(±1.68) N/A 68.97 92.18 N/A
NPOS [45] (ICLR’23) 89.78(±0.33) 94.07(±0.49) N/A 78.35(±0.37) 82.29(±1.55) N/A 79.40(±0.39) 94.49(±0.07) N/A N/A N/A N/A
- Training Methods (w/ Outlier Data)

OE [46] (NeurIPS’18) 94.82(±0.21) 96.00(±0.13) 94.63(±0.26) 88.30(±0.10) 81.41(±1.49) 76.84(±0.42) 84.84(±0.16) 89.02(±0.18) 85.82(±0.21) N/A N/A N/A
MCD [47] (ICCV’19) 91.03(±0.12) 91.00(±1.10) 94.95(±0.04) 77.07(±0.32) 74.72(±0.78) 75.83(±0.04) 83.62(±0.09) 88.94(±0.10) 86.12(±0.17) N/A N/A N/A
UDG [48] (ICCV’21) 89.91(±0.25) 94.06(±0.90) 92.36(±0.84) 78.02(±0.10) 79.59(±1.77) 71.54(±0.64) 74.30(±1.63) 82.09(±2.78) 68.11(±1.24) N/A N/A N/A
MixOE [49] (WACV’23) 88.73(±0.82) 91.93(±0.69) 94.55(±0.32) 80.95(±0.20) 76.40(±1.44) 75.13(±0.06) 82.62(±0.03) 88.27(±0.41) 85.71(±0.07) N/A N/A N/A

CIFAR-100 [7], ImageNet-200, and ImageNet-1K [8] as the ID data, respectively. The full-spectrum
benchmarks are built around ImageNet-200 and ImageNet-1K, respectively. In Appendix D, we
describe the used OOD datasets and discuss how our benchmarks exhibits higher fairness and
usefulness than previous ones.

Supported methods. OpenOOD v1.5 now implements in total 40 advanced and most recent methods.
We go over each of them in Appendix E.

3 Analysis

In this section, we discuss multiple observations and insights that arise from the benchmarking efforts
of OpenOOD v1.5. We start by analyzing Table 1, which presents main results of standard OOD
detection on 4 benchmarks. Then we specifically look at full-spectrum detection, whose results are
summarized in Figure 1. Lastly, we provide initial inspection of large foundation models (CLIP [15]
and DINOv2 [16]) on the task of OOD detection.

Standard detection. From the comprehensive results over 4 benchmarks in Table 1 we can identify
several general observations for standard OOD detection. One example is that there is no single
winner that consistently outperform others across benchmarks, and the ranking between methods can
be quite different from one dataset to another. For example, ReAct [9] and ASH [13] are extremely
powerful on ImageNet but less competitive on CIFAR. In contrast, methods that yield remarkable
performance on small datasets (e.g., KNN [12] and RotPred [37]) do not show clear advantage on
large datasets. We believe the absence of a clear winner can be attributed, in part, to the evaluation
inconsistencies of current methods, underscoring the importance of our benchmark. Due to space
limit, we refer readers to Appendix G for more results and observations (e.g., that data augmentation
is consistently beneficial for OOD detection).
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Figure 1: Comparison between standard and full-spectrum detection on ImageNet-1K (near-OOD).
Many detectors suffer significant performance degradation in the full-spectrum setting.

Figure 2: Performance of foundation models on ImageNet-1K. Here we consider OOD detectors that
are compatible with the zero-shot CLIP (MSP and MLS).

Full-Spectrum detection. In Figure 1, it is obvious that the near-OOD AUROC of most methods
decreases by >10% when changing from standard scenario to full-spectrum scenario (similar trend
holds for far-OOD). The performance drop suggests that existing OOD detectors can be sensitive
to the non-semantic covariate shift and are likely to flag covariate-shifted ID samples as OOD.
Such behaviour is not ideal because: 1) It does not align with human perception/decision (e.g., a
human annotator classifying dog and car wouldn’t mark a covariate-shifted dog image as something
unknown or novel). 2) It can harm the classifier’s generalization capability on covariate-shifted ID
data, as often times it is assumed that the classifier would refrain from making predictions when
the sample is identified as OOD. As a result, we firmly believe that full-spectrum detection is an
important open problem. For example, it would be interesting to see if OOD generalization methods
specifically designed to handle covariate-shifted data can help with full-spectrum OOD detection.

Foundation models. Foundation models—large pretrained models that can be adapted for a wide
range of tasks—have demonstrated superior recognition capability over the task-specific strictly-
supervised counterparts [15]. In particular, zero-shot foundation models generalize significantly
better when facing covariate-shifted samples when it comes to OOD generalization [50]. This
observation motivates us to see whether the same advantage exists when foundation models handle
semantic-shifted samples, i.e., in the context of OOD detection.

