
Compressive Sensing based Asymmetric Semantic Image
Compression for Resource-constrained IoT system

Yujun Huang1,3†, Bin Chen2,3‡, Jianghui Zhang1,3, Qiu Han4, Shu-Tao Xia1,3
1 Tsinghua Shenzhen International Graduate School, Tsinghua University , 2 Harbin Institute of Technology, Shenzhen,

3 Peng Cheng Laboratory
4 Institute for Network Sciences and Cyberspace, Beijing, National Research Center for Information Science and

Technology, Tsinghua University
huangyj20@mails.tsinghua.edu.cn,chenbin2021@hit.edu.cn,jh-zhang21@mails.tsinghua.edu.cn

qiuhan@tsinghua.edu.cn,xiast@sz.tsinghua.edu.cn

ABSTRACT
The widespread application of Internet-of-Things (IoT) and deep
learning have made machine-to-machine semantic communication
possible. However, it remains challenging to deploy DNN model on
IoT devices, due to their limited computing and storage capacity.
In this paper, we propose Compressed Sensing based Asymmetric
Semantic Image Compression (CS-ASIC) for resource-constrained
IoT systems, which consists of a lightweight front encoder and a
deep iterative decoder offloaded at the server. We further consider
a task-oriented scenario and optimize CS-ASIC for the semantic
recognition tasks. The experiment results demonstrate that CS-
ASIC achieves considerable data-semantic rate-distortion trade-off,
and low encoding complexity over prevailing codecs.

1 INTRODUCTION
Deep learning enables the concept of Artificial Intelligence of Things
(AIoT) to become reality, i.e., street pedestrian detection system
and unmanned aerial vehicle (UAV) fire-watch system, by analyz-
ing massive data sensed by heterogeneously connected devices.
However, due to the limited computing resources, storage space,
and battery capacity of IoT devices, deploying DNN models on IoT
devices remain an objective obstacle. With mobile edge comput-
ing (MEC) [9, 10] and 5G Network [1], a practical solution to the
above obstacle is to deploy the DNN models at the powerful edge
server near the IoT devices. Therefore, an effective image semantic
compression system is required for communication between the
IoT devices and edges. Two novel challenges arise in such semantic
image compression system: (1) Transmitting overparameterized
DNN models and mass of data captured by IoT devices will lead
to channel congestion under limited bandwidth; (2) The accuracy
of DNN inference will decline due to data recovery error if lossy
coding strategy is performed. Therefore, it is crucial to design an

†Work was done during an internship at Harbin Institute of Technology, Shenzhen.
‡ Corresponding to: Bin Chen (chenbin2021@hit.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
DAC '22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9142-9/22/07…$15.00
https://doi.org/10.1145/3489517.3530520

asymmetric image compression algorithm for this inference-at-edge
semantic image sensing system, that reduces the model size of front
encoder and data size for saving bandwidth as well as prevents
DNN inference accuracy from degradation.

Next, we discuss some existing image compression methods
and their feasibility in inference-at-edge IoT systems. Prevailing
lossy image compression algorithms, e.g., JPEG [17], WebP [3], and
H.264 [13] perform 2D-DCT, quantization, entropy coding, and
intra-frame prediction based on human-vision rate-distortion trade-
off, thus taking no account of semantic distortion optimization. Liu
et al. [12] proposed a novel heuristic quantization table design to
replace the original one in JPEG to retain more high-frequency
semantic information for DNN inference. Choi et al. further pro-
posed an improved deep learning method to learn a task-specific
JPEG quantization table by adjusting the objective function [6]. But
most of their modules, e.g., DCT transform and entropy coding
are unchanged and unlearnable restricted by the JPEG framework,
thus leading to sub-optimal performance for specific downstream
tasks. Besides, deep lossy image compression models [2] achieve
considerable rate-distortion performance with a symmetric autoen-
coder structure. But their heavyweight encoders are not suitable
for those front devices with limited computation power and stor-
age resources. To reduce the parameters of DNN model, a popular
method is to perform model compression [5]. But the compressed
CNN model still contains multiple layers of nonlinear function
that may induce high computing complexity for those IoT devices
without powerful GPUs. By contrast, compressed sensing (CS) [7]
naturally has a lightweight sampling operation. Yuan et al. [19]
proposed a gray image compression framework based on CS, but
did not consider an efficient extension to color images.

In this paper, we propose Compressed Sensing based Asymmet-
ric Semantic Image Compression model (CS-ASIC) for IoT systems.
Our framework simultaneously reduces the computational com-
plexity of the encoder and allocates more computational resources
to the decoder to obtain better data recovery and semantic accu-
racy. Different from previous deep CS works [14, 15] that focus on
the trade-off between sample ratio and distortion, our framework
optimizes the entire model for rate-distortion performance. More-
over, we propose split sampling for more practical IoT systems that
splits the sampling process based on different input channels, and
reduces the model size for downlink model transmission. Unlike
2D-DCT and random sampling strategy, the sample matrices of split
sampling are learnable in an end-to-end framework. This work also
proposes a deep iterative decoder with residual fidelity block (RFB)

877

as its constituent unit for rate-distortion optimization. RFB can
improve the image quality by replacing the sparse prior in vanilla
CS with learnable prior, correcting recovery error by fidelity step
and cumulative error in feature space.

