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ABSTRACT

We study the complexity of deterministic verifiers for nonsmooth nonconvex op-
timization when interacting with an omnipotent prover and we obtain the first
exponential lower bounds for the problem. In the nonsmooth setting, Goldstein
stationary points constitute the solution concept recent works have focused on.
Lin, Zheng and Jordan (NeurIPS ’22) show that even uniform Goldstein station-
ary points of a nonsmooth nonconvex function can be found efficiently via ran-
domized zeroth-order algorithms, under a Lipschitz condition. As a first step,
we show that verification of Goldstein stationarity via determistic algorithms is
possible under access to exact queries and first-order oracles. This is done via
a natural but novel connection with Carathéodory’s theorem. We next show that
even verifying uniform Goldstein points is intractable for deterministic zeroth-
order algorithms. Therefore, randomization is necessary (and sufficient) for ef-
ficiently finding uniform Goldstein stationary points via zeroth-order algorithms.
Moreover, for general (nonuniform) Goldstein stationary points, we prove that any
deterministic zeroth-order verifier that is restricted to queries in a lattice needs a
number of queries that is exponential in the dimension.

1 INTRODUCTION

Let f : Rd → R be a function that is L-Lipschitz, i.e., |f(x) − f(y)| ≤ L∥x − y∥2, and, lower-
bounded, i.e., it satisfies infx∈Rd f(x) > −∞. We study the unconstrained nonsmooth nonconvex
optimization problem:

inf
x∈Rd

f(x) . (1)

This problem, beyond being a fundamental task in the extensive literature of nonsmooth optimization
(Clarke, 1990; Makela & Neittaanmaki, 1992; Outrata et al., 2013) (see also Appendix A in Lin
et al. (2022)), is highly motivated by modern ML research: standard neural network architectures
are nonsmooth (e.g., ReLUs and max-pools). Hence, developing a rigorous theory for nonsmooth
optimization is a crucial step towards understanding the optimization landscape of neural networks.

Since the problem of globally minimizing a nonconvex function f (i.e., solving Problem 1) up to
a small constant tolerance is computationally intractable (even for smooth and Lipschitz functions)
(Nemirovskij & Yudin, 1983; Murty & Kabadi, 1985; Nesterov et al., 2018), researchers have fo-
cused on relaxed versions of the problem, by considering alternative solution concepts.

Clarke Stationary Points. The problem of finding a Clarke ϵ-stationary point of f is a fundamen-
tal relaxed optimization objective. We start with the definitions of generalized gradients (Clarke,
1990) and Clarke stationarity for nonsmooth (and potentially nondifferentiable) functions. The fol-
lowing definition is perhaps the most standard extension of gradients to nonsmooth and nonconvex
functions.
Definition 1 (Generalized Gradient). The generalized gradient of f at x is

∂f(x) = conv(u : u = lim
k→∞

∇f(xk), xk → x) ,

namely, the convex hull of all limit points of ∇f(xk) over all the sequences (xi) of differentiable
points of f that converge to x.
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Definition 2 ((Near) Clarke (Approximate) Stationary Point). Given some ϵ, δ ≥ 0 and f : Rd → R,
we say that x ∈ Rd is a Clarke ϵ-stationary point of f if

min{∥g∥2 : g ∈ ∂f(x)} ≤ ϵ ,

and is a δ-near Clarke ϵ-stationary point of f if ∥x−x′∥2 ≤ δ and x′ is a Clarke ϵ-stationary point
of f .

The main results about this solution concept in the nonsmooth nonconvex setting are unfortunately
negative: Zhang et al. (2020) shows that there exists no algorithm that can achieve convergence to a
Clarke ϵ-stationary point of a general Lipschitz function in a finite number of steps; and Kornowski
& Shamir (2021) shows an exponential in the dimension d query lower bound for the problem of
finding a δ-near Clarke ϵ-stationary point of a Lipschitz function.

Goldstein Stationary Points. Given the above strong negative results, the community focused on
a further relaxed yet meaningful notion of stationarity, namely the Goldstein stationary point (or
Goldstein subdifferential) (Goldstein, 1977).
Definition 3 (Goldstein (Approximate) Stationary Point). Given some ϵ, δ ≥ 0 and f : Rd → R,
we say that x ∈ Rd is a Goldstein (ϵ, δ)-stationary point (or simply (ϵ, δ)-stationary point) of f if

min{∥g∥2 : g ∈ ∂δf(x)} ≤ ϵ ,

where ∂δf(x) = conv(∪y:∥y−x∥2≤δ∂f(y)).

In words, we look at a δ-ball around the point of interest x and for each y in the ball, we take its
generalized gradient. In the gradient space, we look at the convex hull of the union of all generalized
gradients of points around x and check if there is a point in that set with norm at most ϵ. When δ = 0,
we recover the Clarke ϵ-stationary point. We remark that the set ∂δf(x) is called the Goldstein δ-
subdifferential of the Lipschitz function f at x.1 For a summary of the extensive prior work on the
problem of finding Goldstein stationary points, we refer to Section 1.1

Uniform Goldstein Stationary Points. The most natural way to deal with nonsmooth functions
is actually (randomized) smoothening, i.e., convert the nonsmooth function into a smooth one and
work with tools from smooth nonconvex optimization. This is a fundamental technique in prior work
(Jordan et al., 2022; 2023) and gives rise to the important notion of uniform Goldstein stationary
points, that we now define.
Definition 4 (Uniform Goldstein (Approximate) Stationary Point). Given ϵ, δ ≥ 0 and f : Rd → R,
we define the function fδ(x) = Eu∼U[f(x+ δu)], where U is the uniform distribution on a unit ball
in ℓ2-norm, centered at 0. We say that a point x ∈ Rd is a uniform Goldstein (ϵ, δ)-stationary point
of f (or simply (ϵ, δ)-uniformly stationary) if x is an ϵ-stationary point of fδ .