To this end, we evaluate two foundation models (CLIP [15] and DINOv2 [16]) on our ImageNet-
1K benchmark and compare them with a ImageNet-1K trained classifier. We consider zero-shot
classification for CLIP (using the prompt-ensemble to obtain the classifier weight as in [15]) for the
reason mentioned above, and use linear probe for DINOv2 which does not have zero-shot capability.
We do not consider fine-tuning, whose effect on OOD detection has been studied in [51]. All three
classifiers share the same ViT-Base backbone.
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The results are summarized in Figure 2. Compared with the task-specific supervised model, zero-shot
CLIP shows substantial improvements on far-OOD detection in both standard and full-spectrum
setting, yet the comparison on near-OOD detection is nuanced and gives no conclusive remark. In fact,
giving any conclusion at this moment will be too early: Most existing detectors are not compatible
with zero-shot CLIP, and the only detector that specifically targets CLIP [52] adopts a simple design
that is equivalent to MSP [1]. We hypothesize that CLIP’s power may not be fully unleashed until
more advanced or appropriate detector is developed. Meanwhile, we notice that the linear probe of
self-supervised DINOv2 consistently and remarkably outperforms the fully-supervised counterpart,
in all OOD detection cases and in ID classification. This demonstrates that large-scale self-supervised
foundation models are also powerful for handling semantic distribution shifts.

4 Conclusion

In this work we present OpenOOD v1.5, an enhanced OOD detection benchmark that features
comprehensive evaluation with large-scale datasets on both standard and full-spectrum detection.
We provide several observations from our results to identify open problems and provide future
directions. In addition, we evaluate two foundation models and find that while self-supervised
DINOv2 already shows improvements, how to leverage zero-shot CLIP for better OOD detection
requires more investigation. We hope that OpenOOD can accelerate the progress and foster collective
efforts towards advancing the state-of-the-art in OOD detection. For more discussions including
related work and limitation, please see Appendix H.
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Figure 3: Summarizing evaluation settings of 100+ recent OOD detection and OSR works from
NeurIPS, AAAI, ICLR, CVPR, ICML, and ICCV/ECCV (zoom in to view better). Each box stands
for a paper. Within the box, each column shows the ID dataset and corresponding OOD datasets
which are represented by the color blocks. The lack of a consistent color pattern between boxes
signifies the inconsistency in the evaluation setup of current works. Multiple works also adopted
unrealistic or problematic data [39] in evaluation (marked by the hatch pattern). The community still
suffers from such chaos after OpenOOD v1 [4] came out. Full paper list used to produce this figure
can be found here.

A Evaluation Pitfalls of OOD Detection

Here we explain the three evaluation pitfalls that we identify in the current OOD detection research.

Confusing terminologies. Despite subtle differences in the way of constructing their test envi-
ronments, OOD detection and Open-Set Recognition (OSR) (or sometimes, “novelty detection”)
are essentially pursuing the same goal [2, 1]. With two different terminologies, however, the two
topics often diverge from each other in a counterproductive way, where methods are developed and
compared separately within each branch using different benchmarks.

Inconsistent datasets. Given an ID dataset, the simplest practice is to use other datasets with seman-
tically different visual categories as OOD datasets. Unfortunately, we have seen great inconsistency
in the selected datasets for OOD detection evaluation. Such phenomenon is highlighted in Figure 3,
where we summarize the evaluation settings of 100+ recent works from top-tier machine learning
conferences. The lack of a consistent pattern indicates how different the used datasets are from paper
to paper, causing great difficulty for straight comparison between methods. The evaluation settings
within the OSR branch are more consistent yet are significantly limited in scale (see more discussion
in Appendix D).

Erroneous practices could compromise evaluation if no extra care is taken. One example that is
pervasive in OOD detection works is leaking information about OOD data that is used for evaluation.
More specifically, some methods train the model or tune hyperparameters with test OOD data [53,
27, 32]. Such practices go against basic machine learning principles and will lead to overoptimistic
results.

B New Features and Updates of OpenOOD v1.5

OpenOOD v1.5 introduces new features including a leaderboard hosted online to track the-state-
of-the-art based on various methods and a lightweight evaluator which enables easy evaluation
with a few lines of code (see Figure 4). Other updates such as adding newer methods and fixing
implementation bugs are documented in the online changelog.
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from openood.evaluation_api import Evaluator
from openood.networks import ResNet50
from torchvision.models import ResNet50_Weights
from torch.hub import load_state_dict_from_url

# Load an ImageNet-pretrained model from torchvision
net = ResNet50()
weights = ResNet50_Weights.IMAGENET1K_V1
net.load_state_dict(load_state_dict_from_url(weights.url))
preprocessor = weights.transforms()
net.eval(); net.cuda()

# Initialize an evaluator and evaluate with
# ASH postprocessor
evaluator = Evaluator(net, id_name='imagenet',

preprocessor=preprocessor, postprocessor_name='ash')
metrics = evaluator.eval_ood()

Figure 4: Left: An example of evaluting ImageNet-1K models in a few lines with our Evaluator .
Right: Screenshot of top entries on our ImageNet-1K leaderboard. Zoom in to view better.

Figure 5: Illustration of full-spectrum OOD detection [48]. Standard detection only concerns semantic
shift by detecting (c) + (d) from (a), while full-spectrum detection takes into account covariate shift
and aims to separate (c) + (d) from (a) + (b). An ideal system should be robust to the non-semantic
covariate shift (OOD generalization) while being able to identify semantic shift (OOD detection).

C Detailed Design of Evaluation Protocol

Here we expand upon Section 2 to provide details on the curated evaluation protocol of OpenOOD
which is designed to enable the most rigorous assessment of current and future methodologies.

