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ABSTRACT

In the endeavor of domain generalization, the objective is to develop a classifi-
cation model, utilizing multiple source domains, that can subsequently be gen-
eralized to unseen target domains. The crux of domain generalization lies in
discerning and learning discriminative features that are invariant across domains.
Techniques utilizing adversarial domain generalization are paramount in achiev-
ing invariant representations. To mitigate the aforementioned impediment, we in-
troduce a novel methodology, termed Auxiliary Classifier in Adversarial Domain
Generalization (ACADG). ACADG endeavors to augment the diversity within the
source domain through the integration of an auxiliary classifier. By amalgamat-
ing standard task-related losses—such as cross-entropy loss for classification and
adversarial loss for domain discrimination—the overarching aim is to ensure the
acquisition of condition-invariant features across all source domains, while con-
currently enhancing the diversity of source domains. We have undertaken com-
prehensive image classification experiments on benchmark datasets within the
realm of domain generalization. Our model demonstrates significant generaliza-
tion capacity, surpassing contemporaneous state-of-the-art domain generalization
methodologies. In the context of mathematical formalization, consider that the
aforementioned adversarial loss, auxiliary classifier, and task-related losses are
represented with pertinent LaTeX symbols and equations, reflecting the intricate
interdependencies and mathematical nuances underpinning the proposed method-
ology.

1 INTRODUCTION

In contemporary research landscapes, algorithms driven by machine learning have demonstrated
unprecedented efficacy across an extensive array of applications. Nonetheless, a core challenge
intrinsic to machine learning is the frequent inability of models, resultant of biases in data, to gen-
eralize effectively when exposed to data sourced from diverse distributions, owing to discrepancies
between training and test sets. The concept of Domain Adaptation Pan et al. (2010); Ben-David et al.
(2006) has gained significant scholarly attention as a prospective resolution to this issue, serving to
mitigate the disparities between source and target domains. However, the introduction of a new
dataset necessitates the reiteration of this methodology, a process which is markedly time-intensive.
To cultivate models with enhanced generalizability utilizing data spanning multiple domains, the
pursuit of Domain Generalization Li et al. (2017); Muandet et al. (2013) is advocated.

The challenge inherent in domain generalization is significantly magnified due to the absence of
congruence between the distributions of the source and target domains, compounded by a lack of
insight into the distribution of the target domain throughout the training phase. To enhance the
extrapolative capabilities of the models trained, a multitude of strategies have been pursued, each
offering distinct vantage points and methodologies. The essence of domain generalization is to
cultivate domain-agnostic feature representations across various source domains.

To facilitate the learning of an invariant transformation, Muandet et al.Muandet et al. (2013) inno-
vatively implemented a kernel-based strategy, grounded in domain-invariant component analysis.
Meanwhile, Zhou et al.Zhou et al. (2020a) synthesized three integral components: a label classifier,
a domain classifier, and a domain transformation network, in order to map the source training data
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Figure 1: (a) Antecedent methodologies fabricate challenging exemplars for the purpose of instruct-
ing a classifier, a process that may not effectively amplify the distribution range of the source data.
(b) Conversely, the methodology proposed herein strategically displaces samples from the vicinity
of the target data with the intention of broadening the distribution scope of the source data.

into unobserved domains. This ensures that the newly generated data is precisely classified by the
label classifier while concurrently deceiving the domain classifier.

Concurrently, a distinct strand of research has delved into exploring a plethora of data augmentation
strategies.Yang et al. (2021); Shankar et al. (2018); Volpi et al. (2018); Carlucci et al. (2019). Yang
et al.Yang et al. (2021) propelled the field of teacher-student learning through an adversarial learning
paradigm, which oscillates between representation learning based on knowledge distillation and data
augmentation for novel domains. Shankar et al.Shankar et al. (2018) proffer a gradient-oriented
domain perturbation method, and Zhao et al.Zhao et al. (2020) introduce an entropy regularization
term founded on adversarial learning to assess the interdependencies between the acquired features
and the associated class labels.

The paradigmatic advancements in the aforementioned studies have catalyzed our endeavor to sys-
tematically review domain-invariant feature representations. A prevalent postulate within extant
methodologies is that the marginal distribution, denoted as P (X), undergoes transformations, while
the conditional distribution P (Y |X) sustains its constancy. Consequently, to acquire a domain in-
variant feature, P (F (X)), the integration of an adversarial learning approach becomes imperative.
This enables the comprehensive training of the joint classification model across all available source
domains, allowing the utilization of domain-invariant features acquired through F (X) to prognosti-
cate on new datasets.

