
DARE: The Deep Adaptive Regulator for Control of
Uncertain Continuous-Time Systems

Anonymous Author(s)
Affiliation
Address
email

Abstract

A fundamental challenge in continuous-time optimal control (OC) is the efficient1

computation of adaptive policies when agents act in unknown, uncertain environ-2

ments. Traditional OC methods, such as dynamic programming, face challenges in3

scalability and adaptability due to the curse-of-dimensionality and the reliance on4

fixed models of the environment. One approach to address these issues is Model5

Predictive Control (MPC), which iteratively computes open-loop controls over6

a receding horizon. However, classical MPC algorithms typically also assume7

a fixed environment. Another approach is Reinforcement Learning (RL) which8

scales well to high-dimensional setups but is often sample inefficent. Certain RL9

methods can also be unreliable in highly stochastic continuous-time setups and10

may be unable to generalize to unseen environments. This paper presents the Deep11

Adaptive Regulator (DARE) which uses physics-informed neural network based12

approximations to the agent’s value function and policy which are trained online13

to adapt to unknown environments. To manage uncertainty of the environment,14

DARE optimizes an augmented reward objective which dynamically trades off ex-15

ploration with exploitation. We show that our method effectively adapts to unseen16

environments in settings where “classical” RL fails and is suited for online adaptive17

decision-making in environments that change in real time.18

1 Introduction19

Many real-world decision making problems in fields such as biology [24] and algorithmic trading [11],20

require agents to act at high-frequency in noisy systems, and hence can be modeled as continuous-time21

stochastic optimal control (OC) problems. Moreover, in many of these areas, the agent is uncertain of22

the system’s true dynamics, which may be non-stationary, and the agent must learn these dynamics23

in real-time through interacting with the environment [17]. However, classical continuous-time OC24

methods for generating optimal policies, such as solving the standard Hamilton-Jacobi-Bellman25

(HJB) equation, generally assume known, fixed environments, limiting their wider application [55].26

To address this challenge, adaptive control methods enable agents to optimize their performance by27

continuously learning and adapting to the unknown and evolving dynamics of their environment [8].28

However, these methods typically rely on explicit parametric models of the environment [12], and the29

numerical methods required to solve these problems are often intractable [10].30

One common approach to controlling unknown systems is Reinforcement Learning (RL), in which31

agents compute (near) optimal policies iteratively through trial and error [48]. However, without32

certain ad-hoc techniques such as action-repetition, certain RL methods can perform poorly in33

highly stochastic and nearly continuous-time setups, even when the environment is stationary; see34

[49, 54, 25]. Moreover, model-free RL methods suffer from sample inefficiency [3, 13] which can35

limit their applicability to real-world problems, whereas model-based methods that aim to mitigate36

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

this drawback can require expert data that is not always accessible and are likely to lead to poor37

generalization [39].38

Another control methodology for the control of uncertain systems is model predictive control (MPC).39

In MPC, agents optimize control inputs by solving a sequence of open-loop optimization problems40

based on a predictive model over a receding time horizon, allowing for real-time adjustments of41

the agent’s policy; see [19]. While MPC is generally more computationally efficient than standard42

dynamic programming methods, which often require compute-intensive finite-difference schemes,43

standard methods of solving MPC problems still face computational bottlenecks, hindering their44

application to high-frequency environments [51]. For a more detailed review of relevant literature,45

see Appendix A. Hence, flexible methods that compute optimal policies efficiently in uncertain,46

non-stationary environments are desirable.47

In this paper, we propose the Deep Adaptive Regulator (DARE). DARE is a deep learning-based48

method for solving stochastic continuous-time adaptive control problems. Our method consists of49

two distinct phases: offline and online. In both phases, physics-informed neural networks (PINNs)50

[42] parameterize the agent’s value function and policy. During both phases, we optimize the value51

function and policy networks to satisfy the HJB equation resulting from the agent’s estimate of the52

dynamics of the system and costs.53

In the offline phase, the agent is endowed with an initial (potentially misspecified) estimate of the54

environment, which in practice may be learned from historical data. With this initial estimate, the55

agent constructs and solve an approximate OC problem which yields an initial policy. To accelerate56

training, we make use of two inductive biases: 1) we let the value function network learn the57

discrepancy between the true value function and the terminal condition of the HJB equation, and 2)58

we let the policy network learn the discrepancy between the true policy and a locally optimal policy59

generated by the Iterative Linear-Quadratic Gaussian (ILQG) method [51]. In the online phase, the60

agent implements their policy in the true environment and updates their estimate of the environment61

based on (potentially noisy) observations of the system and running costs. At each observation time,62

the agent updates their value function and policy by solving an updated OC problem over a receding63

horizon, similar to MPC. In contrast to MPC, which iteratively computes a sequence of open-loop64

controls to attain closed-loop feedback, DARE approximates the optimal closed-loop policy directly65

and updates this approximation in real-time. Moreover, to account for the agent’s uncertainty about66

the environment, we consider a modification of the agent’s objective function which dynamically67

balances exploration and exploitation.68

Update EstimateTake Action Environment
Step

Observe Environment

Policy Value Function Solve
PDE

Update EstimateTake Action

Observe Environment

Policy Value Function

Environment
Step

Solve
PDE

Figure 1: A schematic of DARE.

To benchmark DARE, we study its performance in three adaptive OC problems: (i) a one-dimensional69

Linear-Quadratic-Gaussian (LQG) Regulator problem in which the agent is uncertain of the drift of70

the system, (ii) an adaptive nonlinear MPC problem in which the agent is uncertain of the running71

cost and models it in real time with a Gaussian Process (GP), and (iii) a realistic high-dimensional72

nonlinear MPC problem motivated by algorithmic trading in finance [11]. While these problems are73

relatively simple, we demonstrate that in the LQG problem, a suite of classical RL methods including74

PPO [44], A2C [35], and SAC [20] are unable to learn robust policies when the time between actions75

is small, for a variety of action-repetition parameters. Moreover, we demonstrate that when RL76

methods are able to learn a robust solution, they require substantially more training time than DARE.77

In contrast, we show that DARE can learn accurate solutions and adapt to non-stationary environments78

in each problem.79

In summary, this paper: (i) proposes the PINN-based method DARE to compute adaptive control80

policies in uncertain, continuous-time environments (ii) proposes an OC problem formulation that81

explicitly trades off exploration and exploitation which aids adaptation in non-stationary systems,82

(iii) demonstrates experimentally that classical RL methods fail on relatively simple continuous-time83

adaptive control tasks when time between actions is small, and (iv) proposes a inductive bias based84

2

on ILQG and the structure of the HJB which significantly accelerates offline training and improves85

speed of adaptation in non-stationary environments, outperforming classical RL.86

2 Problem Formulation87

Let Xt ∈ RdX be a stochastic system evolving continuously in time. We consider an agent who88

controls X with a policy ut ∈ Rdu over a fixed time horizon T > 0 to maximize a terminal reward89

g : RdX → R. The agent’s actions ut on the system Xt incur a penalty modelled by a function90

f : RdX × Rdu → R, and their impact on the system dynamics is modelled by a drift function91

h : RdX × Rdu . The system evolves according to the dynamics92

dXt = h(Xt, ut) dt+ Σ̃dWt , X0 ∈ RdX , (1)

whereW is a dX -dimensional Brownian motion and Σ̃ ∈ RdX×dX is a covariance matrix. We assume93

Σ̃, T and g are fixed and known to the agent, and p := (h, f) represents the modelling assumptions94

of the agent over the environment. We refer to p as the OC pair.95

Classical OC approaches assume a fixed and known pair p to compute an optimal policy. In practice,96

the agent uses an uncertain estimate p̂ of the true environment. To account for this uncertainty, DARE97

solves the decision-making problem in two phases: offline and online. In the offline phase, the agent98

solves an OC problem according to an initial estimate of the environment p̂0. In the online phase, the99

agent implements the policy from the offline phase in the true environment, receives noisy samples100

of the true OC pair, and updates their estimate of the environment. Then, the agent updates their101

control policy to be the solution of an updated OC problem according to the agent’s new estimate of102

the environment. The agent is uncertain of their estimate, so it may be profitable to explore unknown103

areas of the system for potentially higher rewards. Hence, a balance must be struck between exploring104

new information and exploiting existing knowledge.105

Offline phase. At time t = 0, the agent assumes an initial estimate p̂0 = (ĥ0, f̂0) of the OC pair.106

To explicitly account for the exploration-exploitation trade-off, the agent seeks an optimal policy u∗107

which maximizes the following performance criterion:108

J(s, x;u) = E
[
g(XT)−

∫ T

s

E
[
f̂0

]
(Xr, ur) dr + ϕ

∫ T

s

Var
[
p̂0
]
(Xr, u(r,Xr)) dr

∣∣∣Gs] , (2)

for all s ∈ [0, T], where Gs is the information known to the agent at time s, E
[
f̂0

]
denotes the mean109

prediction of the estimate f̂0 and Var
[
p̂0
]

is the sum of the variance of each each estimator in p̂0,110

and we assume that Xs follows the dynamics111

dXs = ĥ0(Xs, us) ds+ Σ̃dWs, X0 ∈ RdX . (3)

The objective optimized by the agent in (2) is an adjusted formulation of the agent’s true objective,112

in which the agent explicitly rewards or penalizes uncertainty on their estimate of the environment.113

More precisely, When ϕ > 0 (resp. < 0) the agent rewards (resp. penalizes) exploration, i.e., the114

agent is encouraged to visit areas of the environment with higher (resp. lower) uncertainty. We115

show in Section 4.5 that the exploration parameter ϕ is key to the performance of decision-making116

problems in noisy and non-stationary environments.117

The incorporation of the variance of the environment estimation in (2) is similar in spirit to the118

variance adjusted objective common in bandit algorithms such as [46]. However a notable difference119

is that the uncertainty in (2) is incorporated dynamically as opposed to myopically in the case of120

bandits.121

To solve the problem (2), the agent defines the value function122

V (s, x) = sup
u
J(s, x;u) . (4)

We assume that the dynamic programming principle holds for E
[
f̂0

]
and Var

[
p̂0
]
, so V solves the123

HJB equation:124

0 = Vt +
1

2
Tr(Σ∇xxV) + sup

u∈Rdu

H(x, u,∇xV (t, x); p̂0) , (5)

3

subject to terminal condition V (T, x) = g(x) , where Σ = Σ̃ Σ̃⊺. For ℓ ∈ RdX , the Hamiltonian H125

in (5) is defined as126

H(x, u, ℓ; p̂0) = ĥ0(x, u)
⊺ℓ+ E

[
f̂0
]
(x, u)− ϕVar

[
p̂0
]
(x, u(t, x)) . (6)

The policy u∗ which maximizes (2) can be computed using the following first order conditions for127

s ∈ [0, T]:128

u∗(s, x; p̂0) = argmax
u∈R

H(x, u, Vx(s, x); p̂0) , (7)

where V (t, x) solves the nonlinear PDE (5). In contrast to several approaches in RL which address129

the exploration-exploitation trade-off through penalization or reward of random control processes (see130

[53] in a continuous-time setup), our method learns a control policy that is a deterministic function of131

the environment and which explores domain regions in which the agent is uncertain of their estimates132

of the OC pair.133

Online Problem. At each time t ∈ (0, T], the agent takes an action ut, observes a noisy sample134

of the true environment p(ut, Xt) + ϵt for some i.i.d. noise {ϵt}, and updates their estimate p̂t135

accordingly.1 Conditionally on the new estimate, the policy computed during the offline phase is not136

optimal. To adapt the optimal policy, the agent computes a new policy which maximizes the updated137

objective, for s ∈ [t, T]:138

J(s, x;u) = E
[
g(XT)−

∫ T

s

E
[
f̂t

]
(Xr, ur) dr + ϕ

∫ T

s

Var
[
p̂t
]
(Xr, u(r,Xr)) dr

∣∣∣Gs] . (8)

This new control policy is then implented in the true system for s ∈ [t, T] un-139

til the agent observes the system again, at which point the procedure is repeated.140

x T
0

V True V Term. cond.

x T
0

u True u

Figure 2: Illustration of the initialization of
V θ0 , uψ0 in the offline phase. The value function
network is initialized around the terminal condi-
tion g in (2), and the control policy network is
initialized around an affine approximation to the
true optimal control.