The next result summarizes the main motivation behind uniform Goldstein points. It essentially says
that finding a stationary point of fδ implies finding a Goldstein stationary point of f and implies that
any bounded, Lipschitz function has at least one Goldstein stationary point (corresponding to a
Clarke stationary point of fδ).
Lemma 1 (Theorem 3.1 in Lin et al. (2022)). Suppose that f is L-Lipschitz, let fδ(x) as in Def-
inition 4 and let ∂δf be the δ-Goldstein subdifferential of f , as in Definition 3. Then, we have
∇fδ(x) ∈ ∂δf(x) for any x ∈ Rd.

Main Questions. Despite a plethora of recent works on nonsmooth nonconvex optimization (and
Goldstein stationarity), a number of fundamental questions have not been answered. First, although
recent work has focused on designing algorithms that converge to some Goldstein stationary point,
little is known regarding the related problem of verifying whether a given point is Goldstein sta-
tionary. Note that in the smooth setting, verification (of stationary points) is quite simple since a
single query to the gradient oracle suffices to test whether the gradient norm is small. However,
after inspecting the quite convolved definition of Goldstein stationarity, efficient verification of this
solution concept seems non-trivial. This gives rise to the following question.

1It is worth mentioning that Goldstein (ϵ, δ)-stationarity is a weaker notion than (near) Clarke ϵ-stationarity
since any (near) ϵ-stationary point is a Goldstein (ϵ, δ)-stationary point but not vice versa.
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Q1. Is it possible to verify Goldstein stationarity of Lipschitz and bounded functions?

Regarding the problem of finding Goldstein stationary points, one needs to be careful about the
assumptions under which a proposed algorithm works, as they can mask important underlying com-
putational issues. For example, Jordan et al. (2022, Theorem 5.1) shows that although there exists
an efficient randomized algorithm for finding a Goldstein stationary point that only uses first-order
oracle access to the objective function, no deterministic algorithm can achieve any convergence guar-
antee, unless a zeroth-order oracle is also provided (in addition to the first-order oracle). Since all
of the known zeroth-order algorithms for the problem (Lin et al., 2022; Kornowski & Shamir, 2023)
are randomized (and, based on Lemma 1, actually output uniform Goldstein points), the following
natural question arises.

Q2. Is there a query efficient zeroth-order deterministic algorithm that finds a uniform Goldstein
stationary point of a Lipschitz and bounded function?

Another related computational issue concerns the impact of finite bit precision. In particular, when
the queries to the oracles are constrained to lie on a finite grid, then it is not clear whether the
guarantees achieved using exact queries continue to hold, especially since the function is nonsmooth
and, therefore, the first-order oracles are not necessarily stable. As a first step, it is, therefore,
reasonable to focus on the numerical stability of zeroth-order algorithms.

Q3. How precise queries does a zeroth-order deterministic algorithm need to find a Goldstein
stationary point of a Lipschitz and bounded function?

Our Contribution. We make significant progress regarding questions Q1, Q2 and Q3 using a uni-
fied approach based on defining a notion of weak verification (Definition 7), which can be reduced
to either (strongly) verifying (Definition 6) or finding (Definition 5) a Goldstein stationary point
(see Lemma 2). Therefore, for the problem of (uniform) Goldstein stationarity, hardness results on
weak verification imply hardness on both (strong) verification and finding, which are, otherwise, two
related but not directly comparable problems. We focus on functions that are bounded and Lipschitz.

Result I (Section 3). Our first result is a positive answer to Q1 using a deterministic verifier. We
identify a pair of conditions that suffices for this verification procedure: (i) access to exact queries
(i.e., points in Rd with infinite precision) and (ii) access to a first-order oracle O∇f (i.e., given a
point x ∈ Rd, we obtain ∇f(x)). Our algorithm relies on a natural yet novel connection between
Goldstein points and Carathéodory’s theorem. Hence we answer Q1 informally as follows.
Theorem 1 (Informal, see Theorem 4, 5). There exists a query efficient deterministic verifier for
Goldstein stationary points provided access to infinite-precision queries and a first-order oracle.

Result II (Section 4). We show that randomization is actually required for finding uniform Gold-
stein stationary points with query efficient algorithms. As we already mentioned, in Lemma 2 we
show that a lower bound on weakly verifying (uniform) Goldstein stationarity implies a lower bound
on finding such points. Hence, our main result is an exponential in the dimension lower bound for
the problem of weakly verifying uniform Goldstein points. This gives a negative answer to Q2.
Theorem 2 (Informal, see Corollary 1). There is no query efficient zeroth-order determistic algo-
rithm for weakly verifying (and hence finding) uniform Goldstein stationary points.

Result III (Section 5). We demonstrate that in the nonsmooth setting, weakly verifying a Gold-
stein stationary point requires sufficiently refined queries to a zeroth-order oracle. In other words,
the bit precision of the verifier needs to be sufficiently high.
Theorem 3 (Informal, see Corollary 2). Any zeroth-order deterministic algorithm for weakly veri-
fying (ϵ, δ)-Goldstein stationary points requires queries with coordinate-wise accuracy O(ϵ · δ).

Once more, Lemma 2 can be used to provide the same negative results for the problems of strong
verification and of finding (answer to Q3). Our result highlights a qualitative difference between
smooth optimization (for finding near Clarke approximate stationary points) and nonsmooth opti-
mization (for finding Goldstein approximate stationary points). In particular, for zeroth-order meth-
ods in the smooth setting, for instance the work of Vlatakis-Gkaragkounis et al. (2019) shows that
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poly(ϵ) accuracy is sufficient to get ϵ-Clarke stationary points. Hence, the precision of the queries
does not need to depend on δ for the problem of finding δ-near ϵ-approximate Clarke stationary
points of smooth functions. In contrast, our result showcases that some dependence on δ (and ϵ) is
necessary for nonsmooth optimization, even when the solution concept is relaxed to (ϵ, δ)-Goldstein
stationarity.

1.1 PRIOR WORK

As far as Clarke stationary points are concerned, the work of Zhang et al. (2020) shows that there
exists no algorithm that can achieve convergence to a Clarke ϵ-stationary point of a Lipschitz func-
tion in a finite number of iterations and the follow-up work of Kornowski & Shamir (2021) shows
an exponential in the dimension d query lower bound for the problem of finding a δ-near Clarke
ϵ-stationary point of a Lipschitz function. These two results essentially motivated the community
to consider Goldstein stationary points as a natural solution concept for nonsmooth nonconvex opti-
mization.

