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ABSTRACT

Image super-resolution (SR) methods typically model degradation to improve re-
construction accuracy in complex and unknown degradation scenarios. However,
extracting degradation information from low-resolution images is challenging,
which limits the model performance. To boost image SR performance, one feasi-
ble approach is to introduce additional priors. Inspired by advancements in multi-
modal methods and text prompt image processing, we introduce text prompts
to image SR to provide degradation priors. Specifically, we first design a text-
image generation pipeline to integrate text into the SR dataset through the text
degradation representation and degradation model. The text representation ap-
plies a discretization manner based on the binning method to describe the degra-
dation abstractly. This method maintains the flexibility of the text and is user-
friendly. Meanwhile, we propose the PromptSR to realize the text prompt SR. The
PromptSR utilizes the pre-trained language model (e.g., T5 or CLIP) to enhance
restoration. We train the PromptSR on the generated text-image dataset. Exten-
sive experiments indicate that introducing text prompts into SR, yields excellent
results on both synthetic and real-world images. The code will be released.

1 INTRODUCTION

Single image super-resolution (SR) aims to recover high-resolution (HR) images from their corre-
sponding low-resolution (LR) counterparts. Over recent years, the proliferation of deep learning-
based methods (Dong et al., 2014; Zhang et al., 2018c; Chen et al., 2023) has significantly advanced
this domain. Nevertheless, the majority of these methods are trained with known degradation (e.g.,
bicubic interpolation), which limits their generalization capabilities (Wang et al., 2021; Zhang et al.,
2023b). Consequently, these methods face challenges when applied to scenarios with complex and
diverse degradations, such as real-world applications.

A feasible approach to tackle the diverse SR challenges is blind SR. Blind SR focuses on recon-
structing LR images with complex and unknown degradation, making it suitable for a wide range
of scenarios (Liu et al., 2022). Methods within this realm can roughly be divided into several cate-
gories. (1) Explicit methods (Zhang et al., 2018a) typically rely on predefined degradation models.
They estimate degradation parameters (e.g., blur kernel or noise) as conditional inputs to the SR
model. However, the predefined degradation models exhibit a limited degradation representation
scope, restricting the generality of methods. (2) Implicit methods (Cai et al., 2019; Wei et al., 2021)
capture underlying degradation models through extensive external datasets. They achieve this by
leveraging real-captured HR-LR image pairs, or HR and unpaired LR data, to learn the data distri-
bution. Nevertheless, learning the data distribution is challenging, with unsatisfactory results. (3)
Currently, another image SR paradigm (Zhang et al., 2021; Wang et al., 2021) is popularized: defin-
ing complex degradation to synthesize a large amount of data for training. To simulate real-world
degradation, these approaches set the degradation distribution sufficiently extensive. Nonetheless,
this increases the learning difficulty of the SR model and inevitably causes a performance drop.

In summary, the modeling of degradation is crucial to image SR, typically in complex application
scenarios. However, most methods extract degradation information mainly from LR images, which
is challenging and limits performance. One approach to advance SR performance is to introduce
additional priors, such as reference priors (Jiang et al., 2021) or generative priors (Chan et al., 2021;
Yang et al., 2021). Motivated by recent advancements in the multi-modal model (Radford et al.,
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LR HR Bicubic w/o text prompt w/ text prompt

Figure 1: Visual comparison (×4). The LR image undergoes complex and unknown degradations
(e.g., blur, noise, and downsampling). By introducing text prompts (e.g., [heavy blur, upsample,
medium noise, medium compression, downsample], in the instance) into the SR task to provide
degradation priors, the reconstruction quality can be effectively improved.

2021; Liu et al., 2023), text prompt image generation (Ramesh et al., 2021; Rombach et al., 2022),
and manipulation (Brooks et al., 2023), we introduce the text prompt to provide priors for image SR.
This approach offers several advantages: (1) Textual information is inherently flexible and suitable
for various situations. (2) The power of the current pre-trained language model can be leveraged.
(3) Text guidance can serve as a complement to current methods for image SR.

In this work, we propose a method to introduce text as additional priors to enhance image SR. Our
design encompasses two aspects: the dataset and the model, with two motivations. (1) Dataset:
For text prompt SR, large-scale multi-modal (text-image) data is crucial, yet challenging to collect
manually. As mentioned above, the degradation models (Wang et al., 2021) can synthesize vast
amounts of HR-LR image pairs. Hence, we consider incorporating text into the degradation model
to generate the corresponding data. (2) Model: Text prompt SR inherently involves text processing.
Meanwhile, the pre-trained language models possess powerful textual understanding capabilities.
Thus, we utilize these models within our model to enhance text guidance and improve restoration.