Nonetheless, alterations in P (X) do not inevitably attest to the stability of P (Y |X). For instance,
Li et al. Li et al. (2018c) advocates for the adversarial training of a class-invariant conditional dis-
tribution, represented as P (F (X)|Y ). However, the efficacy of this methodology may diminish as
the number of classes escalates, presenting potential limitations in its applicability and robustness.

In response to the highlighted challenges, we introduce a paradigm wherein both P (X) and P (Y |X)
exhibit variation across domains, focusing on domain generalization within an integrated deep learn-
ing architecture. For this objective, we cultivate an invariant conditional neural network designed
to reduce the disparity in P (X|Y ) over multiple domains. Drawing upon contemporary advances
in deep domain generalization, we advocate for an adversarial network architecture, geared towards
achieving a domain-agnostic representation by ensuring that the cultivated representations remain
perceptually consistent across distinct domains.

To augment the diversity within the source domain and mitigate the detrimental impacts arising
from alterations in class priors P (Y ) amongst source domains (illustrated in Figure. 1), auxiliary
classifiers are introduced in this study. We theoretically substantiate that our auxiliary classifier
enhances the model’s diversity.

Additionally, we incorporate Adaptive Sharpness Minimization (ASM) Kwon et al. (2021), aimed
at realizing smooth minima in task loss, which, in turn, promotes enhanced generalization.
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The empirical validity of our methodology is rigorously affirmed through extensive analyses across
diverse datasets, including Digits-DG, PACS, Office-Home, and DomainNet, utilizing ResNet back-
bones. In essence, our research furnishes the following significant contributions:

• We introduce an auxiliary classifier in adversarial generalization (ACADG), designed to
bolster source domain diversity by amalgamating two characteristic loss functions: an aux-
iliary classifier for classification and adversarial loss for domain discrimination.

• To optimize the smoothness of task loss adjacent to optima in adversarial learning, we
recommend the employment of a straightforward and innovative approach known as ASM.
This approach facilitates stable adversarial domain generalization and yields enhanced gen-
eralization within the target domain.

• We execute a comprehensive series of experiments on benchmark datasets to validate our
propositions and demonstrate the efficacy of the suggested methodology.

2 RELATED WORKS

2.1 DOMAIN GENERALIZATION

Domain adaptation (DA) represents a process enabling the transfer of knowledge from designated
source domains to targeted domains, extensively discussed in literature Wu et al. (2021); Wang et al.
(2019). Predominantly, unsupervised domain adaptation has been a pivotal methodology within DA,
addressing domain shift dilemmas through the mitigation of domain discrepancies between labeled
source domains and their unlabeled target counterparts Cai et al. (2019); Ma et al. (2021), employing
strategies such as domain adversarial learning or domain distance minimization Zhang et al. (2019);
Long et al. (2015). However, practical applications often demand preliminary access to domain’s
information, a requirement that can be resource-intensive or unattainable.

Alternative approaches encompass learning feature or gradient masks for regularization Chattopad-
hyay et al. (2020); Huang et al. (2020a), and normalization of batches and instances Seo et al. (2020).
Our approach resonates with works providing a causal interpretation of domain generalization Ma-
hajan et al. (2020), where we employ auxiliary classifiers for estimating invariant parts of P (Y |X)
as conditional distributions vary across domains, thereby enabling the model to generalize features
to unseen targets through adversarial training.

2.2 ADAPTIVE SHARPNESS MINIMIZATION

In the realm of neural networks, the efficacy of overparameterized models for enhancing general-
ization remains a subject of debate Keskar et al. (2017). Smoother minima have been theoretically
linked to superior generalization on unseen data Hochreiter & Schmidhuber (1997; 1994); He et al.
(2019); Dziugaite & Roy (2017). However, the pursuit of smoothing has often been marred by
its computational intensiveness. The advent of Sharpness Aware Minimization (SAM) Foret et al.
(2021) marked a paradigmatic shift by offering a pathway to smoother minima and thereby improved
generalization. In this work, we leverage SAM with the aspiration to confluence towards smooth
minima while simultaneously fostering enhanced generalization to the target domain.