For the problem of finding Goldstein stationary points, there is an extensive literature which we
now present. Zhang et al. (2020) gives a randomized algorithm with O(δ−1ϵ−3) queries to zeroth-
and first-order oracles. Davis et al. (2022) focuses on a class of Lipschitz functions and proposed
another randomized variant that achieved the same theoretical guarantee. Tian et al. (2022) gives
the third randomized variant of Goldstein’s subgradient method that achieved the same complexity
guarantee. Lin et al. (2022) develops randomized gradient-free methods for minimizing a general
Lipschitz function and proved that they yield a complexity bound of O(d1.5δ−1ϵ−4) in terms of
(noisy) 0th oracles. The works of Jordan et al. (2023; 2022); Kornowski & Shamir (2022) are
the closest to our paper. In these works, the authors show a lower bound of Ω(d) for any deter-
ministic algorithm that has access to both 1st and 0th order oracles, prove that any deterministic
algorithm with access only to a 1st order oracle is not able to find an approximate Goldstein sta-
tionary point within a finite number of iterations up to sufficiently small constant parameter and
tolerance, and, provide a deterministic smoothing approach under the arithmetic circuit model: the
resulting smoothness parameter is exponential in a certain parameter M and the method leads to an
algorithm that uses Õ(Mδ−1ϵ−3) queries. Kong & Lewis (2022) gives a deterministic black-box
version of the algorithm of Zhang et al. (2020) which achieves, up to a nonconvexity modulus for
the objective, a dimension-independent complexity of O(δ−1ϵ−4). Tian & So (2023) gives compu-
tational hardness results for certain first-order approximate stationarity concept for piecewise linear
functions. Cutkosky et al. (2023) reduces the complexity of the stochastic rates algorithm of Zhang
et al. (2020) (that enjoyed a rate of O(δ−1ϵ−4)) to O(δ−1ϵ−3) stochastic gradient calls and shows
that this rate is optimal. Chen et al. (2023) proposes an efficient stochastic gradient-free method for
nonsmooth nonconvex stochastic optimization improving the complexity bound of Lin et al. (2022)
regarding the dependence on ϵ and the Lipschitz constant. Kornowski & Shamir (2023) gives a
(randomized) algorithm with optimal dimension-dependence for zero-order nonsmooth nonconvex
stochastic optimization with complexity O(dδ−1ϵ−3).

2 SETUP AND PROBLEM DEFINITION

Black-Box Oracle Access. We consider oracles that given a function f(·) and a point x, return
some quantity which conveys local information about the function on that point. We are interested
in zeroth-order oracles Of (x) = f(x) and first-order oracles O∇f (x) ∈ ∂f(x). In general, it may
be the case that the oracle returns an exact value or an inexact one. In the former case, given x, the
algorithm observesOf (x) andO∇f (x) with infinite precision, while in the latter, it observes a noisy
estimate of the exact value. In this work, we focus on exact oracles.

Finding & Verification Complexity. We are now ready to present the main algorithmic tasks that
we will study in this paper: finding, strong and weak verification using deterministic algorithms.
For simplicity, we provide the three definitions for Goldstein points (i.e., the problem GOLDSTEIN
STATIONARITY) but they naturally extend to other solution concepts, such as uniform Goldstein
points (i.e., the problem UNIFORM-GOLDSTEIN STATIONARITY).

Let us start with the most standard notion of finding. In this setting the goal is to design an algo-
rithm that interacts with some oracle and outputs a point that satisfies some desired property, e.g.,
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Goldstein stationarity. Randomized or deterministic finding is the task that prior work has focused
on (Zhang et al., 2020; Kornowski & Shamir, 2021; Jordan et al., 2022; 2023).
Definition 5 (Finding Goldstein Points). Fix d ∈ N, ∆, L > 0 and let F be the class of L-Lipschitz
functions on Rd with values in [−∆,∆]. (UNIFORM-)GOLDSTEIN STATIONARITY has a determin-
istic finding algorithm if there is a deterministic algorithm V that given ϵ, δ ≥ 0 as input parameters
and black-box access to an oracle Of for some unknown function f ∈ F makes ℓ queries to Of

and outputs a point x⋆ ∈ Rd such that x⋆ is a (uniform) (ϵ, δ)-stationary point of f . We call
ℓ = ℓ(ϵ, δ, d, L,∆) the deterministic s query complexity of finding for (UNIFORM) GOLDSTEIN
STATIONARITY.

We next turn our attention to strong verification for Goldstein stationarity.
Definition 6 (Strongly Verifying Goldstein Points). Fix d ∈ N, ∆, L > 0 and let F be the class
of L-Lipschitz functions on Rd with values in [−∆,∆]. (UNIFORM-)GOLDSTEIN STATIONARITY
has a deterministic strong certificate of length ℓ if there is a deterministic verifier V that, on input
parameters ϵ, δ ≥ 0, point x⋆ ∈ Rd and black-box access to an oracleOf for some unknown f ∈ F ,
after making ℓ queries to Of and interacting for ℓ rounds with a (computationally unbounded)
prover, outputs a bit b ∈ {0, 1} such that:

• (Completeness) If x⋆ is a (uniform) ( ϵ2 , δ)-stationary point of f , then there exists a prover
P such that the output of V is 1.

• (Soundness) If x⋆ is not a (uniform) (ϵ, δ)-stationary point of f , then for any prover P , it
holds that the output of V is 0.

We call ℓ = ℓ(ϵ, δ, d, L,∆) the deterministic query complexity of strongly verifying (UNIFORM)
GOLDSTEIN STATIONARITY.