Specifically, we develop a text-image generation pipeline that integrates text into the SR degradation
model. Text prompt for degradation: We utilize text prompts to represent the degradation to pro-
vide additional prior. Since the LR image could provide the majority of low-frequency (Zhang et al.,
2018c) and semantic information related to the content (Rombach et al., 2022), we care little about
the abstract description of the overall image. Text representation: We first discretize degradation
into components (e.g., blur, noise). Then, we employ the binning method (Zhang et al., 2023b) to
partition the degradation distribution, describe each segment textually, and merge them, to get the fi-
nal text prompt. This discrete approach simplifies representation, which is intuitive and user-friendly
to apply. Flexible format: To enhance prompt practicality, we adopt a more flexible format, such as
arbitrary order or simplified (e.g., only noise description) prompts. The recovery results, benefiting
from the generalization of prompts, are also remarkable. Details are shown in Sec. 4.2.3. Text-
image dataset: We adopt degradation models akin to previous methods (Zhang et al., 2021; Wang
et al., 2021) to generate HR-LR image pairs. Simultaneously, we utilize the degradation description
approach to produce the text prompts, thus generating the text-image dataset.

We further propose a network, PromptSR, to realize the text prompt image SR. Our PromptSR
leverages the advanced diffusion model (Ho et al., 2020; Saharia et al., 2022b) for high-quality
image restoration. Moreover, as analyzed previously, we apply the pre-trained language model (e.g.,
T5 (Raffel et al., 2020) or CLIP (Radford et al., 2021)) to improve recovery. In detail, the language
model acts as the text encoder to map the text prompt into a sequence of embeddings. The diffusion
model then generates corresponding HR images, conditioned on LR images and text embeddings.
Trained on the text-image dataset, our PromptSR performs excellently on both synthetic and real-
world images. For real images, we leverage multi-modal large language models (MLLMs) (OpenAI,
2023; Ye et al., 2024) to generate professional image quality assessments as prompts. As illustrated
in Fig. 1, when applying the text prompt, the model reconstructs a more realistic and clear image.

Overall, we summarize the main contributions as follows:

• We introduce text prompts as degradation priors to advance image SR. This explores the
application of textual information in the SR task.

• We develop a text-image generation pipeline that integrates the user-friendly and flexible
prompt into the SR dataset via text representation and degradation model.

• We propose a network, PromptSR, to realize the text prompt SR. The PromptSR utilizes
the pre-trained language model to improve the restoration.

• Extensive experiments show that the introduction of text prompts into image SR leads to
impressive results on both synthetic and real-world images.
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2 RELATED WORK

2.1 IMAGE SUPER-RESOLUTION

Numerous deep networks (Zhang et al., 2018c; Chen et al., 2022b) have been proposed to advance
the field of image SR since the pioneering work of SRCNN (Dong et al., 2014). Meanwhile, to en-
hance the applicability of SR methods in complex (e.g., real-world) applications, blind SR methods
have been introduced. To this end, researchers have explored various directions (Liu et al., 2022).
First, explicit methods predict the degradation parameters (e.g., blur kernel or noise) as the addi-
tional condition for SR networks (Gu et al., 2019; Bell-Kligler et al., 2019; Zhang et al., 2020).
For instance, SRMD (Zhang et al., 2018a) takes the LR image with an estimated degradation map
for SR reconstruction. Second, implicit methods learn underlying degradation models from exter-
nal datasets (Bulat et al., 2018). These methods include supervised learning using paired HR-LR
datasets, such as LP-KPN (Cai et al., 2019). Third, simulate real-world degradation with a complex
degradation model and synthesize datasets for supervised training (Zhang et al., 2023b; Chen et al.,
2022a). For example, Real-ESRGAN (Wang et al., 2021) introduces a high-order degradation, while
BSRGAN (Zhang et al., 2021) proposes a random shuffling strategy. However, most methods still
face challenges in degradation modeling, thus restricting SR performance.

2.2 DIFFUSION MODEL

The diffusion model (DM) has shown significant effectiveness in various synthetic tasks, including
image (Ho et al., 2020; Song et al., 2020), video (Bar-Tal et al., 2022), audio (Kong et al., 2020),
and text (Li et al., 2022b). Concurrently, DM has made notable advancements in image manipula-
tion and restoration tasks, such as image editing (Avrahami et al., 2022), inpainting (Lugmayr et al.,
2022), and deblurring (Whang et al., 2022). In the field of SR, exploration has also been under-
taken. SR3 (Saharia et al., 2022b) conditions DM with LR images to constrain output space and
generate HR results. Moreover, some methods, like DDRM (Kawar et al., 2022) and DDNM (Wang
et al., 2023), apply degradation priors to guide the reverse process of pre-trained DM. However,
these methods are primarily tailored for known degradations (e.g., bicubic interpolation). Currently,
some approaches (Wang et al., 2024; Lin et al., 2024) leverage pre-trained DM and fine-tune it on
synthetic HR-LR datasets for real-world SR tasks. Nevertheless, these methods still mainly employ
LR images, disregarding the utilization of other modalities (e.g., text) to provide priors.

2.3 TEXT PROMPT IMAGE PROCESSING

This field, which includes image generation and image manipulation, is rapidly evolving. For gen-
eration, the large-scale text-to-image (T2I) models are successfully constructed using the diffusion
model and CLIP (Radford et al., 2021), e.g., Stable Diffusion (Rombach et al., 2022) and DALL-
E-2 (Ramesh et al., 2022). Imagen (Saharia et al., 2022a) further demonstrates the effectiveness of
large pre-trained language models, i.e., T5 (Raffel et al., 2020), as text encoders. Moreover, some
methods (Zhang et al., 2023a; Qin et al., 2023), like ControlNet (Zhang et al., 2023a), integrate more
conditioning controls into text-to-image processes, enabling finer-grained generation.