Finally, we adaptively improve the semantic accuracy for spe-
cific downstream tasks while balancing the existing rate-distortion
performance.

The main contributions can be summarized as follows:
• We design the first deep asymmetric semantic image compres-

sion model consisting of a lightweight linear encoder and a deep
iterative decoder for the resourced-constrained IoT systems.

• To make model transmission and storage affordable for IoT
devices, we propose learnable split sampling to reduce model size.

• For low-latent data transmission, we propose a residual fidelity
block (RFB) based deep iterative decoder, which jointly optimizes the
data-semantic rate-distortion performance for downstream tasks.

2 SYSTEM MODEL
Image is an important and common data type in IoT systems to
capture information from the physical world. By training seman-
tic image compression models with the image data at cloud/edge
servers, the IoT devices can accurately transmit the image stream
for human vision and semantic analysis in downstream computer vi-
sion tasks, such as pedestrian detection in driver assistance systems,
UAV-based fire detection, and flood monitoring.

Fig. 1(a) illustrates the overall workflow of an image semantic
compression system, where a deep semantic compression model is
deployed in the inference-at-edge IoT system. This system consists
of IoT front devices and the cloud/edge server. IoT devices have lim-
ited memory and computing capacity, which can only compress the
captured data source by a low-complexity encoding strategy before
uploading the data stream to the cloud/edge server. The cloud/edge
server has powerful computing resources to train DNN model, and
perform deep data recovery and semantic analysis. Therefore, for a
certain semantic analysis task, i.e, give a well-trained downstream
DNN model, our deep asymmetric semantic compression model
deployment for such IoT system can be divided into the following
four steps:
(1) Model Training: The cloud/edge server trains the overall deep
compression model with the captured images.
(2) Model Broadcast: The cloud/edge server broadcasts the trained
lightweight linear encoder to IoT devices.
(3) Data Upload: IoT devices encode the captured images to bits
streams by the lightweight encoder. The bits streams are then up-
loaded to the cloud/edge server.
(4) Data Recovery & Semantic Analysis: The cloud/edge server
recovers the images with a deep decoder. Semantic information is
then extracted by some task-related DNN.

Next, we introduce the major components of our deep asym-
metric semantic image compression model as shown in Fig. 1(b).
In general, training our model can be separated into two parts:
(1) a transmitter network plays as a lightweight encoder, consists
of analysis transform, quantization, and entropy encoding. (2) a
receiver network consists of a deep decoder and a semantic DNN
inference model. The deep decoder also contains similar entropy

decoding step and synthesis transformation. Unless specified other-
wise, we use the following notations. Denote the input color image
as 𝑋 ∈ R𝐻×𝑊 ×3, where 𝐻 ,𝑊 denote the height and width of the
image, respectively. Then the lossy encoding can be represented as:

Ŷ = 𝑄 (𝑔𝑎 (X ;𝜽𝑎)), (1)

where 𝑔𝑎 (·) is the analysis transform with parameter 𝜽𝑎 and 𝑄 (·)
is the quantization operation.

The decoded image can be represented as:

X̂ = 𝑔𝑠 (Ŷ ;𝜽𝑠), (2)

where 𝑔𝑠 (·) is the synthesis transform with parameters 𝜽𝑠 .
Furthermore, the extracted semantic information can be obtained

from the decoded image, given by:

ẑ = ℎ(X̂ ; 𝝓), (3)

where ℎ(·) is a task-related semantic feature extractor.
Then the deep asymmetric semantic image compression model

can be trained by the following data-semantic rate-distortion opti-
mization objective:

argmin
𝜽𝑎,𝜽𝑠

𝑅 + 𝜆1𝐷1 + 𝜆2𝐷2

= argmin
𝜽𝑎,𝜽𝑠

EX∼𝑝X
[
− log2 𝑝Ŷ

(
Ŷ
)]

︸ ︷︷ ︸
Rate

+𝜆1 · EX∼𝑝X
[
𝑑1

(
X, X̂

)]
︸ ︷︷ ︸

Data distortion
+𝜆2 · E(X,z)∼𝑝 (X,z) [𝑑2 (z, ẑ)]︸ ︷︷ ︸

Semantic Distortion

,

(4)

where the first term is the expected bit rate estimated by an entropy
model, the second term is the expected human vision based distor-
tion of the reconstructed image, e.g., mean squared error (MSE),
and the third term controls the expected semantic distortion 𝑑2 (·, ·)
such as cross entropy with ground truth label z, 𝜆1 and 𝜆2 are the
Lagrange multipliers to control the overall loss.