The main focus of this paper is the weak verification task for Goldstein stationarity.
Definition 7 (Weakly Verifying Goldstein Points). Fix d ∈ N, ∆, L > 0 and let F be the class of
L-Lipschitz functions on Rd with values in [−∆,∆]. (UNIFORM-)GOLDSTEIN STATIONARITY has
a deterministic weak certificate of length ℓ if there is a deterministic verifier V that, given ϵ, δ ≥ 0
as input and black-box access to an oracle Of for some unknown function f ∈ F , after making ℓ
queries to Of and interacting for ℓ rounds with a (computationally unbounded) prover, outputs a
tuple (x⋆, b) ∈ Rd × {0, 1} such that:

• (Completeness) If f has at least one (uniform) ( ϵ2 , δ)-stationary point then there exists a
prover P such that V outputs (x⋆, 1) for x⋆ which is (uniform) (ϵ, δ)-stationary for f .

• (Soundness) If V outputs x⋆ and b = 1, then x⋆ is a (uniform) (ϵ, δ)-stationary point of f .

We call ℓ = ℓ(ϵ, δ, d, L,∆) the deterministic query complexity of weakly verifying (UNIFORM)
GOLDSTEIN STATIONARITY.

We mention that the ‘if’ condition in the completeness case is always true for functions f that are
Lipschitz and lower bounded. We stress that in the above definitions the verifier is independent of
the function f . We also remark that in the smooth non-convex case, finding stationary points is
tractable using deterministic algorithms. Hence both weak and strong verification are tractable too.

One of the main results of this paper (Corollary 1) is that, for the problem of UNIFORM-GOLDSTEIN
STATIONARITY, no zeroth-order verifier has deterministic certificates of length sub-exponential in
the dimension d. To this end, we show that for any interaction sequence of length ℓ = O(2d), any
verifier can be fooled in the sense that x⋆ is a uniform (ϵ, δ)-stationary point of f but V says “No”
and x⋆ is not a uniform (ϵ, δ)-stationary point of f but V says “Yes”.

The next lemma essentially captures the fact that a lower bound for weak verification implies a lower
bound for both strong verification and (more interestingly) finding.
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Lemma 2 (Weak Verification Lower Bounds). The following hold true:

1. Assume that (UNIFORM-)GOLDSTEIN STATIONARITY has a deterministic strong certifi-
cate of length ℓ. Then it has a deterministic weak certificate of length ℓ.

2. Assume that (UNIFORM-)GOLDSTEIN STATIONARITY has a deterministic finding algo-
rithm with query complexity ℓ. Then it has a deterministic weak certificate of length ℓ.

Proof. For 1, it suffices to observe that each function in F (as considered in Definition 7) has some
(Uniform) Goldstein stationary point x⋆. For weak verification, the prover can suggest x⋆ and the
strong verifier can check whether it is actually a (Uniform) Goldstein stationary point.

For 2, there is no need for a prover, as the finding algorithm is guaranteed to find a (Uniform)
Goldstein stationary point x⋆ and the weak verifier may output (x⋆, 1).

3 VERIFICATION VIA CARATHÉODORY’S THEOREM

In this section we investigate conceptual connections between Carathéodory’s theorem, a fundamen-
tal result in convex geometry and Goldstein stationarity. Let us first recall Carathéodory’s theorem:
Fact 1 (Exact Carathéodory). Let S ⊆ Rd. If x ∈ conv(S), then x is the convex sum of at most
d+ 1 points of S.

We first show that Carathéodory’s theorem provides short deterministic strong certificates for the
Goldstein stationarity problem given access to exact queries and to a first-order oracle. Due to
Lemma 2, this implies the existence of short deterministic weak certificates for the same problem.
Note, however, that the existence of a deterministic strong verifier of first-order does not imply
the existence of an efficient deterministic finding algorithm of first-order, which is known to be
impossible (see Jordan et al. (2022, Theorem 5.1)).
Theorem 4 (Strong Verification via Carathéodory). Assume access to exact queries and to
a first-order oracle O∇f for f : Rd → R, which is Lipschitz and bounded. Then
GOLDSTEIN STATIONARITY with parameters ϵ > 0 and δ ≥ 0 has a deterministic strong cer-
tificate of length d+ 1.

Let us provide the verification algorithm. Assume that x⋆ is given in the input of the strong verifica-
tion procedure. Moreover, let y0, ..., yd be the sequence provided by the computationally unbounded
prover. The verifier will output a bit b. The algorithm performs the following steps.

1. For i = 0, 1, . . . , d, compute ∆i = ∥x⋆ − yi∥2. If some ∆i > δ, output b = 0.
2. For i = 0, 1, . . . , d, compute gi = ∇f(yi) by invoking the oracle O∇f .
3. Solve the convex program:

min
g
∥g∥2

subject to g ∈ conv({g0, g1, . . . , gd}) .

If the solution g satisfies ∥g∥2 ≤ ϵ, output b = 1, otherwise output b = 0.

Let us provide some intution about the completeness of our verifier. Assume that x⋆ is a Goldstein
stationary point, i.e., there exists g′ with L2 norm at most ϵ and g′ ∈ ∂δf(x

⋆). Hence, by Fact 1
with S = ∂δf(x

⋆), we know that g′ can be written as a convex combination of at most d + 1
points of ∂δf(x⋆). These d+ 1 points correspond to the vectors {gi}0≤i≤d in the above algorithm.
Crucially, the gradients {gi}0≤i≤d can be computed since the points {yi}0≤i≤d are provided by the
honest prover. Hence, given this short proof, the algorithm can actually verify that x⋆ is a Goldstein
stationary point. Soundness of our verifier (against malicious provers) follows by the definition of
Goldstein stationarity. For the details about the correctness of the verifier, we refer to Appendix A.

Moreover, we can prove the existence of a deterministic strong certificate for Goldstein stationarity
of length that does not depend on the dimension of the domain, using the following approximate
version of Carathéodory theorem.
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Fact 2 (Approximate Carathéodory Barman (2015)). Any point u in a polytope P ⊆ Rd can be
approximated to error ϵ in ℓ2 norm with O(L2/ϵ2) vertices, where L is the radius of the smallest ℓ2
ball that contains P , in the sense that there exist v1, ..., vk vertices of P with k = O(L2/ϵ2) so that
∥v − 1

k

∑
i vi∥2 ≤ ϵ.

Combining a similar argument as the one for Theorem 4 with Fact 2, we acquire the following result,
whose proof we defer to Appendix A.

