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Abstract

We study the Pareto Set Identification (PSI) problem in a structured multi-output1

linear bandit model. In this setting each arm is associated a feature vector belonging2

to Rh and its mean vector in Rd linearly depends on this feature vector througxh3

a common unknown matrix Θ ∈ Rh×d. The goal is to identity the set of non-4

dominated arms by adaptively collecting samples from the arms. We introduce and5

analyze the first optimal design-based algorithms for PSI, providing nearly optimal6

guarantees in both the fixed-budget and the fixed-confidence settings. Notably, we7

show that the difficulty of these tasks mainly depends on the sub-optimality gaps8

of h arms only. Our theoretical results are supported by an extensive benchmark9

on synthetic and real-world datasets.10

1 Introduction11

A multi-armed bandit is a stochastic game where an agent faces K distributions (or arms) whose12

means are unknown to her. When the distributions are scalar-valued, the agent faces two main tasks:13

regret minimization and pure exploration. In the former, the agent aims at maximizing the sum of14

observations collected along its trajectory [Lattimore and Szepesvári, 2020]. In pure exploration15

the agent has to solve a stochastic optimization problem after some steps of exploration and it does16

not suffer any loss during exploration [Bubeck and Munos, 2008]. Examples of pure exploration17

tasks include best arm identification in which the goal is to find the arm with largest mean [Audibert18

and Bubeck, 2010], thresholding bandit [Locatelli et al., 2016] or combinatorial bandits [Chen et al.,19

2014], to name a few.20

In this paper, we are interested in the less common setting where the rewards are Rd-valued, with21

d > 1. Different pure exploration tasks have been considered in this context, e.g. finding the set of22

feasible arms, i.e. arms whose mean satisfy some constraints [Katz-Samuels and Scott, 2018], or a23

feasible arm maximizing a linear combination of the different criteria [Katz-Samuels and Scott, 2019,24

Faizal and Nair, 2022]. Finding appropriate constraints is not always possible in practical problems25

and our focus is on the identification of the Pareto set, that is the set of arms whose means are not26

uniformly dominated by that of any other arm, a setting first studied by [Auer et al., 2016]. We note27

that a regret minimization counterpart of this problem has been considered by [Drugan and Nowe,28

2013].29

Pareto set identification can be relevant in many real-world problems where there are multiple,30

possibly conflicting objectives to optimize simultaneously. Examples include monitoring the energy31

consumption and runtime of different algorithms (see our use case in Section 5), or identifying a set32

of interesting vaccine by observing different immunogenicity criteria (antibodies, cellular response,33

that are not always correlated, as exemplified by Kone et al. [2023]). In both cases, there could be34

many arms with a few descriptor of the different arms (e.g. vaccine technology, doses, injection35
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times). By incorporating such arm features in the model we expect to reduce substantially the number36

of samples needed to identify the Pareto set.37

In this work, we incorporate some structure in the PSI identification problem through a multi-output38

linear model, formally described in Section 2. In this model, each of the K arms whose means are in39

Rd is described by a feature vector in Rh, h > 1. We propose the GEGE algorithm, which combines40

a G-optimal design exploration mechanism with an accept/reject mechanism based on the estimation41

of some notion of sub-optimality gap. GEGE can be instantiated in both the fixed-budget setting42

(given at most T samples, output a guess of the Pareto set minimizing the error probability) and the43

fixed-confidence setting (minimize the number of sample used so as to guarantee an error probability44

smaller than some prescribed δ). Through a unified analysis, we show that in both cases the sample45

complexity of GEGE, that is the number of samples needed to guarantee a certain probability of error,46

scales only with the h smallest sub-optimality gaps. This yields a reduction in sample complexity due47

to the structural assumption. Finally, we empirically evaluate our algorithms with extensive synthetic48

and real-world data-sets, and compare their performance with other state-of-the-art algorithms.49

Related work When d = 1 and the feature vectors are the canonical basis of RK , PSI coincides with50

the best arm identification problem, that has been extensively studied in the literature both in the51

fixed-budget [Audibert and Bubeck, 2010, Karnin et al., 2013, Carpentier and Locatelli, 2016] and52

the fixed-confidence settings Kalyanakrishnan et al. [2012], Jamieson et al. [2014]. For sub-Gaussian53

distributions, the sample complexity is known to be essentially characterized (up to a log(K) factor in54

the fixed-budget setting) by a sum over the K arms of the inverse squared value of their sub-optimality55

gap, which is their distance to the (unique) optimal arm. In the fixed-confidence setting and for56