Overview. We consider the dataset that characterizes the given image classification task as in-
distribution (ID) dataset DID. Following common practices, we take publicly available datasets whose
categories are OOD w.r.t. YID as the source of OOD samples DOOD. In general, the image classifier
will be trained with ID training images Dtrain

ID and evaluated with ID test images Dtest
ID and OOD

test images Dtest
OOD. For each DID, we evaluate the classifier and detector with multiple DOOD for

comprehensiveness. Moreover, we divide the considered OOD datasets into two groups: near-OOD
and far-OOD (or equivalently, hard-OOD and easy-OOD). The grouping is based on either image
semantics or empirical difficulty, which can give a more fine-grained evaluation of OOD detectors in
the face of different OOD samples (see Appendix D for more details).

Validation data for hyperparameter tuning. Multiple OOD detectors have tunable hyperparameters.
In contrast to earlier works which determine hyperparameter values directly using test samples Dtest

ID
and Dtest

OOD [27, 28, 38, 32], we instead introduce ID and OOD validation samples Dval
ID and Dval

OOD to
ensure realistic evaluation and avoid reporting overoptimistic results. Specifically, Dval

ID is a small
subset held out from Dtest

ID , and Dval
OOD is carefully constructed such that Yval

OOD ∩ Ytest
OOD = ∅.

OOD training data. A line of works choose to incorporate OOD images at training time to improve
OOD detection capability [46, 47, 48, 49]. To avoid trivial evaluation in such cases [46], we make
distinction between OOD training samples Dtrain

OOD and OOD test samples Dtest
OOD, where they should

have non-overlapping categories between each other (i.e., Ytrain
OOD ∩ Ytest

OOD = ∅).
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Table 2: Summary of the 4 standard OOD detection benchmarks of OpenOOD v1.5. Datasets without
a reference are ones that we curate from existing ones; see text for details. Full-spectrum benchmarks
only adds additional covariate-shifted samples into ID test set, which we also describe in text.

ID samples OOD test samples Dtest
OOD OOD training samples OOD validation samples

DID Near-OOD Far-OOD Dtrain
OOD Dval

OOD

CIFAR-10 [6] CIFAR-100 [7], TIN [54] MNIST [5], SVHN [55], Textures [56], Places365 [57] TIN-597 20-class hold-out set of TIN
CIFAR-100 [7] CIFAR-10 [6], TIN [54] MNIST [5], SVHN [55], Textures [56], Places365 [57] TIN-597 20-class hold-out set of TIN
ImageNet-200 SSB-hard [58], NINCO [59] iNaturalist [60], Textures [56], OpenImage-O [11] ImageNet-800 Hold-out set of OpenImage-O
ImageNet-1K [8] SSB-hard [58], NINCO [59] iNaturalist [60], Textures [56], OpenImage-O [11] N/A Hold-out set of OpenImage-O

Evaluating full-spectrum detection. As mentioned earlier, full-spectrum detection additionally
considers covariate-shifted ID samples (csID). In practice, this is done by simply incorporating csID
samples Dtest

csID together with Dtest
ID to serve as the ID test data.

D Benchmark Breakdown

We describe each benchmark in detail in this section. A high-level summary is provided in Table 2.

CIFAR-10. The first benchmark considers CIFAR-10 [6] as ID. We use the official train set as
Dtrain

ID and hold out 1,000 samples from the test set to form Dval
ID , while the remaining 9,000 test

samples are taken as Dtest
ID . The near-OOD group contains CIFAR-100 [7] and Tiny ImageNet

(TIN) [54]. 1,203 images are removed from TIN due to the overlap with CIFAR [48]. Another 1,000
TIN images covering 20 categories are held out to serve as Dval

OOD which is disjoint with Dtest
OOD. The

far-OOD group consists of MNIST [5], SVHN [55], Textures [56], and Places365 [57] with 1,305
images removed due to semantic overlap [4]. The OOD group is determined by image content and
semantics: Near-OOD images are similar to CIFAR-10 as they all include specific objects, while
far-OOD images are either numerical digits, textural patterns, or scene imagery.

CIFAR-100. The CIFAR-100 benchmark is similar to the CIFAR-10 one. We take 1,000 samples
out of the ID test set as ID validation data. The near-OOD split is made of CIFAR-10 and TIN. The
far-OOD group is the same as for CIFAR-10.

ImageNet-1K. We use 45K images from the ImageNet validation set [8] as Dtest
ID , while the remaining

5K images serve as Dval
ID . We do not modify the original 1.2M ImageNet training set such that any

pre-trained models can be directly evaluated with OpenOOD.

We include SSB-hard [58] and NINCO [59] in the near-OOD group for ImageNet-1K. SSB-hard
consists of 49K images and covers 980 categories selected from ImageNet-21K [61]. NINCO is a
new dataset of 5879 images manually curated by Bitterwolf et al. [59]. The far-OOD group considers
iNaturalist [60], Textures [56], and OpenImage-O [11]. The first two datasets were first used as
benchmarks in the MOS paper [41] and later have become popular for evaluating ImageNet models.
OpenImage-O is curated from Open Images [62]. 1,763 images from OpenImage-O are picked out
as Dval

OOD. Unlike CIFAR, for ImageNet which has 1K diverse visual categories, it is hard to define
near/far-OOD based on label semantics. Instead, here we make the categorization according to the
empirical difficulty that we observe in experiments.

ImageNet-1K (full-spectrum). The only difference with the standard benchmark is that we further
include covariate-shifted ID samples Dtest

csID and consider Dtest
csID and Dtest

ID together as ID. We use
three different Dtest

csID : ImageNet-C [18] with image corruptions, ImageNet-R [19] with style changes,
and ImageNet-V2 [25] with resampling bias. They are all commonly used for evaluating classifiers’
ability to generalize to covariate-shifted ID images. ImageNet-C has 15 corruption types each with 5
severities. We randomly sample 10K images uniformly across the 75 combinations to form the test
set that is used in OpenOOD. OOD datasets remain the same so that a straight comparison can be
made between the standard and full-spectrum setting.