When the uncertainty Var(p̂t) is high and the141

agent rewards exploration, i.e., ϕ < 0, the DARE142

policy focuses on improving the agent’s esti-143

mate of their environment. As the estimation144

accuracy increases, the variance of the estima-145

tor and hence its contribution to the objective146

decreases. Hence, the DARE policy naturally147

balances the exploration-exploitation trade-off148

throughout the online phase. We demonstrate149

the benefit of the exploration term to overcome150

misspecified priors or nonstationary environ-151

ments in Section 4.1. We note that simply op-152

timizing the offline variance-adjusted objective153

(2) without updating the system and re-solving154

for a new optimal control would likely lead to155

sub-optimal solutions, as the variance penalty156

would be fixed for the entire time horizon. As157

far as we are aware, incorporation of model un-158

certainty into continuous-time stochastic control159

problems in this fashion is new to the literature.160

3 The Deep Adaptive Regulator161

A clear difficulty faced in the procedure above is the computation of the updated policy in the online162

phase. Even in low-dimensional settings, compute-intensive finite-difference schemes are required163

to solve the resulting HJBs [18]. Hence, we present DARE, which addresses this issue with PINN164

models of both teh value function and control policy.165

Offline Phase. To obtain the initial policy corresponding to the pair p̂0, we use PINN approxi-166

mations V θ and uψ of the value function V and the optimal control u that solve the HJB (5). We167

1We do not assume a particular estimation procedure, but this can be achieved with function approximators
suitable for online learning, e.g., Gaussian Processes or Bayesian NNs as in [16].

4

initialize V θ and uψ , for s ∈ [0, T], as follows:168 {
V θ(s, x) = g(x) + Xθ(s, x),

uψ(s, x) = ûX0(s, x) + Xψ(s, x),
(9)

where g is the terminal reward function and ûX0
is a locally optimal linear approximation of the true169

optimal control. We use the ILQG method of [51] to compute ûX0 starting from X0 and we set Xθ170

and Xψ to be fully-connected feedforward networks; see Figure 2.171

To train V θ and uψ , we devise a multi-objective PINN loss which considers (i) the HJB (5), (ii) the172

Hamiltonian (6) satisfying first-order conditions, and (iii) the terminal condition. We use Monte173

Carlo integration to minimize the loss function on a compact domain K ⊂ RdX . We let ∥ · ∥ =174

∥ · ∥L2([0,T]×K) and we reformulate (5) in a variational form to define the loss:175

L(θ,ψ; p̂) = LHJB + Lhamiltonian + Lterminal , (10)
where176 

LHJB = ∥V θt + 1
2

Tr(Σ∇xxV
θ) +H(·, uψ(·, ·), V θx (·, ·); p̂)∥ ,

Lhamiltonian = ∥∂uH(·, uψ(·, ·), V θx (·, ·); p̂)∥ ,
Lterminal = ∥V θ(T, ·)− g∥ .

(11)

The loss (10) is similar to that in [1], however, here we use a first-order condition for the Hamiltonian177

component, which we found to improve training performance when H is concave. Otherwise, we set178

Lhamiltonian = −∥H(·, ·, uψ; p̂)∥ . (12)

We summarize the procedure in Algorithm B.179

Online Phase. Let T = {t0, . . . , tn} ⊂ [0, T] be a set of potentially irregularly spaced times which180

are unknown to the agent at time t = 0. In the online phase, the agent uses new estimates of the181

environment to update their control policy as follows. Suppose the agent calculated V θtk−1 (·, ·; p̂tk−1
)182

and uψtk−1 (·, ·; p̂tk−1
) at time tk, where θtk−1

and ψtk−1
minimize the loss L(θ,ψ, p̂tk−1

). At time183

tk, the agent (i) takes the action uψtk−1 (tk, Xtk ; p̂tk−1
) and (ii) computes the new estimate p̂tk . Then,184

over the period [tk, tk+1), the agent minimizes L(θ,ψ, p̂tk) to compute the parameters (θtk ,ψtk).185

This loss minimization uses a gradient-based method (e.g., ADAM), with
(
θtk−1

,ψtk−1

)
as a warm186

start for the neural networks; our method is outlined in Figure 1 and Algorithm B.187

4 Numerical Experiments188

This section investigates the performance of DARE in both the offline and online phases. Three189

control tasks are considered, including Linear-Quadratic Gaussian (LQG) control, an augmentation190

of the LQG problem with uncertain running costs, and a high-dimensional control task motivated by191

algorithmic trading in finance. First, we demonstrate the ability of DARE to learn accurate solutions192

in the offline phase. We then present a failure mode of classical RL methods in continuous-time193

control tasks, demonstrating degradation of performance in the simple LQG control problem. We194

also investigate the impact of the variance-adjusted objective in the MPC problem when running cost195

observations are corrupted by noise. Finally, we present a comparison of the sample efficiency of196

DARE compared to RL methods, demonstrating vastly improved training times.197

4.1 Description of Control Tasks198

Linear-Quadratic-Gaussian. Consider system dynamics199

dXt = (b+ c ut) dt+ Σ̃dWt , X0 ∈ R, (13)

where b is a constant drift, c > 0 scales the linear impact of an agent on the system, and Σ̃ > 0 is the200

variance of the observation noise. The agent maximizes the LQ criterion201

E

[
XT − αX2

T − ϕ
∫ T

0

u2t dt

]
, (14)

where ϕ > 0 scales the running quadratic penalty and α > 0 scales the terminal quadratic penalty.202

5

Model Predictive Control. We consider an augmentation of LQG in which the agent is subject203

unknown running cost and must model this cost in real-time. In particular, the dynamics of the system204

evolves according to (13), and the true running cost of the system is quadratic as in (14). The agent205

uses a Gaussian Process (GP) f̂ to model the true running cost, and updates this model in real time206

using noisy observations of accumulated running costs. Hence, in both the offline and online phase207

of training, the DARE optimizes the objective208

E
[
XT − αX2

T − ϕ

∫ T

0

E[f̂](ut) dt− φ

∫ T

0

Var[f̂](ut)dt

]
. (15)

High-Dimensional Control. For a high-dimensional control example, we consider an example209

from finance. In recent years, regulators have urged financial institutions to manage the risk of their210

trading activity within very large portfolios called central risk books. The aggregated trading activity211

of large institutions is often conducted at very high frequency and can be modeled as an OC problem.212

The controlled system is described by the agent’s inventory Qt ∈ Rd, the asset prices St ∈ Rd, and213

running wealth Xt ∈ R, with dynamics:214

dQt = ut dt , dSt = Σ̃dWt , dXt = −u⊺t St dt− f(ut) dt ,
where ut ∈ Rd denotes the trader’s speed of trading. The agent incurs transaction costs according to215

some unknown function of the trading speed f(ut) ∈ Rd, and maximizes the exponential utility of216

their terminal wealth for some estimate f̂ of the true transaction costs217

sup
v

E
[
− exp (−γ (XT +Q⊺

T ST −Q⊺
T ΓQT))

]
,

In this example, we set d = 5. In Appendix H we record the model parameters η and Σ̃ and include218

a detailed motivation for this problem.219

4.2 Offline Performance220

First, we investigate the performance of DARE in the offline phase. To do so, we fix the agent’s prior,221

and demonstrate the ability of DARE to learn accurate solutions to the HJB equation posed with this222

prior. In particular, we investigate the impact of the inductive biases used to augment the value223

function and control policy defined in (9). We compare DARE to PINNs without such bias, that is, we224

consider two methods, MLP and DGM with initializations225

V θ(t, x) = Xθ(t, x) and uψ(t, x) = Xψ(t, x) ,

where Xθ and Xψ are feedforward DNNs with Xavier initialization in MLP and LSTM-like networks226

as in the Deep Galerkin Method [45] in DGM.227

0 2000 4000 6000 8000 10000

10 3

10 1

101

103
LQG

DARE MLP DGM

0 2000 4000 6000 8000 10000

10 5

10 3

10 1

101

MPC

DARE MLP DGM

0 5000 10000 15000 20000
10 1

100

101

102

103

High-Dim

DARE MLP DGM

Figure 3: We plot the training loss trajectory in the offline phase for DARE, MLP, and DGM. In the MPC
problem, we set b = 0, and other model parameters are given in Appendix C. In the LQG and MPC
figures, we take the average of 100 seeds.

In each of problems, the MLPs of both DARE and MLP, there are 2 layers and 20 hidden units. In DGM,228

there are two hidden LSTM-like layers between two single layer feedforward neural networks of229

width 20. Additional details about the parameters for each problem in this experiment are found in230

Appendix C. Figure 3 shows the loss (10) of the three methods throughout offline training when the231

agent’s prior is fixed. On average, we observe that DARE substantially outperforms other architectures232

in convergence speed in all three problems, achieving lower loss with fewer iterations. While existing233

work [45] emphasizes the importance of network architecture for performance, our findings indicate234

that, at least for simple problems, inductive biases may hold greater importance.235

6

0.00 0.25 0.50 0.75 1.00
4

3

2

1

0

1
A2C Actions

Oracle
Repetition=10

Repetition=50
Repetition=100

0.00 0.25 0.50 0.75 1.00
4

3

2

1

0

1
PPO Actions

Oracle
Repetition=20

Repetition=40
Repetition=100

0.00 0.25 0.50 0.75 1.00
4

3

2

1

0

1
SAC Actions

Oracle
Repetition=10

Repetition=50
Repetition=100

0.00 0.25 0.50 0.75 1.00
4

3

2

1

0

1
DARE Actions

Oracle
DARE

Filtering
Misspecified

0.00 0.25 0.50 0.75 1.00

5

0

5
Drift Estimates

Oracle
DARE

Filtering
Misspecified

Figure 5: We plot the actions each of algorithm in the online phase, along with the drift estimation
used by the RL agents and DARE. For each RL method, we plot actions corresponding to the top three
performing methods in Figure 4. We also include continuous-time Kalman filtering using a prior
b ∼ N (5, 3), which is calculated using techniques in Appendix G.