3 METHODOLOGY

In a standard domain generalization scenario, we encounter K distinct source domains denoted as
D1, . . . ,DK , where each domain Dj encompasses paired data and labels conforming to a joint
distribution P j(X,Y ). The primary objective is to cultivate a model utilizing these source domains
and subsequently evaluate it within an unseen target domain. Typically, the distribution within this
target domain diverges from those of the source domains.

3.1 DOMAIN GENERALIZATION THROUGH ADVERSARIAL LEARNING

Initiating our discussion, we elucidate the manner in which the framework of adversarial learning
can be instrumental in instilling domain generalization. This methodology encompasses the em-
ployment of a feature extractor F , characterized by parameters θ, and a classifier C, articulated
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by parameters ϕ. The optimization of θ and ϕ is performed over K source domains through the
minimization of cross-entropy loss, aiming to facilitate the refinement of domain generalization
capabilities in the developed model.

Lcls = −
K∑
i=1

E
(X,Y )∼Pi(X,Y )

[log(CT (Y | F (X)))]

= −
K∑
i=1

Ns∑
j=1

y
(i)
j · log(C(F (x

(i)
j )).

(1)

In this formulation, y(i)
j denotes the class label embodied as a one-hot vector y

(i)
j , with ”·” sig-

nifying the dot product operation. The forecasted label distribution for domain i is depicted as
CT (Y | F (X)). However, models purely optimized based on classification loss exhibit limitations
in learning domain-invariant features. To surmount this obstacle and to amplify the acquisition of
domain-invariant features, we advocate the incorporation of adversarial domain generalization as
our foundational approach.

3.2 ADVERSARIAL DOMAIN GENERALIZATION

Adversarial learning emerges as a formidable methodology for the extraction of domain-invariant
features. This is realized through a structured confrontation between the feature extractor and the
discriminator. The discriminator is designated the responsibility of ascertaining the domain labels of
feature gradients present in both source and target domains, whilst the feature extractor endeavours
to mislead it. The paramount aim is to attain a balanced state wherein the divergence between feature
distributions is condensed to a minimum. This strategy has demonstrated its efficacy across diverse
domains grappling with the issue of domain shift, including computer vision and natural language
processing fields.

The principal aspiration of acquiring domain-invariant features within the adversarial learning
paradigm can be mathematically articulated as:

min
F

max
D

Ladv =

K∑
i=1

E
X∼Pi(X)

[logD(F (X))]

=

K∑
i=1

Ni∑
j=1

d
(i)
j · log

(
D

(
F
(
x
(i)
j

)))
,

(2)

where d
(i)
j represents the one-hot vector corresponding to domain label i, satisfying the condition∑K

i=1 D(F (x(i))) = 1.

The optimization of Eq. 2 is capable of engendering marginal distributions that remain invariant,
elucidated as P1(F (X)) = P2(F (X)) = · · · = PK(F (X)). However, Zhao et al.Zhao et al. (2020)
have elucidated that this does not ensure the invariance of the conditional distribution P (Y |F (X))
across the distinct domains. Such a scenario can culminate in the diminution of the model’s gen-
eralization capabilities. Although the classifier endeavors to aggregate samples emanating from an
identical category within the feature space—contributing to the learning of the invariant conditional
distribution—a residual issue persists. To resolve this predicament, Zhao et al. Zhao et al. (2020)
recommend the implementation of a class-conditional domain classification network, which harmo-
nizes the learning of domain-invariant and discriminative features. The auxiliary classifier intrinsic
to adversarial learning is delineated as per Hou et al. (2022) as follows:

min
F

max
D

Ladv =

K∑
i=1

Ni∑
j=1

d
(i)
j log(D(F (x

(i)
j )))

+ λ

K∑
i=1

Ni∑
j=1

EX,Y∼Pi(X,Y ) logC(y
(i)
j |xi

j)

(3)
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where λ > 0 is defined as a coefficient hyperparameter. However, reliance solely on the auxiliary
classifier as expressed in Eq. 3 has the potential to culminate in diminished diversity, a phenomenon
which will be elucidated in the ensuing discussions.