ImageNet-200 and the full-spectrum version. We further consider a 200-class subset of ImageNet-
1K which is still relatively large yet requires less compute to experiment with compared to ImageNet-
1K. ImageNet-200 has the same 200 categories as ImageNet-R [19]. It shares the same OOD datasets
as our ImageNet-1K benchmark. In the full-spectrum setting, we again incorporate ImageNet-C,
ImageNet-R, and ImageNet-V2.
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OOD training data. Our benchmark also specifies OOD training samples Dtrain
OOD which can be

incorporated into training when applicable [46, 47, 48, 49]. To construct Dtrain
OOD for CIFAR-10/100,

we start from the 800 categories in ImageNet-1K that are apart from the 200 classes of TIN and
filter out 203 categories relevant to CIFAR-10/100 based on WordNet [63]. Named as TIN-597, the
resulting dataset has 597 classes which do not overlap with any of the categories from Dtest

OOD and
serves as a good candidate for Dtrain

OOD . For ImageNet-200, we directly take the rest 800 categories’
images from ImageNet-1K as Dtrain

OOD (namely ImageNet-800). We do not consider Dtrain
OOD for

ImageNet-1K since it is hard to find images that do not overlap with Dtest
OOD, and no relevant methods

that train with OOD data have considered ImageNet-1K.

Comparison with prior OOD and OSR benchmarks. Most of the OOD datasets considered in
OOD detection literature fall into our far-OOD category, meaning that the more difficult near-OOD
detection was less emphasized than our benchmarks do. Meanwhile, we exclude problematic OOD
datasets (e.g., the resized version of LSUN and TIN [27] with obvious artifacts [39]) which make
detection trivial and much less meaningful [39]. Following one of the seminal works [64], OSR papers
often construct ID-OOD pairs by partitioning a single dataset into two splits (e.g., using a 6-class
subset of CIFAR-10 as ID and the other 4-class subset as OOD). While such practice is well-suited
for studying near-OOD detection [65] (i.e., minimum covariate shift exhibits between ID and OOD
data), it inevitably reduces the scale and complexity of the problem (in terms of the number of ID and
OOD categories), making the resulted benchmarks less representative for real-world scenarios. In
contrast, our benchmarks hold the covariate shift between ID and near-OOD samples to a low level,
while not sacrificing the scale. Specifically, all of our near-OOD groups include a certain dataset that
comes from the same source as ID data (or essentially we are partitioning a much larger dataset to
create ID-OOD pair). For example, in the CIFAR-10 benchmark, CIFAR-100 is one of the near-OOD
datsets. They both are subset of Tiny Images [66] and thus have minimum covariate shift between
each other.

Comparison with the benchmarks in v1. Among the 6 benchmarks in v1.5, CIFAR-10/100 and
ImageNet-1K standard benchmark are adapted from v1 release with necessary changes for fairness
and usefulness (e.g., unlike v1, v1.5 ensures that Dtrain

OOD , Dval
OOD, and Dtest

OOD are strictly disjoint with
each other). ImageNet-200 and full-spectrum benchmarks are newly introduced in v1.5.

E Supported Methods

We overview the supported methods of OpenOOD v1.5. Like in v1 we prioritize methods that have
public implementations and thus can be more easily and reliably adapted into our framework. They
are categorized into four groups. Post-hoc inference methods designs post-processors that are
applied to the base classifier to generate the “OOD score” (which is then thresholded to produce
the binary ID/OOD prediction). They only take effect at inference phase and by default assume
that the classifier is trained with the standard cross-entropy loss. In contrast, training methods
involve training-time regularization. Most of them assume no access to the auxiliary OOD training
data (w/o outlier data), while some methods do (w/ outlier data). We also consider several data
augmentation methods.

Post-Hoc Inference Methods. Given an input image, OOD detectors often function by assigning
an “OOD score” that is computed based on certain outputs from the base classifier, which will then
be thresholded to give the binary prediction. The first line of works focus on designing such post-
processors/scoring mechanisms that best separate ID and OOD samples. MSP [1] takes the maximum
softmax probability over ID categories as the score. OpenMax [2] is a replacement for the softmax
layer which directly estimates the probability of an input being from an unknown class. TempScale
[26] calibrates softmax probabilities with temperature scaling. ODIN [27] further introduces input
preprocessing on top of TempScale. MDS [28] fits class-conditional Gaussian distribution on
the penultimate layer features of the classifier and derives OOD score with Mahalanobis distance.
MDSEns [28] is another version of MDS which leverages multiple intermediate layers and forms
a feature ensemble. RMDS [29] improves MDS by considering the “background score” computed
from an unconditional Gaussian distribution. Gram [30] identifies abnormal patterns from the Gram
Matrices of intermediate feature maps. EBO [31] applies energy function to the logits to compute
OOD score. OpenGAN [32] trains a GAN in the classifier’s feature space and uses the discriminator
as the post-processor. GradNorm [67] computes the KL divergence between the softmax probability
distribution and the uniform distribution and takes the gradients of penultimate layer weights w.r.t.
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the KL divergence as OOD score. ReAct [9] rectifies feature vectors by thresholding their elements
with a certain magnitude. MLS [10] uses the maximum logit. KLM [10] looks at the KL divergence
between the softmax probability distribution and a “template” distribution. VIM [11] augments the
logits with the norm of feature residual compared with ID training samples’ features to compute
the OOD score. KNN [12] applies KNN to the penultimate layer’s features. DICE [34] sparsifies
the last linear layer before computing the logits. RankFeat [35] transforms the feature matrices
such that their rank is 1. ASH [13] shapes later layer activations by removing a large portion of the
elements and simplifing the rest. SHE [14] maintains a template representation for each ID category
and detects OOD samples by measuring the distance between the representation of an input to that
template.