Theorem 5 (Strong Verification via Approximate Carathéodory). Assume access to exact queries
and to a first-order oracle O∇f for f : Rd → R, which is L-Lipschitz for some L > 0. Then
GOLDSTEIN STATIONARITY with parameters ϵ > 0 and δ ≥ 0 has a deterministic strong certificate
of length O(L2/ϵ2).

We continue with some comments about the above results. Assuming access to exact queries and
first-order oracles, efficient deterministic strong verification is possible; however, we do not have a
deterministic finding algorithm (we cannot find the points that describe the desired polytope).

Theorem 4 demonstrates that in the ideal case where we are provided access to exact queries and
a first-order oracle for an instance f of the Goldstein stationarity problem, then there are short
deterministic certificates. However, for nonconvex and nonsmooth instances, the proposed verifier
fails when either the queries are not exact or instead of a first-order oracle we only have access to a
zeroth-order oracle.

When the queries are not exact, even if one has access to a first-order oracle, the value gi computed
in Step 2 of the verifier proposed in Theorem 4, might be arbitrarily far from the gradient of the
corresponding exact query (which is provided only up to some error), since the gradient is not
Lipschitz. When one has only access to a zeroth-order oracle, even provided exact queries, the
computation of the gradient is numerically unstable and, therefore, Step 2 of the verification process
of Theorem 4 fails once more.

Note that none of the above issues apply to the case where only smooth instances are considered,
since differentiation is then robust to small perturbations of the queries and the gradients can be
approximated accurately via zeroth-order queries (even non exact ones).

Given the above discussion, the failure of Carathéodory-based deterministic zeroth-order verifiers
does not exclude the existence of efficient zeroth-order deterministic algorithms. Having provided
an answer to Q1, we next focus on Q2. Are there query efficient zeroth-order deterministic finding
algorithms for the fundamental class of uniform Goldstein points? This is the topic of the upcoming
section.

4 VERIFICATION LOWER BOUNDS FOR UNIFORM STATIONARITY

In this section, we show that uniform Goldstein stationarity do not even have short deterministic
weak certificates. This implies hardness (via Lemma 2) for the problem of finding uniform Goldstein
stationary points under the constraints of zeroth-order oracle access and deterministic behavior.

Theorem 6 is the main tool towards showing that weak verification of UNIFORM-GOLDSTEIN STA-
TIONARITY has exp(d) deterministic query complexity. In particular, given a set S of exp(d) points
and a point x⋆, we demonstrate a Lipschitz function f (dependent on S and x⋆) that vanishes on
S and x⋆ is not (ϵ, δ)-uniformly stationary for f . Hence, for a verifier that outputs (x⋆, b = 1),
considering f = 0 would violate the soundness of the verification process.

Theorem 6 (Construction for Uniform Stationarity). Let ϵ, δ > 0 and x(1), x(2), . . . , x(m), x⋆ ∈ Rd,
where m = 2d−3. Then, there exists a function f : Rd → [−4ϵδ, 4ϵδ] such that f(x(i)) = 0 for any
i ∈ [m] and the following are true:

1. The function f is Lipschitz continuous with Lipschitz constant L = 14 ϵ.

2. The point x⋆ is not (ϵ, δ)-uniformly stationary for f .

To give some intuition about the construction, the designed function is essentially a linear function
with some ‘holes’. Each ‘hole’ is a circular region with center a point x of the input set S and inside
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this region the function slowly decreases and eventually vanishes at x (therefore, the radius of the
circular region has to be large enough). When the number of holes (|S|) is small enough (at most
2d−3), the norm of the expected gradient of a random point in the ball of radius δ around x⋆ is more
than ϵ, because most of the mass is outside of the union of the holes, where the gradient norm is
determined by the linear function. In other words, the point x⋆ is not (ϵ, δ)-uniformly stationary.

Corollary 1. Let ϵ, δ > 0. Any deterministic algorithm for weakly verifying uniform Goldstein
points of an unknown, 14ϵ-Lipschitz and 4ϵδ-bounded function over Rd requires Ω(2d) queries to
a zeroth-order oracle. Moreover, the same is true for the problems of strongly verifying and finding
uniform Goldstein points.

Proof. Suppose there exists such a weak verifier V and let P be the prover specified in the complete-
ness condition of Definition 7. Let m ≤ 2d−3 and x(1), x(2), . . . , x(m) ∈ Rd be the queries made
by a deterministic weak verifier, suppose that the zeroth-order oracle Of always returns 0 on each
of them and let (x⋆, b) be the output of V after interacting with P , where x⋆ ∈ Rd and b ∈ {0, 1}.
Consider f0 ≡ 0 and f1 the function with the properties specified in Theorem 6 (given the queries
x(1), x(2), . . . , x(m) and x⋆). Both f0 and f1 are consistent with the answers of the oracle. We can
therefore set Of = Ofb . Then, b cannot be 0, because f0 is zero and therefore has (Goldstein)
stationary points (see completeness condition of Definition 7). Hence, b = 1. We arrive to a
contradiction, since x⋆ is not (ϵ, δ)-uniformly stationary for f1 as per Theorem 6.

The same result for strong verification and for finding readily follows by Lemma 2.

We remark that the function constructed in Theorem 6 contains Goldstein stationary points. Extend-
ing this lower bound for non-uniform Goldstein points is an interesting open problem.

5 QUERY PRECISION FOR GOLDSTEIN STATIONARITY

In this section, we aim to understand Q3 regarding the query precision required in order to find
Goldstein stationary points via query efficient zeroth-order deterministic algorithms. We begin with
some notation in order to capture the notion of finite precision.

Definition 8 (Lattices and Grids). For η > 0, the lattice Lη of width η is the subset of Rd containing
the points x = (x1, . . . , xd) such that xj = η · kj for some kj ∈ Z. For k ∈ N, the grid Gη,k is the
subset of Rd containing the points x = (x1, . . . , xd) such that xj = η ·kj for some kj ∈ [−k, k]∩Z.