4.3 Failure Mode of Reinforcement Learning in Continuous-Time Systems236

10 20 40 50 100 DARE

20

15

10

5

0

Performance A2C

10 20 40 50 100 DARE

20

15

10

5

0

Performance PPO

2 10 50 100 DARE

50
40
30

20

10

0

Performance SAC

Figure 4: Average total reward of PPO, A2C, SAC, and
DARE in the LQG problem across 1000 rollouts. The
oracle average reward is denoted by the dashed line and
is calculated using techniques outlined in Appendix G.
Each agent is trained offline using a misspecified prior
of b0 = 5 in the case of DARE and b ∼ N (b0,Π0) for
the RL agents, and upon rollout, uses an exponential
moving average to estimate the true drift b ∼ N (−5, 3)
of the system.

In [49], the authors find that Q-learning237

based RL methods struggle in near238

continuous-time environments, as the Q-239

value contribution of a single action240

vanishes with a shrinking discretization241

timestep. Here, we demonstrate that a suite242

of RL methods, including Proximal Pol-243

icy Optimization (PPO) [44], Advantage244

Actor Critic (A2C) [35], and Soft Actor245

Critic (SAC) [20] struggle in even the most246

simple continuous-time stochastic control247

setting, the LQG problem, when the time248

discretization is very small.249

In the LQG problem the drift b is unknown250

to the agent. To train the RL agent, we251

simulate trajectories of the state process252

in (13) using samples of the drift b from253

some prior distribution. We then let the254

drift estimation be a state variable, that is,255

we let the policy of each agent uψ = uψ(t, x; b). To estimate the drift, at each observation time t256

in the online phase, each agent uses an exponential moving average with smoothing λ = 0.95 to257

determine an estimate bt. To test each agent’s ability to adapt, we consider the case of a misspecified258

prior distribution where the drift is sampled from b ∼ N (b0,Π0), where b0 = 5 and Π0 = 3. To259

implement DARE in this environment, we use the same drift estimation, and after each observation,260

we use 10 ADAM steps to update the DARE policy. Additional details regarding our implementation261

and hyperparameters used for A2C, PPO, and SAC are included in Appendix J.262

In Figure 4, we plot the performance of each RL agent when the system is simulated with the true263

drift b = 5 and the agent must estimate the drift in run time. We discretize the problem horizon into264

1000 steps and investigate the effect of varying number of times actions are repeated. When actions265

are repeated less frequently, we observe that the performance of each RL algorithm steadily degrades.266

DARE, however, does not require action-repetition during training, and achieves similar performance267

to the best performing RL method, which required extensive hyperparameter tuning.268

In Figure 5, we picked the top three performing action-repetition hyperparameters for each RL269

method and plotted the actions of these agents in the online phase. Note that while A2C with 100270

repeated actions is the top performing method, the actions produced by this method are quite far271

from the oracle. On the other hand, DARE learns the oracle control policy quickly after only a few272

environment steps.273

4.4 Real Time Adaptation in Nonlinear Environments274

Here, we investigate the performance of the online phase of DARE in the MPC and high-dimensional275

control problems. To test the ability of DARE to adapt in these settings, we first train DARE to a276

7

misspecified prior in the offline phase. Then, we suppose the agent learns the true environment277

parameters, and we test how many iterations are required to adjust the misspecified policy to the278

optimal policy of the true environment.279

For the MPC problem, We define two running penalty functions fi = |u|1+γi for i ∈ {0, 1}, where280

γ0 = 1.3 and γ1 = 1. We consider agents who use a Gaussian Process (GP) f̂ as a predictive model281

for the running penalty; see Appendix I for details on GPs. First, the agents fit two Gaussian Process282

f̂i for i ∈ {0, 1} to ten noisy, random samples of the running penalty fi. Next, we use DARE, MLP,283

and DGM to solve for solutions V θ0 , uψ0 relative to f̂0. Once all methods have converged, we change284

the agents’ estimate of the running penalty to f̂1 and re-train V θ0 , uψ0 with this updated penalty285

function. For the high-dimensional control problem, we first train each algorithm using a running286

cost of f(u)uγ⊺ η uγ where the exponent γ = 1.3 is applied element-wise, and then we change the287

exponent to γ = 1.288

In Figure 6, we plot the training loss after adjusting the running costs. In the MPC problem, all289

methods learn the new policy with comparable precision after a few hundred iterations. In the290

high-dimensional problem, DGM is unable to adapt to the new environment. DARE, however, is able to291

adapt to the new environment faster than the other methods, requiring less than 20 ADAM steps to292

achieve satisfactory precision. Each iteration lasts 0.00446 seconds on average in our experiments so293

DARE is suited for online problems with near continuous observations in nonstationary environments.294

0 200 400 600 800 1000

10 5

10 3

10 1

MPC

DARE MLP DGM
0 20 40 60 80 100

10 4

10 3

10 2

10 1

MPC (first 100)

DARE MLP DGM
0 200 400 600 800 1000

100

101
High-Dim

DARE MLP DGM
0 20 40 60 80 100

100

101
High-Dim (first 100)

DARE MLP DGM

Figure 6: We plot the training loss trajectory in the online phase DARE, MLP, and DGM when the prior
in each case is γ = 1.3 and the true environment is γ = 1.

4.5 Online Performance: Exploration-Exploitation in Non-Stationary Environments295

We now focus on the MPC problem above. We consider the online phase and investigate when296

the agent’s real-time observations of the running penalty are corrupted by noise. That is, the agent297

observes |uψ(t,Xt)|2 + ϵt for ϵt ∼ N (0, .02). In this setting, we investigate whether it is beneficial298

for the agent to explore to ensure they have an accurate model of the running penalty function. We299

examine the effect of varying the variance penalty weight φ in (15). In particular, we test DARE with300

φ = 0 and φ < 0, which corresponds to an agent which is indifferent to exploration and encourages301

exploration, respectively.302

0.0 0.2 0.4 0.6 0.8 1.0
1.8

2.0

2.2

2.4

2.6

co
nt

ro
l

misspecified DARE
no exploration

DARE
exploration oracle

Figure 7: Mean and std
dev of policy for oracle,
misspecified, and DARE when
φ = 0 (no exploration), and
when φ = 5 · 10−3 (exploration).

Figure 7 shows that in the presence of noise, encouraging explo-303

ration in the objective enables the agent to learn the true policy far304

faster than being indifferent to exploration. Often, the absence of305

exploration in noisy environments leads to local optima in the value306

function and control policy network parameters, because a (wrong)307

mean prediction leads to a specific policy which prevents accurate308

learning of the cost function in the whole domain of controls.309

Finally, we consider a simulation setup where the true form of310

the cost function randomly switches between that of γ∗1 = 1.3311

and γ∗2 = 1 according to a Poisson process with intensity 0.005,312

i.e., with 1.5 switches, on average, per simulation. We consider313

an environment which starts with the cost functional γ∗1 = 1.3,314

and the observations of the running penalty |uψ(t,Xt)|1+γ
∗
+ ϵt315

are corrupted with noise ϵt ∼ N (0, .1). Similar to the previous316

experiment, the agent uses a GP to model the running penalty. In317

Figure 8 one sees that DARE quickly adapts to the new environment318

after each jump in the running cost exponent.319

8

0.0 0.2 0.4 0.6 0.8 1.0
1.8

2.0

2.2

2.4

2.6

co
nt

ro
l

γ = 1.3 γ = 1 DARE jumps

Figure 8: Mean and std dev of
policy for DARE when the true
value of γ jumps between 1.3 and
1.

We note that our decision to exclude an RL benchmark in this case320

was informed by two factors. First, we demonstrate above that321

the RL algorithms considered struggle even in the LQG setting,322

suggesting poor performance in nonlinear problems. Second, in the323

MPC problem, the agent uses a GP to model uncertainty. In the324

LQG problem, uncertainty about the drift was parametric and could325

be incorporated as a state variable for the RL agent. Hence, the326

RL agent could be trained on samples of different drifts and learn327

the optimal policy for all drifts in the sampled region. In the MPC328

problem, the GP estimate could not be incorporated directly as a329

state variable for the RL agent, because the GP is a non-parametric330

function approximator. Tailoring an RL algorithm to optimize over331

a set of non-parametric cost functions was out of the scope of this332

paper.333

4.6 Sample Efficiency334

Finally, we show that DARE is more computationally efficient than the SOTA RL algorithms tested. In335

Table 1, we report the wall-clock training times of the offline phase each of the best performing RL336

methods and DARE in the LQG task. Clearly, DARE learns an optimal solution much faster than each337

of the RL methods. As the RL methods tested here are model-free, this is expected, as each algorithm338

must also learn from scratch the dynamics corresponding to the agent’s prior over the system. We339

leave the comparison of DARE to more model-based RL methods for future work.340

Table 1: Average Wall-Clock Runtime Comparison, see Appendix J.

Algorithm Wall-clock time in sec. Device

A2C 451 NVIDIA A40
PPO 550 NVIDIA A40
SAC 1629 NVIDIA A40
DARE 22 Apple M1

5 Conclusions, Limitations, and Future Work341

This paper presents DARE, a PINN-based methodology for solving OC problems in noisy and non-342

stationary environments. We demonstrate that when the time between actions is small, classical RL343

methods struggle in continuous-time control settings. Moreover, these methods are unstable with344

respect to action-repetition. In contrast, DARE does not require a fixed time discretization scheme and345

is shown to learn accurate solutions in stationary environments. Additionally, with the incorporation346

of a variance-adjusted objective which explicitly trades off exploration and exploitation, we show347

that DARE can efficiently adapt to non-stationary environments in real time.348

A limitation of this work is the restriction of our experiments to simple control problems. Justification349

for our choice of problem settings is twofold. First, we sought to demonstrate that even simple350

continuous-time control problems prove difficult for classical RL methods without ad-hoc techniques.351

With these techniques, the RL methods considered were still unable to learn the true optimal control352

policy. Second, we sought OC problems for which classical solutions were available in order to verify353

that DARE indeed learns the true solution. We also wish to highlight that while the MPC environment354

appears simple, generating solution via classical methods is by no means trivial, as the system does355

not admit a dimensionality reducing ansatz. We acknowledge the need for further experimentation of356

DARE in physical systems and intend to pursue this in future work.357

Also left for future work is a more unified methodology for system identification. In the LQG358

problem, the dynamics of the system could be learned quickly because of the problem’s simple linear359

structure. For more nonlinear problems, this estimation can be far more difficult. In future work, we360

intend to integrate DARE with more flexible methods for learning system dynamics.361

9

References362

[1] A. Al-Aradi, A. Correia, G. Jardim, D. de Freitas Naiff, and Y. Saporito. Extensions of the deep363

galerkin method. Applied Mathematics and Computation, 430:127287, 2022.364

[2] F. Allgower, R. Findeisen, Z. K. Nagy, et al. Nonlinear model predictive control: From theory365

to application. Journal-Chinese Institute Of Chemical Engineers, 35(3):299–316, 2004.366