Training methods without outlier data. Unlike post-hoc methods that only interfere with the
inference process, training methods involve training-time regularization to enhance OOD detection
capability. ConfBranch [36] trains another branch in addition to the classification one to explicitly
learn the estimate of model uncertainty. RotPred [37] includes an extra head to predict the rotation
angle of rotated inputs in a self-supervised manner, and the rotation head together with the clas-
sification head is used for OOD detection. G-ODIN [38] utilizes a dividend/divisor structure and
decomposes the softmax confidence for better ID-OOD separation. CSI [39] explores self-supervised
contrastive learning objectives for OOD detectors. ARPL [40] introduces “reciprocal points” for each
ID category and trains the model by pushing the reciprocal point away from the corresponding ID
cluster and encouraging OOD samples to gather around the reciprocal point. MOS [41] incorporates
a two-level hierarchical classifier and designs an accompanying OOD score to benefit OOD detection
especially in large-scale settings. VOS [42] regularizes the feature space of the classifier under
the assumption that the learned representations follow conditional Gaussian distributions. Logit-
Norm [43] mitigates the over-confidence issue by training and testing with normalized logit vectors.
CIDER [44] regularizes the model’s hyperspherical space by increasing inter-class separability and
intra-class compactness. NPOS [45] is a non-parametric version of VOS which removes the Gaussian
assumption and instead adopts KNN to model the feature distribution.

Training methods with outlier data. While most methods consider the standard ID-only training,
some works assume the access to auxiliary OOD training samples. OE [46] is the seminal work
in this thread, which lets the classifier learn OOD detection in a supervised fashion. MCD [47]
considers an ensemble of multiple classification heads and promotes the disagreement between each
head’s prediction on OOD samples. UDG [48] proposes a clustering-based method to practically
extract OOD samples from a mixed pool of auxiliary data and to improve the learned representation
quality with unsupervised learning. MixOE [49] performs pixel-level mixing operations between ID
and OOD samples and regularizes the model such that the prediction confidence smoothly decays as
the input transitions from ID to OOD.

Data augmentations. We consider several data augmentation methods which have demonstrated
success for improving the generalization ability of image classifiers. StyleAugment [20] applies
style transfer to clean images to emphasize the shape bias over the texture bias. RandAugment [21]
randomly sample the augmentation operation and magnitude to increase the diversity of augmented
images. AugMix [22] linearly interpolate between the clean and the augmented image to preserve the
natural looking/fidelity of training images for better generalization. DeepAugment [19] manipulates
the low-level statistics of clean images by sending them through image-to-image network and
distorting the network’s weights. PixMix [23] mixes two images with conical combination to create
various new inputs with similar semantics. RegMixup [24] trains the model with both clean images
and mixed images obtained from convex combination.

F Experiment Setup

We perform extensive experiments to evaluate a wide range of methods on the supported benchmarks.
This section describes the training and evaluation setup of our benchmarking experiments.

Training. For CIFAR-10/100 and ImageNet-200, we train a ResNet-18 [68] for 100 epochs. We
consider the standard cross-entropy training for post-hoc methods. The optimizer is SGD with a
momentum of 0.9. We use a learning rate of 0.1 with cosine annealing decay schedule [69]. A weight
decay of 0.0005 is applied. The batch size is 128 for CIFAR-10/100 and 256 for ImageNet-200.
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Figure 6: Near-OOD improvements
are proportional to, yet slower
than, far-OOD improvements on
ImageNet-1K.

ImageNet-200 ImageNet-1K
MSP [1] ASH [13] ID Acc. MSP [1] ReAct [9] ASH [13] ID Acc.

CrossEntropy 83.34 / 90.13 82.38 / 93.90 86.37 76.02 / 85.23 77.38 / 93.67 78.17 / 95.74 76.18
StyleAugment [20] 80.99 / 88.44 80.65 / 93.70 83.41 75.78 / 85.73 76.70 / 91.88 78.21 / 94.90 74.68
RandAugment [21] 83.17 / 90.34 81.56 / 94.53 86.58 76.60 / 85.27 78.30 / 93.50 79.81 / 95.01 76.90
AugMix [22] 83.49 / 90.68 82.87 / 94.66 87.01 77.49 / 86.67 79.94 / 93.70 82.16 / 96.05 77.63
DeepAugment [19] 81.39 / 88.79 80.61 / 93.84 85.00 76.67 / 86.26 78.43 / 92.12 79.14 / 93.90 76.77
PixMix [23] 82.15 / 90.23 81.36 / 95.01 85.79 76.86 / 85.63 79.12 / 91.59 78.92 / 92.17 77.44
RegMixup [24] 84.13 / 90.81 79.38 / 92.74 87.25 77.04 / 86.31 77.68 / 92.45 78.45 / 95.35 76.68

Table 3: Data augmentation methods (column headers) are
beneficial for OOD detection and amplify the performance
gain when combined with post-hoc methods (row headers).
The cell numbers represent the near-OOD / far-OOD AUROC.