The next theorem is the main tool in order to show that any deterministic 0th-order algorithm for
weakly verifying an (ϵ, δ)-Goldstein stationary point of a Lipschitz and bounded function requires
queries with coordinate-wise accuracy O(ϵ · δ). It states that one can create a Lipschitz and bounded
function that vanishes on every point within a lattice of width η that contains x⋆, such that x⋆ is not
(ϵ, δ)-stationary whenever η > 10ϵδ. We also clarify that for appropriately selected ϵ = 1/poly(d),
the lattice can contain exponentially many ‘interesting’ queries, in the sense that they lie within a
ball of radius δ around x⋆ (which is the region of interest, according to Definition 3).

Theorem 7 (Lattice Construction for Goldstein Stationarity). Let δ, η > 0 and x⋆ ∈ Lη . Then, there
is a function f : Rd → [−4δ, 4δ] such that f(x) = 0 for any x ∈ Lη and the following are true:

1. The function f is Lipschitz continuous with Lipschitz constant L = 4.

2. The point x⋆ is not ( η
10δ , δ)-stationary for f .

Moreover, if η ≤ δ√
d

, we have |Lη ∩ Bd(x
⋆, δ)| ≥ 3d.

The main idea behind Theorem 7 is to reduce the construction of f to a geometric question in
two dimensions, taking advantage of the symmetry of the lattice. We first focus on the values of
the function on some finite grid around x⋆, since the function can be identically zero far from x⋆

without influencing its stationarity. We construct some piecewise linear function f̃ as described in
Figure 1 and acquire f by multiplying f̃ with a function that takes zero values far from x⋆.

8
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Figure 1: Two-dimensional representation of the constructed piece-wise linear function f̃ projected
on the subspace V2 spanned by (e1, e2). The function f̃ is constant along any direction orthogonal
to V2. The red regions (R(ℓ)

p ) correspond to pieces where the gradient of f̃ is equal to ap = e1

(red arrow) and the blue regions (R(ℓ)
q ) correspond to pieces where the gradient is equal to aq =

−2k√
4k2+1

e1 +
1√

4k2+1
e2 (blue arrow), for k = 2δ/η. The angle between ap and aq is bounded away

below π and hence the minimum norm point in their convex hull is far from the origin. The function
f̃ is zero on any point in Rd whose orthogonal projection on V2 lies on the bold (red or blue) lines.

Remark 1. The function f proposed in Theorem 7, restricted to a ball of rasius δ around x⋆, can
be computed by a neural network with O(δ/η) ReLU activation units (ReLU(t) = max{0, t}).

Using Theorem 7, we acquire the following hardness result for the problem of deterministic weak
verification of Goldstein stationarity with zeroth-order queries restricted to a lattice.

Corollary 2. Let ϵ, δ > 0. There is no deterministic algorithm for weakly verifying an (ϵ, δ)-
Goldstein stationary point of an unknown, 4-Lipschitz and 4δ-bounded function, provided access to
a zeroth-order oracle with queries restricted to a lattice of width 10 · ϵ · δ. Moreover, the same is
true for the problems of strongly verifying and finding Goldstein points.

Proof. The proof is analogous to the one of Corollary 1, but we instead account for non-uniform
Goldstein stationarity, based on Theorem 7. The same result for strong verification and for finding
readily follows by Lemma 2.
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A PROOF OF THEOREMS 4 AND 5

For Theorem 4, assume that x⋆ is given in the input of the strong verification procedure. Moreover,
let y0, ..., yd be the sequence provided by the computationally unbounded prover. The verifier will
output a bit b. The algorithm performs the following steps.

1. For any i = 0, 1, . . . , d, the algorithm computes ∥x⋆− yi∥2. If for some yi the correspond-
ing computed value is greater than δ, the algorithm outputs b = 0 and halts.

2. For any i = 0, 1, . . . , d, the algorithm computes gi = ∇f(yi) by calling the oracle O∇f .
3. The algorithm solves the following minimization problem:

min
g
∥g∥2

subject to g ∈ conv(gi, i = 0, 1, . . . , d) .

This program is convex and can be solved efficiently (see e.g., De Loera et al. (2018)). If
the solution g satisfies ∥g∥2 ≤ ϵ, the algorithm outputs b = 1, otherwise it outputs b = 0.

For the promised guarantees we have the following. Recall that ∂δf(x
⋆) =

conv(∪y:∥y−x⋆∥2≤δ∂f(y)).

• If x⋆ is (ϵ/2, δ)−stationary for f , then there exists some g′ such that ∥g′∥ ≤ ϵ/2 ≤ ϵ and
g′ ∈ ∂δf(x

⋆). By Fact 1, we have that g′ ∈ conv(g′i, i = 0, 1, . . . , d), where g′i = ∇f(y′i)
for some y′i ∈ Rd with ∥x⋆ − y′i∥2 ≤ δ (since g′i are vertices of ∂δf(x⋆) and hence each
is a vertex of some ∂f(y′i) = ∇f(y′i) as specified). Therefore, we can pick y′i = yi to get
gi = g′i (in the second step). In the third step, we will find g such that ∥g∥2 ≤ ∥g′∥2 = ϵ.

• If x⋆ is not (ϵ, δ)−stationary for f , suppose that there are y0, y1, . . . , yd ∈ Rd given by the
prover such that the verifier outputs b = 1. Then, the algorithm has found g with ∥g∥2 ≤ ϵ
and g ∈ conv(∇f(yi), i = 0, 1, . . . , d). Moreover, ∥x⋆ − yi∥ ≤ δ for any i = 0, 1, . . . , d.
Therefore, x⋆ is (ϵ, δ)-stationary for f , which is a contradiction.

For Theorem 5, we use the same algorithm, but the (honest) prover gives, instead, points y1, . . . , yt
with t = O(L2/ϵ2), where (∇f(yi))i correspond to (vi)i specified by Fact 2, if we pick ϵ of Fact 2
as ϵ← ϵ/2 and u← argminv∈∂δf(x⋆) ∥v∥2 (we then know that ∥u−

∑
i vi/k∥2 ≤ ϵ/2 and, hence,

if x⋆ is (ϵ/2, δ)-Goldstein stationary, then ∥
∑

i vi/k∥2 ≤ ϵ (where
∑

i vi/k ∈ conv((vi)i)). In
fact, we could also substitute step 3 with checking whether ∥

∑
i gi/k∥2 ≤ ϵ (and so we can avoid

solving the corresponding optimization problem).