[3] A. S. Anand, J. E. Kveen, F. Abu-Dakka, E. I. Grøtli, and J. T. Gravdahl. Addressing sample effi-367

ciency and model-bias in model-based reinforcement learning. In 2022 21st IEEE International368

Conference on Machine Learning and Applications (ICMLA), pages 1–6. IEEE, 2022.369

[4] A. C. Aristotelous, E. C. Mitchell, and V. Maroulas. Adlgm: An efficient adaptive sampling370

deep learning galerkin method. Journal of Computational Physics, 477:111944, 2023.371

[5] A. Bachouch, C. Huré, N. Langrené, and H. Pham. Deep neural networks algorithms for372

stochastic control problems on finite horizon: numerical applications. Methodology and373

Computing in Applied Probability, 24(1):143–178, 2022.374

[6] M. Basei, X. Guo, A. Hu, and Y. Zhang. Logarithmic regret for episodic continuous-time375

linear-quadratic reinforcement learning over a finite-time horizon. The Journal of Machine376

Learning Research, 23(1):8015–8048, 2022.377

[7] A. Bensoussan. Perturbation methods in optimal control. (No Title), 1988.378

[8] T. Bhudisaksang and A. Cartea. Adaptive robust control in continuous time. SIAM Journal on379

Control and Optimization, 59(5):3912–3945, 2021.380

[9] K. Bieker, S. Peitz, S. L. Brunton, J. N. Kutz, and M. Dellnitz. Deep model predictive flow381

control with limited sensor data and online learning. Theoretical and computational fluid382

dynamics, 34:577–591, 2020.383

[10] T. Björk, M. H. Davis, and C. Landén. Optimal investment under partial information. Mathe-384

matical Methods of Operations Research, 71:371–399, 2010.385

[11] Á. Cartea, S. Jaimungal, and J. Penalva. Algorithmic and high-frequency trading. Cambridge386

University Press, 2015.387

[12] S. N. Cohen, C. Knochenhauer, and A. Merkel. Optimal adaptive control with separable drift388

uncertainty. arXiv preprint arXiv:2309.07091, 2023.389

[13] F. E. Dorner. Measuring progress in deep reinforcement learning sample efficiency. arXiv390

preprint arXiv:2102.04881, 2021.391

[14] K. Doya. Reinforcement learning in continuous time and space. Neural computation, 12(1):392

219–245, 2000.393

[15] F. Drissi. Solvability of differential riccati equations and applications to algorithmic trading394

with signals. Applied Mathematical Finance, 29(6):457–493, 2022. doi: 10.1080/1350486X.395

2023.2241130. URL https://doi.org/10.1080/1350486X.2023.2241130.396

[16] G. Duran-Martin, A. Kara, and K. Murphy. Efficient online bayesian inference for neural397

bandits. In International Conference on Artificial Intelligence and Statistics, pages 6002–6021.398

PMLR, 2022.399

[17] D. Evangelista and Y. Thamsten. Approximately optimal trade execution strategies under fast400

mean-reversion. arXiv preprint arXiv:2307.07024, 2023.401

[18] P. A. Forsyth and G. Labahn. Numerical methods for controlled hamilton-jacobi-bellman pdes402

in finance. Journal of Computational Finance, 11(2):1, 2007.403

[19] C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control: Theory and practice—a404

survey. Automatica, 25(3):335–348, 1989.405

[20] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy406

deep reinforcement learning with a stochastic actor. In International conference on machine407

learning, pages 1861–1870. PMLR, 2018.408

[21] J. Han, A. Jentzen, and W. E. Solving high-dimensional partial differential equations using409

deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.410

[22] M. Hoglund, E. Ferrucci, C. Hernandez, A. M. Gonzalez, C. Salvi, L. Sanchez-Betancourt,411

and Y. Zhang. A neural rde approach for continuous-time non-markovian stochastic control412

problems, 2023.413

10

https://doi.org/10.1080/1350486X.2023.2241130

[23] C. Huré, H. Pham, A. Bachouch, and N. Langrené. Deep neural networks algorithms for414

stochastic control problems on finite horizon: convergence analysis. SIAM Journal on Numerical415

Analysis, 59(1):525–557, 2021.416

[24] P. A. Iglesias and B. P. Ingalls. Control theory and systems biology. MIT press, 2010.417

[25] Y. Jia and X. Y. Zhou. Policy gradient and actor-critic learning in continuous time and space:418

Theory and algorithms. The Journal of Machine Learning Research, 23(1):12603–12652, 2022.419

[26] Y. Jia and X. Y. Zhou. q-learning in continuous time. Journal of Machine Learning Research,420

24(161):1–61, 2023.421

[27] D. Jiang, J. Sirignano, and S. N. Cohen. Global convergence of deep galerkin and pinns methods422

for solving partial differential equations. arXiv preprint arXiv:2305.06000, 2023.423

[28] K. Kunisch and D. Walter. Semiglobal optimal feedback stabilization of autonomous systems via424

deep neural network approximation. ESAIM: Control, Optimisation and Calculus of Variations,425

27:16, 2021.426

[29] I. Lenz, R. A. Knepper, and A. Saxena. Deepmpc: Learning deep latent features for model427

predictive control. In Robotics: Science and Systems, volume 10, page 25. Rome, Italy, 2015.428

[30] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.429

Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.430

[31] A. Mesbah. Stochastic model predictive control: An overview and perspectives for future431

research. IEEE Control Systems Magazine, 36(6):30–44, 2016.432

[32] H. N. Mhaskar. Neural networks for optimal approximation of smooth and analytic functions.433

Neural computation, 8(1):164–177, 1996.434

[33] P. K. Mishra, M. V. Gasparino, A. E. B. Velasquez, and G. Chowdhary. Deep model predictive435

control, 2023.436

[34] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.437

Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.438

[35] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.439

Asynchronous methods for deep reinforcement learning. In International conference on machine440

learning, pages 1928–1937. PMLR, 2016.441

[36] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. Neural network dynamics for model-442

based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE international443

conference on robotics and automation (ICRA), pages 7559–7566. IEEE, 2018.444

[37] S. Niu, Y. Liu, J. Wang, and H. Song. A decade survey of transfer learning (2010–2020). IEEE445

Transactions on Artificial Intelligence, 1(2):151–166, 2020.446

[38] D. Onken, L. Nurbekyan, X. Li, S. W. Fung, S. Osher, and L. Ruthotto. A neural network447

approach for high-dimensional optimal control applied to multiagent path finding. IEEE448

Transactions on Control Systems Technology, 31(1):235–251, 2022.449

[39] E. C. Ozcan, V. Giammarino, J. Queeney, and I. C. Paschalidis. A model-based approach for450

improving reinforcement learning efficiency leveraging expert observations. arXiv preprint451

arXiv:2402.18836, 2024.452

[40] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on knowledge and453

data engineering, 22(10):1345–1359, 2009.454

[41] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:455

Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22456

(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.457

[42] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep458

learning framework for solving forward and inverse problems involving nonlinear partial459

differential equations. Journal of Computational physics, 378:686–707, 2019.460

[43] T. Salzmann, E. Kaufmann, J. Arrizabalaga, M. Pavone, D. Scaramuzza, and M. Ryll. Real-time461

neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms.462

IEEE Robotics and Automation Letters, 8(4):2397–2404, apr 2023. doi: 10.1109/lra.2023.463

3246839. URL https://doi.org/10.1109%2Flra.2023.3246839.464

11

http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.1109%2Flra.2023.3246839

[44] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization465

algorithms. arXiv preprint arXiv:1707.06347, 2017.466

[45] J. Sirignano and K. Spiliopoulos. Dgm: A deep learning algorithm for solving partial differential467

equations. Journal of computational physics, 375:1339–1364, 2018.468

[46] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in the469

bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995, 2009.470

[47] P. M. Suder, J. Xu, and D. B. Dunson. Bayesian transfer learning. arXiv preprint471

arXiv:2312.13484, 2023.472

[48] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.473

[49] C. Tallec, L. Blier, and Y. Ollivier. Making deep q-learning methods robust to time discretization.474

In International Conference on Machine Learning, pages 6096–6104. PMLR, 2019.475

[50] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu. A survey on deep transfer learning. In476

Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International Conference477

on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part III 27,478

pages 270–279. Springer, 2018.479

[51] E. Todorov and W. Li. A generalized iterative lqg method for locally-optimal feedback control480

of constrained nonlinear stochastic systems. In Proceedings of the 2005, American Control481

Conference, 2005., pages 300–306. IEEE, 2005.482

[52] R. van der Meer, C. W. Oosterlee, and A. Borovykh. Optimally weighted loss functions for483

solving pdes with neural networks. Journal of Computational and Applied Mathematics, 405:484

113887, 2022.485

[53] H. Wang, T. Zariphopoulou, and X. Y. Zhou. Reinforcement learning in continuous time and486

space: A stochastic control approach. The Journal of Machine Learning Research, 21(1):487

8145–8178, 2020.488

[54] C. Yildiz, M. Heinonen, and H. Lähdesmäki. Continuous-time model-based reinforcement489

learning. In International Conference on Machine Learning, pages 12009–12018. PMLR, 2021.490

[55] J. Yong and X. Y. Zhou. Stochastic controls: Hamiltonian systems and HJB equations, vol-491

ume 43. Springer Science & Business Media, 1999.492

[56] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He. A comprehensive493

survey on transfer learning. Proceedings of the IEEE, 109(1):43–76, 2020.494

12

A Related Work495

Deep Learning Methods for Control. Deep learning is extensively used to solve HJB equations496

because of its flexibility and scalability to high dimensions [23, 5, 38, 28]. Among earlier examples,497

[21, 45] provide two contrasting approaches. The former proposes the Deep Galerkin Method, which498

uses Monte Carlo integration to minimize a variational form of the HJB in a mesh-free manner, while499

the latter proposes the Deep BSDE method, which reformulates the PDE as a backward stochastic500

differential equation and approximates the gradient of the solution with a neural network. Global501

convergence of DGM was recently established in [27]. There are numerous extensions to their502

method, including adaptive Monte Carlo sampling in [4], augmented loss function for non-parametric503

running penalties and drifts in [1], and optimally weighted loss objectives in [52].504

Model Predictive Control. Classical methods in MPC are the foundation of many online control505

optimization methods in both the deterministic and stochastic settings [2, 31]. Recently, deep learning506

was integrated with MPC, with applications in controlling uncertain nonlinear systems such as507

unsteady fluid flow and high-performance autonomous systems [29, 33, 9, 43, 36]. These approaches508

leverage neural networks to enhance dynamic modeling capacity and real-world control performance.509

Continuous-Time Reinforcement Learning. Methods in deep RL are highly effective in several510

complex decision-making problems [34, 30, 44]. Continuous-time environments pose significant511

challenges to RL methods [49, 54]. In particular many RL methods optimize incorrect objectives512

[see 25] when environments are noisy, e.g., temporal difference (TD) learning [14]. Recently, [53]513

study the exploration-exploitation trade-off in stochastic and continuous-time RL, and prove that the514

optimal exploration policy is Gaussian in a Linear-Quadratic setting. Subsequent work [25, 26, 22, 6]515

extend RL methods to stochastic and continuous-time environments.516

B Algorithms517

Algorithm 1 : DARE - Offline Phase
Inputs:

• Initial OC pair p̂0 = (ĥ0, f̂0)
• Weights θ0, ψ0

• Area of integration K ⊂ R
• Number of training iterations N ∈ N
• Initial state X0

ûX0 ← ILQG(X0, p̂0)
V θ0 ← ĝ0 + Xθ0

uψ0 ← ûX0
+ Xψ0

for n = 1, ..., N do
D ← Batch of uniform samples of [0, T)×
K
ℓ← 1

|D|
∑

(t,x)∈D L(t, x, V θ0 , uψ0 , p̂0)

θn, ψn ← ADAM(θn−1, ψn−1, loss = ℓ)

end for

Algorithm 2 : DARE - Online Phase
Input:

• OC pair p̂0 = (ĥ0, f̂0)
• Initial weights θ, ψ
• Area of integration K ⊂ R
• Number of ADAM updates in offline

step Noff ∈ N
• Number of ADAM updates per on-

line step Non ∈ N
• Time discretization T ⊂ (0, T]
• Initial State X0

V θ0 , uψ0 ← DARE(p̂0, θ, ψ,K,Noff , X0)
tprev ← 0
p̂prev ← p̂0
for t ∈ T do
Xt ← System(t,Xtprev , u

ψtprev (t,Xtprev))

p̂t ← Approx(p̂prev, p̂prev(Xt, u
ψ
tprev (t,Xt))+

ϵ)

V θt , uψt ←
DARE(p̂t, θtprev , ψtprev , t, Non)
tprev ← t

end for

518

13

C Experimental Parameters519

Default parameters for the LQG and MPC problems are reported here.520

Table 2: Default parameter values for the LQG problem.

PARAM. b c σ ϕ α x0 T

VALUE −5 1 1 1 0.3 10 1

Table 3: Default parameters values for the MPC problem.

Param. b c σ ϕ φ α x0 T

Value 0 1 1 0.15 0.1 0.05 100 1

D ILQG521

We provide a brief overview of the ILQG method from [51] that we use to initialize the control policy.522

Let the system Xt evolve as:523

dXt = h(Xt, ut)dt+Σ(Xt, ut)dWt

and let the performance criterion be524

J(t, x;u) = E

[
g(XT) +

∫ T

t

f(τ,Xτ , uτ)dτ

]
.

In this section, we assume that the agent seeks to minimize J(t, x;u). Let ut be a random open-loop525

control policy, and consider526

dXt = f(Xt, ut) .

Next, we linearize the original system around Xt, ut and discretize time k = {0, . . . ,K} with527

∆t = T
K−1 and tk = kδt.528

Define the discrepancies δXt = Xt −Xt, δut = ut − ut, which evolve (approximately) as529

δXk+1 = AkδXk +Bkδuk + Ck(δuk)ξk
Ck = c1,k + C1,kδuk + · · ·+ Cd,du

costk = qk + δX⊺
kqk +

1

2
δX⊺

kQkδXk

+ δu⊺krk +
1

2
δu⊺kRkδuk + δu⊺kPkδXk ,

where δX0 = 0, ξk ∼ N(0, IdX),530

Ak = IdX +∆t hx qk = ∆t fx
Bk = ∆t hu Qk = ∆t fxx

ci,k =
√
∆tΣi rk = ∆t fu

Ci,k =
√
∆tΣiu Rk = ∆t fuu

qk = ∆t f Pk = ∆t fux ,

and qK = g, qK = gx, and QK = gxx.531

Above, all functions are evaluated at Xk, uk, and Σi denotes the i-th row of Σ. It is shown in [51]532

that the optimal control to the linearized system δu∗ is affine, with533

δu∗(δX) = lk + Lk δX . (16)

14

When δu takes the form (16), the value function is quadratic and we write534

Vk(δX) = sk + δX⊺
ksk +

1

2
δX⊺

kSkδXk .

On can obtain an explicit representation of Sk, sk, sk by first defining535

gk = rk +B⊺
ksk +

∑
i

C⊺
i,kSk+1ci,k

Gk = Pk +B⊺
kSk+1Ak

Hk = Rk +B⊺
KBk +

∑
i

C⊺
i,kSk+1Ci,k ,

which leads to the following equalities536

Sk = Qk +A⊺
kSk+1Ak − L⊺

kHkLk + L⊺
kGk +G⊺

kLk

sk = qk +A⊺
ksk+1 + L⊺

kHklk + L⊺
kgk +G⊺

klk

sk = qk + sk+1 +
1

2

∑
i

ci,kSk+1ci,k +
1

2
l⊺kHklk + l⊺kgk ,

where SK = QK , sK = qK , sK = qK . Consequently, we obtain537

lk = −H−1
k gk

Lk = −H−1
k Gk .

When f or g are not convex, H may have negative eigenvalues. This generally causes numerical538

issues due to the the minimization problem being unbounded. In this case, we use the Levenberg-539

Marquardt method to achieve an approximate inverse, by forcing all negative eigenvalues of H to be540

equal to some λ > 0.541

E Transfer Learning in Neural Adaptive Control542

One way of interpreting the ability of DARE to adapt to unseen environments in real time is through543

transfer Learning (TL). TL encompasses methods in which knowledge acquired from an initial source544

task is used to improve performance on a related target task; see [40, 56, 37, 47, 50] for an overview545

of transfer learning. One can study the efficiency of DARE in the online phase from the perspective of546

TL because its performance hinges on successive transferring of knowledge (parameters) between547

DNNs corresponding to the solutions to “similar” OC problems; see Figure 1. In this section, we548

provide a theoretical justification for our method. More precisely, we analyze the smoothness of OC549

problems with respect to the OC pair describing the environment and the resulting smoothness of550

DNN parameters.551

To provide a theoretical foundation to this claim, we use the tools of regular perturbation in OC552

and a notion of continuity of the DARE network parameters. Later, Section 4.2 explores specific553

examples and quantifies empirically the improvement achieved from TL in the online phase of DARE.554

In particular, we use the number of iterations required to attain, on average, a prespecified loss in the555

target task to measure the strength of transfer.556

To streamline our analysis, assume dX = du = 1 and consider an agent who receives observations of557

the OC pair and updates their estimate p̂t, accordingly.2 In practice, between two sufficiently close558

observation times r, s ∈ [0, T] with r < s, we assume that the estimate p̂r at time r remains close559

to the estimate p̂s at time s. Hence, we write p̂s as a perturbation of p̂r. This is formalized in the560

following assumption.561

Assumption E.1. For any ϵ , there are suitable perturbation functions pf and ph such that562

f̂s = f̂r + ϵ pf and ĥr = ĥr + ϵ ph . (17)

2It is straightforward to generalize to multi-dimensional setups.

15

Fix t ∈ [0, T] and consider the value and control functions associated to p̂r and p̂s on [t, T]. That is,563

for ρ ∈ {r, s}, let564

V ρ(t, x) = sup
u

E
[
ĝ(Xρ

T) +

∫ T

t

f̂ρ(X
ρ
τ , uτ) dτ

∣∣∣Xρ
t = x

]
, (18)

where565

dXρ
τ = ĥρ(X

ρ
τ , uτ) dτ + Σ̃dWτ .

Theorem E.2 first shows that small perturbations in the OC pair lead to small perturbations in the566

optimal policy and the value function. Next, the result examines the continuity of the parameters of567

the DNNs approximating the value and control functions. This continuity is considered with respect568

to the function space in which the functions are defined. Intuitively, when a DNN is trained to a569

particular function, one expects that marginal changes to this function will result in marginal changes570

to the network parameters. Providing such a result in a general setting poses an intricate challenge.571

Thus, we simplify the setting by reducing the class of DNNs to that of single-layer perceptrons.572

However, our empirical findings suggest that it generalizes to more general cases.573

Theorem E.2. Suppose that f̂r, f̂s, ĥr, ĥs, pf , ph ∈ C1,2
b ([0, T];K) and ϵ is defined as in (17).3574

Moreover, assume that solutions (V r, ur,⋆) and (V s, us,⋆) to (18) exist and are unique. For a value575

of ϵ which is sufficiently small, then there exists L > 0 such that for any γ > 0 and single-layer576

perceptron approximations (V θr , uψr) and (V θs , uψs) of (V r, ur) and (V s, us), respectively, with577

precision γ, such that578

∥θr − θs∥+ ∥ψr −ψs∥ ≤ Lϵ2 . (19)

The proof of Theorem E.2 is given below. Although the above result justifies the performance of579

DARE for two consecutive policy updates with two fixed OC pairs, the results extend to the case580

of a dynamic estimate of the environment. That is, suppose (h, f) = (ht, ft) evolves throughout581

t ∈ [0, T]. Then, if (ht, ft) changes smoothly, we expect the DNNs parameterizing the corresponding582

solutions to vary smoothly. Finally, our numerical results indicate that DARE also adapts efficiently to583

large and abrupt changes in the environment.584

E.1 Definitions585

First, we introduce the notation used throughout the section.586

Definition E.3 (Single-Layer Perceptron (SLP)). Denote di, dh, do ∈ N, σ : R→ R. A single-layer587

perceptron is defined as588

F :
Rdi −→ Rdo
x 7−→

∑dh
i=1(C

⊺)iϕ • (Aix+ bi)

with Ai ∈ Rdi , bi ∈ R, (C⊺)i ∈ Rdo for i ∈ {1, . . . , dh} and • denotes the component-wise589

application. We denote with θ := (A, b, C) ∈ Rd the parameters of this SLP, with d = didh + dh +590

dodh, and Fθ is an SLP with parameter θ.591

E.2 Proof of Theorem E.2592

We split the proof of Theorem E.2 into two results. Proposition E.4 shows that perturbations in the593

environment lead to perturbations of similar scale in the value function and the optimal policy of OC594

problems. Next, Proposition E.5 shows that for small perturbations of the value function and optimal595

policy, the parameters of the networks used to approximate these functions are continuous.596

Proposition E.4. There is a constant C such that597

|V r(t, x)− V s(t, x)| ≤ C ϵ2 , (20)
|ur,⋆ − us,⋆| ≤ C ϵ . (21)

3C1,2
b ([0, T];K) denotes the set of functions defined on [0, T]×K with continuous first derivative in t and

continuous and bounded second derivatives in x.