Proof. We demonstrate that the incorporation of an auxiliary classifier can be equivalently repre-
sented by the subsequent formula:

max
D

Ex,y∼PX,Y
[logC(y | x)]

= Ex∼PX
Ey∼PY |X [logC(y | x)]

⇒min
D

Ex∼PX
Ey∼PY |X [− logC(y | x)]

= Ex∼PX
[H(p(y | x)) + KL(p(y | x)∥C(y | x))]

⇒C∗(y | x)

= argmin
D

KL(p(y | x)∥C(y | x)) = p(y | x) = p(x, y)

p(x)

(4)

It can be further substantiated that the aforementioned formula is synonymous with the following
representation:

max
F

Ex,y∼QX,Y
[logC∗(y | x)] = Ex,y∼QX,Y

[
log

p(x, y)

p(x)

]
= Ex,y∼QX,Y

[
log

p(x, y)

q(x, y)

q(x)

p(x)

q(x, y)

q(x)

]
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F
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[
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q(x, y)

p(x, y)

]
− Ex∼QX

[
log

q(x)

p(x)

]
− Ex,y∼QX,Y

[
log

q(x, y)

q(x)

]
⇒min

F
KL (QX,Y ∥PX,Y )−KL (QX∥PX) +HQ(Y | X)

(5)

Our research posits that the minimization of the entropy of labels conditioned upon data, derived
from the generated distribution (minG HQ(Y | X)), engenders deterministic labels for the gener-
ated data. In essence, it necessitates the data in the source domain, corresponding to each class, to
diverge from the classification hyperplane, elucidating the detected diminution in intra-class diver-
sity as documented in Zhao et al. (2020). This phenomenon is conspicuously perceptible when the
distributions of disparate classes exhibit substantial overlap, a commonplace occurrence given that
neither state-of-the-art classifiers nor humans can achieve absolute classification accuracy on real-
world datasets. To augment the diversity inherent to our model, we propose the following refinement
to the previously stated formula:

min
F

max
D

Ladv(θ, ϕ)

=

K∑
i=1

Ni∑
j=1

d
(i)
j log(D(F (x

(i)
j )))

+ λ(

K∑
i=1

Ni∑
j=1
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(i)
j |xi

j)

−
K∑
i=1

K∑
s=1

Ni∑
j=1

EX,Y∼Pj(X,Y ) logC(ysj |xs
j))

(6)

By exploiting Eq. 6, the classifier is endowed with the capability to distinguish between disparate
class labels, thereby establishing a discriminative classifier proficient in recognizing varied samples
with discrimination. A concise demonstration of this is provided as follows:
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Figure 2: Overview of A Closer Look at Classifier (ACADG). We train an invariant conditional
neural network that learns to minimize the discrpancy between P (X|Y ) across various domains.
we propose to leverage sharpness minimizaton which only focuses on smoothing task loss, leading
to stable training which results in effective generalization on target domain.

Proof.
max
G

Ex,y∼QX,Y
[logC∗(y | x)]− Ex,y∼QX,Y

[logC∗
mi(y | x)]

⇒max
G

Ex,y∼QX,Y

[
log

p(x, y)

p(x)

]
− Ex,y∼QX,Y

[
log

q(x, y)

q(x)

]
⇒max

G
Ex,y∼QX,Y

[
log

p(x, y)

q(x, y)

]
− Ex∼QX

[
log

p(x)

q(x)

]
⇒min

G
KL (QX,Y ∥PX,Y )−KL (QX∥PX)

(7)

Pursuing this approach mitigates the issue of deficient intra-class diversity amongst source domain
samples. We can articulate our method as an iterative minimax training process. To streamline
training, the gradient between the classifier C and the feature extractor F is inverted using a gradi-
ent reversal layer. Within this layer, forward- and backward-propagation minimax training can be
conducted.

3.3 SHARPNESS-AWARE MINIMIZATION

Recent research by Rangwani et al. Rangwani et al. (2022) posits that the convergence of methods
towards smooth optima bolsters generalization for supervised learning tasks such as classification.
They argue that convergence to a smooth minima concerning task loss stabilizes adversarial train-
ing, which subsequently enhances performance in the target domain. To optimize generalization
capability, we introduce the concept of adaptive sharpness Kwon et al. (2021) minimization (ASM).
ASM’s fundamental premise is to locate a smoother minima by applying the ensuing objective:

min
θ

max
∥ϵ∥≤ρ

Lobj(θ + ϵ) (8)