B PROOF OF THEOREM 6

We first construct a function f̃ : Rd → R as follows.

f̃(x) =

{
2ϵ e⊤1 (x− x⋆), if mini∈[m] ∥x− x(i)∥2 > δ

2 ,

2ϵ e⊤1 (x− x⋆) · mini∈[m] ∥x−x(i)∥2

δ/2 , otherwise.

We first note that the function f̃ is continuous, since mini∈[m] ∥x−x(i)∥2

δ/2 = 1 when mini∈[m] ∥x −
x(i)∥2 = δ

2 and the minimum function is continuous. Moreover, the following are true:

1. f̃(x(i)) = 0 for any i ∈ [m].

2. For x ∈ Rd such that mini∈[m] ∥x− x(i)∥2 > δ/2, we have∇f̃(x) = 2ϵ e1.

3. For any x ∈ Rd we have
|f̃(x)| ≤ 2ϵ∥x− x⋆∥2 .

4. For any x ∈ Rd on which the gradient of f̃ is defined, we have

∥∇f̃(x)∥2 ≤ 2ϵ

(
1 +

2∥x− x⋆∥2
δ

)
.

11
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The above properties can be verified directly, using additionally the fact that ∇∥x∥2 = x
∥x∥2

. In
order to bound the range of the final construction, we consider the following helper function h :
Rd → [0, 1] (radial ramp):

h(x) =


1, if x ∈ Bd(x

⋆, δ),

0, if x ∈ Rd \ Bd(x
⋆, 2δ),

2− ∥x−x⋆∥2

δ , otherwise .

We then let f(x) = f̃(x) ·h(x). Since h and f̃ are both continuous, f is also continuous. Moreover,
the following are true:

1. f(x(i)) = f̃(x(i)) · h(x(i)) = 0 for any i ∈ [m].

2. For x ∈ Rd such that mini∈[m] ∥x− x(i)∥2 > δ/2 and ∥x− x⋆∥2 < δ, we have ∇f(x) =
2ϵ e1, since f(x) = f̃(x) for any x within Bd(x

⋆, δ).

3. For any x ∈ Rd we have

|f(x)| = |f̃(x)| · |h(x)| ≤ 2ϵ∥x− x⋆∥2 · 1{∥x− x⋆∥2 ≤ 2δ} ≤ 4ϵδ .

4. For any x ∈ Rd on which the gradient of f is defined we have

∇f(x) = ∇f̃(x)·h(x)+f̃(x)·∇h(x) =


∇f̃(x), if x ∈ Bd(x

⋆, δ),

0, if x ∈ Rd \ Bd(x
⋆, 2δ), else

∇f̃(x) ·
(
2− ∥x−x⋆∥2

δ

)
− f̃(x) · x−x⋆

δ·∥x−x⋆∥2
.

Therefore we get that

∥∇f(x)∥2 ≤ 2ϵ(1 + 4) · 1 + 4ϵ = 14ϵ .

The Lipschitz property follows from the fact that f is continuous and consists of a finite number of
pieces in each of which it is differentiable and with bounded gradient.

It remains to show that x⋆ is not (ϵ, δ)-uniformly stationary for f . Let us define the uniform
smoothening

fδ(x) = Eu∼U(Bd(0,1))[f(x+ δu)] ,

which is everywhere differentiable Bertsekas (1973)(Proposition 2.4). Hence,∇fδ(x) exists for any
x ∈ Rd and is equal to∇fδ(x) = Eu∼U(Bd(0,1))[∇f(x+δu)] (see Theorem 3.1 in Lin et al. (2022)).

We next argue about x⋆. It holds that

∥∇δf(x
⋆)∥2 = ∥Ex∼Bd(x⋆,δ)[∇f(x)]∥2 ≥

Vd(δ)−mVd(δ/2)

Vd(δ)
· 2ϵ− mVd(δ/2)

Vd(δ)
· 4ϵ

=
Vd(δ)− 3mVd(δ/2)

Vd(δ)
· 2ϵ

=
δd − 3m( δ2 )

d

δd
· 2ϵ > ϵ .

This concludes the proof. In the above, we used the fact that the volume of the d-dimensional ball
with radius r is Vd(r) = Vd(1) · rd, where Vd(1) =

πd/2

Γ( d
2+1)

.

C PROOF OF THEOREM 7

Suppose, without loss of generality, that x⋆ = 0. Let k ∈ N to be specified later. We will first
construct a function f̃ that is Lipschitz and f̃(x) = 0 for any x ∈ Gη,k, for which x⋆ is not a
Goldstein stationary point (for some choice of the stationarity parameters). We will then use f̃ to
construct f as desired.

12
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We let ap = e1, aq = −2k√
4k2+1

e1 +
1√

4k2+1
e2, b(ℓ)p = −ℓη for ℓ ∈ [−k, k] ∩ Z and b

(ℓ)
q = (2ℓ+1)kη√

4k2+1

for ℓ ∈ [−k, k − 1] ∩ Z. We define the function f̃ as follows:

f̃(x) =


a⊤p x+ b

(−k)
p , if (aq − ap)

⊤x ≥ b
(−k)
p − b

(−k)
q ,

a⊤q x+ b
(ℓ)
q , if (aq − ap)

⊤x ∈ [b
(ℓ+1)
p − b

(ℓ)
q , b

(ℓ)
p − b

(ℓ)
q ), for ℓ ∈ [−k, k − 1] ∩ Z,

a⊤p x+ b
(ℓ)
p , if (aq − ap)

⊤x ∈ [b
(ℓ)
p − b

(ℓ)
q , b

(ℓ)
p − b

(ℓ−1)
q ), for ℓ ∈ [−k + 1, k − 1] ∩ Z,

a⊤p x+ b
(k)
p , if (aq − ap)

⊤x < b
(k)
p − b

(k−1)
q .