For manipulation, numerous methods (Hertz et al., 2022; Kawar et al., 2023; Kim et al., 2022;
Avrahami et al., 2022; Brooks et al., 2023) have been proposed. For instance, StyleCLIP (Patashnik
et al., 2021) combines StyleGAN (Karras et al., 2019) and CLIP (Radford et al., 2021) to manipulate
images using textual descriptions. Meanwhile, several methods are based on pre-trained T2I models,
e.g., Stable Diffusion. For example, Prompt-to-Prompt (Hertz et al., 2022) edits synthesis images by
modifying text prompts. Imagic (Kawar et al., 2023) achieves manipulation of real images by fine-
tuning models on given images. InstructPix2Pix (Brooks et al., 2023) employs editing instructions
to modify images without requiring a description of image content. However, in image SR, the
utilization of text prompts has seldom been explored.

3 METHOD

We introduce text prompts into image SR to enhance the reconstruction results. Our design encom-
passes two aspects: the dataset and the model. (1) Dataset: We propose a text-image generation
pipeline integrating text prompts into the SR dataset. Leveraging the binning method, we apply the
text to realize simplified representations of degradation, and combine it with a degradation model
to generate data. (2) Model: We design the PromptSR for image SR conditioned on both text and
image. The network is based on the diffusion model and the pre-trained language model.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Text Prompt !LR "
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Figure 2: Illustration of the text-image generation pipeline. (a) The pipeline comprises the degrada-
tion model (top) and the text representation (bottom). The degradation model comprises five steps,
where “Comp” denotes the compression. The text representation describes each degradation oper-
ation in a discretized manner, e.g., [medium noise] for noise operation. Except for the illustrated
aligned prompt-degradation sequence, our pipeline supports more flexible degradation and prompt
formats, e.g., random order or simplified. (b) An example to display the dataset.

3.1 TEXT-IMAGE GENERATION PIPELINE

To realize effective training, and enhance model performance, a substantial amount of text-image
data is required. Current methods (Cai et al., 2019; Wang et al., 2021) generate data for image
SR by manual collection or through degradation synthesis. However, there is a lack of large-scale
multi-modal text-image datasets for the SR task. To address this issue, we design the text-image
generate pipeline to produce the datasets (c, [y, x]), as illustrated in Fig. 2, where c is the text prompt
describing degradation; [y, x] denotes HR and LR images, respectively. The pipeline comprises two
components: a degradation model that generates HR-LR image pairs and a text representation
module that produces text prompts describing the degradation.

3.1.1 DEGRADATION MODEL

We aim to reconstruct HR images from LR images with complex and unknown degradation. To
encompass the typical degradations while maintaining design simplicity, we develop the degradation
model, as depicted in Fig. 2a. Note that while the degradation process in the illustration is applied
sequentially, our degradation pipeline supports the more flexible format, e.g., random degradation
sequences and the omission of certain components. We describe each component in detail.

Blur. We employ two kinds of blur: isotropic and anisotropic Gaussian blur. The blur is controlled
by the kernel with two parameters: kernel width η and standard deviation σ.

Resize. We upsample/downsample images using two resize with scale factors γ1 and γ2, respec-
tively. We employ area, bilinear, and bicubic interpolation. The two-step resizing can broaden the
degradation range and enhance the generality of the model. We demonstrate it in Sec. 4.2.2.

Noise. We apply Gaussian and Poisson noise, with noise levels controlled by φ1 and φ2, respec-
tively. Meanwhile, noise is randomly applied in either RGB or gray format.

Compression. We adopt JPEG compression, a widely used compression standard, for image com-
pression. The quality factor q controls the image compression quality.

Given an HR image y, we determine the degradation by randomly selecting the degradation method
(e.g., Gaussian noise or Poisson noise), and sampling all parameters (e.g., noise level φ1) from
the uniform distribution. Through the degradation process, we obtain the corresponding LR image
x. Compared to other degradation models (e.g., high-order (Wang et al., 2021)), ours maintains
flexibility and simplicity while covering broad scenarios.

3.1.2 TEXT PROMPT

After generating HR-LR image pairs through the degradation model, we further provide descriptions
for each pair as text prompts. Consequently, we incorporate text prompts into the dataset. This
process encompasses two key considerations: (1) The specific content that should be described; (2)
The user-friendly method for generating corresponding descriptions concisely and effectively. Given
the characteristics of image SR, we utilize text to represent degradation. Meanwhile, we represent
the degradation via a discretization manner based on the binning method (Zhang et al., 2023b).
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Text prompt for degradation. Typical text prompt image generation and manipulation meth-
ods (Ramesh et al., 2022; 2021; Avrahami et al., 2022) apply text prompts to describe the image
content. These prompts often require semantic-level interpretation and processing of the image
content. However, for the image SR task, it is crucial to prioritize fidelity to the original image.
Meanwhile, LR images could provide the majority of the low-frequency information (Zhang et al.,
2018c) and semantic information related to the content (Rombach et al., 2022). As shown in Fig. 3,
elements like ‘building’ and ‘shutters’ in the caption prompt can be obtained from the LR image.