The model incorporates two hyperparameters: ρ ≥ 0, which stipulates the maximal norm for ϵ,
and L, representing the objective function requiring minimization. To maximize the first-order
approximation, ASM seeks the precise solution of the inner maximization:

ϵ̂(θ) ≈ argmax
∥ϵ∥≤ρ

Ladv(θ) + ϵT∇θLadv(θ)

= ρ∇θLadv(θ)/ ∥∇θLadv(θ)∥2
(9)

The augmentation, represented as ϵ̂(θ), is subsequently incorporated into the weight parameters
denoted by θ. Following this incorporation, the computation of the gradient update for the param-
eter θ is represented as ∇θLobj(θ)| θ + ϵ̂(θ). The elucidated methodology can be interpreted as
a generic formulation aimed at augmenting smoothness, applicable to any objective function Lobj .
Pursuing this further, we introduce, by analogy, a risk factor cognizant of sharpness from the source,
envisioned for the identification of smooth minima:

max
∥ϵ∥≤ρ

Rl
S (hθ+ϵ) = max

∥ϵ∥≤ρ
Ex∼PS

[l (hθ+ϵ(x), f(x))] (10)
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3.4 OVERALL FORMULATION

We introduce a methodology termed Smooth Domain Adversarial Training, a focused approach
aiming for convergence to smooth minima concerning the task loss, more specifically, the empiri-
cal source risk, whilst maintaining the integrity of the original discrepancy term. The optimization
objective of the proposed model, referred to as the Auxiliary Classifier in Adversarial Domain Gen-
eralization (ACADG), is defined as follows:

min
θ

max
Φ

max
∥ϵ∥≤ρ

Ex∼PS
[l (hθ+ϵ(x), y(x))] + Ladv (11)

The primary constituent is the risk attuned to sharpness, and the subsequent constituent represents
the discrepancy term, a component not characterized by smoothness within our outlined procedure.
A comprehensive depiction of the framework inherent to the proposed methodology is presented in
Figure. 2.

4 EXPERIMENTS

Experimental evaluations are conducted on four datasets that are predominantly employed in the
realm of Domain Generalization (DG), encompassing Digits-DG Zhou et al. (2020a), PACS Li et al.
(2017), Office-Home Venkateswara et al. (2017), and DomainNet Peng et al. (2019). The ensuing
sections provide succinct introductions to each of the aforementioned datasets:

Digits-DG benchmark Zhou et al. (2020a) amalgamates four eminent datasets tailored for digit
recognition: MNIST, MNIST-M, SVHN, and SYN.

PACS Li et al. (2017) embodies four divergent domains: Photo, Art Painting, Cartoon, and Sketch,
each with seven discrete categories. Conforming to previous studiesZhou et al. (2020a), a singular
domain is earmarked as the test domain, with the residual serving as source domains.

Office-Home Venkateswara et al. (2017), a venerated benchmark for domain adaptation, has accrued
substantial acclaim in recent academic discourse.

DomainNet Peng et al. (2019) serves as a meticulous benchmark, offering an extensive assemblage
of 600,000 images across 345 categories.

4.1 RESULTS

4.2 DETAILS OF IMPLEMENTATION

In adherence to the ubiquitously embraced leave-one-domain-out protocol as illustrated in Li et al.
(2017), a singular domain is demarcated as the unseen target domain for evaluative purposes whilst
the model is trained utilizing the residual domains. For the PACS dataset, the architecture employs
ResNet18 and ResNet50 as backbones, pretrained on ImageNet. For the Office-Home and Domain-
Net datasets, ResNet50 and ResNet101 backbones are respectively utilized, with pretraining also on
ImageNet.

The configuration of our network aligns with the paradigm established by DG via ER Zhao et al.
(2020). The momentum parameter in SGD is assigned a value of 0.9, and a weight decay of 0.001
is applied. The learning rate is calibrated to 1e − 3 over a span of 30 epochs. The regularization
strength, denoted by the ρ value, is adapted to 0.01 for Digits-DG and PACS, 0.02 for Office-Home,
and 0.05 for DomainNet experiments.

Comparative Methodologies Our research approach is systematically juxtaposed against an
ensemble of contemporary domain generalization methodologies, including but not limited to
DeepAll Zhou et al. (2020a), JiGen Carlucci et al. (2019), and CCSA Motiian et al. (2017). All
comparative outcomes are presented herein based on the mean accuracy computed from four iter-
ative executions, with detailed references to the respective primary literature sources provided for
these results.