16

Proof First, note that the assumption of Theorem E.2 ensure that the functional J is well defined.598

Observe that the OC problem V r is a perturbation of V s but also V s is a perturbation of V r . In599

particular, first write600

Jr(t, x, u) = E
[
ĝ(Xs

T) +

∫ T

t

f̂s(X
s
τ , uτ) dτ

∣∣∣Xs
t = x

]
(22)

Jr(t, x, u) = E
[
ĝ(Xr

T) +

∫ T

t

f̂s(X
r
τ , uτ) dτ

∣∣∣Xr
t = x

]
. (23)

Next, use Theorem 2.1 of Chapter III and Theorem 2.1 of Chapter IV in [7] to write601 {
|V r(t, x)− Jr(t, x, us,⋆)| ≤ C0 ϵ

2,

|V s(t, x)− Js(t, x, ur,⋆)| ≤ C1 ϵ
2 ,

for suitable constants C0 and C1. Finally, use the asymptotic expansions (Section 2.3, Chapter III, in602

[7]) to write603 {
|V r(t, x)− Js(t, x, us,⋆)| ≤ L0 ϵ

2,

|V s(t, x)− Jr(t, x, ur,⋆)| ≤ L1 ϵ
2 ,

for suitable constants L0 and L1.604

Proposition E.5. Let K ⊆ Rdi be compact; f ∈ C2
b (K;R). There exists δ, L > 0 such that for every605

f ′ : K → Rdo with ∥f − f ′∥ < δ and every γ > 0, there exists parameters θ, θ′ ∈ Rd such that606

∥Fθ − f∥C2
b (K;R) ≤ γ, (24)

∥Fθ′ − f ′∥C2
b (K;R) ≤ γ, (25)

and607

∥θ′ − θ∥ < L∥f − f ′∥C2
b (K;R) , (26)

where Fθ is a single-layer perceptron with ReLU activation of width dh.608

Proof Without loss of generality, assume that K includes an open set around 0, i.e. there exists609

0 < δ < ϵ s.t. Dδ − f ⊆ C2
b (K;R), where610

Dδ :=
{
f ′ ∈ C2

b (K;R)
∣∣∣∥f − f ′∥C2

b (K;R) < δ
}
.

Fix an arbitrary γ > 0. According to [32], Theorem 2.1, we can find a hidden dimension dh ∈ N, a611

matrix A ∈ Rdh×di , a vector b ∈ Rdh , and a continuous linear functional C : C2
b (K;R)→ Rdh such612

that613

∥f ′ − F(A,b,C(f ′))∥p ≤ γ, f ∈ Dδ.

Since for f ′ ∈ Dδ holds614

F(A,b,C(f ′)) = F(A,b,C(f ′−f)) + F(A,b,C(f)),

due to linearity of C and Definition E.3, we have615

∥θ′ − θ∥ = ∥C(f ′ − f)∥ ≤ L∥f − f ′∥C2
b (K;R)

where we used the fact that the operator norm ∥C∥T of a continuous operator is finite. We conclude616

∥θ′ − θ∥ < ϵ and finish the proof.617

F Performance618

We report training performance of all the methods tested in Section 4.1 in Table 4. All tests have619

been conducted on a standard MacBook Pro M1 and a single NVIDIA A40 for training each620

of the RL algorithms. We make our code public in the following (anonymized) repo: https:621

//anonymous.4open.science/r/dare-7136/README.md622

17

https://anonymous.4open.science/r/dare-7136/README.md
https://anonymous.4open.science/r/dare-7136/README.md
https://anonymous.4open.science/r/dare-7136/README.md

Table 4: Run time of different algorithms in the experiments.

Section Test Algorithm Run time in seconds
per 1000 iteration

4.2 Training performance Offline LQG DGM 4.26
MLP 1.95
DARE 2.24

Offline MPC DGM 6.02
MLP 2.28
DARE 2.34

4.4 LQG Online phase DARE 7.47

4.5 MPC Exploration-Exploitation DARE 2.46
Non-stationary DARE 2.52

4.1 High-dimensional Offline phase DGM 6.01
MLP 2.41
DARE 4.01

Online phase DGM 6.64
MLP 3.26
DARE 3.92

G Filtering mathematics623

G.1 Perfect knowledge of the drift624

This section solves the OC problem (14) when the agent fixed the value of the drift and does not625

update their belief throughout the time window.626

When the drift is known and fixed, the OC problem (14) can be solved with standard methods [55],627

and is628

u⋆ =
c

2ϕ
(2A (t) x+B (t) + 1) , (27)

where A and B solve the ODE system629 {
−A′

(t) = cA(t)2

2ϕ

−B′
(t) = 2µA (t) + c2 A(t) (B(t)+1)

ϕ .
(28)

G.2 Bayesian filtering of the Gaussian drift630

This section solves the OC problem when the agent uses a Gaussian prior to continuously update631

their estimation of the drift throughout the time window of the OC problem.632

Consider the control problem in (14). When the agent uses a Gaussian prior N (bt,Π0) for µ then it633

can be shown that the dynamics of x can be written634

dxt = βt dt+ c ut dt+ σ dŴt

in a different filtration in which Ŵ is a Gaussian process. βt = E [µ|Ft] is the best estimate of µ at
time t and can be obtained analytically as

βt = −
Π (t)

σ

(
x0 −

σ b0
Π0
− xt + qt

)
where Π(t) =

(
Π−1

0 + t
σ

)−1
and qt =

∫ t
0
c ut dt .635

Using the learning dynamics above to solve the control problem (see [15] for details) gives the636

optimal control ũ⋆ given by637

ũ⋆ =
c

2ϕ
(2A (t) +B (t)) x+ (2C (t) +B (t)) q (29)

18

+ (1 +D (t) + E (t)) , (30)

where A,B,C solve the Riccati equation in

P (t) =

(
A (t) 1

2B (t)
1
2B (t)

⊺
C (t)

)
0 = P ′ (t) + Y (t)

⊺
P (t) + P (t) Y (t) + P (t) U P (t) ,

Y (t) =

(
Π(t)
σ

Π(t)
σ

0 0

)
, U =

(
c2

ϕ
c2

ϕ
c2

ϕ
c2

ϕ

)
,

P (T) =

(
−α 0
0 0

)
,

and D and E solve the ODE system
0 = D

′
(t) + 2ΠΠ (t) A (t)−Π (t) (1 +D (t))

+ c2

4ϕ (2A (t) +B (t))
2

0 = E
′
(t) +ΠΠ⊺B (t) +Π⊺ (1 +D (t))

+ c2

4ϕ (2C (t) +B (t))
2
,

with terminal conditions D(T) = E(T) = 0 .638

H Algorithmic trading in high dimension639

We motivate the multidimensional setup in our experiments of Section 4.1. Consider the case of640

the trading desk of a large bank that must execute a number d ∈ N∗ of large transactions in d641

correlated financial assets throughout a trading window [0, T]. The trading desk must minimize their642

trading costs while minimizing the risk of their positions. Throughout this section, we consider a643

filtered probability space
(
Ω,F ,P;F = (Ft)t∈[0,T]

)
, with T > 0, satisfying the usual conditions and644

supporting all the processes we introduce.645

Let Q0 ∈ Rd represent the transaction sizes in every asset. The inventory of the agent is mod-646

eled by (Qt)t∈[0,T] =
(
Q1
t , . . . , Q

d
t

)⊺
t∈[0,T]

and it evolves with the trading speed (ut)t∈[0,T] =647

(u1t , . . . , u
d
t)

⊺
t∈[0,T] in each asset:4648

dQt = ut dt.

The prices (St)t∈[0,T] =
(
S1
t , . . . , S

d
t

)⊺
t∈[0,T]

of the d assets are modeled as correlated Brownians649

with dynamics650

dSt = Σ̃dWt ,

where W =
(
W 1, . . . ,W d

)
is a d-dimensional standard Brownian motion and S0 ∈ Rd is known.651

The matrix Σ̃ ∈Md(R) measures the correlation of the prices and we define the covariance matrix652

Σ = Σ̃ Σ̃⊺ ∈ S++
d (R).5653

Trading activity of the agent generates transaction costs, driven by some function of the trading speed654

f(ut) so the cash from their trading activity evolves as655

dXt = −u⊺t St dt− f(ut) dt, X0 = 0.

The agent maximizes the exponential utility of their terminal wealth so their objective is656

V (t, x, q, s) = sup
v

E
[
− exp

(
− γ
(
Q⊺
T ST −Q

⊺
T ΓQT (31)

−
∫ T

t

u⊺s Ss ds−
∫ T

t

f(us) ds
))]

, (32)

4The superscript ⊺ is the transpose operator.
5Md(R) := Md,d(R) is the set of d × d real square matrices, Sd(R) is the set of real symmetric d × d

matrices, and S++
d (R) is the set of positive matrices.

19

for values Qt = q, Xt = x, and St = s at time t.657

The dynamic programming principle holds and the HJB equation associated with the problem658

0 = ∂tV +
1

2
Tr
(
ΣD2

SSV
)

+ sup
u∈Rd

(−(u⊺s+ f(u))∂xV + v⊺∇qV) , (33)

with terminal condition659

V (T, x, q, s) = − exp (−γ (q⊺s− q⊺Γq)) . (34)

In the experiment of Section 4.1, we solve the HJB (33)-(34) using DARE to obtain the optimal policy660

of the trading agent.661

When all the parameters of the problem are known and fixed, i.e., the agent does not adapt to new662

information, the problem described above admits an analytical solution which we use to study the663

performance of DARE.664

To solve the problem semi-analytically, the function f must be a quadratic form, that is, there is some665

η ∈ S++
d (Rd×d) with666

f(u) = u⊺ η u . (35)

We follow the standard steps in linear-exponential quadratic Gaussian (LEQG) control and we propose667

the following form for the value function668

V (t, x, q, s) =

− exp (−γ (x+ q⊺S +Q⊺A(t)q +B(t)⊺q + C(t))) ,

and straightforward calculations find that the problem reduces to solving the following ODE system669 
A′(t) = γ

2Σ−A(t)η
−1A(t)

B′(t) = −A(t)η−1B(t)

C ′(t) = − 1
4B(t)⊺η−1B(t),

(36)

with terminal conditions670

A(T) = −Γ, B(T) = C(T) = 0. (37)

Clearly, the solutions for B and C are B = C = 0. To obtain a solution, we use the change of
variables

a(t) = η−
1
2A(t)η−

1
2 ∀t ∈ [0, T] ,

so the problem reduces to the following terminal value problem671 {
a′(t) = Â2 − a(t)2
a(T) = −C,

(38)

where

Â =

√
γ

2

(
η−

1
2 Σ η−

1
2

) 1
2 ∈ S++

d (R) ,

and
C = η−

1
2Γη−

1
2 ∈ S+d (R) .

We solve (38) in the next result.672

Proposition H.1. Define ξ : [0, T]→ Sd(R)673

ξ (t) =− Â−1

2

(
I − e−2Â(T−t)

)
(39)

− e−Â(T−t)
(
C + Â

)−1

e−Â(T−t)

20

as the unique solution to the ODE system674 ξ
′(t) = Âξ(t) + ξ(t)Â+ Id

ξ(T) = −
(
C + Â

)−1

.
(40)

Then ∀t ∈ [0, T], ξ(t) is invertible and

a : t ∈ [0, T]→ Â+ ξ(t)−1 ∈ Sd(R)

is the unique solution of (38).675

Thus, the value function, which we use as the oracle in Section 4.1 is given by676

V (t, x, q, s) =

− exp (−γ (x+ q⊺S +Q⊺A(t)q +B(t)⊺q + C(t))) ,

where677

A(t) = η
1
2

(
Â−

{
Â−1

2

(
I − e−2Â(T−t)

)
+ e−Â(T−t)

(
C + Â

)−1

e−Â(T−t)
}−1)

η
1
2 .