Some methods have specific setup, and we adopt their official implementations and hyperparameters
whenever possible.

For ImageNet-1K, we evaluate post-hoc methods with pre-trained models from torchvision [70].
In addition to ResNet-50 that is considered in OpenOOD v1, v1.5 further includes ViT [71] and
Swin Transformer [72] for comprehensive evaluation. For training methods, we focus on ResNet-50
and use official checkpoints when possible. Otherwise, we fine-tune the torchvision pre-trained
checkpoint for 30 epochs with a learning rate of 0.001. Again, we use a batch size of 256 and
weight decay of 0.0005. CIFAR and ImageNet models are trained using 1 and 2 Quadro RTX 6000
GPUs (24GB memory), respectively. Except ImageNet-1K experiments, we perform 3 independent
training runs for each method. All training runs can be easily reproduced by running OpenOOD and
providing corresponding configuration files (e.g., training a ResNet-18 on CIFAR-10 is as simple
as python main.py --config configs/cifar10.yml configs/resnet18_32x32.yml). We refer to
our github repo for details, which thoroughly documents all bash training scripts.

Evaluation. As aforementioned, we use AUROC, AUPR, and FPR@95 as metrics. In the paper
we focus on near- and far-OOD AUROC which are averaged over all OOD datasets in each group.
AUROC can be interpreted as the probability that the detector correctly separates ID and OOD
samples; the random-guessing baseline is 50%, and the higher the better. Results under other metrics
and per-dataset statistics are available in our full result table. For post-hoc methods, OpenOOD
supports automatic hyperparameter search using ID and OOD validation samples. The hyperparameter
that yields the best AUROC is used for the final test. Similar to training, evaluation can be performed
by running simple bash scripts, which can be found in our online code repo.

Notes on missing results. The main results for standard OOD detection are presented in Table 1.
A few numbers are missing for the following reasons. OpenGAN [32] has not shown success on
ImageNet-1K, and substantial changes are required to make it work with ImageNet models. CSI [39],
VOS [42], and NPOS [45] are infeasible with our compute resources on ImageNet. CIDER [44] and
NPOS trains the CNN backbone without the final linear classifier, and the exact code for evaluating
ID accuracy is not provided in their official implementations. Lastly, we do not consider training
with outlier data Dtrain

OOD on ImageNet-1K since it is difficult to find OOD training samples that do not
overlap with test OOD data, and no relevant methods have considered ImageNet-1K.

Experiments on foundation models. For zero-shot CLIP, we follow the exact way of constructing
prompt ensemble and zero-shot classifier weights recommended by the authors of CLIP.2 We take the
outputs of zero-shot CLIP as the logits of each ID category. For DINOv2 linear probe, we use the
official weights3 for the classification head.

G Additional Results and Observations

In this section we present remaining results and observations that we do not cover in Section 3 due to
space limit.

2https://github.com/openai/CLIP/blob/main/notebooks/Prompt_Engineering_for_
ImageNet.ipynb

3https://github.com/facebookresearch/dinov2
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Data augmentations help. While data augmentations have been shown beneficial for standard
classification [21] and OOD generalization [20, 22, 19, 23, 24], their effects for OOD detection remain
unclear. In Table 3, we find that several data augmentation methods, despite not being designed to
improve OOD detection, can actually boost detection rates in many cases. More interestingly, the
performance gain is amplified when they are combined with powerful post-processors. For example,
compared with the baseline of cross-entropy training on ImageNet-1K near-OOD, AugMix [22]
achieves 76.02 + 1.47 = 77.49% AUROC and 78.17 + 3.99 = 82.16% AUROC when working with
MSP [1] and ASH [13], respectively. 82.16% is the current best score among all methods. The results
indicate that the effects from data augmentations and post-processors are complementary.

As to why data augmentations benefit OOD detection, one possible explanation is that the diverse
training samples they introduce can help model better capture semantic-correlated features rather
than spurious features [73, 74] (i.e., features that correlate to the label but are not semantically
meaningful; examples include high-frequency pattern [73] and adversarial noise [74]). Without data
augmentations, models may be easily activated by OOD samples that contain spurious features [75].
In contrast, models with data augmentations will activate less in the face of OOD samples, making
ID and OOD samples more separable.

Near-OOD remains more challenging than far-OOD. Figure 6 plots the trend of near-OOD
AUROC v.s far-OOD AUROC on ImageNet-1K. Not surprisingly, near-OOD AUROC is (roughly)
proportional to far-OOD AUROC, meaning that the improvement for one group is likely to help
with the other as well. Meanwhile, we notice that the progress on near-OOD is slower than that on
far-OOD. Besides the fact that near-OOD detection is more difficult, this may also be due to that
previous works mainly focus on far-OOD datasets when designing and evaluating their methods.