Digits-DG Analysis The results pertaining to our methodology’s performance on the Digits-DG
dataset are exhaustively cataloged in Table 2, as shown in appendix. Our approach distinctly outper-
forms the baseline methods, surpassing the current state-of-the-art by an average margin of 0.74%,
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(a) DG_via_ER (b) CloCls (c) DG_via_ER (d) CloCls

Figure 3: The confusion matrices pertaining to the DG via ER and ACADG methodologies, as ap-
plied to the PACS dataset, are presented herein. The matrices are delineated for the distinct domains,
namely ”Photo” and ”Art,” and are arranged from left to right for comprehensive examination.

Figure 4: Parameter sensitivity of ACADG to hyper-parameter ρ and λ.

thereby underscoring its intrinsic capacity to synthesize highly generalizable and transferable feature
representations for the task of domain generalization.

PACS Evaluation The results, as summarized in Table 3, as shown in appendix, provide a com-
prehensive insight into the exceptional performance achieved by our methodology. Notably, despite
the inherent advantages of SADML Wang et al. (2022) owing to its similarity to the pre-trained
ImageNet dataset, our ACADG method exhibits superior performance in domains such as Art and
Sketch

Office-Home Benchmark The outcomes, delineated in Table 4, as shown in appendix, serve to
highlight the consistent superiority of our proposed approach across a diverse array of tasks, under-
scoring its effectiveness in the synthesis of diverse datasets through strategic sample augmentation
strategies.

DomainNet Dataset Analysis The outcomes stemming from the DomainNet dataset Peng et al.
(2019) are succinctly presented in Table 5, as shown in appendix. Our methodology consistently
elevates the generalization performance of SADML-based techniques. It is noteworthy that our ap-
proach attains the highest mean accuracy of 46.76%, representing a notable improvement of 1.38%.

4.3 SINGLE-SOURCE DOMAIN GENERALIZATION

The results of single-source domain generalization, employing ResNet18 on the PACS benchmark,
are delineated in Table 1, as shown in appendix. In this particular scenario, a solitary domain is
chosen as the source dataset, and the model is subsequently evaluated on a variety of target domains.

5 EMPIRICAL ANALYSIS

Ablation Study. Within this section, we undertake an in-depth exploration of the individual com-
ponents that constitute the holistic framework of ACADG. Specifically, we focus on two pivotal
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Figure 5: A-distance on learned features for different domain generalization tasks.

elements: the incorporation of an Auxiliary Classifier for adversarial learning and the integration of
Sharpness-Aware Minimization (SAM) as an optimizer. Table 6, as shown in appendix, presents a
comprehensive analysis of their effects. Notably, upon the removal of both the Auxiliary Classifier
and SAM from the overall loss function, the average accuracy of the ACADG method on the PACS
dataset experiences a decline of 6.79%. This decline underscores the pivotal role played by ACADG
and underscores the profound significance of diversification. Furthermore, it is noteworthy that even
in the absence of SAM, ACADG demonstrates superior performance when compared to the majority
of existing methodologies, thereby reinforcing the advantages offered by our auxiliary classifier.

Analysis of Confusion Matrices. Figure 3 visually represents the confusion matrices pertaining
to the DG via ER method, specifically in the context of the PACS dataset. Evidently, the integra-
tion of ACADG significantly mitigates instances of erroneous predictions, particularly evident in
challenging generalization tasks such as those involving ”Cartoon” and ”Sketch” domains. This ob-
servation underscores the pivotal role played by the auxiliary classifier within the adversarial domain
generalization framework.

Parameter Sensitivity Analysis. In Figure 4, we present an analysis of the sensitivity of the
ACADG method to hyperparameters, namely ρ and λ. Notably, ρ is allowed to vary within the
range of 0.01, 0.02, 0.05, while λ undergoes changes within the range of 0.1, 0.2, 0.5. The results
exhibit a clear trend, demonstrating that ACADG attains its optimal performance when ρ = 0.01
and λ = 0.5, regardless of whether ResNet-18 or ResNet-50 serves as the backbone architecture.
This observation reaffirms the robustness and stability of our proposed method.