3 PROPOSED METHOD
In this section, we describe in detail CS-ASIC, our proposed asym-
metric semantic image compression framework for IoT systems.

3.1 Split Sampling based Lightweight Encoder
To better facilitate the resource-constrained IoT devices encoding,
we propose Compressed Sensing (CS) based sampling operation to
extract the low-dimension image feature due to its considerably
low complexity. Given a source image X , a common operation in
image CS is block-based sampling [8] that divides the image into
non-overlapping 𝐵 × 𝐵 blocks: {𝑥𝑖 ∈ 𝑅3𝐵

2 | 𝑖 = 1, ..., ⌈𝐻
𝐵
⌉ ⌈𝑊

𝐵
⌉},

and then sampling each block independently. Then the sampling
process can be formulated as: 𝑦𝑖 = 𝐴𝑥𝑖 , where 𝐴 ∈ R𝑀×3𝐵2 is a
sample matrix such that𝑀 < 3𝐵2. If these blocks are sparse with
respect to an orthogonal basisΨ, e.g., discrete cosine transformation
(DCT), CS theory proves that if the sample matrix satisfies the
Restricted Isometry Property (RIP) property, the following sparse

878

② Model
broadcast

① Model training on
cloud/edge server

③ Data
upload

④ Data
recovery

⑤ Semantic
extraction

(a) Deep semantic compression system
Transmitter

h

DNN Model

Receiver

Q EE ED

Lighweight Encoder Deep Decoder

ga gs

X Ŷ X̂ ẑŶY

(b) Deep Asymmetric Semantic Image Compression Model

Figure 1: Proposed framework for inference-at-edge IoT system.

so
ur

ce
 im

ag
e

co
nv

 k
1

1×
1×

3/
1

sp
lit

co
nc

at

LQ AE AD

de
co

nv
B

×B
×3

/B

re
si

du
al

 b
lo

ck

fi
de

lit
y

co
nv

3×
3×

d/
1

co
nv

3×
3×

d/
1

co
nv

3×
3×

1/
1

RFBK×

sp
lit

co
nc

at

co
nv

 i
n

v
k1

1×
1×

3/
1

re
co

ns
tr

uc
ti

on

so
ur

ce
 im

ag
e

R
G

B
-t

o-
Y

U
V

co
nv

 1
×1

×3
/1

sp
lit

co
nc

at

Q LE

JPEG Encoder

co
nc

at

sp
lit

2D-DCT
conv B×B×B2/B

2D-DCT
conv B×B×B2/B

2D-DCT
conv B×B×B2/B

2D-DCT
conv B×B×B2/B

2D-DCT
conv B×B×B2/B

2D-DCT
conv B×B×B2/B

conv k3
B×B×MU/B

conv k4
B×B×MV/B

conv k2
B×B×MY/B

conv k3
B×B×MU/B

conv k4
B×B×MV/B

conv k2
B×B×MY/B

conv k3
B×B×MU/B

conv k4
B×B×MV/B

conv k2
B×B×MY/B

conv k3
B×B×MU/B

conv k4
B×B×MV/B

conv k2
B×B×MY/B

deconv k2
B×B×MY/B

deconv k3
B×B×MU/B

deconv k4
B×B×MV/B

deconv k2
B×B×MY/B

deconv k3
B×B×MU/B

deconv k4
B×B×MV/B

Y Ŷ kX̂

X Y Ŷ

k

yuv
XX

k

yuv
R̂ k

yuv
X̂

k

yuv
X̂k

yuv
R̂0

yuv
X̂ kFŶ

Lightweight Encoder

Deep Iterative Decoder

Figure 2: Network architecture of CS-ASIC. The upper left side shows the analysis transform, the lower left side is the encoder
of JPEG for comparison, and the right side corresponds to the synthesis transofrm. LQ represents learnable quantization, AE
and AD represent arithmetic encoder and arithmetic decoder, respectively, and LE represents lossless encoder. Convolution
parameters are denoted as: kernel height×kernel width×number of filters/stride. The RGB-to-YUV transofrm and 2D-DCT of
JPEG is described as a special convolution operation for comparison.

1.0

0.8

0.6

0.4

0.2

0.0
R&G R&B G&B Y&U Y&V U&V

YUV channelRGB channel

A
bs

 o
f C

or
re

la
ti

on

Figure 3: The absolute value of Pearson correlation coefficient
within RGB and YUV channel.

solution approximately recover the image block,

argmin
𝑥 ′

∥Ψ𝑥 ′∥1︸ ︷︷ ︸
Sparse Prior

+𝜌2 ∥𝑦𝑖 −𝐴𝑥
′∥22 (5)

where 𝜌 is a hyper-parameter. Although the CS sampling operation
has linear complexity, the sample matrix size is still large for model

transmission. We employ Multilinear Compressive Sensing (MCS)
[16] to further reduce the samplematrix size by sampling along each
of the dimensions of a given multidimensional input signal by a set
of sample matrices. Specifically, sampling the color image signal
along one color dimension and two spatial dimensions separately
could reduce the size of the sample matrix. Besides, we find that
the correlation within the RGB channel is higher than that within
the YUV channel as shown in Fig. 3. Therefore, we can sample each
YUV channel independently since they have been decorrelated.

