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ABSTRACT

Data augmentations are effective in improving the invariance of learning ma-
chines. We argue that the core challenge of data augmentations lies in designing
data transformations that preserve labels. This is relatively straightforward for im-
ages, but much more challenging for graphs. In this work, we propose GraphAug,
a novel automated data augmentation method aiming at computing label-invariant
augmentations for graph classification. Instead of using uniform transformations
as in existing studies, GraphAug uses an automated augmentation model to avoid
compromising critical label-related information of the graph, thereby producing
label-invariant augmentations at most times. To ensure label-invariance, we de-
velop a training method based on reinforcement learning to maximize an estimated
label-invariance probability. Experiments show that GraphAug outperforms pre-
vious graph augmentation methods on various graph classification tasks.

1 INTRODUCTION

Many real-world objects, such as molecules and social networks, can be naturally represented as
graphs. Developing effective classification models for these graph-structured data has been highly
desirable but challenging. Recently, advances in deep learning have significantly accelerated the
progress in this direction. Graph neural networks (GNNs) (Gilmer et al., 2017), a class of deep
neural network models specifically designed for graphs, have been widely applied to many graph
representation learning and classification tasks, such as molecular property prediction (Wang et al.,
2022b; Liu et al., 2022; Wang et al., 2022a; 2023; Yan et al., 2022).

However, just like deep models on images, GNN models can easily overfit and fail to achieve satis-
factory performance on small datasets. To address this issue, data augmentations can be used to gen-
erate more data samples. An important property of desirable data augmentations is label-invariance,
which requires that label-related information should not be compromised during the augmentation
process. This is relatively easy and straightforward to achieve for images (Taylor & Nitschke, 2018),
since commonly used image augmentations, such as flipping and rotation, can preserve almost all
information of original images. However, ensuring label-invariance is much harder for graphs be-
cause even minor modification of a graph may change its semantics and thus labels. Currently, most
commonly used graph augmentations (You et al., 2020) are based on random modification of nodes
and edges in the graph, but they do not explicitly consider the importance of label-invariance.

In this work, we propose GraphAug, a novel graph augmentation method that can produce label-
invariant augmentations with an automated learning model. GraphAug uses a learnable model to
automate augmentation category selection and graph transformations. It optimizes the model to
maximize an estimated label-invariance probability through reinforcement learning. Experimen-
tal results show that GraphAug outperforms prior graph augmentation methods on multiple graph
classification tasks. The codes of GraphAug are available in DIG (Liu et al., 2021) library.

∗Work was done while the author was at Fujitsu Research of America, INC.

1



Published as a conference paper at ICLR 2023

2 BACKGROUND AND RELATED WORK

2.1 GRAPH CLASSIFICATION WITH NEURAL NETWORKS

In this work, we study the problem of graph classification. Let G = (V,E,X) be an undirected
graph, where V is the set of nodes and E is the set of edges. The node feature matrix of the graph G
is X ∈ R|V |×d where the i-th row of X denotes the d-dimensional feature vector for the i-th node
in G. For a graph classification task with k categories, the objective is to learn a classification model
f : G → y ∈ {1, ..., k} that can predict the categorical label of G.

Recently, GNNs (Kipf & Welling, 2017; Veličković et al., 2018; Xu et al., 2019; Gilmer et al., 2017;
Gao & Ji, 2019) have shown great success in various graph classification problems. Most GNNs use
the message passing mechanism to learn graph node embeddings. Formally, the message passing
for any node v ∈ V at the ℓ-th layer of a GNN model can be described as

hℓ
v = UPDATE

(
hℓ−1
v ,AGG

({
mℓ

jv : j ∈ N (v)
}))

, (1)

where N (v) denotes the set of all nodes connected to the node v in the graph G, hℓ
v is the embedding

outputted from the ℓ-th layer for v, mℓ
jv is the message propagated from the node j to the node v at

the ℓ-th layer and is usually a function of hℓ−1
v and hℓ−1

j . The aggregation function AGG(·) maps the
messages from all neighboring nodes to a single vector, and the function UPDATE(·) updates hℓ−1

v
to hℓ

v using this aggregated message vector. Assuming that the GNN model has L layers, the graph
representation hG is computed by a global pooling function READOUT over all node embeddings
as

hG = READOUT
({

hL
v : v ∈ V

})
. (2)

Afterwards, hG is fed into a multi-layer perceptron (MLP) model to compute the probability that G
belongs to each of the categories {1, ..., k}.

Despite the success of GNNs, a major challenge in many graph classification problems is data
scarcity. For example, GNNs have been extensively used to predict molecular properties from graph
structures of molecules. However, the manual labeling of molecules usually requires expensive wet
lab experiments, so the amount of labeled molecule data is usually not large enough for expressive
GNNs to achieve satisfactory prediction accuracy. In this work, we address this data scarcity chal-
lenge with data augmentations. We focus on designing advanced graph augmentation strategies to
generate more data samples by performing transformations on data samples in the dataset.

2.2 DATA AUGMENTATIONS

Data augmentations have been demonstrated to be effective in improving the performance for image
and text classification. For images, various image transformation or distortion techniques have been
proposed to generate artificial image samples, such as flipping, cropping, color shifting (Krizhevsky
et al., 2012), scaling, rotation, and elastic distortion (Sato et al., 2015; Simard et al., 2003). And for
texts, useful augmentation techniques include synonym replacement, positional swaps (Ratner et al.,
2017a), and back translation (Sennrich et al., 2016). These data augmentation techniques have been
widely used to reduce overfitting and improve robustness in training deep neural network models.

In addition to hand-crafted augmentations, automating the selection of augmentations with learnable
neural network model has been a recent emerging research area. Ratner et al. (2017b) selects and
composes multiple image data augmentations using an LSTM (Hochreiter & Schmidhuber, 1997)
model, and proposes to make the model avoid producing out-of-distribution samples through adver-
sarial training. Cubuk et al. (2019) proposes AutoAugment, which adopts reinforcement learning
based method to search optimal augmentations maximizing the classification accuracy. To speed up
training and reduce computational cost, a lot of methods have been proposed to improve AutoAug-
ment through either faster searching mechanism (Ho et al., 2019; Lim et al., 2019), or advanced
optimization methods (Hataya et al., 2020; Li et al., 2020; Zhang et al., 2020).

2.3 DATA AUGMENTATIONS FOR GRAPHS

While image augmentations have been extensively studied, doing augmentations for graphs is much
more challenging. Images are Euclidean data formed by pixel values organized in matrices. Thus,
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many well studied matrix transformations can naturally be used to design image augmentations, such
as flipping, scaling, cropping or rotation. They are either strict information lossless transformation,
or able to preserve significant information at most times, so label-invariance is relatively straight-
forward to be satisfied. Differently, graphs are non-Euclidean data formed with nodes connected by
edges in an irregular manner. Even minor structural modification of a graph can destroy important
information in it. Hence, it is very hard to design generic label-invariant transformations for graphs.

Currently, designing data augmentations for graph classification (Zhao et al., 2022; Ding et al., 2022;
Yu et al., 2022) is a challenging problem. Some studies (Wang et al., 2021; Han et al., 2022; Guo &
Mao, 2021; Park et al., 2022) propose interpolation-based mixup methods for graph augmentations,
and Kong et al. (2022) propose to augment node features through adversarial learning. Nonetheless,
most commonly used graph augmentation methods (Hamilton et al., 2017; Wang et al., 2020; You
et al., 2020; Zhou et al., 2020a; Rong et al., 2020; Zhu et al., 2021a) are based on the random
modification of graph structures or features, such as randomly dropping nodes, perturbing edges, or
masking node features. However, such random transformations are not necessarily label-invariant,
because important label-related information may be randomly compromised (see Section 3.2 for
detailed analysis and discussion). Hence, in practice, these augmentations do not always improve
the performance of graph classification models.

3 THE PROPOSED GRAPHAUG METHOD

While existing graph augmentation methods do not consider the importance of label-invariance, we
dive deep into this challenging problem and propose to solve it by automated data augmentations.
Note that though automated data augmentations have been applied to graph contrastive learning (You
et al., 2021; Yin et al., 2022; Suresh et al., 2021; Hassani & Khasahmadi, 2022; Xie et al., 2022)
and node classification (Zhao et al., 2021; Sun et al., 2021), they have not been studied in supervised
graph classification. In this work, we propose GraphAug, a novel automated data augmentation
framework for graph classification. GraphAug automates augmentation category selection and graph
transformations through a learnable augmentation model. To produce label-invariant augmentations,
we optimize the model to maximize an estimated label-invariance probability with reinforcement
learning. To our best knowledge, GraphAug is the first work successfully applying automated data
augmentations to generate new graph data samples for supervised graph classification.