Vision transformers do not outperform ResNets. We visualize in Figure 7 the performance of
a few powerful post-hoc methods on ImageNet-1K with ResNet-50, ViT-B-16 [71], and Swin-T
[72] as the classifier. We use the ImageNet-1K-pre-trained checkpoints provided by torchvision. As
reference, they have 25.6M, 86.6M, and 28.3M parameters, and their ID accuracy is 76.18%, 81.14%,
and 81.59%, respectively. Interestingly, despite their better ID classification performance, we find
that vision transformers do not show noticeable improvements over ResNets for OOD detection,
which aligns with the observation in [10]. Meanwhile, different post-processor may favor different
architecture. For instance, the top-2 post-processor on ResNet-50, i.e., ASH [13] and ReAct [9], both
have significant performance degradation when operating on transformer. RMDS [29], in contrast,
suits transformers much better than ResNets.

Training methods excel at small datasets. On CIFAR-10/100, we find that training-time regular-
izations (the second group in Table 1) can provide better OOD detection capability than post-hoc
methods. In particular, RotPred [37] and LogitNorm [43] stand out as two powerful training methods
(without using outlier data). On CIFAR-10, they both lead to ∼2% and ∼3% increase in near-
and far-OOD AUROC, respectively, compared to the best-performing post-processors. Meanwhile,
however, training methods in general do not outperform post-hoc ones on ImageNet-200/1K. This
might be due to that more sophisticated training dynamics require larger models or longer training,
and the exact reason needs further investigation in future works.

Post-hoc methods are more effective for large-scale settings. This is particularly true on ImageNet-
1K, where applying post-processors to a model pre-trained with the standard cross-entropy loss are
the top-performing solutions for both near- and far-OOD detection, according to Table 1.

Outlier data helps in certain cases. Compared with methods that do not have such consideration,
incorporating OOD training data (the last group in Table 1) is helpful mainly when the test OOD
samples are similar to the training ones. For instance, OE [46] yields the highest near-OOD AUROC
on CIFAR-100 because the used OOD training set (TIN-597; see Appendix D for details) is similar
to one of the near-OOD test sets (TIN). In contrast, it does not seem to be beneficial for detecting
far-OOD samples (which are quite different from TIN images) and actually underperforms several
other methods which do not use the outlier data.

Intermediate features are only useful for detecting differences in low-level statistics. Take
MDSEns [28] as an example, which is a representative post-hoc method that leverages feature maps
from the classifier’s intermediate layers to compute OOD score. From our full result table (presented
here), we observe that MDSEns achieves a near-perfect result of 99% AUROC when detecting MNIST
(black and white handwritten digits) from CIFAR-10 (color images with objects), yet performs much
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Figure 7: OOD detection rates of post-hoc methods with different architectures on ImageNet-1K.
Some methods are sensitive to model architecture while some are not. Transformers do not seem to
have clear advantage over ResNets.

Table 4: ImageNet-1K full-spectrum detection results of data augmentation methods. The numbers
in each cell represent the near-OOD / far-OOD AUROC. Again, data augmentations are helpful
especially when combined with approriate post-processors and when performing near-OOD detection.

MSP [1] GradNorm [67] SHE [14] ID Acc.

CrossEntropy 60.79 / 72.32 62.70 / 83.49 61.21 / 83.04 54.35
StyleAugment [20] 62.09 / 74.37 65.27 / 81.62 66.64 / 82.64 55.44
RandAugment [21] 61.36 / 72.07 63.27 / 76.08 64.41 / 76.68 55.57
AugMix [22] 63.14 / 74.62 67.10 / 81.29 69.66 / 83.06 57.46
DeepAugment [19] 63.51 / 75.40 65.66 / 76.27 68.27 / 78.85 57.82
PixMix [23] 62.51 / 73.47 61.07 / 70.00 65.02 / 77.03 57.27
RegMixup [24] 61.32 / 72.87 61.86 / 79.98 64.71 / 81.23 55.55

worse (∼60% AUROC) in all other cases where there is not much difference in the low-level statistics
between ID and OOD. In contrast, the high-level semantic information from the penultimate layer
or the last linear layer (used by most post-processors like MSP [1], ReAct [9], KNN [12], and ASH
[13]) is more robust for detecting multiple types of OOD samples.

ID accuracy can be affected a little. Lastly, as shown in Table 1, most training methods incur slight
drop (within 1%) in ID classification accuracy compared to the standard cross-entropy training. For
some methods the drop could be large, and it is important for future works to monitor ID accuracy to
maintain utility while improving OOD detection capability.

Data augmentations continue to help in full-spectrum settings. Similar to our observations in
standard OOD detection, in Table 4 we see that data augmentations also boost full-spectrum detection
rates especially when combined with powerful post-hoc methods. For example, compared to the
cross-entropy baseline, while AugMix [22] increases near-OOD AUROC “only” by 2.35% with the
MSP detector [1], it leads to a much significant improvement of 8.45% when working with SHE
[14]. AugMix + SHE is the current best approach in terms of full-spectrum near-OOD AUROC on
ImageNet-1K. In the meantime, we do notice that data augmentations do not clearly benefits full-
spectrum far-OOD AUROC, and the reasons require future study. That said, our results demonstrate
that in general “data augmentation + post-processor” is promising for both standard and full-spectrum
OOD detection.

H Additional Discussions

H.1 Related Work

To the best of our knowledge, OpenOOD (especially the v1.5 release) is the only work that compre-
hensively benchmarks various OOD detection methods on multiple ID-OOD pairs. That said, there
are still a few works that relate to OpenOOD in certain aspects.
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Tajwar et al. [76] made the observation that “OOD detection methods are inconsistent across datasets”
from experiments on 3 small datasets (CIFAR-10, CIFAR-100, and SVHN) with 3 specific post-hoc
methods (MSP, ODIN, and MDS). While we draw a similar conclusion of “no single winner” in
Section 3, our observation comes from the experimentation with 4 datasets and nearly 40 methods
from different categories.