Based on the above analysis, we propose a novel two-stage split
sampling, which first performs RGB-to-YUV transform to decor-
relate the color space, then samples each YUV channel separately
along spatial dimensions, as shown in Alg 1. Specifically, we per-
form a block-based CS sampling operation to divide each YUV
channel into non-overlapping 𝐵 × 𝐵 blocks: {𝑥𝑖;𝑗 ∈ 𝑅𝐵

2 | 𝑗 ∈
{𝑦,𝑢, 𝑣}, 𝑖 = 1, ..., ⌈𝐻

𝐵
⌉ ⌈𝑊

𝐵
⌉}, and then sample them with learnable

sample matrices. It is worth noting that our block-based sampling
step and DCT of JPEG can be both viewed as special types of con-
volutional operation as shown in Figure 2. Each row of our sample

879

Algorithm 1 Split Sampling
1: 𝑤1, 𝑤2: positive learnable scalars;
2: 𝑊 : RGB-to-YUV transform matrix;
3: 𝑤𝑅 , 𝑤𝐺 , 𝑤𝐵 : Weights in transform matrix;
4: 𝑦, 𝑢, 𝑣: Y, U, V channel subscripts;
5: 𝑠𝑝𝑙𝑖𝑡𝑡 (·) : Split tensor along the 𝑡 -th demension;
6: 𝑐𝑜𝑛𝑡𝑡 (·) : Concatenate tensors along the 𝑡 -th demension;
7: 𝑆 𝑗 (·) , 𝑗 ∈ {𝑦,𝑢, 𝑣 }: Convolution with parameters 𝐵 × 𝐵 ×𝑀𝑗 /𝐵;
8: ∗𝑙 : Product along the 𝑙-th dimension of a tensor with a matrix [11];
9: Y : Sample signal;
10: 𝑤𝑅 ,𝑤𝐺 ,𝑤𝐵 = 𝑤1

𝑤1+𝑤2+1 ,
𝑤2

𝑤1+𝑤2+1 ,
1

𝑤1+𝑤2+1 ;
11: //RGB-to-YUV transform
12: X𝑦𝑢𝑣 = X ∗3𝑊 ,

where𝑊 =
©­­«
𝑤𝑅

−𝑤𝑅
2(1−𝑤𝐵)

1
2

𝑤𝐺
−𝑤𝐺

2(1−𝑤𝐵)
−𝑤𝐺

2(1−𝑤𝑅)
𝑤𝐵

1
2

−𝑤𝐵
2(1−𝑤𝑅)

ª®®¬;
13: //Separate channel sampling
14: (X𝑦,X𝑢 ,X𝑣) = 𝑠𝑝𝑙𝑖𝑡3 (X𝑦𝑢𝑣) ;
15: (Y 𝑦,Y𝑢 ,Y 𝑣) = (𝑆𝑦 (X𝑦), 𝑆𝑢 (X𝑢), 𝑆𝑣 (X𝑣)) ;
16: Y = 𝑐𝑜𝑛𝑡3 (Y 𝑦,Y𝑢 ,Y 𝑣) ;
17: return Y ;

matrix can be viewed as a filter and the sampling operation is equiv-
alent to a series of convolutional filters. The kernel size and the
stride are both 𝐵×𝐵. With this viewpoint, we can integrate the sam-
ple matrices as learnable parameters into an end-to-end framework
as deep learning to learn a lightweight image encoder.

To better illustrate the benefit of our lightweight encoder, we
now discuss the model size comparison between our split sampling
and the vanilla block-based sampling operation (??). The total size
of the sample matrices of split sampling is 𝐵2 (𝑀𝑦 +𝑀𝑢 +𝑀𝑣), while
the size of vanilla one is 3𝐵2𝑀 . Clearly, our split sampling reduces
the size by 3 times if 𝑀𝑦 +𝑀𝑢 +𝑀𝑣 = 𝑀 , thus contributing to a
more efficient lightweight encoder. Besides, as shown in Fig. 2 and
subsequent experimental results, our learnable encoder and JPEG
encoder have similar linear structures and comparable complexity.