3.1 AUGMENTATION BY SEQUENTIAL TRANSFORMATIONS

Similar to the automated image augmentation method in Ratner et al. (2017b), we consider graph
augmentations as a sequential transformation process. Given a graph G0 sampled from the train-
ing dataset, we map it to the augmented graph GT with a sequence of transformation functions
a1, a2, ..., aT generated by an automated data augmentation model g. Specifically, at the t-th step
(1 ≤ t ≤ T ), let the graph obtained from the last step be Gt−1, we first use the augmentation
model to generate at based on Gt−1, and map Gt−1 to Gt with at. In summary, this sequential
augmentation process can be described as

at = g(Gt−1), Gt = at(Gt−1), 1 ≤ t ≤ T. (3)

In our method, a1, a2, ..., aT are all selected from three categories of graph transformations:

• Node feature masking (MaskNF), which sets some values in node feature vectors to zero;

• Node dropping (DropNode), which drops certain portion of nodes from the input graph;

• Edge perturbation (PerturbEdge), which produces the new graph by removing existing edges
from the input graph and adding new edges to the input graph.

3.2 LABEL-INVARIANT AUGMENTATIONS

Most automated image augmentation methods focus on automating augmentation category selection.
For instance, Ratner et al. (2017b) automate image augmentations by generating a discrete sequence
from an LSTM (Hochreiter & Schmidhuber, 1997) model, and each token in the sequence represents
a certain category of image transformation, such as random flip and rotation. Following this setting,
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our graph augmentation model g also selects the augmentation category at each step. Specifically,
g will generate a discrete token ct representing the category of augmentation transformation at,
denoting whether MaskNF, DropNode, or PerturbEdge will be used at the t-th step.

We have experimented to only automate augmentation category selection and use the graph trans-
formations that are uniformly operated on each graph element, such as each node, edge, or node
feature. For example, the uniform DropNode will randomly drop each node in the graph with the
same probability. These transformations are commonly used in other studies (You et al., 2020; Zhu
et al., 2021a; Rong et al., 2020), and we call them as uniform transformations. However, we find
that this automated composition of multiple uniform transformations does not improve classifica-
tion performance (see Section 4.3 for details). We argue that it is because uniform transformations
have equal chances to randomly modify each graph element, thus may accidentally damage signif-
icant label-related information and change the label of the original data sample. For instance, in a
molecular graph dataset, assuming that all molecular graphs containing a cycle are labeled as toxic
because the cyclic structures are exactly the cause of toxicity. If we are using DropNode transfor-
mation, dropping any node belonging to the cycle will damage this cyclic structure, and map a toxic
molecule to a non-toxic one. By default, data augmentations only involve modifying data samples
while labels are not changed, so data augmentations that are not label-invariant may finally produce
many noisy data samples and greatly harm the training of the classification model.

We use the TRIANGLES dataset (Knyazev et al., 2019) as an example to study the effect of label-
invariance. The task in this dataset is classifying graphs by the number of triangles (the cycles
formed by only three nodes) contained in the graph. As shown in Figure 3 of Appendix A, the uni-
form DropNode transformation is not label-invariant because it produces data samples with wrong
labels through dropping nodes belonging to triangles, and the classification accuracy is low when the
classification model is trained on these data samples. However, if we intentionally avoid dropping
nodes in triangles, training the classification model with this label-invariant data augmentation im-
proves the classification accuracy. The significant performance gap between these two augmentation
strategies clearly demonstrates the importance of label-invariance for graph augmentations.

Based on the above analysis and experimental results, we can conclude that uniform transforma-
tions should be avoided in designing label-invariant graph augmentations. Instead, we generate
transformations for each element in the graph by the augmentation model g in our method. Next, we
introduce the detailed augmentation process in Section 3.3 and the training procedure in Section 3.4.

3.3 AUGMENTATION PROCESS

Our augmentation model g is composed of three parts. They are a GNN based encoder for extracting
features from graphs, a GRU (Cho et al., 2014) model for generating augmentation categories, and
four MLP models for computing probabilities. We use graph isomorphism network (GIN) (Xu et al.,
2019) model as the encoder.

At the t-th augmentation step (1 ≤ t ≤ T ), let the graph obtained from the last step be Gt−1 =
(Vt−1, Et−1, Xt−1), we first add a virtual node vvirtual into Vt−1 and add edges connecting the
virtual node with all the nodes in Vt−1. In other words, a new graph G′

t−1 = (V ′
t−1, E

′
t−1, X

′
t−1) is

created from Gt−1 such that V ′
t−1 = Vt−1 ∪ {vvirtual}, E′

t−1 = Et−1 ∪ {(vvirtual, v) : v ∈ Vt−1},
and X ′

t−1 ∈ R|V ′
t−1|×d is the concatenation of Xt−1 and a trainable initial feature vector for the

virtual node. We use the virtual node here to extract graph-level information because it can capture
long range interactions in the graph more effectively than a pooling based readout layer (Gilmer
et al., 2017). The GNN encoder performs multiple message passing operations on G′

t−1 to obtain r-
dimensional embeddings {evt−1 ∈ Rr : v ∈ Vt−1} for nodes in Vt−1 and the virtual node embedding
evirtualt−1 ∈ Rr. Afterwards, the probabilities of selecting each augmentation category is computed
from evirtualt−1 as qt = GRU(qt−1, e

virtual
t−1 ), pCt = MLPC(qt), where qt is the hidden state vector

of the GRU model at the t-th step, and the MLP model MLPC outputs the probability vector pCt ∈ R3

denoting the probabilities of selecting MaskNF, DropNode, or PerturbEdge as the augmentation at
the t-th step. The exact augmentation category ct for the t-th step is then randomly sampled from the
categorical distribution with the probabilities in pCt . Finally, as described below, the computation of
transformation probabilities for all graph elements and the process of producing the new graph Gt

from Gt−1 vary depending on ct.
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Figure 1: An illustration of the process of producing Gt from Gt−1 with the augmentation model.

• If ct is MaskNF, then for any node v ∈ Vt−1, the probabilities pMt,v ∈ Rd of masking each node
feature of v is computed by the MLP model MLPM taking the node embedding evt−1 as input.
Afterwards, a binary vector oMt,v ∈ {0, 1}d is randomly sampled from the Bernoulli distribution
parameterized with pMt,v . If the k-th element of oMt,v is one, i.e., oMt,v[k] = 1, the k-th node feature
of v is set to zero. Such MaskNF transformation is performed for every node feature in Xt−1.

• If ct is DropNode, then the probability pDt,v of dropping any node v ∈ Vt−1 from Gt−1 is computed
by the MLP model MLPD taking the node embedding evt−1 as input. Afterwards, a binary value
oDt,v ∈ {0, 1} is sampled from the Bernoulli distribution parameterized with pDt,v and v is dropped
from Vt−1 if oDt,v = 1. Such DropNode transformation is performed for every node in Vt−1.

• If ct is PerturbEdge, the transformations involve dropping some existing edges from Et−1 and
adding some new edges into Et−1. We consider the set Et−1 as the droppable edge set, and we
create an addable edge set Et−1, by randomly sampling at most |Et−1| addable edges from the
set {(u, v) : u, v ∈ Vt−1, (u, v) /∈ Et−1}. For any (u, v) in Et−1, we compute the probability
pPt,(u,v) of dropping it by the MLP model MLPP taking [eut−1 + evt−1, 1] as input, where [·, ·]
denotes the concatenation operation. For any (u, v) in Et−1, we compute the probability pPt,(u,v)
of adding an edge connecting u and v by MLPP taking [eut−1 + evt−1, 0] as input. Afterwards, for
every (u, v) ∈ Et−1, we randomly sample a binary value oPt,(u,v) from the Bernoulli distribution
parameterized with pPt,(u,v), and drop (u, v) from Et−1 if oPt,(u,v) = 1. Similarly, we randomly
sample oPt,(u,v) for every (u, v) ∈ Et−1 but we will add (u, v) into Et−1 if oPt,(u,v) = 1.

An illustration of the process of producing Gt from Gt−1 with our augmentation model is given in
Figure 1. We also provide the detailed augmentation algorithm in Algorithm 1 of Appendix B.

3.4 LABEL-INVARIANCE OPTIMIZATION WITH REINFORCEMENT LEARNING

As our objective is generating label-invariant augmentations at most times, the ideal augmentation
model g should assign low transformation probabilities to graph elements corresponding to label-
related information. For instance, when DropNode is used, if the dropping of some nodes will
damage important graph substructures and cause label changing, the model g should assign very
low dropping probabilities to these nodes. However, we cannot directly make the model learn to
produce label-invariant augmentations through supervised training because we do not have ground
truth labels denoting which graph elements are important and should not be modified. To tackle this
issue, we implicitly optimize the model with a reinforcement learning based training method.