Finally, Figure H shows the true value function and the solution learned by DARE for a set of model678

parameters in dimension 5, and Figure 9 shows the associated training loss.679

0 2000 4000 6000 8000 10000
Iterations

10−3

10−2

10−1

100

Lo
ss

Lhamiltonian
Lhjb

Lterminal
L

Figure 9: Training loss (10) of DARE for the multidimensional OC problem (31). The parameter
values are Γ = 10−2 × I5,

η = 10−3 ×


25.13 10.41 11.67 13.75 22.21
10.41 6.42 7.68 9.12 12.4
11.67 7.68 12.95 11.2 18.71
13.75 9.12 11.2 17.04 17.25
22.21 12.4 18.71 17.25 29.02

, and Σ =


2.83 2.02 2.53 1.91 1.59
2.02 1.96 2.04 1.28 1.31
2.53 2.04 2.85 2.04 1.32
1.91 1.28 2.04 1.76 0.96
1.59 1.31 1.32 0.96 1.06

.

I Gaussian Process mathematics680

Formally, a GP is a random function f : X 7→ R, such that, for any finite set of points X⋆ ⊆ X ,
the random vector f⋆ = {f (x)}x∈X⋆

follows a multivariate Gaussian distribution. The shape of
the function f is determined by a finite set of (training) observations y = {yi}i∈{1,...,n} collected
at the (training) observation points X = {xi}i∈{1,...,n}, where yi = f(xi) + ϵi is subject to i.i.d.

21

x 1

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-2.90
-2.31
-1.72
-1.12
-0.53

x 2

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-2.90
-2.31
-1.72
-1.12
-0.53

x 3

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-4.10
-3.42
-2.75
-2.07
-1.39

x 4

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-6.12
-5.30
-4.48
-3.67
-2.85

x 5

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-8.95
-7.95
-6.95
-5.95
-4.95

x 1

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-5.91
-3.00
-0.08
2.83
5.75

x 2

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-5.91
-3.00
-0.08
2.83
5.75

x 3

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-4.96
-2.76
-0.56
1.65
3.85

x 4

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-4.96
-2.76
-0.56
1.64
3.85

x 5

−5.0−2.5
0.0

2.5
5.0

t

0.000.250.500.751.00

-4.96
-2.76
-0.56
1.64
3.85

DARE true

Figure 10: True and approximated (with DARE) value function (31) for t ∈ [0, T] and X =
X1, X2, X3, X4, X5 ∈ [−5, 5]5. Each surface corresponds to the value function for time and one
dimension in X , where the value of the system in all other dimensions is fixed to xi = 0.

Gaussian measurement noise ϵi ∼ N (0, s2) for s > 0. GPs are fully specified by a mean function
µ : X 7→ R and a covariance (kernel) function k : X × X 7→ R, In particular, if f ∼ GP(µ, k) and
X⋆ is a set of test points in the domain X of the GP, then the set of random variables f⋆ is Gaussian
with parameters N (µ⋆,K⋆,⋆), where

µ⋆ = {µ(x)}x∈X⋆
and K⋆,⋆ = {k (x,x′)}(x,x′)∈X⋆

.

A convenient property of GPs is that one computes the posterior distribution with analytic formulae.681

Suppose we collect n noisy observations y = {y1, . . . , yn} at the domain points X = {x1, . . . ,xn} ,682

where yi = f(xi) + ϵi and ϵi ∼ N
(
0, s2

)
. Then, the posterior distribution over f given the previous683

(training) observations X and y, is also a GP with mean function µpost and covariance function kpost684

given by685 
µpost (x⋆) = k (x⋆,X) (K + s2 I)−1 y ,

kpost (x⋆,x
′
⋆) = k (x⋆,x

′
⋆)

−k (x⋆,X) (K + s2 I)−1 k (X,x′
⋆) ,

(41)

where
k (x⋆,X) = k (X,x⋆)

⊺
= (k (x⋆,x1) , . . . , k (x⋆,xn))

is the n-dimensional covariance vector of the test point x⋆ with training points X = {x1, . . . ,xn},686

K = (k (xi,xj))i,j∈{1,...,n} is the positive semi-definite kernel matrix from training data, and I is687

the n-dimensional identity matrix. See Figure I for an example.688

Let the elements of the vector θ ∈ Θ be hyper-parameters of the prior’s kernel function and s2 is the689

variance of the i.i.d. Gaussian noise that corrupts reward observations. Both θ and s2 are inferred690

with the log marginal likelihood of the data given by691

L (θ, s) = log p(y |X,θ, s) (42)

=− 1

2
log
(
det
(
Kθ + s2 I

))
− 1

2
y⊺
(
Kθ + s2 I

)−1
y − n

2
log (2π) ,

for a zero-mean GP, where X and y are the n training samples and Kθ is the prior’s positive692

covariance matrix with kernel kθ. The vector of hyper-parameters θ and the variance s2 maximize693

the quantity (42), i.e., (θ⋆, s⋆) ∈ argmax
θ∈Θ,s∈R+

L(θ, s), which one solves with classical gradient descent-694

based optimization algorithms.695

22

0 1 2 3

0

5

10

15

20 GP prior: γ = 1.3
GP prior: γ = 1

Figure 11: Two GPs fitted to f(u) = u1+γi for γ0 = 1.3 and γ1 = 1.

J Reinforcement Learning Benchmarks696

Table 1 shows the average elapsed real time i.e. wall-clock time comparison of Reinforcement697

Learning Algorithms (PPO, SAC, A2C) with that of DARE rounded to the nearest second training698

on the LQG problem from section 4.3. We utilize the implementations in the Stable-Baselines-3699

library [41] for the Reinforcement Learning experiments.700

We measure the elapsed time from the first step in the training loop until convergence using the time701

module from Python 3.9.19.702

The hyperparameter ranges in Table 5 are determined in a way that includes the recommended values703

on the Stable-Baselines-3 [41] implementation used in this work.704

Table 5: Hyperparameter Range considered for each RL algorithm

Hyperparameter Algorithm Range

Learning Rate PPO [10−4, 10−3] (continuous range)
SAC [10−4, 10−3] (continuous range)
A2C [10−4, 10−3] (continuous range)

Action Repeats PPO {10, 20, 40, 50, 100}
SAC {10, 20, 40, 50, 100}
A2C {10, 20, 40, 50, 100}

Number of Steps PPO [128, 4096] (integer range)
A2C [4, 32] (integer range)

K Impact Statement705

This paper presents a novel deep learning methodology for solving decision-making problems in706

noisy and non-stationary environments, with wide-ranging applications in finance, robotics, and707

biology. Our contribution is a highly accurate and efficient method for solving model predictive708

control problems. Possible implications include more efficient and effective risk management in709

finance, safer robot-human interaction, and improved biomedical engineering. We use tractable710

examples to test our approach and to demonstrate that our model produces reasonable policies.711

Before implementing our model for critical problems, we believe further specific experimentation712

and validation is necessary.713

23

NeurIPS Paper Checklist714

1. Claims715

Question: Do the main claims made in the abstract and introduction accurately reflect the716

paper’s contributions and scope?717

Answer: [Yes]718

Justification: The claims in the introduction and abstract accurately reflect the set of problems719

the paper is focused on and how the proposed methods were tested and compared.720

Guidelines:721

• The answer NA means that the abstract and introduction do not include the claims722

made in the paper.723

• The abstract and/or introduction should clearly state the claims made, including the724

contributions made in the paper and important assumptions and limitations. A No or725

NA answer to this question will not be perceived well by the reviewers.726

• The claims made should match theoretical and experimental results, and reflect how727

much the results can be expected to generalize to other settings.728

• It is fine to include aspirational goals as motivation as long as it is clear that these goals729

are not attained by the paper.730

2. Limitations731

Question: Does the paper discuss the limitations of the work performed by the authors?732

Answer: [Yes]733

Justification: Yes, we discuss the limitations of the work like its requirements for PDE734

representations that are not required by other fields like Reinforcement Learning that also735

deal with high dimensional control problems.736

Guidelines:737

• The answer NA means that the paper has no limitation while the answer No means that738

the paper has limitations, but those are not discussed in the paper.739

• The authors are encouraged to create a separate "Limitations" section in their paper.740

• The paper should point out any strong assumptions and how robust the results are to741

violations of these assumptions (e.g., independence assumptions, noiseless settings,742

model well-specification, asymptotic approximations only holding locally). The authors743

should reflect on how these assumptions might be violated in practice and what the744

implications would be.745

• The authors should reflect on the scope of the claims made, e.g., if the approach was746

only tested on a few datasets or with a few runs. In general, empirical results often747

depend on implicit assumptions, which should be articulated.748

• The authors should reflect on the factors that influence the performance of the approach.749

For example, a facial recognition algorithm may perform poorly when image resolution750

is low or images are taken in low lighting. Or a speech-to-text system might not be751

used reliably to provide closed captions for online lectures because it fails to handle752

technical jargon.753

• The authors should discuss the computational efficiency of the proposed algorithms754

and how they scale with dataset size.755

• If applicable, the authors should discuss possible limitations of their approach to756

address problems of privacy and fairness.757

• While the authors might fear that complete honesty about limitations might be used by758

reviewers as grounds for rejection, a worse outcome might be that reviewers discover759

limitations that aren’t acknowledged in the paper. The authors should use their best760

judgment and recognize that individual actions in favor of transparency play an impor-761

tant role in developing norms that preserve the integrity of the community. Reviewers762

will be specifically instructed to not penalize honesty concerning limitations.763

3. Theory Assumptions and Proofs764

Question: For each theoretical result, does the paper provide the full set of assumptions and765

a complete (and correct) proof?766

24

Answer: [Yes]767

Justification: Section E of the Appendix includes the proofs with the relevant definitions768

and propositions.769

Guidelines:770

• The answer NA means that the paper does not include theoretical results.771

• All the theorems, formulas, and proofs in the paper should be numbered and cross-772

referenced.773

• All assumptions should be clearly stated or referenced in the statement of any theorems.774

• The proofs can either appear in the main paper or the supplemental material, but if775

they appear in the supplemental material, the authors are encouraged to provide a short776

proof sketch to provide intuition.777

• Inversely, any informal proof provided in the core of the paper should be complemented778

by formal proofs provided in appendix or supplemental material.779

• Theorems and Lemmas that the proof relies upon should be properly referenced.780

4. Experimental Result Reproducibility781

Question: Does the paper fully disclose all the information needed to reproduce the main ex-782

perimental results of the paper to the extent that it affects the main claims and/or conclusions783

of the paper (regardless of whether the code and data are provided or not)?784

Answer: [Yes]785

Justification: We provide all experimental details along with an anonymized repository786

containing all code.787

Guidelines:788

• The answer NA means that the paper does not include experiments.789

• If the paper includes experiments, a No answer to this question will not be perceived790

well by the reviewers: Making the paper reproducible is important, regardless of791

whether the code and data are provided or not.792

• If the contribution is a dataset and/or model, the authors should describe the steps taken793

to make their results reproducible or verifiable.794

• Depending on the contribution, reproducibility can be accomplished in various ways.795