3.2 Residual Fidelity Block based Deep Iterative
Decoder

Although we can realize low-latency model transmission in the
downlink by the proposed split sampling operation, the amount of
data can be huge in the uplink, which causes high latency for data
transmission. Therefore, we replace the sparse prior in vanilla CS
optimization (5) with learnable prior to improve rate-distortion per-
formance. Specifically, we employ a deep reconstruction function
𝑓𝜽 (·) to learn a mapping from the quantized sample signal Ŷ to the
recovered YUV image X̂𝑦𝑢𝑣 , and formulate the objective below.

argmin𝜽 ∥X − X̂ ∥22︸ ︷︷ ︸
Learnable Prior through 𝑓𝜽 (·)

+𝜌2
∑︁

𝑗 ∈{𝑦,𝑢,𝑣 }
∥Ŷ 𝑗 − 𝑆 𝑗 (X̂ 𝑗)∥22

s.t. X̂𝑦𝑢𝑣 = 𝑓𝜽 (Ŷ) and X̂ = X̂𝑦𝑢𝑣 ∗3𝑊 −1 . (6)

With (6), we can learn the data prior from the learnable network
parameters 𝜃 , that greatly improves the reconstruction efficiency.
Moreover, We adopt the iterative gradient unrolling method [4] to
solve the problem (6). Firstly, we denote the initial reconstruction

Algorithm 2 Residual fidelity block based decoding
1: 𝑘 : The 𝑘-th iteration;
2: 𝑅𝑏𝑘 (·) : Residual block;
3: 𝐶 (·) : Convolution with parameters 3 × 3 × 𝑑/1;
4: 𝐶𝑘1 (·) : Convolution with parameters 3 × 3 × 1/1;
5: 𝐶𝑘2 (·) : Convolution with parameters 3 × 3 × 𝑑/1;
6: 𝐷 (·) : Deconvolution with parameters 𝐵 × 𝐵 × (𝑀𝑦 +𝑀𝑢 +𝑀𝑣)/𝐵;
7: 𝑆𝑇

𝑗
(·) , 𝑗 ∈ {𝑦,𝑢, 𝑣 }: Deconvolution with parameters 𝐵 × 𝐵 ×𝑀𝑗 /𝐵

and the same kernel as 𝑆 𝑗 (·) ;
8: F𝑘 : Output feature;
9: R̂𝑘𝑦𝑢𝑣 : Intermediate deep YUV recovery;
10: X̂𝑘𝑦𝑢𝑣 : Last fidelity YUV recovery;
11: Other symbols are decribed in Alg. 1;
12: X̂0

𝑦𝑢𝑣 = 𝐷 (Ŷ) ;
13: F0 = 𝐶 (X̂0

𝑦𝑢𝑣) ;
14: X̂0

= X̂0
𝑦𝑢𝑣 ∗3𝑊 −1;

15: //K iterations of RFB
16: for 𝑘 in [1 .. 𝐾] do
17: //Deep Recovery
18: R̂𝑘𝑦𝑢𝑣 = X̂𝑘−1𝑦𝑢𝑣 +𝐶𝑘1 (𝑅𝑏𝑘 (F

𝑘−1)) ;
19: //Fidelity
20: (R̂𝑘𝑦, R̂

𝑘

𝑢 , R̂
𝑘

𝑣) = 𝑠𝑝𝑙𝑖𝑡3 (R̂
𝑘

𝑦𝑢𝑣) ;
21: (Ŷ𝑘𝑦, Ŷ

𝑘
𝑢 , Ŷ

𝑘
𝑣) = (𝑆𝑦 (R̂

𝑘

𝑦), 𝑆𝑢 (R̂
𝑘

𝑢), 𝑆𝑣 (R̂
𝑘

𝑣)) ;
22: Ŷ𝑘 = 𝑐𝑜𝑛𝑡3 (Ŷ

𝑘
𝑦, Ŷ

𝑘
𝑦, Ŷ

𝑘
𝑦) ;

23: (Ŷ𝑘𝑦 − Ŷ 𝑦, Ŷ
𝑘
𝑢 − Ŷ𝑢 , Ŷ

𝑘
𝑣 − Ŷ 𝑣) = 𝑠𝑝𝑙𝑖𝑡3 (Ŷ

𝑘 − Ŷ) ;
24: X̂𝑘𝑦𝑢𝑣 = R̂𝑘𝑦𝑢𝑣 − 𝜌𝑘𝑐𝑜𝑛𝑡3 (𝑆𝑇𝑦 (Ŷ

𝑘
𝑦 − Ŷ 𝑦), 𝑆𝑇𝑢 (Ŷ𝑘𝑢 − Ŷ𝑢), 𝑆𝑇𝑣 (Ŷ

𝑘
𝑣 −

Ŷ 𝑣)) ;
25: X̂𝑘 = X̂𝑘𝑦𝑢𝑣 ∗3𝑊 −1;
26: //Fidelity Skip Connection
27: F𝑘 = 𝑅𝑏𝑘 (F𝑘−1) +𝐶𝑘2 (X̂

𝑘
𝑦𝑢𝑣) ;

28: end for
29: return [X̂0

.. X̂𝐾];