We formulate the sequential graph augmentations as a Markov Decision Process (MDP). This is
intuitive and reasonable, because the Markov property is naturally satisfied, i.e., the output graph at
any transformation step is only dependent on the input graph, not on previously performed transfor-
mation. Specifically, at the t-th augmentation step, we define Gt−1, the graph obtained from the last
step, as the current state, and the process of augmenting Gt−1 to Gt is defined as state transition.
The action is defined as the augmentation transformation at generated from the model g, which
includes the augmentation category ct and the exact transformations performed on all elements of
Gt−1. The probability p(at) of taking action at for different ct is is described as below.
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• If ct is MaskNF, then the transformation probability is the product of masking or unmasking
probabilities for features of all nodes in Vt−1, so p(at) is defined as

p(at) = p(ct) ∗
∏

v∈Vt−1

d∏
k=1

(
pMt,v[k]

)oMt,v [k] (1− pMt,v[k]
)1−oMt,v [k] . (4)

• If ct is DropNode, then the transformation probability is the product of dropping or non-dropping
probabilities for all nodes in Vt−1, so p(at) is defined as

p(at) = p(ct) ∗
∏

v∈Vt−1

(
pDt,v

)oDt,v (1− pDt,v
)1−oDt,v . (5)

• If ct is PerturbEdge, then the transformation probability is the product of perturbing or non-
perturbing probabilities for all edges in Et−1 and Et−1, so p(at) is defined as

p(at) = p(ct) ∗
∏

(u,v)∈Et−1∪Et−1

(
pPt,(u,v)

)oPt,(u,v)
(
1− pPt,(u,v)

)1−oPt,(u,v)

. (6)

We use the predicted label-invariance probabilities from a reward generation model s as the feedback
reward signal in the above reinforcement learning environment. We use graph matching network (Li
et al., 2019) as the backbone of the reward generation model s (see Appendix C for detailed in-
troduction). When the sequential augmentation process starting from the graph G0 ends, s takes
(G0, GT ) as inputs and outputs s(G0, GT ), which denotes the probability that the label is invariant
after mapping the graph G0 to the graph GT . We use the logarithm of the predicted label-invariance
probability, i.e., RT = log s(G0, GT ), as the return of the sequential augmentation process. Then
the augmentation model g is optimized by the REINFORCE algorithm (Sutton et al., 2000), which
updates the model by the policy gradient ĝθ computed as ĝθ = RT∇θ

∑T
t=1 log p(at), where θ

denotes the trainable parameters of g.

Prior to training the augmentation model g, we first train the reward generation model on manually
sampled graph pairs from the training dataset. Specifically, a graph pair (G1, G2) is first sampled
from the dataset and passed into the reward generation model to predict the probability that G1 and
G2 have the same label. Afterwards, the model is optimized by minimizing the binary cross entropy
loss. During the training of the augmentation model g, the reward generation model is only used to
generate rewards, so its parameters are fixed. See Algorithm 2 and 3 in Appendix B for the detailed
training algorithm of reward generation model and augmentation model.

3.5 DISCUSSIONS AND RELATIONS WITH PRIOR METHODS

Advantages of our method. Our method explicitly estimates the transformation probability of
each graph element by the automated augmentation model, thereby eliminating the negative effect
of adopting a uniform transformation probability. Also, the reinforcement learning based training
method can effectively help the model detect critical label-related information in the input graph, so
the model can avoid damaging it and produce label-invariant augmentations with greater chances.
We will show these advantages through extensive empirical studies in Section 4.1 and 4.2. Besides,
the use of sequential augmentation, i.e., multiple steps of augmentation, can naturally help produce
more diverse augmentations and samples, and the downstream classification model can benefit from
diverse training samples. We will demonstrate it through ablation studies in Section 4.3.

Relations with prior automated graph augmentations. Several automated graph augmentation
methods (You et al., 2021; Yin et al., 2022; Suresh et al., 2021; Hassani & Khasahmadi, 2022)
have been proposed to generate multiple graph views for contrastive learning based pre-training.
However, their augmentation models are optimized by contrastive learning objectives, which are not
related to graph labels. Hence, their augmentation methods may still damage label-related infor-
mation, and we experimentally show that they do not perform as well as GraphAug in supervised
learning scenarios in Section 4.2. Though a recent study (Trivedi et al., 2022) claims that label-
invariance is also important in contrastive learning, to our best knowledge, no automated graph
augmentations have been proposed to preserve label-invariance in contrastive learning. Besides, we
notice that a very recent study (Yue et al., 2022) also proposes a label-invariant automated augmenta-
tion method named GLA for semi-supervised graph classification. However, GLA is fundamentally
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Table 1: The testing accuracy on the COLORS and TRIANGLES datasets with the GIN model. We
report the average accuracy and standard deviation over ten runs on fixed train/validation/test splits.

Dataset No
augmentation

Uniform
MaskNF

Uniform
DropNode

Uniform
PerturbEdge

Uniform
Mixture GraphAug

COLORS 0.578±0.012 0.507±0.014 0.547±0.012 0.618±0.014 0.560±0.016 0.633±0.009
TRIANGLES 0.506±0.006 0.509±0.020 0.473±0.006 0.303±0.010 0.467±0.007 0.513±0.006

Figure 2: The changing curves of average rewards and label-invariance ratios on the validation set of
the COLORS and TRIANGLES datasets as the augmentation model training proceeds. The results
are averaged over ten runs, and the shadow shows the standard deviation.

different from GraphAug. For a graph data sample, GLA first obtains its graph-level representation
by a GNN encoder. Then the augmentations are performed by perturbing the representation vector
and label-invariant representations are selected by an auxiliary classification model. However, our
GraphAug directly augments the graph data samples, and label-invariance is ensured by our pro-
posed training method based on reinforcement learning. Hence, GraphAug can generate new data
samples to enrich the existing training dataset while GLA cannot achieve it.

Due to the space limitation, we will discuss computational cost, augmentation step number, pre-
training reward generation models, limitations, and relation with more prior methods in Appendix D.

4 EXPERIMENTS

In this section, we evaluate the proposed GraphAug method on two synthetic graph datasets and
seven benchmark datasets. We show that in various graph classification tasks, GraphAug can consis-
tently outperform previous graph augmentation methods. In addition, we conduct extensive ablation
studies to evaluate the contributions of some components in GraphAug.

4.1 EXPERIMENTS ON SYNTHETIC GRAPH DATASETS

Data. We first show that our method can indeed produce label-invariant augmentations and outper-
form uniform transformations through experiments on two synthetic graph datasets COLORS and
TRIANGLES, which are synthesized by running the open sourced data synthesis code1 of Knyazev
et al. (2019). The task of COLORS dataset is classifying graphs by the number of green nodes, and
the color of a node is specified by its node feature. The task of TRIANGLES dataset is classifying
graphs by the number of triangles (three-node cycles). We use fixed train/validation/test splits for
experiments on both datasets. See more information about these two datasets in Appendix E.1.

Setup. We first train the reward generation model until it converges, then train the automated aug-
mentation model. To check whether our augmentation model can learn to produce label-invariant
augmentations, at different training iterations, we calculate the average rewards and the label-
invariance ratio achieved after augmenting graphs in the validation set. Note that since we ex-
plicitly know how to obtain the labels of graphs from data generation codes, we can calculate label-
invariance ratio, i.e., the ratio of augmented graphs that preserve their labels. To compare GraphAug
with other augmentation methods, we train a GIN (Xu et al., 2019) based classification model with
different augmentations for ten times, and report the averaged testing classification accuracy. We
compare our GraphAug method with not using any data augmentations, and four graph augmenta-
tion baseline methods. Specifically, the augmentation methods using uniform MaskNF, DropNode,
and PerturbEdge transformations, and a mixture of these three uniform transformations (Uniform
Mixture), i.e., randomly picking one to augment graphs at each time, are used as baselines. To en-

1https://github.com/bknyaz/graph_attention_pool
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Table 2: The performance on seven benchmark datasets with the GIN model. We report the average
ROC-AUC and standard deviation over ten runs for the ogbg-molhiv dataset, and the average ac-
curacy and standard deviations over three 10-fold cross-validation runs for the other datasets. Note
that for JOAOv2, AD-GCL, and AutoGCL, we evaluate the augmentation methods of them under
the supervised learning setting, so the numbers here are different from those in their papers.