A recent work by Galil et al. [77] proposed a method for constructing OOD detection benchmark and
evaluated the performance of 5 post-hoc methods with ImageNet-1K pre-trained models. Specifically,
for a specific ImageNet-1K model with a specific post-processor, they consider ImageNet-21K images
as OOD and categorizes OOD images into a sequence of difficulty groups based on the OOD score
from the post-processor. Correspondingly, their evaluation looks at the OOD detection AUROC
across all groups, intending to provide a spectrum of AUROC v.s. difficulty. We see two shortcomings
of such practice for constructing a general benchmark. First, their benchmarking process is extremely
time-consuming since it needs to iterate through nearly all of the samples in ImageNet-21K, which
could be prohibitive even for the most lightweight method considering the compute required by
common ImageNet models. Second, the resulting benchmark is diagnostic to both the classifier and
the post-processor. For example, the first difficulty group of the benchmark for MSP and that for
ASH would not contain the same OOD samples, making the comparison ambiguous and much less
straightforward. In comparison, our carefully designed benchmarks are standardized, i.e., agnostic to
classifiers and post-processors. Plus, we consider a wide range of methods beyond a few specific
post-hoc approaches.

One work that most closely relates to ours is PyTorch-OOD [78], which is a python library for
evaluating OOD detection performance. There are several distinctions that separate OpenOOD from
PyTorch-OOD. 1) Number of supported methods. PyTorch-OOD implements 19 methods as of May
2023 with the most recent one dating back to 2022, while OpenOOD supports 40 approaches including
the most advanced ones published in 2023. 2) Reliability of evaluation results. PyTorch-OOD still
includes as OOD images the LSUN-R and TIN-R [27] which contain obvious resizing artifacts [39].
It also considers ImageNet-O which is known to cause biased evaluation since it is constructed by
adversarially targeting a ResNet-50 model with the MSP detector [77]. Their benchmarking results
thus can be problematic and unreliable. 3) Alignment between the goal reflected by the evaluation
and human perception. PyTorch-OOD’s evaluation setup favors detectors that flag covariate-shifted
ID samples (e.g., those from ImageNet-R or ImageNet-C) as OOD. We argue that this does not align
with human perception and is not an ideal behavior.

Another concurrent work by Bitterwolf et al. [59] put up a noise-free OOD dataset (NINCO) for
ImageNet-1K in response to the observed noise that exists in popular OOD datasets. They then
evaluate 8 post-hoc methods on NINCO and specifically study the effect of large-scale pre-training.
OpenOOD is inherently complementary to the work of [59], as we intend to build a comprehensive
benchmark for OOD detection by implementing and evaluating various types of methods (not restrict-
ing to post-hoc ones) on multiple datasets including ImageNet-1K. Meanwhile, our investigation on
full-spectrum detection and findings regarding data augmentation techniques are unique.

H.2 Real-World Implications

OOD detection is important in many real-world cases such as remote sensing applications [79]
and fine-grained novel category discovery [49]. It also has strong implications for safety-critical
applications, as OOD detection can be used to detect unexpected anomalies, unknown unknowns,
and Black Swans [80]. We believe that OpenOOD has laid a solid foundation and provided a good
starting point for tackling OOD detection in those specific scenarios.

H.3 Limitation

In this work we focus on the context where there assumes to be a discriminative classifier for the
ID classification in the first place. As a result, all the OOD detection methods considered in our
work are discriminative. OOD detection approaches that are based on generative modeling (e.g.,
[81, 82, 83, 84]) are not currently included in OpenOOD. To our knowledge, generative methods
have not yet demonstrated scalability on ImageNet-level data and in general are less competitive
than discriminative methods. Additional efforts will be required to integrate generative methods into
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OpenOOD in the future, as they often rely on dedicated/specialized model architecture and training
procedure [81, 82, 84].

H.4 Societal Impact

OOD detection is an important topic for machine learning safety as it studies how deep neural
networks can handle unknown inputs desirably. As an open-sourced, unified, and comprehensive
benchmark for OOD detection, OpenOOD is expected to benefit the whole community and facilitate
relevant research, which we believe has positive societal impacts. On the other hand, while OpenOOD
itself as a benchmark platform does not incur concerns, certain methods that are included in OpenOOD
may pose privacy or security risks. Specifically, methods such as KNN and SHE rely on the extracted
representation of training samples to compute the OOD score, making it vulnerable to privacy attacks
[85]. Meanwhile, Inkawhich et al. [86] showed that OOD detectors enlarge the attack surface of
deep learning systems, and existing methods can easily be compromised by adversarial attacks. We
encourage future works to take this into consideration.

H.5 Future Work

First, we will keep maintaining OpenOOD’s codebase and leaderboard. The codebase is hosted on
Github, and the leaderboard is hosted using Github pages, which both are free services. We anticipate
the benchmark to be community-driven: Reporting new results and submitting new entries to the
leaderboard would be easy with our unified evaluator.

In addition to the maintenance, in the future v2 release we plan to extend the scope of OpenOOD
beyond image classification and include more application scenarios such as object detection, semantic
segmentation, and natural language processing tasks. Specifically, it would be interesting to see
whether current OOD detectors, which are designed for image classifiers, can generalize to different
problems and modalities.
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