X̂0
𝑦𝑢𝑣 = 𝑓

0
𝜽 0 (Ŷ). Then we can obtain the residual fidelity block (RBF)

based iterative decoding as follows:

argmin
𝜽 1,...,𝜽𝐾

𝐾∑︁
𝑘=0

∥X − X̂𝑘 ∥22 (7)

s.t. R̂𝑘𝑦𝑢𝑣 = 𝑓
𝑘
𝜽𝑘

(
X̂𝑘−1𝑦𝑢𝑣

)
︸ ︷︷ ︸

Step 1

, X̂𝑘𝑗 = R̂𝑘𝑗 − 𝜌𝑘G𝑘𝑗︸ ︷︷ ︸
Step 2

,

G𝑘𝑗 = 𝑆
𝑇
𝑗 (𝑆 𝑗 (R̂

𝑘
𝑗) − Ŷ 𝑗), 𝑘 ∈ {1, 2, · · · , 𝐾}, 𝑗 ∈ {𝑦,𝑢, 𝑣}

where 𝐾 is the number of total iterations, R̂𝑘𝑗 is the intermediate re-
covery, while X̂𝑘𝑗 (𝑗 ∈ {𝑦,𝑢, 𝑣}) is the final recovery of the 𝑗 channel
in the 𝑘-th iteration, G𝑘 denotes the gradients of 1

2 ∥Ŷ 𝑗 − 𝑆 𝑗 (X̂ 𝑗)∥22
(the second term of Eq. (6)) at X̂ 𝑗 = R̂𝑘𝑗 , and 𝑆𝑇𝑗 is the deconvolu-
tion operation [20] to perform matrix multiplication between the
transpose of the sample matrix and a tensor.

Different from (6), we regard step 1 and step 2 of (7) as one
iteration of decoding. We call step 2 the fidelity step as it can help to
correct the deep reconstruction error generated by step 1. Based on

880

0.1 0.2 0.3 0.4 0.5 0.6
bpp

32

34

36

38

40

42
PS

N
R

33% smaller

Ballé(2017)
WebP
H.264
CS-ASIC
CS-ASIC*
DeepN-JPEG
JPEG

0.1 0.2 0.3 0.4 0.5 0.6
bpp

0.92

0.94

0.96

0.98

M
S-

SS
IM 43% smaller

(a) Cityscapes

Ballé(2017)
H.264
WebP
CS-ASIC
CS-ASIC*
DeepN-JPEG
JPEG

0.1 0.2 0.3 0.4 0.5 0.6
bpp

0.25

0.30

0.35

0.40

0.45

0.50

m
Io

U

74% smaller
CS-ASIC*
Ballé(2017)
H.264
WebP
DeepN-JPEG
CS-ASIC
JPEG

0.2 0.4 0.6 0.8 1.0 1.2 1.4
bpp

26

28

30

32

34

PS
N

R

60% smaller
Ballé(2017)
CS-ASIC
H.264
WebP

CS-ASIC*
DeepN-JPEG
JPEG

0.2 0.4 0.6 0.8 1.0 1.2 1.4
bpp

0.92

0.94

0.96

0.98

M
S-

SS
IM

(b) KITTI

33% smaller
Ballé(2017)
H.264
WebP
CS-ASIC
CS-ASIC*
DeepN-JPEG
JPEG

0.2 0.4 0.6 0.8 1.0 1.2 1.4
bpp

0.375

0.425

0.475

0.525

m
A

P

33% smaller
CS-ASIC*
Ballé(2017)
WebP
H.264
JPEG
CS-ASIC
DeepN-JPEG

Figure 4: The data-semantic rate-distortion performance comparison of JPEG, Webp, H.264, DeepN-JPEG, Balle(2017) and
CS-ASIC on Cityscapes and KITTI datasets.

the iterative optimization strategy (7), we can view it as an iterative
deep recovery network with residual fidelity block. As shown in Alg.
2, the RFB includes three phases: i) Deep Recovery; ii) Fidelity; iii)
Fidelity Skip Connection. Phase 1 is corresponding to step 1, where
the residual block is used to learn image prior and helps to better
recover the last outputs. Phase 2 is a separate channel gradient
updating process corresponding to step 2. In phase 3, the feature
extracted from fidelity recovery is added to the original feature to
correct the cumulative error. With this iterative decoding, we can
achieve low data-semantic distortion by the overall objective of (4).

4 EXPERIMENTS
In this section, we evaluate CS-ASIC with other prevailing codecs
in resource-constrained IoT systems with the following three objec-
tives: 1) comparing CS-ASIC with other image compression meth-
ods and demonstrating that our method maintains a good balance
among compression rate, encoding complexity, human vision based
distortion and semantic accuracy; 2) showing the efficiency and ex-
tensibility of CS-ASIC in multi-task semantic recognition scenario;
3) testing the deployment cost of CS-ASIC and other methods.