Method PROTEINS IMDB-BINARY COLLAB MUTAG NCI109 NCI1 ogbg-molhiv

No augmentation 0.704±0.004 0.731±0.004 0.806±0.003 0.827±0.013 0.794±0.003 0.804±0.003 0.756±0.014

Uniform MaskNF 0.702±0.008 0.720±0.006 0.815±0.002 0.788±0.012 0.777±0.006 0.794±0.002 0.741±0.010
Uniform DropNode 0.707±0.004 0.728±0.006 0.815±0.004 0.787±0.003 0.777±0.002 0.787±0.003 0.717±0.011
Uniform PerturbEdge 0.668±0.006 0.728±0.007 0.816±0.003 0.764±0.008 0.555±0.014 0.545±0.006 0.755±0.013
Uniform Mixture 0.707±0.004 0.730±0.009 0.815±0.003 0.779±0.014 0.776±0.006 0.783±0.003 0.746±0.010

DropEdge 0.707±0.002 0.733±0.012 0.812±0.003 0.779±0.005 0.762±0.007 0.780±0.002 0.762±0.010
M-Mixup 0.706±0.003 0.736±0.004 0.811±0.005 0.798±0.015 0.788±0.005 0.803±0.003 0.753±0.013
G-Mixup 0.715±0.006 0.748±0.004 0.811±0.009 0.805±0.020 0.654±0.043 0.686±0.037 0.771±0.005
FLAG 0.709±0.007 0.747±0.008 0.803±0.006 0.835±0.015 0.804±0.002 0.804±0.002 0.765±0.011

JOAOv2 0.700±0.003 0.707±0.008 0.688±0.003 0.775±0.016 0.675±0.003 0.670±0.006 0.744±0.014
AD-GCL 0.699±0.008 0.712±0.008 0.670±0.008 0.837±0.010 0.634±0.003 0.641±0.004 0.762±0.013
AutoGCL 0.684±0.008 0.707±0.007 0.745±0.002 0.783±0.022 0.705±0.003 0.737±0.002 0.704±0.016

GraphAug 0.722±0.004 0.762±0.004 0.829±0.002 0.853±0.008 0.811±0.002 0.816±0.001 0.774±0.010

sure fair comparison, we use the same hyper-parameter setting in training classification models for
all methods. See hyper-parameters and more experimental details in Appendix E.1.

Results. The changing curves of average rewards and label-invariance ratios are visualized in Fig-
ure 2. These curves show that as the training proceeds, our model can gradually learn to obtain higher
rewards and produce augmentations leading to higher label-invariance ratio. In other words, they
demonstrate that our augmentation model can indeed learn to produce label-invariant augmentations
after training. The testing accuracy of all methods on two datasets are presented in Table 1. From the
results, we can clearly find using some uniform transformations that do not satisfy label-invariance,
such as uniform MaskNF on the COLORS dataset, achieve much worse performance than not us-
ing augmentations. However, using augmentations produced by the trained GraphAug models can
consistently achieve the best performance, which demonstrates the significance of label-invariant
augmentations to improving the performance of graph classification models. We further study the
training stability and generalization ability of GraphAug models, conduct an exploration experiment
about training GraphAug models with adversarial learning, compare with some manually designed
label-invariant augmentations, and compare label-invariance ratios with baseline methods on the
COLORS and TRIANGLES datasets. See Appendix F.1, F.2, F.3, and F.6 for details.

4.2 EXPERIMENTS ON GRAPH BENCHMARK DATASETS

Data. We further demonstrate the advantages of our GraphAug method over previous graph aug-
mentation methods on six widely used datasets from the TUDatasets benchmark (Morris et al.,
2020), including MUTAG, NCI109, NCI1, PROTEINS, IMDB-BINARY, and COLLAB. We also
conduct experiments on the ogbg-molhiv dataset, which is a large molecular graph dataset from the
OGB benchmark (Hu et al., 2020). See more information about datasets in Appendix E.2.

Setup. We evaluate the performance by testing accuracy for the six datasets of the TUDatasets
benchmark, and use testing ROC-AUC for the ogbg-molhiv dataset. We use two classification mod-
els, including GIN (Xu et al., 2019) and GCN (Kipf & Welling, 2017). We use the 10-fold cross-
validation scheme with train/validation/test splitting ratios of 80%/10%/10% on the datasets from
the TU-Datasets benchmark, and report the averaged testing accuracy over three different runs. For
the ogbg-molhiv dataset, we use the official train/validation/test splits and report the averaged testing
ROC-AUC over ten runs. In addition to the baselines in Section 4.1, we also compare with previ-
ous graph augmentation methods, including DropEdge (Rong et al., 2020), M-Mixup (Wang et al.,
2021), G-Mixup (Han et al., 2022), and FLAG (Kong et al., 2022). Besides, we compare with three
automated augmentations proposed for graph self-supervised learning, including JOAOv2 (You
et al., 2021), AD-GCL (Suresh et al., 2021), and AutoGCL (Yin et al., 2022). Note that we take their
trained augmentation modules as the data augmenter, and evaluate the performance of supervised
classification models trained on the samples produced by these data augmenters. For fair compar-
ison, we use the same hyper-parameter setting in training classification models for GraphAug and
baseline methods. See hyper-parameters and more experimental details in Appendix E.2.
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Table 3: Results of ablation studies about learnable and sequential augmentation. We report the av-
erage accuracy and standard deviation over three 10-fold cross-validation runs with the GIN model.

Method PROTEINS IMDB-BINARY NCI1

GraphAug w/o learnable graph transformation 0.696±0.006 0.724±0.003 0.760±0.003
GraphAug w/o learnable category selection 0.702±0.004 0.746±0.009 0.796±0.006
GraphAug w/o sequential augmentation 0.712±0.002 0.753±0.003 0.809±0.004
GraphAug 0.722±0.004 0.762±0.004 0.816±0.001

Results. The performance of different methods on all seven datasets with the GIN model is sum-
marized in Table 2, and see Table 9 in Appendix F.4 for the results of the GCN model. According
to the results, our GraphAug method can achieve the best performance among all graph augmenta-
tion methods over seven datasets. Similar to the results in Table 1, for molecule datasets including
MUTAG, NCI109, NCI1, and ogbg-molhiv, using some uniform transformations based augmenta-
tion methods dramatically degrades the classification accuracy. On the other hand, our GraphAug
method consistently outperforms baseline methods, such as mixup methods and existing automated
data augmentations in graph self-supervised learning. The success on graph benchmark datasets
once again validates the effectiveness of our proposed GraphAug method.

4.3 ABLATION STUDIES

In addition to demonstrating the effectiveness of GraphAug, we conduct a series of ablation experi-
ments and use empirical results to answer (1) why we make augmentation automated and learnable,
(2) why we use sequential, multi-step augmentation, (3) why we adopt a combination of three differ-
ent transformations (MaskNF, DropNode, PerturbEdge) instead of using only one, and (4) why we
use virtual nodes. We present the ablation studies (1) and (2) in this section and leave (3) and (4) in
Appendix F.5. For all ablation studies, we train GIN based classification models on the PROTEINS,
IMDB-BINARY, and NCI1 datasets, and use the same evaluation pipeline as Section 4.2.

Ablation on learnable graph transformation and category selection. We first show that making
the model learn to generate graph transformations for each graph element and select augmenta-
tion category are both important. We compare with a variant of GraphAug that does not learn graph
transformations but simply adopts uniform transformations, and another variant that randomly select
the category of graph transformation, instead of explicitly predicting it. The classification accuracy
on three datasets of these two variants are presented in the first two rows of Table 3. Results show
that the performance of two variants is worse, and particularly removing learnable graph transfor-
mation will significantly degrade the performance. It is demonstrated that learning to generate graph
transformations and select augmentation category are both key success factors of GraphAug.

Ablation on sequential augmentation. We next show the advantage of sequential augmentation
over one-step augmentation. We compare with the variant of GraphAug that performs only one step
of augmentation, i.e., with the augmentation step number T=1, and present its performance in the
third row of Table 3. It is clear that using one step of augmentation will result in worse performance
over all datasets. We think this demonstrates that the downstream classification model will benefit
from the diverse training samples generated from sequential and multi-step augmentation.

5 CONCLUSIONS AND FUTURE WORK

We propose GraphAug, the first automated data augmentation framework for graph classification.
GraphAug considers graph augmentations as a sequential transformation process. To eliminate the
negative effect of uniform transformations, GraphAug uses an automated augmentation model to
generate transformations for each element in the graph. In addition, GraphAug adopts a reinforce-
ment learning based training procedure, which helps the augmentation model learn to avoid damag-
ing label-related information and produce label-invariant augmentations. Through extensive empiric
studies, we demonstrate that GraphAug can achieve better performance than many existing graph
augmentation methods on various graph classification tasks. In the future, we would like to explore
simplifying the current training procedure of GraphAug and applying GraphAug to other graph
representation learning problems, such as the node classification problem.
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REPRODUCIBILITY STATEMENT

We have provided the detailed algorithm pseudocodes in Appendix B and experimental setting de-
tails in Appendix E for reproducing the results. The source codes of our method are included in
DIG (Liu et al., 2021) library.
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A VISUALIZATION OF DIFFERENT AUGMENTATION METHODS

(a) An illustration of a data sam-
ple from the TRIANGLES dataset.
Red nodes represent the nodes be-
longing to triangles. The label of
this data sample is 4 since there are
four triangles. Training without
any augmentations on the TRIAN-
GLES dataset achieves the average
testing accuracy of 0.506± 0.006.

(b) The data sample generated by
augmenting the data sample in
(a) with the uniform DropNode
transformation. Note that two
nodes originally belonging to tri-
angles are removed, and the label
is changed to 1. Training with the
uniform DropNode transformation
achieves the average testing accu-
racy of 0.473± 0.006.