LR

HR Bicubic

Caption Degradation

Figure 3: Visual comparison (×4) of different text
contents. Caption (description of the overall image):
[people on a weathered balcony of a building with
closed shutters]. Degradation (ours): [light blur, up-
sample, light noise, heavy compression, downsample].

Therefore, we adopt the prompt for
degradation, instead of the description of
the overall image. This prompt can pro-
vide degradation priors and thus enhance
the capability of methods to model degra-
dation, which is crucial for image SR. As
shown in Fig. 3, utilizing text to depict
degradation, instead of the overall image
content (Caption), yields restoration that
is more aligned with the ground truth. To
further demonstrate the effectiveness of
text prompts for degradation, we provide
more analyses in Sec. 4.2.4.

Text representation. To facilitate data generation and practical usability, we describe degradation
in natural language with the approach illustrated in Fig. 2a. Overall, we describe each degradation
component via a discretized binning method, and combine them in a flexible format.

First, we discretize the degradation model into several components (e.g., blur) and describe each us-
ing qualitative language via a binning method. The sampling distribution of parameters correspond-
ing to each component is evenly divided into discrete intervals (bins). Each bin is summarized to
represent the degradation. For instance, we divide the distribution of noise level φ1 [0, 9] into three
uniform intervals ([0, 3), [3, 6), and [6, 9]), and describe them as ‘light’, ‘medium’, and ‘heavy’.
Both Gaussian and Poisson noises are summarized as ‘noise’, leading to the final representation:
[medium noise]. Compared to specifying degradation names and their parameters, e.g., [Gaussian
noise with noise level 4.5], our discretized representation is more intuitive and user-friendly.

Finally, the overall degradation representation combines all component descriptions, i.e., [deblur
description, ..., resize description]. Figure 2b illustrates an example. The content of the prompt
directly corresponds to the degradation. Furthermore, it is notable that, in our method, the prompt
exhibits good generalization and supports flexible description formats. For instance, both arbitrary
order or simplified (e.g., only noise description) prompts can still lead to satisfactory restoration
outcomes. In Sec. 4.2.3, we conduct a detailed investigation of the prompt format.

Real-world application. For real-world images, users can utilize the latest multi-modal large lan-
guage models (MLLMs) (Liu et al., 2023; OpenAI, 2023; Ye et al., 2024; Wu et al., 2024) to generate
professional image quality assessments as prompts. This approach simplifies prompt generation for
users. It also provides a pathway for improving image SR using MLLMs. Furthermore, users can
fine-tune the MLLM-generated prompts based on the restoration results to achieve more personal-
ized enhancements. More details are provided in the supplementary material.

3.2 PROMPTSR

PromptSR is based on the general diffusion model (Ho et al., 2020), commonly utilized for high-
quality image restoration (Saharia et al., 2022b; Lin et al., 2024). Meanwhile, given the powerful
capabilities of pre-trained language models (Radford et al., 2021; Raffel et al., 2020), we integrate
them into the model to enhance performance. The architecture of our method is delineated in Fig. 4.

For the diffusion model, to underscore the effectiveness of text prompts, we employ a general text-
to-image (T2I) diffusion architecture, rather than a meticulously designed structure. Specifically,
our method employs a denoising network (DN), operating through a T -step reverse process to gen-
erate high-resolution (HR) images from Gaussian noise. The DN applies the U-Net structure (Ron-
neberger et al., 2015). It predicts the noise conditioned on the LR image (upsampled to the target
resolution via bicubic interpolation) and text prompt.
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Figure 4: The overall architecture of the PromptSR. It comprises a denoising network (DN) and a
pre-trained text encoder. The weights of the text encoder are frozen during training. The LR image
x is first upsampled to the target HR image resolution via bicubic interpolation, then concatenated
with the noise image yt (t ∈[1, T ]) as input to the DN. The text prompt c is embedded by the text
encoder. The embeddings are infused into the DN via the cross-attention (CA) module.

Concurrently, the pre-trained language model encodes the text prompts, where the information is
integrated into feature maps of U-Net via the cross-attention module. By leveraging the powerful
capabilities of the language model, our method can better understand degradation, thereby enhancing
the restoration results. For more details on the PromptSR, please refer to the supplementary material.

3.2.1 PRE-TRAINED TEXT ENCODER

Text prompt image models (Patashnik et al., 2021; Avrahami et al., 2022; Rombach et al., 2022)
mainly employ multi-modal embedding models, e.g., CLIP (Radford et al., 2021), as text encoders.
These encoders are capable of generating meaningful representations pertinent to tasks. Besides,
compared to multi-modal embeddings, pre-trained language models (Devlin et al., 2019; Raffel
et al., 2020) exhibit stronger text comprehension capabilities. Therefore, we attempt to apply dif-
ferent pre-trained text encoders to build a series of networks. These models demonstrate varying
restoration performance levels, which we further analyze in Sec. 4.2.5.