Quantification of Domain Divergence. The assessment of domain dissimilarity is conducted
through the utilization of the A-distance, a well-established metric for gauging distribution diver-
gence Ben-David et al. (2010). The A-distance serves as a widely-adopted indicator for quantifying
the disparity between distributions. Specifically, the A-distance, denoted as Adis, is defined as
Adis = 2(1− ϵ), where ϵ represents the test error of a classifier specifically trained to discriminate
between the source and target domains. A smaller A-distance value reflects a more effective align-
ment of distributions. As demonstrated in Figure 5, our proposed methodology exhibits superior
capabilities in learning invariant features, thereby minimizing the divergence between the source
and target domains in comparison to extant methodologies.

6 CONCLUDING REMARKS

In this research endeavor, our primary objective has been the acquisition of domain-invariant condi-
tional distribution, a goal beyond the reach of basic adversarial learning-based solutions. Thoroughly
investigating the limitations inherent in prior works, we have introduced an auxiliary classifier as a
critical component of our approach. Through the optimization of the proposed regularization term,
coupled with the auxiliary classifier and the domain adversarial loss, our framework excels in the
generation of domain-invariant features, thereby enhancing its generalization capacity. Empirical
findings, garnered from evaluations on both simulated and real-world datasets, unequivocally affirm
the efficacy and potency of our proposed methodology.
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A APPENDIX

Table 1: Results of single source domain generalization on PACS. Each row and column indicates
the source and target domain, respectively. We report the accuracy with the absolute gain from
baseline in brackets. Positive gains is colored green.

Photo Art Cartoon Sketch
Photo 99.64 (+0.00) 64.28 (+1.39) 23.17 (+1.64) 55.63 (+3.97)
Art 97.24 (+1.64) 99.37 (+0.00) 68.43 (+2.01) 54.25 (+1.55)
Cartoon 85.89 (+0.23) 71.23 (+0.08) 99.13 (+0.00) 71.25 (+1.83)
Sketch 42.35 (+1.63) 44.37 (+1.27) 61.29 (+1.85) 99.37 (+0.00)
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Table 2: Results following a leave-one-domain-out approach on the Digits-DG are presented. The
optimal outcome within this set is emphasized in bold for clear delineation.

Methods MNIST MNIST-M SVHN SYN Avg.
DeepAll Zhou et al. (2020a) 95.80 58.80 61.70 78.60 73.70
Jigen Carlucci et al. (2019) 96.50 61.40 63.70 74.0 73.90
CCSA Motiian et al. (2017) 95.20 58.20 65.50 79.10 74.50
MMD-AAE Li et al. (2018b) 96.50 58.40 65.00 78.40 74.60
CrossGrad Shankar et al. (2018) 96.7 61.1 65.3 80.2 75.8
MixStyle Zhou et al. (2021) 96.5 63.5 64.7 81.2 76.5
DDAIG Zhou et al. (2020b) 96.60 64.10 68.60 81.00 77.60
L2A-OT Zhou et al. (2020a) 96.70 63.90 68.60 83.20 78.10
FACT Xu et al. (2021) 97.90 65.60 72.40 90.30 81.50
COMEN Chen et al. (2022) 97.10 67.60 75.10 91.30 82.30
SADML Wang et al. (2022) 98.90 68.20 74.30 92.50 83.50
ACADG 99.11 69.24 75.42 93.24 84.25

Table 3: Results derived utilizing a leave-one-domain-out methodology on PACS are elucidated
below. The superior result within this context is highlighted in bold for unequivocal distinction.

Methods Art Cartoon Photo Sketch Avg.
ResNet18

DeepAll Zhou et al. (2020a) 77.63 76.77 95.85 69.50 79.94
MetaReg Balaji et al. (2018) 83.70 77.20 95.50 70.30 81.70
CrossGrad Shankar et al. (2018) 79.80 76.80 96.00 70.20 80.70
JiGen Carlucci et al. (2019) 79.42 75.25 96.03 71.35 80.51
DDAIG Zhou et al. (2020b) 84.20 78.10 95.30 74.70 83.10
L2A-OT Zhou et al. (2020a) 83.30 78.20 96.20 73.60 82.80
MixStyle Zhou et al. (2021) 84.10 78.80 96.10 75.90 83.70
EISNet Wang et al. (2020) 81.89 76.44 95.93 74.33 82.15
FACT Xu et al. (2021) 85.37 78.38 95.15 79.15 84.51
COMEN Chen et al. (2022) 82.60 81.00 94.60 84.50 85.70
SADML Wang et al. (2022) 87.96 82.41 98.85 83.21 88.08
ACADG 88.48 82.37 98.82 84.75 88.61