(c) The data sample generated by
augmenting the data sample in (a)
with the label-invariant DropN-
ode transformation (the DropNode
with GT method in Appendix F.3),
which intentionally avoids drop-
ping nodes in triangles. Training
with this label-invariant augmen-
tation achieves the average testing
accuracy of 0.522± 0.007.

Figure 3: Comparison of different augmentation methods on the TRIANGLES dataset. We use a
GIN (Xu et al., 2019) based classification model to evaluate different augmentation methods, and
report the average accuracy and standard deviation over ten runs on a fixed train/validation/test split.
In (a), we show a graph data sample with 4 triangles. In (b) and (c), we the data samples generated
by augmenting the data sample in (a) with two different augmentation methods. We can clearly find
that using the uniform DropNode transformation degrades the classification performance but using
the label-invariant augmentation improves the performance.
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B AUGMENTATION AND TRAINING ALGORITHMS

Algorithm 1: Augmentation Algorithm of GraphAug
1: Input: Graph G0 = (V0, E0, X0); total number of augmentation steps T ; the augmentation

model g composed of GNN-encoder, GRU, and four MLP models MLPC , MLPM , MLPD,
MLPP

2: Initialize the hidden state q0 of the GRU model to zero vector
3: for t = 1 to T do
4: Obtain G′

t−1 by adding a virtual node to Gt−1

5: evirtualt−1 , {evt−1 : v ∈ Vt−1} = GNN-encoder(G′
t−1)

6: qt = GRU(qt−1, e
virtual
t−1 )

7: pCt = MLPC(qt)
8: Sample ct from the categorical distribution of pCt
9: if ct is MaskNF then

10: for v ∈ Vt−1 do
11: pMt,v = MLPM (evt−1)

12: Sample oMt,v from the Bernoulli distribution parameterized with pMt,v
13: for k = 1 to d do
14: Set the k-th node feature of v to zero if oMt,v[k] = 1
15: else if ct is DropNode then
16: for v ∈ Vt−1 do
17: pDt,v = MLPD(evt−1)

18: Sample oDt,v from the Bernoulli distribution parameterized with pDt,v
19: Drop the node v from Vt−1 if oDt,v = 1
20: else if ct is PerturbEdge then
21: Obtain the addable edge set Et−1 by randomly sampling at most |Et−1| addable edges

from {(u, v) : u, v ∈ Vt−1, (u, v) /∈ Et−1}
22: for (u, v) ∈ Et−1 do
23: pPt,(u,v) = MLPP

(
[eut−1 + evt−1, 1]

)
24: Sample oPt,(u,v) from the Bernoulli distribution parameterized with pPt,(u,v)
25: Drop (u, v) from Et−1 if oPt,(u,v) = 1

26: for (u, v) ∈ Et−1 do
27: pPt,(u,v) = MLPP

(
[eut−1 + evt−1, 0]

)
28: Sample oPt,(u,v) from the Bernoulli distribution parameterized with pPt,(u,v)
29: Add (u, v) into Et−1 if oPt,(u,v) = 1

30: Set Gt as the outputted graph from the t-th augmentation step
31: Output GT

Algorithm 2: Training Algorithm of the reward generation model of GraphAug
1: Input: Graph dataset D; batch size B; learning rate α; the reward generation model s with the

parameter φ
2: repeat
3: Sample a batch G of B data samples from D
4: L = 0
5: for G ∈ G do
6: Randomly sample a graph G+ with the same label as G from G and a graph G− with

different label as G
7: L = L− log s(G,G+)− log(1− s(G,G−))
8: Update the parameter φ of s as φ = φ− α∇φL/B
9: until the training converges

10: Output the trained reward generation model s
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Algorithm 3: Training Algorithm of the augmentation model of GraphAug
1: Input: Graph dataset D; batch size B; learning rate α; total number of augmentation steps T ;

the augmentation model g with the parameter θ composed of GNN-encoder, GRU, and four
MLP models MLPC , MLPM , MLPD, MLPP ; the trained reward generation model s

2: repeat
3: Sample a batch G of B data samples from D
4: ĝθ = 0
5: for G ∈ G do
6: Set G0 = (V0, E0, X0) as G
7: Initialize the hidden state q0 of the GRU model to zero vector
8: for t = 1 to T do
9: Obtain G′

t−1 by adding a virtual node to Gt−1

10: evirtualt−1 , {evt−1 : v ∈ Vt−1} = GNN-encoder(G′
t−1)

11: qt = GRU(qt−1, e
virtual
t−1 )

12: pCt = MLPC(qt)
13: Sample ct from the categorical distribution of pCt , set log p(at) = log pCt (ct)
14: if ct is MaskNF then
15: for v ∈ Vt−1 do
16: pMt,v = MLPM (evt−1)

17: Sample oMt,v from the Bernoulli distribution parameterized with pMt,v
18: for k = 1 to d do
19: log p(at) = log p(at) + oMt,v[k] log p

M
t,v[k] + (1− oMt,v[k]) log(1− pMt,v[k])

20: Set the k-th node feature of v to zero if oMt,v[k] = 1
21: else if ct is DropNode then
22: for v ∈ Vt−1 do
23: pDt,v = MLPD(evt−1)

24: Sample oDt,v from the Bernoulli distribution parameterized with pDt,v
25: log p(at) = log p(at) + oDt,v log p

D
t,v + (1− oDt,v) log(1− pDt,v)

26: Drop the node v from Vt−1 if oDt,v = 1
27: else if ct is PerturbEdge then
28: Obtain the addable edge set Et−1 by randomly sampling at most |Et−1| addable

edges from {(u, v) : u, v ∈ Vt−1, (u, v) /∈ Et−1}
29: for (u, v) ∈ Et−1 do
30: pPt,(u,v) = MLPP

(
[eut−1 + evt−1, 1]

)
31: Sample oPt,(u,v) from the Bernoulli distribution parameterized with pPt,(u,v)
32: log p(at) = log p(at) + oPt,(u,v) log p

P
t,(u,v) + (1− oPt,(u,v)) log(1− pPt,(u,v))

33: Drop (u, v) from Et−1 if oPt,(u,v) = 1

34: for (u, v) ∈ Et−1 do
35: pPt,(u,v) = MLPP

(
[eut−1 + evt−1, 0]

)
36: Sample oPt,(u,v) from the Bernoulli distribution parameterized with pPt,(u,v)
37: log p(at) = log p(at) + oPt,(u,v) log p

P
t,(u,v) + (1− oPt,(u,v)) log(1− pPt,(u,v))

38: Add (u, v) into Et−1 if oPt,(u,v) = 1

39: Set Gt as the outputted graph from the t-th augmentation step
40: ĝθ = ĝθ + log s(G0, GT )∇θ

∑T
t=1 log p(at)

41: Update the parameter θ of g as θ = θ + αĝθ/B.
42: until the training converges
43: Output the trained augmentation model g
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C DETAILS OF REWARD GENERATION MODEL

We use the graph matching network (Li et al., 2019) as the reward generation model s to predict the
probability s(G0, GT ) that G0 and GT have the same label (here G0 is a graph sampled from the
dataset, i.e., the starting graph of the sequential augmentation process, and GT is the graph produced
from T steps of augmentation by the augmentation model). The graph matching network takes both
G0 = (V0, E0, X0) and GT = (VT , ET , XT ) as input, performs multiple message operations on
them with a shared GNN model separately. The computational process of the message passing for
any node v in G0 at the ℓ-th layer of the model is

hℓ
v = UPDATE

(
hℓ−1
v ,AGG

({
mℓ

jv : j ∈ N (v)
})

, µGT
v

)
, (7)

which is the same as the message passing of vanilla GNNs in Equation (1) other than involving
propagating the message µGT

v from the graph GT to the node v in G0. The message µGT
v is extracted

by an attention based module as

wiv =
exp

(
sim

(
hℓ−1
v , hℓ−1

i

))∑
u∈VT

exp
(
sim

(
hℓ−1
v , hℓ−1

u

)) , µGT
v =

∑
i∈VT

wiv(h
ℓ−1
v − hℓ−1

i ), v ∈ V0, (8)

where sim(·, ·) computes the similarity between two vectors by dot-product. The message passing
for any node in GT is similarly computed as in Equation (7), and this also involves propagating mes-
sage from G0 to nodes in GT with the attention module in Equation (8). Afterwards, the graph-level
representations hG0

and hGT
of G0 and GT are separately obtained from their node embeddings as

in Equation (2). We pass |hG0
− hGT

|, the element-wise absolute deviation of hG0
and hGT

, to an
MLP model to compute s(G0, GT ).
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D MORE DISCUSSIONS

Discussions about computational cost. Considering a graph with |V | nodes and |E| edges, the time
complexity of performing our defined DropNode or MaskNF transformation on it is O(|V |), and the
time complexity is O(|E|) for the PerturbEdge transformation since both edge dropping or addition
is operated on at most |E| edges. Hence, the time complexity of augmenting the graph for T steps is
O(T |V |+ T |E|). This time cost is affordable for most real-world applications. We test the average
time used to augment a graph on each benchmark dataset used in our experiments with our trained
augmentation model, see Table 10 for time results. We can find that for most dataset, our method
only takes a very small amount of time (< 0.05 s) to augment a graph in average. Besides, during
the training of the augmentation model, the computation of rewards by the reward generation model
involves attention module (see Equation (9)), which causes an extra computational cost of O(|V |2).
In practice, this does not have much effect on small graphs, but may lead to large computation and
memory cost on large graphs.