3.2.2 TRAINING STRATEGY

We train the PromptSR using the text-image (c, [y, x]) dataset generated as described in Sec. 3.1.
Given an HR image y, we add noise ϵ through t diffusion steps to obtain a noisy image yt, where
t is randomly sampled from [1, T ]. The DN is conditioned on the LR image x, noisy image yt, and
text prompt c to predict the added noise. The training objective is formulated as:

L = Ey,x,c,t,ϵ∼N (0,1)[|ϵ− ϵθ(yt,x, τθ(c), t)|22], (1)
where ϵθ is the DN, while τθ is the text encoder. We freeze the weights of the text encoder and only
train the DN. In this way, we can retain the original capabilities of the pre-trained model. Meanwhile,
we can reduce training overhead by computing text embedding offline. After completing the training
process, the PromptSR can be employed for both synthetic and real-world images. Benefiting from
the multi-modal (text and image) design, it demonstrates excellent performance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

4.1.1 DEGRADATION SETTINGS

The degradation model in our proposed pipeline encompasses four operations: blur, resize, noise,
and compression. Following previous methods (Wang et al., 2021; Zhang et al., 2021), the param-
eters for these operations are sampled from the uniform distribution. Blur: We adopt isotropic
Gaussian blur and anisotropic Gaussian blur with equal probability. The kernel width η is randomly
selected from the set {7, 9, . . . , 21}. The standard deviation σ is sampled from a uniform distri-
bution U[0.2,3]. Resize: We employ area, bilinear, and bicubic interpolation with probabilities of
[0.3, 0.4, 0.3]. To expand the scope of degradation, we perform two resize operations at different
stages. The first resize spans upsample and downsample, where the scale factor is γ1 ∼ U[0.15,1.5].
The second resize operation scales the resolution to 1

4 of the HR image. Noise: We apply Gaussian
and Poisson noise with equal probability. The level of Gaussian noise is φ1 ∼ U[1,30], while the
level of Poisson noise is φ2 ∼ U[0.05,3]. Compression: We employ JPEG compression with quality
factor q ∼ U[30,95]. Meanwhile, in all experiments, for simplifying implementation, unless expressly
noted, the degradation and text prompt follow the fixed order and correspond one to one.
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Table 1: Ablation study on the text prompt. We experiment
on ControlNet (Zhang et al., 2023a) and PromptSR. We ap-
ply an empty string for without (%) the prompt.

LSDIR-Val DIV2K-ValMethod Text LPIPS ↓ DISTS ↓ LPIPS ↓ DISTS ↓

ControlNet % 0.3401 0.2059 0.3733 0.2396
! 0.3347 0.2054 0.3515 0.2306

PromptSR % 0.3473 0.2009 0.3384 0.1941
! 0.3211 0.1820 0.3086 0.1727

Table 2: Ablation study on the re-
sizing operation. We compare the
degradation with one resizing (keep-
ing the first one) and two resizings.

Method Metric One Resizing Two Resizings

LSDIR-Val LPIPS ↓ 0.3709 0.3211
DISTS ↓ 0.2254 0.1820

DIV2K-Val LPIPS ↓ 0.3570 0.3086
DISTS ↓ 0.2162 0.1727

LR [light noise] [heavy noise] LR [medium noise] [+light blur]

Figure 5: Visual results (×4) of different prompts. [...] represents the prompt. Boxes in the figures
highlight the differences in details. Please zoom in for a better view.

4.1.2 DATASETS AND METRICS

We use the LSDIR (Li et al., 2023) as the training dataset. The LSDIR contains 84,991 high-
resolution images. We generate the corresponding text-image dataset using our proposed pipeline.
We evaluate our method on both synthetic and real-world datasets. For synthetic datasets, we employ
Urban100 (Huang et al., 2015), Manga109 (Matsui et al., 2017), and the validation (Val) datasets of
LSDIR and DIV2K (Timofte et al., 2017). For real-world datasets, we utilize RealSR (Cai et al.,
2019). We also employ 45 real images directly captured from the internet, denoted as Real45. We
conduct all experiments with a scale factor of ×4. To quantitatively evaluate our method, we adopt
two traditional metrics: PSNR and SSIM (Wang et al., 2004), which are calculated on the Y channel
of the YCbCr color space. We also utilize several perceptual metrics: LPIPS (Zhang et al., 2018b),
ST-LPIPS (Ghildyal & Liu, 2022), DISTS (Ding et al., 2020), and CNNIQA (Kang et al., 2014).
We further adopt an aesthetic metric: NIMA (Talebi & Milanfar, 2018).

4.1.3 IMPLEMENTATION DETAILS

The proposed PromptSR consists of two components: the denoising network (DN) and the pre-
trained text encoder. The DN employs a U-Net architecture with a 4-level encoder-decoder. Each
level contains two ResNet (He et al., 2016; Ho et al., 2020) blocks and one cross-attention block. For
more detailed information about the DN model structure, please refer to the supplementary material.
For the text encoder, we apply the pre-trained multi-modal model, CLIP (Radford et al., 2021).
Additionally, we discuss other large language models, e.g., T5 (Raffel et al., 2020), in Sec. 4.2.5.