4.1 Experiment Setup
Experimental Platform. We evaluate CS-ASIC and compare it
with JPEG, WebP, H.264, DeepN-JPEG, Ballé (2017) on Jetson Nano
b01 to simulate resource-constrained IoT devices. The Jetson Nano
b01 contains a 4 core ARM A57 CPU and a 128 core Maxwell GPU.
Model Setting. We set the width and height of an image block
𝐵 as 10. The number of measurements for YUV channels𝑀𝑦 ,𝑀𝑢
and 𝑀𝑣 is 28, 10, and 10, respectively. The number of iteration 𝐾
is set to 2. The dimension of feature maps 𝑑 is 64. The activation

function in the residual block is Leaky ReLU. In the training phase,
30 images are randomly sampled from a dataset and cropped to
96×96 sub-images as a mini-batch. The learning rate is 1e-4. The
total number of training iteration is 3 × 105.
Evaluation Dataset. We conduct our experiments on datasets
Cityscapes andKITTI. The Cityscapes dataset is a large-scale dataset
with high-quality pixel-level annotations of 5000 street scenes im-
ages from 50 different cities. It contains 19 foreground objects for
image segmentation. KITTI is a primary dataset for image process-
ing technologies in the field of autonomous driving. We use the
Object Detection Evaluation 2012 subset for object detection and
KITTI semantic segmentation benchmark for image segmentation.
Metrics. Bits per pixel (bpp) is used to measure the compression
ratio. Peak signal-to-noise ratio (PSNR) and multi-scale structural
similarity (MS-SSIM) [18] are used to measure image quality. Mean
intersection over union (mIoU) and mean average precision (mAP)
are used to measure the accuracy of image segmentation and object
detection, respectively.

4.2 Evaluation Results and Discussion
Data-semantic Rate-distortion Performance. Fig. 4 compares
CS-ASIC with JPEG, WebP, H.264, DeepN-JPEG, Ballé (2017) versus
different bpps on Cityscapes and KITTI dataset, in terms of PSNR,
MS-SSIM, mIoU, and mAP. CS-ASIC is trained by conventional
data rate-distortion loss (i.e, first two terms of (4)) and CS-ASIC*
is trained by (4). We observe that WebP and H.264 are better than
JPEG. This is because they have intra-prediction to decorrelate the
neighboring blocks. DeepN-JPEG is better than JPEG on image
segmentation task, but worse on object detection task. The perfor-
mance of Ballé (2017) is better than CS-ASIC on data rate-distortion

881

performance, but requires high complexity for encoding. The com-
pression rate of CS-ASIC* is 1.5∼3.8 times compared to JPEG with
similar inference accuracy. The compression rate of CS-ASIC is
1.5∼2.5 times compared to JPEG with similar data distortion.
Multi-task Scenario. To better demonstrate the efficiency and
extensibility of CS-ASIC, we further train it (denoted as CS-ASIC**)
by (4) with semantic distortion deriving from both object detection
and image segmentation of KITTI dataset. As shown in Fig. 5, CS-
ASIC** achieves the best inference accuracy on object detection
and image segmentation task compared with other codecs.
Deployment Cost on IoT Devices. Table 1 illustrate the floating
point operations (FLOPs), runtime, and the size of the encoder of
CS-ASIC, JPEG, WebP, H.264 and Ballé (2017), where FLOPs is the
number of floating-point operations for encoding an 80×80 image
and the runtime is tested on Jetson Nano b01. We observe that
our proposed CS-ASIC and JPEG have comparable low complex-
ity. By contrast, WebP and H.264 cost more resources due to their
high-complexity intra-frame predictions. We also observe that deep
symmetric image compression like Ballé (2017) costs about 170
times more than CS-ASIC on CPU implementation and 35 times
more on GPU implementation because their encoder consists of
high-dimensional CNN layers.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
bpp

0.375

0.425

0.475

0.525

m
A

P

30% smaller
CS-ASIC**
Ballé(2017)
WebP
H.264
JPEG
CS-ASIC
DeepN-JPEG

0.2 0.4 0.6 0.8 1.0 1.2 1.4
bpp

0.30

0.32

0.34

0.36

0.38

0.40

0.42

m
Io

U

53% smaller
CS-ASIC**
H.264
WebP
Ballé(2017)
DeepN-JPEG
CS-ASIC
JPEG

Figure 5: The semantic rate-distortion performance on the
object detection and image segmentation of KITTI dataset.

5 CONCLUSION
In this paper, we propose the first asymmetric semantic image
compression model for the inference-at-edge IoT systems, called
CS-ASIC. By deploying a lightweight learnable encoder at the front
encoder and a deep iterative reconstruction network at the central
decoder, we validate that the proposed CS-ASIC outperforms other
methods under low-complexity encoding constraint. We plan to
extend the CSDIC framework to heterogeneous front devices to
realize adaptive encoding and design a novel video coding algorithm
suitable for this resource-constrained scenario.