Discussions about augmentation step number. For the number of augmentation steps T , we do
not let the model to learn or decide T itself but make T a fixed hyper-parameter to avoid the model
being stucked in the naive solution of not doing augmentation at all (i.e., learn T = 0). This strategy
is also adopted by previous image augmentation method (e.g. AutoAugment (Cubuk et al., 2019)).
A larger T encourages the model to produce more diverse augmentations but makes it harder to keep
label-invariance. We experimentally find that if T ≥ 8, it is hard to obtain sufficiently high reward
for the model. Hence, we tune T in [1, 8] for each dataset to achieve the best trade-off between
producing diverse augmentations and keeping label-invariance.

Discussions about pre-training reward generation model. In our method, before training the
augmentation model, we first pre-train the reward generation model and make it fixed while training
the augmentation model. Such a training pipeline has both advantages and disadvantages. The ad-
vantages of using the fixed/pre-trained reward generation model are two-fold. (1) First, pre-training
the reward generation model enables it to accurately predict whether two input graphs have the same
labels or not, so that the generated reward signals can provide accurate feedback for the augmen-
tation model. (2) Second, using the fixed reward generation model can stabilize the training of the
augmentation model in practice. As we shown in Appendix F.2, if the reward generation model is
not fixed and jointly trained with the augmentation model, the training becomes unstable and mod-
els consistently diverge. The disadvantage of pre-training the reward generation model is that this
training pipeline is time-consuming, because we have to train two models every time to obtain the
finally usable graph augmenter.

Limitations of our method. There are some limitations in our method. (1) First, our method adopts
a complicated two-step training pipeline which first trains the reward generation model and then
trains the augmentation model. We have tried simplifying it to one-step training through adversarial
training as in Ratner et al. (2017b). However, we found it to be very unstable and the augmenta-
tion model consistently diverges (see Appendix F.2 for an exploration experiment about adversarial
training on the COLORS and TRIANGLES dataset). We leave the problem of simplifying the train-
ing to the future. (2) Second, our augmentation method will take extra computational cost in both
training the augmentation model and providing augmented samples for the downstream graph clas-
sification training. The time and resource cost of training models can be large on the large datasets.
For instance, on the ogbg-molhiv dataset, we find it takes the total time of around 10 hours to train
the reward generation model and augmentation model before we obtain a finally usable graph aug-
menter. Given that the performance improvement is not significant on the ogbg-molhiv dataset, such
a large time cost is not a worthwhile investment. Our GraphAug mainly targets on improving
the graph classification performance by generating more training data samples for the tasks
with small datasets, particularly for those that need huge cost to manually collect and label
new data samples. But for the classification task with sufficient training data, the benefits of using
GraphAug are limited and not worth the large time and resource cost to train GraphAug models.

Relations with automated image augmentations. GraphAug are somehow similar to some auto-
mated image augmentations (Cubuk et al., 2019; Zhang et al., 2020) in that they both use sequential
augmentation and reinforcement learning based training. However, they are actually fundamen-
tally different. Label-invariance is not a problem in automated image augmentations because the
used image transformations ensure label-invariance. On the other hand, as discussed in Section 3.2,
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it is non-trivial to make graph transformations ensure label-invariance. In GraphAug, the learn-
able graph transformation model and the reinforcement learning based training are used to produce
label-invariant augmentations, which are actually the main contribution of GraphAug. Another
fundamental difference between GraphAug and automated image augmentations lies in the reward
design. Many automated image augmentation methods, such as AutoAugment (Cubuk et al., 2019),
train a child network model on the training data and use the achieved classification accuracy on the
validation data as the reward. Instead, our GraphAug uses the label-invariance probability predicted
by the reward generation model as the reward signal to train the augmentation model. We argue that
such reward design has several advantages over using the classification accuracy as the reward. (1)
First, maximizing the label-invariance probability can directly encourage the augmentation model to
produce label-invariant augmentations. However, the classification accuracy is not directly related
to label-invariance, so using it as the reward feedback does not necessarily make the augmentation
model learn to ensure label-invariance. (2) Second, predicting the label-invariance probability only
needs one simple model inference process that is computationally cheap, while obtaining the clas-
sification accuracy is computationally expensive because it needs to train a model from scratch. (3)
Most importantly, our reward generation scheme facilitates the learning of the augmentation model
by providing the reward feedback for every individual graph. Even in the same dataset, the
label-related structures or patterns in different graphs may vary a lot, hence, good augmentation
strategies for different graphs can be different. However, the classification accuracy evaluates the
classification performance when using the produced graph augmentations to train models on the
overall dataset, which does not provide any feedback about whether the produced augmentation on
every individual graph sample is good or not. Differently, the label-invariance probability is com-
puted for every individual graph sample, thereby enabling the model to capture good augmentation
strategies for every individual graph. Considering these advantages, we do not use the classification
accuracy but take the label-invariance probability predicted by the reward generation model as the
reward. Overall, GraphAug cannot be considered as a simple extension of automated image
augmentations to graphs.

Relation with prior graph augmentation methods. In addition to GLA (Yue et al., 2022), we
also notice Graphair (Ling et al., 2023), another recently proposed automated graph augmentation
method. However, Graphair aims to produce fairness-aware graphs for fair graph representation
learning, while our method is proposed for graph classification. Additionally, graph mixup methods
(Wang et al., 2021; Han et al., 2022; Guo & Mao, 2021; Park et al., 2022) synthesize a new graph
or graph representation from two input graphs. Because the new data sample is assigned with the
combination of labels of two input graphs, mixup operations are supposed to detect and mix the
label-related information of two graphs (Guo & Mao, 2021). However, our method is simpler and
more intuitive because it only needs to detect and preserve the label-related information of one in-
put graph. In addition, another method FLAG (Kong et al., 2022) can only augment node features,
while our method can produce augmentations in node features, nodes and edges. Besides, similar
to the motivation of our GraphAug, some other studies have also found that preserving important
structures or node features is significant in designing effective graph augmentations. A pioneering
method in this direction is GCA (Zhu et al., 2021b), which proposes to identify important edges and
node features in the graph by node centralities. GCA augments the graph by random edge dropping
and node feature masking, but assigns lower perturbation probabilities to the identified important
edges and node features. Also, other studies (Wang et al., 2020; Bicciato & Torsello, 2022; Zhou
et al., 2020b) assume that some motif or subgraph structures in the graph is significant, and propose
to augment graphs by manually designed transformations to avoid removing them. Overall, these
augmentations are based on some rules or assumptions about how to preserve important structures
of the input graph. Differently, our GraphAug method does not aim to define a fixed graph aug-
mentation strategy for every graph. Instead, it seeks to make the augmentation model find good
augmentation strategies automatically with reinforcement learning based training.

Relations with graph explainability. Our method is related to graph explainability in that the
predicted transformation probabilities from our augmentation model g is similar to explainability
scores of some graph explainability methods (Maruhashi et al., 2018; Yuan et al., 2020; 2021).
Hence, we hope that our augmentation method can bring inspiration to researchers in the graph
explainability area.
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Table 4: Statistics of graph benchmark datasets.

Datasets # graphs Average # nodes Average # edges # classes

PROTEINS 1113 39.06 72.82 2
IMDB-BINARY 1000 19.77 96.53 2
COLLAB 5000 74.49 2457.78 3
MUTAG 188 17.93 19.79 2
NCI109 4127 29.68 32.13 2
NCI1 4110 29.87 32.30 2
ogbg-molhiv 41,127 25.5 27.5 2

Table 5: Some hyper-parameters for the reward generation model and its training.

Datasets # layers batch size # training epochs

PROTEINS 6 32 420
IMDB-BINARY 6 32 320
COLLAB 5 8 120
MUTAG 5 32 230
NCI109 5 32 200
NCI1 5 32 200
ogbg-molhiv 5 32 200

E MORE DETAILS ABOUT EXPERIMENTAL SETTING

E.1 EXPERIMENTS ON SYNTHETIC GRAPH DATASETS

Data information. We synthesize the COLORS and TRIANGLES dataset by running the open
sourced data synthesis code of Knyazev et al. (2019). For the COLORS dataset, we synthesize 8000
graphs for training, 1000 graphs for validation, and 1000 graphs for testing. For the TRIANGLES
dataset, we synthesize 30000 graphs for training, 5000 graphs for validation, and 5000 graphs for
testing. The labels of all data samples in both datasets belong to {1, ..., 10}.