We train our model on the generated text-image dataset with a batch size of 16 for a total of 1,000,000
iterations. The input image is randomly cropped to 64×64. We adopt the Adam optimizer (Kingma
& Ba, 2015) with β1=0.9 and β2=0.99 to minimize the training objective (Eq. 1). The learning rate
is 2×10−4 and is reduced by half at the 500,000-iteration mark. For DM, we set the total time step
T as 2,000. For inference, we employ the DDIM sampling (Song et al., 2020) with 50 steps. We use
PyTorch (Paszke et al., 2019) to implement our method with 4 Nvidia A100 GPUs.

4.2 ABLATION STUDY

We investigate the effects of our proposed method at SR (×4) task. We train all models on the
LSDIR dataset with 500,000 iterations. We apply the validation datasets of LSDIR (Li et al., 2023)
and DIV2K (Timofte et al., 2017) for testing. Results are shown in Fig. 5 and Tabs. 1, 2, 3, 4, and 5.

4.2.1 IMPACT OF TEXT PROMPT

We conduct an ablation to show the influence of introducing the text prompt into image SR. The
results are listed in Tab. 1. To validate the effectiveness of the text prompts, rather than benefiting
from the specialized network, we conduct experiments on ControlNet (Zhang et al., 2023a) and
proposed PropmtSR. We take the LR image as the condition to ControlNet to realize SR. All four
compared models are trained on LSDIR. For models that are without text prompts, we train and test
using empty string. The comparison reveals that text prompts significantly enhance SR performance.
It also demonstrates the universality of text prompts, applicable to various models.
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Table 3: Ablation study on the format. (a) Random Order: shuffled degradation sequence. Fixed
Order: fixed degradation sequence. (b) Random Order: mismatched prompt-degradation order.
Simplified: randomly omitting 50% prompt contents. Original: aligned prompt-degradation order.

(a) Different degradation formats.
Random Order Fixed OrderMethod LPIPS ↓ DISTS ↓ LPIPS ↓ DISTS ↓

LSDIR-Val 0.3243 0.1860 0.3211 0.1820

DIV2K-Val 0.3193 0.1722 0.3086 0.1727

(b) Different prompt formats.
Random Order Simplified OriginalMethod LPIPS ↓ DISTS ↓ LPIPS ↓ DISTS ↓ LPIPS ↓ DISTS ↓

LSDIR-Val 0.3231 0.1835 0.3268 0.1871 0.3211 0.1820

DIV2K-Val 0.3095 0.1730 0.3131 0.1767 0.3086 0.1727

Table 4: Ablation study on the text content.
Caption: image content generated by BLIP (Li
et al., 2022a). Degradation (ours): degradation
process. Both: the combination of two.

LSDIR-Val DIV2K-ValMethod LPIPS ↓ DISTS ↓ LPIPS ↓ DISTS ↓
Caption 0.3403 0.1931 0.3237 0.1840
Degradation 0.3211 0.1820 0.3086 0.1727
Both 0.3247 0.1884 0.3104 0.1770

Table 5: Ablation study on the pre-trained text
encoder. We adopt different pre-trained language
models as text encoders in our PromptSR. Params:
the parameters of each text encoder.

LSDIR-Val DIV2K-ValMethod Params LPIPS ↓ DISTS ↓ LPIPS ↓ DISTS ↓
T5-small 60M 0.3260 0.1911 0.3218 0.1863
CLIP 428M 0.3211 0.1820 0.3086 0.1727
T5-xl 3B 0.3151 0.1753 0.3056 0.1682

Moreover, we visualize the impact of different prompts on the SR results in Fig. 5. We observe that
the method can remove part of the noise for the image with severe noise when the prompt indicates
[light noise] in the left instance. Conversely, a suitable prompt, i.e., [heavy noise], can restore a
more realistic result. Meanwhile, for images at the right, a simplified prompt, i.e., [medium noise],
can yield a relatively satisfactory result. Further refining the prompt, i.e., [+light blur], can further
improve the restoration outcome. These results demonstrate the flexibility of our prompts.

4.2.2 TWO RESIZING OPERATIONS

We investigate the different number of resizing operations in the degradation. The results are pre-
sented in Tab. 2. We can find that the model with two resizings performs better. This is because one
single resizing is fixed at 1

4 in the ×4 SR task. Introducing an additional resizing allows for variable
scales, expands the degradation scope, and enhances the generality of the model.

4.2.3 FLEXIBLE FORMAT

We investigate the different formats of the degradation and prompt. The results are revealed in
Tab. 3. Firstly, in Tab. 3a, we compare fixed and random degradation orders. The results indicate
that random order slightly lowers performance. It may be because random order expands the degra-
dation space (generalization), thus increasing training complexity and diminishing performance. To
balance performance and generalization, we opt for the fixed order shown in Fig. 2.

Secondly, in Tab. 3b, we compare three prompt formats. The comparison shows that complete
prompts (Original) reveal the best performance. Meanwhile, prompt order has little effect. More-
over, the simplified prompt can yield relatively good results due to the model generalization. Overall,
our method exhibits fine generalization, supporting a flexible variety of degradation and prompt.