Table 1: FLOPs, runtime and number of parameters of the
encoder of CS-ASIC, JPEG, WebP, H.264 and Ballé(2017).

Encoder FLOPs Runtime Model size (# params)CPU GPU
CS-ASIC 0.37M 0.060s 0.049s 5.10k
JPEG 0.38M 0.062s - 4.80k
WebP 1.00M+ 0.43s - 9.61k+
H.264 1.65M+ 0.67s - 9.61k+

Ballé(2017) 584.7M 10.45s 1.71s 2.89M

6 ACKNOWLEDGMENTS
This work is supported in part by the National Natural Science
Foundation of China under grant 62171248, the PCNL KEY project
(PCL2021A07), and the Guangdong Basic and Applied Basic Re-
search Foundation under grant 2021A1515110066.

REFERENCES
[1] M. Agiwal, A. Roy, and N. Saxena. 2016. Next Generation 5G Wireless Networks:

A Comprehensive Survey. IEEE Communications Surveys Tutorials 18, 3 (2016),
1617–1655.

[2] J. Ballé, V. Laparra, and E. P. Simoncelli. 2017. End-to-end optimized image
compression. In Int’l Conf on Learning Representations (ICLR). Toulon, France.
https://arxiv.org/abs/1611.01704 Available at http://arxiv.org/abs/1611.01704.

[3] Somnath Banerjee and Vikas Arora. 2011. Webp compression study. code. google.
com/speed/webp/docs/webp study.html (2011).

[4] A. Beck andM. Teboulle. 2009. A Fast Iterative Shrinkage-ThresholdingAlgorithm
for Linear Inverse Problems. Siam Journal on Imaging Sciences (2009), 183–202.

[5] Y. Cheng, D. Wang, P. Zhou, and T. Zhang. 2017. A survey of model compression
and acceleration for deep neural networks. arXiv preprint arXiv:1710.09282 (2017).

[6] J. Choi and B. Han. 2020. Task-Aware Quantization Network for JPEG Image
Compression. In Computer Vision – ECCV 2020, Andrea Vedaldi, Horst Bischof,
Thomas Brox, and Jan-Michael Frahm (Eds.). Springer International Publishing,
Cham, 309–324.

[7] Y. C. Eldar and G. Kutyniok. 2012. Compressed Sensing: Theory and Applications.
Cambridge University Press.

[8] L. Gan. 2007. Block compressed sensing of natural images. In 2007 15th Interna-
tional conference on digital signal processing. IEEE, 403–406.

[9] Y Gao, W Hu, and K Ha. 2015. Are cloudlets necessary? School Comput. Sci.,
Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU-CS-15-139 (2015).

[10] W. Hu, Y. Gao, K. Ha, J. Wang, and M. Satyanarayanan. 2016. Quantifying the
Impact of Edge Computing on Mobile Applications. In Acm Sigops Asia-pacific
Workshop on Systems.

[11] T. G. Kolda and B. W. Bader. 2009. Tensor Decompositions and Applications.
SIAM Rev. 51, 3 (aug 2009), 455–500.

[12] Z. Liu, T. Liu, W. Wen, L. Jiang, J. Xu, Y. Wang, and G. Quan. 2018. DeepN-JPEG:
A Deep Neural Network Favorable JPEG-based Image Compression Framework.
In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). 1–6.

[13] I. E. Richardson. 2004. H. 264 and MPEG-4 Video Compression: Video Coding
for Next-Generation Multimedia. John Wiley & Sons (2004).

[14] W. Shi, F. Jiang, S. Liu, and D. Zhao. 2019. Scalable convolutional neural network
for image compressed sensing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 12290–12299.

[15] W. Shi, F. Jiang, S. Liu, and D. Zhao. 2020. Image Compressed Sensing Using
Convolutional Neural Network. IEEE Transactions on Image Processing 29 (2020),
375–388.

[16] D. T. Tran, M. Yamac, A. Degerli, M. Gabbouj, and A. Iosifidis. 2019. Multilinear
Compressive Learning. CoRR abs/1905.07481 (2019). arXiv:1905.07481

[17] G. K. Wallace. 1992. The JPEG still picture compression standard. IEEE Transac-
tions on Consumer Electronics 38, 1 (1992), xviii–xxxiv.

[18] Z. Wang, E. P. Simoncelli, and A. C. Bovik. 2003. Multiscale structural similarity
for image quality assessment. In The Thrity-Seventh Asilomar Conference on
Signals, Systems & Computers, 2003, Vol. 2. Ieee, 1398–1402.

[19] X. Yuan and R. Haimi-Cohen. 2020. Image Compression Based on Compressive
Sensing: End-to-End Comparison With JPEG. IEEE Transactions on Multimedia
22, 11 (2020), 2889–2904.

[20] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. 2010. Deconvolutional
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2528–2535.

882

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160112132206
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160112132206
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