Details of the model and training. The Adam optimizer (Kingma & Ba, 2015) is used for the
training of all models. For both datasets, we use a reward generation model with 5 layers and the
hidden size of 256, and the graph level embedding is obtained by sum pooling. It is trained for 1
epoch on the COLORS dataset and 200 epochs on the TRIANGLES dataset. The batch size is 32
and the learning rate is 0.0001. For the augmentation model, we use a GIN model with 3 layers
and the hidden size of 64 for GNN encoder, an MLP model with 2 layers, the hidden size of 64,
and ReLU as the non-linear activation function for MLPC , and an MLP model with 2 layers, the
hidden size of 128, and ReLU as the non-linear activation function for MLPM , MLPD, and MLPP .
The augmentation model is trained for 5 epochs with the batch size of 32 and the learning rate of
0.0001 on both datasets. To stabilize the training of the augmentation model, we manually control
the augmentation model to only modify 5% of graph elements at each augmentation step during the
training. On the COLORS dataset, we use a classification model where the number of layers is 3,
the hidden size is 128, and the readout layer is max pooling. On the TRIANGLES dataset, we use
a classification model where the number of layers is 3, the hidden size is 64, and the readout layer
is sum pooling. On both datasets, we set the training batch size as 32 and the learning rate as 0.001
when training classification models, and all classification models are trained for 100 epochs.

E.2 EXPERIMENTS ON GRAPH BENCHMARK DATASETS

Data information. We use six datasets from the TUDatasets benchmark (Morris et al., 2020), in-
cluding three molecule datasets MUTAG, NCI109, NCI1, one bioinformatics dataset PROTEINS,
and two social network datasets IMDB-BINARY and COLLAB. We also use the ogbg-molhiv
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Table 6: Some hyper-parameters for the augmentation model and its training.

Datasets # augmentation steps T batch size # training epochs

PROTEINS 2 32 30
IMDB-BINARY 8 32 30
COLLAB 8 32 10
MUTAG 4 16 200
NCI109 2 32 20
NCI1 2 32 20
ogbg-molhiv 2 128 10

Table 7: Some hyper-parameters for the classification model and its training.

Datasets # layers hidden size batch size

PROTEINS 3 128 32
IMDB-BINARY 4 128 32
COLLAB 4 64 32
MUTAG 4 128 16
NCI109 4 128 32
NCI1 3 128 32
ogbg-molhiv 5 300 32

dataset from the OGB benchmark (Hu et al., 2020). See Table 4 for the detailed statistics of all
benchmark datasets used in our experiments.

Details of model and training. The Adam optimizer (Kingma & Ba, 2015) is used for training of
all models. For all six datasets, we set the hidden size as 256 and the readout layer as sum pooling
for the reward generation model, and the reward generation model is trained using 0.0001 as the
learning rate. See other hyper-parameters about the reward generation model and its training in
Table 5. The hyper-parameters of the augmentation model is the same as those in experiments of
synthetic graph datasets and the learning rate is 0.0001 during its training, but we tune the batch
size, the training epochs and the number of augmentation steps T on each dataset. See Table 6 for
the optimal values of them on each dataset. The strategy of modifying only 5% of graph elements is
also used during the training of augmentation models. Besides, for classification models, we set the
readout layer as mean pooling, and tune the number of layers, the hidden size, and the training batch
size. See Table 7 for these hyper-parameters. All classification models are trained for 100 epochs
with the learning rate of 0.001.
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Figure 4: The changing curves of training and validation loss on the COLORS and TRIANGLES
datasets when training the reward generation model of GraphAug with Algorithm 2. The results are
averaged over ten runs, and the shadow shows the standard deviation.

Figure 5: The changing curves of training and validation rewards on the COLORS and TRIANGLES
datasets when training the augmentation model of GraphAug with Algorithm 3. The results are
averaged over ten runs, and the shadow shows the standard deviation.

Figure 6: The changing curves of training rewards of augmentation model and training loss of reward
generation model when training two models together with adversarial learning on the COLORS
dataset. The results are averaged over ten runs, and the shadow shows the standard deviation.

F MORE EXPERIMENTAL RESULTS

F.1 STUDY OF TRAINING STABILITY AND GENERALIZATION

Taking the COLORS and TRIANGLES datasets as examples, we show the learning curves of reward
generation models and augmentation models in Figure 4 and Figure 5, respectively. The learning
curves on the training set show that the training is generally very stable for both reward generation
models and augmentation models since no sharp oscillation happens. Comparing the learning curves
on the training and validation set, we can find that on the COLORS dataset, the curves converge to
around the same loss and rewards on the training and validation set when the training converges.
Hence, reward generation model and the augmentation model both have very good generalization
abilities. Differently, on more complicated TRIANGLES dataset, slight overfitting exists for both
models but the overall generalization ability is still acceptable. Actually, to eliminatee the negative
effect of overfitting, we always take the reward generation model with lowest validation loss and the
augmentation model with highest validation reward in our experiments. In a word, our studies about
training stability and generalization show that both the reward generation model and augmentation
model can be trained stably and have acceptable generalization ability.
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Table 8: The testing accuracy on the COLORS and TRIANGLES datasets with the GIN model. We
report the average accuracy and standard deviation over ten runs on fixed train/validation/test splits.

Dataset No
augmentation

MaskNF
with GT

DropNode
with GT

PerturbEdge
with GT GraphAug

COLORS 0.578±0.012 0.627±0.013 0.627±0.017 n/a 0.633±0.009
TRIANGLES 0.506±0.006 n/a 0.522±0.007 0.524±0.006 0.513±0.006

F.2 ADVERSARIAL TRAINING EXPERIMENT

One possible one-stage training alternative of GraphAug is the adversarial training strategy in Ratner
et al. (2017b). Specifically, the augmentation model is trained jointly with the reward generation
model. We construct the positive graph pair (G,G+) sampled from the dataset in which G and
G+ have the same label, and use the augmentation model to augment the graph G to G− and form
the negative graph pair (G,G−). The reward generation model is then trained to minimize the
loss function L = − log s(G,G+) − log (1− s(G,G−)), but the augmentation model is trained to
maximize the reward log s(G,G−) received from the reward generation model. In this adversarial
training method, the reward generation model can actually be considered as the discriminator model.
We conduct an exploration experiment of it on the COLORS and TRIANGLES datasets, but we
find that this strategy cannot work well on both datasets. On the TRIANGLES dataset, gradient
explosion consistently happens during the training but we have not yet figure out how to fix it. On
the COLORS dataset, we show the learning curves of two models in Figure 6. Note that different
from the learning curves of GraphAug in Figure 2, the augmentation model diverges and fails to
learn to obtain more rewards as the training proceeds. In other words, the augmentation model
struggles to learn to generate new graphs that can deceive the reward generation model. Given these
existing problems in adversarial learning, we adopts the two-stage training pipeline in GraphAug
and leaves the problem of simplifying the training to the future.

F.3 COMPARISON WITH MANUALLY DESIGNED LABEL-INVARIANT AUGMENTATIONS

An interesting question is how does our GraphAug compare with the manually designed label-
invariant augmentation methods (assuming we can design them from some domain knowledge)?
We try answering this question by empirical studies on COLORS and TRIANGLES datasets. Since
we explicitly know how the labels of graphs are obtained from their data generation codes, we can
design some label-invariant augmentation strategies. We compare GraphAug with three designed
label-invariant augmentation methods, which are based on MaskNF, DropNode, and PerturbEdge
transformations intentionally avoiding damaging label-related information. Specifically, for the
COLORS dataset, we compare with MaskNF that uniformly masks the node features other than the
color feature, and DropNode that uniformly drops the nodes other than green nodes. In other words,
they are exactly using the ground truth labels indicating which graph elements are label-related in-
formation, so we call them as MaskNF with GT and DropNode with GT. Note that no PerturbEdge
with GT is defined on the COLORS dataset because the modification of edges naturally ensures
label-invariance. Similarly, for the TRIANGLES dataset, we compare with DropNode with GT and
PerturbEdge with GT which intentionally avoid damaging any nodes or edges in triangles.