4.2.4 TEXT PROMPT FOR DEGRADATION

We study the effects of different content of text prompts. The results are presented in Tab. 4.
We compare three types of text prompt content. All experiments are conducted on our proposed
PromptSR. The comparison shows that descriptions of degradation (Degradation) are more suitable
for the SR task than image content descriptions (Caption). This is consistent with our analysis in
Sec. 3.1.2. Additionally, combining both descriptions results in a slight performance drop compared
to using degradation prompts alone. This could be due to the disparity between the two descriptions,
which hinders the utilization of degradation information provided by text prompts.

4.2.5 PRE-TRAINED TEXT ENCODER

We further explore the impact of different text encoders, with the results detailed in Tab. 5. We
utilize several pre-trained text encoders: CLIP (Radford et al., 2021) (clip-vit-large) and T5 (Raffel
et al., 2020) (T5-small and T5-xl). We discover that models employing different text encoders
display varied performance. Applying more powerful language models as text encoders enhances
model performance. For instance, T5-xl, compared to T5-small, reduces the LPIPS on the LSDIR
and DIV2K validation sets by 0.0109 and 0.0162, respectively. Moreover, it is also notable that
the performance of the model is not entirely proportional to the parameter size of the text encoder.
Considering both model performance and parameter size, we select CLIP as the text encoder.
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Table 6: Quantitative comparison (×4) on synthetic datasets with state-of-the-art methods. The best
and second-best results are colored red and blue.

Dataset Metric DAN Real-ESRGAN+ BSRGAN SwinIR-GAN FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

Urban100

PSNR ↑ 21.12 20.89 21.66 20.91 20.37 20.201 21.73 21.39
SSIM ↑ 0.5240 0.5997 0.6014 0.6013 0.5573 0.4852 0.5896 0.6130
LPIPS ↓ 0.5835 0.2621 0.2835 0.2547 0.2725 0.4589 0.2586 0.2500

ST-LPIPS ↓ 0.4457 0.2494 0.2748 0.2376 0.2442 0.3845 0.2686 0.2262
DISTS ↓ 0.3125 0.1762 0.1857 0.1676 0.1877 0.2505 0.1857 0.1857

CNNIQA ↑ 0.4033 0.6635 0.6247 0.6614 0.6781 0.5870 0.6517 0.6732
NIMA ↑ 4.1485 5.3135 5.3671 5.3622 5.4161 4.6368 5.4010 5.5059

Manga109

PSNR ↑ 21.78 21.62 22.26 21.81 21.46 18.76 21.37 20.82
SSIM ↑ 0.6138 0.7217 0.7218 0.7258 0.6891 0.5412 0.6738 0.7048
LPIPS ↓ 0.4238 0.2051 0.2194 0.2047 0.2145 0.3699 0.2198 0.1856

ST-LPIPS ↓ 0.3396 0.1649 0.1789 0.1590 0.1520 0.2750 0.1679 0.1205
DISTS ↓ 0.2101 0.1252 0.1396 0.1185 0.1418 0.1638 0.1380 0.1373

CNNIQA ↑ 0.4172 0.6651 0.6550 0.6673 0.6735 0.6691 0.6988 0.6929
NIMA ↑ 4.1478 4.9825 5.1913 4.8784 5.0625 4.6493 5.1738 5.4211

LSDIR-Val

PSNR ↑ 22.71 22.40 22.95 22.34 21.19 19.91 22.63 22.44
SSIM ↑ 0.5578 0.6115 0.6067 0.6067 0.5542 0.4487 0.5725 0.6070
LPIPS ↓ 0.6038 0.2932 0.3103 0.2911 0.2917 0.4489 0.3104 0.2810

ST-LPIPS ↓ 0.4354 0.2502 0.2727 0.2440 0.2362 0.3521 0.2827 0.2258
DISTS ↓ 0.2760 0.1627 0.1713 0.1598 0.1533 0.2240 0.1758 0.1548

CNNIQA ↑ 0.3924 0.6417 0.5960 0.6277 0.6716 0.6563 0.5339 0.6726
NIMA ↑ 4.0724 4.9878 5.0790 4.9551 5.1998 4.4452 5.1883 5.2538

DIV2K-Val

PSNR ↑ 24.98 25.24 25.73 25.73 23.80 21.47 25.56 25.14
SSIM ↑ 0.6052 0.7017 0.6925 0.6932 0.6310 0.5120 0.6653 0.6813
LPIPS ↓ 0.6315 0.2896 0.3006 0.2854 0.2899 0.4709 0.2973 0.2753

ST-LPIPS ↓ 0.4487 0.2186 0.2259 0.2090 0.2061 0.2307 0.3717 0.1913
DISTS ↓ 0.2668 0.1548 0.1632 0.1497 0.1451 0.2239 0.1809 0.1484

CNNIQA ↑ 0.3897 0.6238 0.5908 0.6125 0.6617 0.5814 0.6380 0.6748
NIMA ↑ 4.0737 4.8202 4.9330 4.8015 5.0451 4.3881 5.0213 5.0834

LSDIR-Val

HR Bicubic Real-ESRGAN+ SwinIR-GAN

FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

DIV2K-Val

HR Bicubic Real-ESRGAN+ SwinIR-GAN

FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

Figure 6: Visual comparison (×4) on synthetic datasets with state-of-the-art methods. Our method
restores images with high realism and fidelity. Please zoom in for a better view.