The function f̃ is piece-wise linear and continuous by construction. In particular, we have that
b
(ℓ+1)
p − b

(ℓ)
q < b

(ℓ)
p − b

(ℓ)
q < b

(ℓ)
p − b

(ℓ−1)
q and the only candidate points of discontinuity for f̃

are the points x such that (aq − ap)
⊤x = b

(ℓ)
p − b

(ℓ)
q or (aq − ap)

⊤x = b
(ℓ+1)
p − b

(ℓ)
q for some

ℓ ∈ [−k, k − 1] ∩ Z. However, (aq − ap)
⊤x = b

(ℓ)
p − b

(ℓ)
q implies a⊤q x + b

(ℓ)
q = a⊤p x + b

(ℓ)
p and

(aq−ap)
⊤x = b

(ℓ+1)
p − b

(ℓ)
q implies a⊤q x+ b

(ℓ)
q = a⊤p x+ b

(ℓ+1)
p . Therefore, f̃ is continuous. Since,

additionally, in each linear piece of f̃ , the gradient norm is at most max{∥ap∥2, ∥aq∥2} = 1, we
have that f̃ is Lipschitz continuous with Lipschitz constant 1.

Consider the hyperplanes (pℓ)ℓ and (qℓ)ℓ in Rd as follows:

pℓ = {x : a⊤p x+ b(ℓ)p = 0} = {x ∈ Rd : x1 = ℓη}, for ℓ ∈ [−k, k] ∩ Z,

qℓ = {x : a⊤q x+ b(ℓ)q = 0} = {x ∈ Rd : x2 = 2kx1 − (2ℓ+ 1)kη}, for ℓ ∈ [−k, k − 1] ∩ Z.

Moreover, let R(ℓ)
p (resp. R(ℓ)

q ) be the subset of Rd containing x such that f̃(x) = a⊤p x+ b
(ℓ)
p (resp.

f̃(x) = a⊤q x + b
(ℓ)
q ). Note that each R

(ℓ)
p , R

(ℓ)
q is an intersection of at most two halfspaces. Then,

the following are true:

f̃(x) = 0, for any x ∈
⋃
ℓ

(
pℓ ∩R(ℓ)

p

)
∪
(
qℓ ∩R(ℓ)

q

)
, (2)

Gη,k ⊆
⋃
ℓ

(
pℓ ∩R(ℓ)

p

)
. (3)

Equation equation 2 follows from the definition of pℓ and qℓ, while Equation equation 3 follows
from simple geometric arguments in two dimensions (see Figure 1; the bold red lines correspond
to the hyperplanes (pℓ)ℓ and the bold blue lines correspond to the hyperplanes (qℓ)ℓ). Note that the
orthogonal projection of the grid Gη,k on V2 lies within the union of the bold red lines (Eq. 3).

Finally, for any δ′ > 0, we have that ∂δ′ f̃(x⋆) = conv(ap, aq) and, hence, the following is true
whenever k ≥ 1 (recall that f̃ depends on the choice of k):

min
g∈∂δ′ f̃(x

⋆)
∥g∥2 =

∥∥∥∥12 ap +
1

2
aq

∥∥∥∥
2

∈
[
1

5k
,
1

3k

]
.

The function f̃ does not have all of the desired properties. In particular, while it takes zero values on
Gη,k, it does not take zero values on all of the points in Lη and, also, its values are not bounded. In
order to resolve these issues, we consider the following helper function h : Rd → [0, 1] (cylindrical
ramp)

h(x) =


1, if (x1, x2) ∈ B2(0, δ),

0, if (x1, x2) ∈ Rd \ B2(0, 2δ),

2−
√

x2
1+x2

2

δ , otherwise .

Finally, we let f(x) = h(x) · f̃(x). We pick k = 2δ
η , so that {x : (x1, x2) ∈ B2(0, 2δ)} ⊆ Gη,k and

therefore f(x) = 0 for any x ∈ Lη . For any x such that (x1, x2) ∈ B2(0, δ), we have that |f(x)| =
|f̃(x)| ≤ δ (since f̃(0) = 0 and f̃ is 1-Lipschitz). For x such that (x1, x2) ∈ B2(0, 2δ) \ B2(0, δ)

we have that |f(x)| = |h(x)| · |f̃(x)| ≤ 2 · 2δ = 4δ. Hence, f is zero on Lη and bounded on Rd.

13



Under review as a conference paper at ICLR 2024

The function f is continuous, since h and f̃ are continuous. Moreover, the Lipschitz constant of f
is 4, which can be shown as follows. Let x such that f is differentiable on x and also (x1, x2) ∈
B2(0, 2δ) \ B2(0, δ) (everywhere else f is either identical to f̃ or to 0). Then we have

∥∇f(x)∥2 ≤ ∥∇h(x)f̃(x)∥2 + ∥h(x)∇f̃(x)∥2

≤ 1

δ
· 2δ + 2 · 1 = 4. (since ∥∇h(x)∥2 = 1/δ)

We show that x⋆ is not ( η
10δ , δ)-stationary for f . We have that

min
g∈∂δf(x⋆)

∥g∥2 = min
g∈∂δ f̃(x⋆)

∥g∥2 ≥
1

5k
=

η

10δ
.

We will now show that f̃ can be expressed as a ReLU network with O(k) = O(δ/η) neurons. In
particular, if we set a⊤p x+ b

(ℓ)
p = f̃

(ℓ)
p (x) and a⊤q x+ b

(−k)
p = f̃

(ℓ)
q (x), it is not hard to see that

f̃ = max
{
. . .min

{
max

{
min

{
f̃ (−k)
p , f̃ (−k)

q

}
, f̃ (−k+1)

p

}
, f̃ (−k+1)

q

}
. . . , f̃ (k)

p

}
By observing, additionally, that max{α, β} = ReLU(α − β) + β = −min{−α,−β} for any
α, β ∈ R, we conclude that f̃ can be expressed as a ReLU network with Θ(k) nonlinear units and
depth Θ(k).

Finally, we observe that for x ∈ Lη we have ∥x∥2 = η
√∑d

j=1 kj
2 and if kj ∈ {−1, 0, 1}, then

∥x∥2 ≤ η
√
d. Therefore, if η ≤ δ/

√
d, then |Lη ∩ Bd(0, δ)| ≥ 3d.
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