The performance of no augmentation baseline, three manually designed augmentation methods, and
our GraphAug method is summarized in Table 8. It is not surprising that all augmentation meth-
ods can outperform no augmentation baseline since they all can produce label-invariant training
samples. Interestingly, GraphAug is a competitive method compared with these manually designed
label-invariant methods. GraphAug outperforms manually designed augmentations on the COLORS
dataset but fails to do it on the TRIANGLES dataset. We find that is because GraphAug model se-
lects MaskNF with higher chances than DropNode and PerturbEdge, but graph classification models
benefits more from diverse topology structures produced by DropNode and PerturbEdge transforma-
tions. Note that although our GraphAug may not show significant advantages over manually
designed label-invariant augmentations on these two synthetic datasets, in most scenarios, de-
signing such label-invariant augmentations is impossible because we do not know which graph

24



Published as a conference paper at ICLR 2023

Table 9: The performance on seven benchmark datasets with the GCN model. We report the aver-
age ROC-AUC and standard deviation over ten runs for the ogbg-molhiv dataset, and the average
accuracy and standard deviations over three 10-fold cross-validation runs for the other datasets.

Method PROTEINS IMDB-BINARY COLLAB MUTAG NCI109 NCI1 ogbg-molhiv

No augmentation 0.711±0.003 0.734±0.010 0.797±0.002 0.803±0.016 0.742±0.004 0.731±0.002 0.761±0.010

Uniform MaskNF 0.716±0.001 0.723±0.006 0.802±0.002 0.765±0.017 0.734±0.005 0.729±0.004 0.745±0.011
Uniform DropNode 0.714±0.005 0.733±0.001 0.798±0.002 0.759±0.007 0.727±0.003 0.722±0.003 0.723±0.012
Uniform PerturbEdge 0.694±0.003 0.732±0.010 0.795±0.003 0.744±0.004 0.634±0.006 0.638±0.011 0.746±0.013
Uniform Mixture 0.714±0.003 0.734±0.009 0.797±0.004 0.754±0.015 0.731±0.002 0.722±0.002 0.743±0.011

DropEdge 0.710±0.006 0.735±0.013 0.797±0.004 0.762±0.003 0.724±0.004 0.723±0.003 0.757±0.012
M-Mixup 0.714±0.004 0.728±0.007 0.794±0.003 0.783±0.007 0.739±0.005 0.741±0.002 0.753±0.014
G-Mixup 0.724±0.006 0.749±0.010 0.800±0.027 0.799±0.004 0.509±0.005 0.506±0.005 0.763±0.008
FLAG 0.723±0.003 0.743±0.008 0.797±0.002 0.819±0.004 0.746±0.003 0.734±0.004 0.768±0.010

JOAOv2 0.722±0.003 0.687±0.010 0.681±0.004 0.736±0.007 0.691±0.007 0.672±0.004 0.722±0.009
AD-GCL 0.691±0.011 0.697±0.011 0.612±0.004 0.665±0.001 0.634±0.003 0.641±0.004 0.752±0.013
AutoGCL 0.668±0.008 0.719±0.002 0.745±0.002 0.769±0.022 0.707±0.002 0.714±0.005 0.701±0.014

GraphAug 0.736±0.007 0.764±0.008 0.808±0.001 0.832±0.005 0.760±0.003 0.748±0.002 0.774±0.010

Table 10: Average augmentation time per graph with the trained augmentation model.

Method PROTEINS IMDB-BINARY COLLAB MUTAG NCI109 NCI1 ogbg-molhiv

JOAOv2 0.0323s 0.0854s 0.2846s 0.0397s 0.0208s 0.0223s 0.0299s
AD-GCL 0.0127s 0.0418s 0.1478s 0.0169s 0.0092s 0.0083s 0.0115s
AutoGCL 0.0218s 0.0643s 0.2398s 0.0256s 0.0162s 0.0168s 0.0221s
GraphAug 0.0073s 0.0339s 0.1097s 0.0136s 0.0075s 0.0078s 0.0106s

elements are label-related. However, our GraphAug can still work in these scenarios because
it can automatically learn to produce label-invariant augmentations.

F.4 MORE EXPERIMENTAL RESULTS ON GRAPH BENCHMARK DATASETS

The performance of different augmentation methods on all seven datasets with the GCN model is
presented in Table 9. Besides, to quantify and compare the computational cost of our method and
some automated graph augmentation baseline methods on each dataset, we test the average time
they use to augment each graph and summarize the average augmentation time results in Table 10.
For most dataset, our method only takes a very small amount of time (< 0.05s) to augment a graph
in average, which is an acceptable time cost for most real-world applications. In addition, from
Table 10, we can clearly find that among all automated graph augmentation methods, our GraphAug
takes the least average runtime to augment graphs. For the other baseline methods in Table 2,
because they do not need the computation with neural networks in augmentations, their runtime
is unsurprisingly lower (< 0.001s per graph). However, the classification performance of them
is consistently worse than our GraphAug. Overall, our GraphAug achieves the best classification
performance, and its time cost is the lowest among all automated graph augmentations.

F.5 MORE ABLATION STUDIES

Ablation on combining three different transformations. In our method, we use a combination
of three different graph transformations, including MaskNF, DropNode, and PerturbEdge. Our
GraphAug model are designed to automatically select one of them at each augmentation step. Here
we explore how the performance will change if only one category of graph transformation is used.
Specifically, we compare with three variants of GraphAug that only uses learnable MaskNF, DropN-
ode, and PerturbEdge, whose performance are listed in the first three rows of Table 11. We can
find that sometimes using a certain category of learnable augmentation gives very good results, e.g.,
learnable DropNode on the NCI1 dataset. However, not all categories can achieve it, and actually the
optimal category varies among datasets because graph structure distributions or modalities are very
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Table 11: Results of ablation studies about combining three different transformations. We report
the average accuracy and standard deviation over three 10-fold cross-validation runs with the GIN
model.

Method PROTEINS IMDB-BINARY NCI1

GraphAug with only learnable MaskNF transformation 0.712±0.001 0.751±0.002 0.809±0.002
GraphAug with only learnable DropNode transformation 0.716±0.003 0.752±0.005 0.814±0.002
GraphAug with only learnable PerturbEdge transformation 0.702±0.009 0.754±0.005 0.780±0.001
GraphAug 0.722±0.004 0.762±0.004 0.816±0.001

Table 12: Results of ablation studies about using virtual nodes. We report the average accuracy and
standard deviation over three 10-fold cross-validation runs with the GIN model.

Method PROTEINS IMDB-BINARY NCI1

GraphAug with sum pooling 0.711±0.005 0.750±0.008 0.788±0.004
GraphAug with mean pooling 0.711±0.004 0.752±0.004 0.801±0.005
GraphAug with max pooling 0.713±0.002 0.737±0.005 0.795±0.005
GraphAug with virtual nodes 0.722±0.004 0.762±0.004 0.816±0.001

Table 13: The label-invariance ratios on the test sets of COLORS and TRIANGLES datasets.

Dataset Uniform
MaskNF

Uniform
DropNode

Uniform
PerturbEdge

Uniform
Mixture GraphAug

COLORS 0.3547 0.3560 1.0000 0.5645 0.9994
TRIANGLES 1.0000 0.6674 0.1957 0.6181 1.0000

different in different datasets. Nonetheless, GraphAug can consistently achieve good performance
without manually searching the optimal category on different datasets. Hence, combining different
transformations makes it easier for the GraphAug model to adapt to different graph datasets than
using only one category of transformation.

Ablation on using virtual nodes. In our method, virtual nodes are used to capture graph-level
representation and predict augmentation categories due to two advantages. (1) First, in the message
passing process of GNNs, virtual nodes can help propagate messages among far-away nodes in the
graph. (2) Second, virtual nodes can learn to more effectively capture graph-level representations
through aggregating more information from important nodes or structures in the graph (similar to
the attention mechanism). In fact, many prior studies (Gilmer et al., 2017; Hu et al., 2020) have
demonstrated the advantages of using virtual nodes in graph representation learning. To justify the
advantages of using virtual nodes in GraphAug, we compare the performance of taking different
ways to predict the augmentation category in an ablation experiment. Specifically, we evaluate the
performance of GraphAug model variants in which virtual nodes are not used, but the augmentation
category is predicted from the graph-level representations obtained by sum pooling, mean pooling,
or max pooling. The results of them are summarized in the first three rows of Table 12. From
the results, we can find that using virtual nodes achieves the best performance, hence it is the best
option.

F.6 EVALUATION OF LABEL-INVARIANCE PROPERTY

We evaluate the label-invariance ratios of our GraphAug method and the baseline methods used in
Table 1 on the test sets of two synthetic datasets. The results are summarized in Table 13. Since
the label is defined as the number of nodes with green colors (indicated by node features) in the
COLORS dataset, Uniform DropNode and Uniform PerturbEdge will destroy label-related informa-
tion and achieve a very low label-invariance ratio. Similarly, the label is defined as the number of
3-cycles in the TRIANGLES dataset, Uniform DropNode and Uniform PerturbEdge also achieve a
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very low label-invariance ratio. However, our GraphAug can achieve a very high label-invariance
ratio of close to 1.0 on both datasets. Besides, combining with the classification performance in
Table 1, we can find that only the augmentations with high label-invariance ratios can outperform
no augmentation baseline. This phenomenon demonstrates that label-invariance is significant to
achieve effective graph augmentations.
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