4.3 EVALUATION ON SYNTHETIC DATASETS

We compare our method with several recent state-of-the-art methods: DAN (Huang et al., 2020),
Real-ESRGAN+ (Wang et al., 2021), BSRGAN (Zhang et al., 2021), SwinIR-GAN (Liang et al.,
2021), FeMaSR (Chen et al., 2022a), Stable Diffusion (Rombach et al., 2022), and DiffBIR (Lin
et al., 2024). We show quantitative results in Tab. 6 and visual results in Fig. 6.

4.3.1 QUANTITATIVE RESULTS

We evaluate our method on some synthetic test datasets: Urban100 (Huang et al., 2015),
Manga109 (Matsui et al., 2017), LSDIR-Val (Li et al., 2023), and DIV2K-Val (Timofte et al., 2017)
in Tab. 6. Our method outperforms others on most perceptual metrics. For instance, compared to
the suboptimal model SwinIR-GAN (Liang et al., 2021), our method reduces the LPIPS by 0.0101
on the DIV2K-Val dataset. Meanwhile, compared with DiffBIR (Lin et al., 2024), our PromptSR
achieves a reduction in LPIPS by 0.0294 and 0.0220 on LSDIR-Val and DIV2K-Val, respectively.
Moreover, for PSNR and SSIM, the two metrics are only used as references, since they do not
consistently align well with the image quality (Saharia et al., 2022b). These quantitative results
demonstrate that introducing text prompts into image SR can effectively improve performance.
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Table 7: Quantitative comparison (×4) on the real-world dataset with state-of-the-art methods. The
best and second-best results are colored red and blue.

Dataset Metric DAN Real-ESRGAN+ BSRGAN SwinIR-GAN FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

RealSR

PSNR ↑ 27.82 25.62 27.04 26.54 25.74 24.11 27.42 26.71
SSIM ↑ 0.7978 0.7582 0.7911 0.7918 0.7643 0.6980 0.7790 0.7821
LPIPS ↓ 0.4041 0.2843 0.2657 0.2765 0.2938 0.5035 0.3434 0.2702

ST-LPIPS ↓ 0.3798 0.2165 0.1978 0.2078 0.1990 0.4122 0.2506 0.1937
DISTS ↓ 0.2362 0.1732 0.1730 0.1672 0.1927 0.2441 0.2140 0.1820

CNNIQA ↑ 0.2583 0.5755 0.5626 0.5208 0.5916 0.4465 0.5544 0.6376
NIMA ↑ 3.9388 4.7673 4.8896 4.7338 4.8745 4.1598 4.8295 4.8917

RealSR

HR LR Real-ESRGAN+ SwinIR-GAN

FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

Real45

LR DAN Real-ESRGAN+ SwinIR-GAN

FeMaSR Stable Diffusion DiffBIR PromptSR (ours)

Figure 7: Visual comparison (×4) on real-world datasets with state-of-the-art methods. Our method
can generate more realistic images. Please zoom in for a better view.

4.3.2 VISUAL RESULTS

We show some visual comparisons in Fig. 6. We can observe that our proposed PromptSR is capable
of restoring clearer and more realistic images, in some challenging cases. This is consistent with the
quantitative results. Furthermore, we provide more visual results in the supplementary material.

4.4 EVALUATION ON REAL-WORLD DATASETS

We further evaluate our method on real-world datasets. We apply our PromptSR for real image SR
by MLLM-generated prompts as depicted in Sec. 3.1.2. For instance, the prompt for the first case
in Fig. 7: [light blur, unchange, light noise, heavy compression, downsample]. More prompts on
real-world images are provided in the supplementary material.

4.4.1 QUANTITATIVE RESULTS

We present the quantitative comparison on RealSR (Cai et al., 2019) in Tab. 7. Our PromptSR
achieves the best performance on most perceptual and aesthetic metrics, including ST-LPIPS, CN-
NIQA, and NIMA. Meanwhile, it also scores well on LPIPS. These results further demonstrate the
superiority of introducing text prompts into image SR tasks.

4.4.2 VISUAL RESULTS

We present some visual results in Fig. 7. Except for the RealSR dataset, we also conduct an evalua-
tion on the Real45 dataset, collected from the internet. Our proposed method also outperforms other
methods on real-world datasets. More comparison are provided in the supplementary material.

5 CONCLUSION

In this work, we introduce the text prompts to provide degradation priors for enhancing image SR.
Specifically, we develop a text-image generation pipeline to integrate text into the SR dataset, via
text degradation representation and degradation model. The text representation is flexible and user-
friendly. Meanwhile, we propose the PromptSR to realize the text prompt SR. The PromptSR applies
the pre-trained language model to enhance text guidance and improve performance. We train our
PromptSR on the generated text-image dataset and evaluate it on both synthetic and real-world
datasets. Extensive experiments demonstrate the effectiveness of introducing text into SR.
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