For example, if the contribution is a novel architecture, describing the architecture fully796

might suffice, or if the contribution is a specific model and empirical evaluation, it may797

be necessary to either make it possible for others to replicate the model with the same798

dataset, or provide access to the model. In general. releasing code and data is often799

one good way to accomplish this, but reproducibility can also be provided via detailed800

instructions for how to replicate the results, access to a hosted model (e.g., in the case801

of a large language model), releasing of a model checkpoint, or other means that are802

appropriate to the research performed.803

• While NeurIPS does not require releasing code, the conference does require all submis-804

sions to provide some reasonable avenue for reproducibility, which may depend on the805

nature of the contribution. For example806

(a) If the contribution is primarily a new algorithm, the paper should make it clear how807

to reproduce that algorithm.808

(b) If the contribution is primarily a new model architecture, the paper should describe809

the architecture clearly and fully.810

(c) If the contribution is a new model (e.g., a large language model), then there should811

either be a way to access this model for reproducing the results or a way to reproduce812

the model (e.g., with an open-source dataset or instructions for how to construct813

the dataset).814

(d) We recognize that reproducibility may be tricky in some cases, in which case815

authors are welcome to describe the particular way they provide for reproducibility.816

In the case of closed-source models, it may be that access to the model is limited in817

some way (e.g., to registered users), but it should be possible for other researchers818

to have some path to reproducing or verifying the results.819

5. Open access to data and code820

25

Question: Does the paper provide open access to the data and code, with sufficient instruc-821

tions to faithfully reproduce the main experimental results, as described in supplemental822

material?823

Answer: [Yes]824

Justification: All code can be run using open source packages without external data.825

Guidelines:826

• The answer NA means that paper does not include experiments requiring code.827

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/828

public/guides/CodeSubmissionPolicy) for more details.829

• While we encourage the release of code and data, we understand that this might not be830

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not831

including code, unless this is central to the contribution (e.g., for a new open-source832

benchmark).833

• The instructions should contain the exact command and environment needed to run to834

reproduce the results. See the NeurIPS code and data submission guidelines (https:835

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.836

• The authors should provide instructions on data access and preparation, including how837

to access the raw data, preprocessed data, intermediate data, and generated data, etc.838

• The authors should provide scripts to reproduce all experimental results for the new839

proposed method and baselines. If only a subset of experiments are reproducible, they840

should state which ones are omitted from the script and why.841

• At submission time, to preserve anonymity, the authors should release anonymized842

versions (if applicable).843

• Providing as much information as possible in supplemental material (appended to the844

paper) is recommended, but including URLs to data and code is permitted.845

6. Experimental Setting/Details846

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-847

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the848

results?849

Answer: [Yes]850

Justification: Outlines of each of the experiments as well as our choice of hyperparameters851

is given in Section 4.1 and Appendix J.852

Guidelines:853

• The answer NA means that the paper does not include experiments.854

• The experimental setting should be presented in the core of the paper to a level of detail855

that is necessary to appreciate the results and make sense of them.856

• The full details can be provided either with the code, in appendix, or as supplemental857

material.858

7. Experiment Statistical Significance859

Question: Does the paper report error bars suitably and correctly defined or other appropriate860

information about the statistical significance of the experiments?861

Answer: [Yes]862

Justification: Each test is run with a sufficient across a sufficient number of seeds when863

necessary.864

Guidelines:865

• The answer NA means that the paper does not include experiments.866

• The authors should answer "Yes" if the results are accompanied by error bars, confi-867

dence intervals, or statistical significance tests, at least for the experiments that support868

the main claims of the paper.869

• The factors of variability that the error bars are capturing should be clearly stated (for870

example, train/test split, initialization, random drawing of some parameter, or overall871

run with given experimental conditions).872

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,873

call to a library function, bootstrap, etc.)874

• The assumptions made should be given (e.g., Normally distributed errors).875

• It should be clear whether the error bar is the standard deviation or the standard error876

of the mean.877

• It is OK to report 1-sigma error bars, but one should state it. The authors should878

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis879

of Normality of errors is not verified.880

• For asymmetric distributions, the authors should be careful not to show in tables or881

figures symmetric error bars that would yield results that are out of range (e.g. negative882

error rates).883

• If error bars are reported in tables or plots, The authors should explain in the text how884

they were calculated and reference the corresponding figures or tables in the text.885

8. Experiments Compute Resources886

Question: For each experiment, does the paper provide sufficient information on the com-887

puter resources (type of compute workers, memory, time of execution) needed to reproduce888

the experiments?889

Answer: [Yes]890

Justification: We provide hardware information in Appendix F. Our tests do not require any891

specialized or intensive computing power.892

Guidelines:893

• The answer NA means that the paper does not include experiments.894

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,895

or cloud provider, including relevant memory and storage.896

• The paper should provide the amount of compute required for each of the individual897

experimental runs as well as estimate the total compute.898

• The paper should disclose whether the full research project required more compute899

than the experiments reported in the paper (e.g., preliminary or failed experiments that900

didn’t make it into the paper).901

9. Code Of Ethics902

Question: Does the research conducted in the paper conform, in every respect, with the903

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?904

Answer: [Yes]905

Justification: We conform with the NeurIPS Code of Ethics.906

Guidelines:907

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.908

• If the authors answer No, they should explain the special circumstances that require a909

deviation from the Code of Ethics.910

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-911

eration due to laws or regulations in their jurisdiction).912

10. Broader Impacts913

Question: Does the paper discuss both potential positive societal impacts and negative914

societal impacts of the work performed?915

Answer: [Yes]916

Justification: An impact statement is included in Appendix K.917

Guidelines:918

• The answer NA means that there is no societal impact of the work performed.919

• If the authors answer NA or No, they should explain why their work has no societal920

impact or why the paper does not address societal impact.921

27

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses922

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations923

(e.g., deployment of technologies that could make decisions that unfairly impact specific924

groups), privacy considerations, and security considerations.925

• The conference expects that many papers will be foundational research and not tied926

to particular applications, let alone deployments. However, if there is a direct path to927

any negative applications, the authors should point it out. For example, it is legitimate928

to point out that an improvement in the quality of generative models could be used to929

generate deepfakes for disinformation. On the other hand, it is not needed to point out930

that a generic algorithm for optimizing neural networks could enable people to train931

models that generate Deepfakes faster.932

• The authors should consider possible harms that could arise when the technology is933

being used as intended and functioning correctly, harms that could arise when the934

technology is being used as intended but gives incorrect results, and harms following935

from (intentional or unintentional) misuse of the technology.936

• If there are negative societal impacts, the authors could also discuss possible mitigation937

strategies (e.g., gated release of models, providing defenses in addition to attacks,938

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from939

feedback over time, improving the efficiency and accessibility of ML).940

11. Safeguards941

Question: Does the paper describe safeguards that have been put in place for responsible942

release of data or models that have a high risk for misuse (e.g., pretrained language models,943

image generators, or scraped datasets)?944

Answer: [NA]945

Justification: We believe our model does not have a high risk for misuse.946

Guidelines:947

• The answer NA means that the paper poses no such risks.948

• Released models that have a high risk for misuse or dual-use should be released with949

necessary safeguards to allow for controlled use of the model, for example by requiring950

that users adhere to usage guidelines or restrictions to access the model or implementing951

safety filters.952

• Datasets that have been scraped from the Internet could pose safety risks. The authors953

should describe how they avoided releasing unsafe images.954

• We recognize that providing effective safeguards is challenging, and many papers do955

not require this, but we encourage authors to take this into account and make a best956

faith effort.957

12. Licenses for existing assets958

Question: Are the creators or original owners of assets (e.g., code, data, models), used in959

the paper, properly credited and are the license and terms of use explicitly mentioned and960

properly respected?961

Answer: [Yes]962

Justification: All sources are cited and we use publicly available packages.963

Guidelines:964

• The answer NA means that the paper does not use existing assets.965

• The authors should cite the original paper that produced the code package or dataset.966

• The authors should state which version of the asset is used and, if possible, include a967

URL.968

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.969

• For scraped data from a particular source (e.g., website), the copyright and terms of970

service of that source should be provided.971

• If assets are released, the license, copyright information, and terms of use in the972

package should be provided. For popular datasets, paperswithcode.com/datasets973

has curated licenses for some datasets. Their licensing guide can help determine the974

license of a dataset.975

28

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of976

the derived asset (if it has changed) should be provided.977

• If this information is not available online, the authors are encouraged to reach out to978

the asset’s creators.979

13. New Assets980

Question: Are new assets introduced in the paper well documented and is the documentation981

provided alongside the assets?982

Answer: [NA]983

Justification: The paper does not release new assets.984

Guidelines:985

• The answer NA means that the paper does not release new assets.986

• Researchers should communicate the details of the dataset/code/model as part of their987

submissions via structured templates. This includes details about training, license,988

limitations, etc.989

• The paper should discuss whether and how consent was obtained from people whose990

asset is used.991

• At submission time, remember to anonymize your assets (if applicable). You can either992

create an anonymized URL or include an anonymized zip file.993

14. Crowdsourcing and Research with Human Subjects994

Question: For crowdsourcing experiments and research with human subjects, does the paper995

include the full text of instructions given to participants and screenshots, if applicable, as996

well as details about compensation (if any)?997

Answer: [NA]998

Justification: The paper does not involve crowdsourcing nor research with human subjects.999

Guidelines:1000

• The answer NA means that the paper does not involve crowdsourcing nor research with1001

human subjects.1002

• Including this information in the supplemental material is fine, but if the main contribu-1003

tion of the paper involves human subjects, then as much detail as possible should be1004

included in the main paper.1005

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1006

or other labor should be paid at least the minimum wage in the country of the data1007

collector.1008

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1009

Subjects1010

Question: Does the paper describe potential risks incurred by study participants, whether1011

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1012

approvals (or an equivalent approval/review based on the requirements of your country or1013

institution) were obtained?1014

Answer: [NA]1015

Justification: The paper does not involve crowdsourcing nor research with human subjects1016

Guidelines:1017

• The answer NA means that the paper does not involve crowdsourcing nor research with1018

human subjects.1019

• Depending on the country in which research is conducted, IRB approval (or equivalent)1020

may be required for any human subjects research. If you obtained IRB approval, you1021

should clearly state this in the paper.1022

• We recognize that the procedures for this may vary significantly between institutions1023

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1024

guidelines for their institution.1025

• For initial submissions, do not include any information that would break anonymity (if1026

applicable), such as the institution conducting the review.1027

29

	Introduction
	Problem Formulation
	The Deep Adaptive Regulator
	Numerical Experiments
	Description of Control Tasks
	Offline Performance
	Failure Mode of Reinforcement Learning in Continuous-Time Systems
	Real Time Adaptation in Nonlinear Environments
	Online Performance: Exploration-Exploitation in Non-Stationary Environments
	Sample Efficiency

	Conclusions, Limitations, and Future Work
	Related Work
	Algorithms
	Experimental Parameters
	ILQG
	Transfer Learning in Neural Adaptive Control
	Definitions
	Proof of Theorem E.2

	Performance
	Filtering mathematics
	Perfect knowledge of the drift
	Bayesian filtering of the Gaussian drift

	Algorithmic trading in high dimension
	Gaussian Process mathematics
	Reinforcement Learning Benchmarks
	Impact Statement