ResNet50
DeepAll Zhou et al. (2020a) 84.94 76.98 97.64 76.75 84.08
MetaReg Balaji et al. (2018) 87.20 79.20 97.60 70.30 83.60
DDAIG Zhou et al. (2020b) 85.4 78.5 95.7 80.0 84.9
CrossGrad Shankar et al. (2018) 87.5 80.7 97.8 73.9 85.7
EISNet Wang et al. (2020) 86.64 81.53 97.11 78.07 85.84
ATSRL Yang et al. (2021) 90.00 83.50 98.90 80.00 88.10
FACT Xu et al. (2021) 89.63 81.77 96.75 84.46 88.15
SADML Wang et al. (2022) 92.43 84.94 99.13 88.29 91.20
ACADG 92.90 85.13 99.21 90.38 91.91

13



Under review as a conference paper at ICLR 2024

Table 4: The results, obtained through the application of a leave-one-domain-out strategy on Office-
Home, are disclosed herein. The most exemplary result is accentuated in bold to ensure distinct
recognition.

Methods Art Clipart Product Real Avg.
DeepAll Zhou et al. (2020a) 57.88 52.72 73.50 74.80 64.72
CCSA Motiian et al. (2017) 59.90 49.90 74.10 75.70 64.90
MMD-AAE Li et al. (2018b) 56.50 47.30 72.10 74.80 62.70
CrossGrad Shankar et al. (2018) 58.40 49.40 73.90 75.80 64.40
MixStyle Zhou et al. (2021) 58.70 53.40 74.20 95.90 65.50
L2A-OT Zhou et al. (2020a) 60.60 50.10 74.80 77.00 65.60
FACT Xu et al. (2021) 60.34 54.85 74.48 76.55 66.56
SWAD Cha et al. (2021) 66.10 57.70 78.40 80.20 70.60
SADML Wang et al. (2022) 68.29 57.63 76.21 80.69 70.71
ACADG 70.30 58.68 77.93 81.64 72.14

Table 5: The outcomes, following the implementation of a leave-one-domain-out approach on Do-
mainNet, are articulated below. The paramount result within this array is emphasized in bold, serv-
ing to facilitate unambiguous identification.

Method Clipart Infograph Painting Quickdraw Real Sktetch Avg.
C-DANN Li et al. (2018c) 54.60 17.30 43.70 12.10 56.20 45.90 38.30
RSC Huang et al. (2020b) 55.00 18.30 44.40 12.20 55.70 47.80 38.90
Mixup Zhang et al. (2017) 55.70 18.50 44.30 12.50 55.80 48.20 39.20
SagNet Nam et al. (2021) 57.70 19.00 45.30 12.70 58.10 48.80 40.30
MLDG Li et al. (2018a) 59.10 19.10 45.80 13.40 59.60 50.20 41.20
ERM Gulrajani & Lopez-Paz (2021) 58.10 18.80 46.70 12.20 59.60 49.80 40.90
MetaReg Balaji et al. (2018) 59.77 25.58 50.19 11.52 64.56 50.09 43.62
DMG Chattopadhyay et al. (2020) 65.24 22.15 50.03 15.68 59.63 49.02 43.63
SelfReg Kim et al. (2021) 62.40 22.60 51.80 14.30 62.50 53.80 44.60
SADML Wang et al. (2022) 63.72 23.36 51.92 15.93 63.01 54.34 45.38
ACADG 65.92 24.69 52.66 16.91 64.80 55.65 46.77

Table 6: We present an ablation study conducted on PACS, utilizing the ResNet-50 architecture,
to investigate the contributory impact of the individual components and understand the synergistic
effect of the combined elements within the model.

Methods Auxiliary SAM Art Cartoon Photo Sketch Avg.
ACADG 87.11 78.65 98.22 76.48 85.11
ACADG ✓ 87.29 79.30 98.73 77.14 85.62
ACADG ✓ 91.35 84.37 99.11 89.72 91.14
ACADG ✓ ✓ 92.90 85.13 99.21 90.38 91.91
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