Gaussian distributions there are even algorithms matching the minimal sample complexity when δ57

goes to zero, which takes a more complex, non-explicit form (e.g., Garivier and Kaufmann [2016],58

You et al. [2023]).59

Still when d = 1 but for general features in Rh, our model coincides with the well-studied linear bandit60

model (with finitely many arms), in which the best arm identification task has also received some61

attention. It was first studied by Soare et al. [2014] in the fixed-confidence setting who established62

the link with optimal designs of experiments [Pukelsheim, 2006] showing that the minimal sample63

complexity can be expressed as an optimal (XY) design. The authors proposed the first elimination64

algorithms where in each round the surviving arms are pulled according to some optimal designs65

and obtained a sample complexity scaling in (h/∆2
min) log(1/δ) where ∆min is the smallest gap66

in the model. Tao et al. [2018] further proposed an elimination algorithm using a novel estimator67

of the regression parameter based on a G-optimal design, with an improved sample complexity in68 ∑h
i=1 ∆

−2
(i) log(1/δ) where ∆(1) ≤ · · · ≤ ∆(h) are the h smallest gaps. This bound improves upon69

the complexity of the un-structured setting when K ≫ h. Some algorithms even match the minimal70

sample complexity either in the asymptotic regime δ → 0 [Degenne et al., 2020, Jedra and Proutiere,71

2020] or within multiplicative factors Fiez et al. [2019]. Some adaptive algorithms such as LinGapE72

Xu et al. [2018] are also very effective in practice, but without provably improving over un-structured73

algorithms in all instances.74

The fixed-budget setting has been studied by Azizi et al. [2022], Yang and Tan [2022] who propose75

algorithms based on Sequential Halving Karnin et al. [2013] where in each round the active arms are76

sampled according to a G-optimal design. The best guarantees are those obtained by Yang and Tan77

[2022] who show that a budget T of order log2(h)
∑h

i=1 ∆
−2
(i) log(1/δ) is sufficient to get an error78

smaller than δ. Katz-Samuels et al. [2020] propose an elimination algorithm that can be instantiated79

both in the fixed confidence and fixed budget settings, and is close in spirit to our algorithm. However,80

unlike prior work, their optimal design aims at minimizing a new complexity measure called the81

Gaussian width that may better characterize the non asymptotic regime of the error. Extending this82

notion, or that of minimal (asymptotic) sample complexity to linear PSI is challenging due to the83

complex structure of the set of alternative models with a different Pareto set. In this work, our focus84

is on obtaining refined gap-based guarantees for the structured PSI problem.85

When d > 1, the PSI identification problem has been mostly studied in the unstructured setting86

(h = K, canonical basis features). Auer et al. [2016] introduced some appropriate (non-trivial)87

notion of sub-optimality gaps for the PSI problem, which we recall in the next section. They88

proposed an elimination-based fixed-confidence algorithm whose sample complexity scales in89 ∑K
i=1 ∆

−2
i log(1/δ), which is proved to be near-optimal. A fully sequential algorithm with some90

slightly smaller bound was later given by Kone et al. [2023], who can further address different91

2



relaxations of the PSI problem. Kone et al. [2024] proposed the first fixed-budget PSI algorithm:92

a generic round-based elimination algorithm that estimates the sub-optimality gaps of Auer et al.93

[2016] and discard and classify some arms at the end of each round, with a sample complexity in94 ∑K
i=1 ∆

−2
i log(K) log(1/δ).95

The multi-output linear setting that we consider in this paper was first studied by Lu et al. [2019]96

from the Pareto regret minimization perspective. This model may also be viewed as a special case of97

the multi-ouput kernel regression model considered by Zuluaga et al. [2016] when a linear kernel is98

chosen. This work provide guarantees for approximate identification of the Pareto set, scaling with99

the information gain. Choosing appropriately the approximation parameter in ε-PAL as a function100

of the smallest gap ∆min yields a fixed-confidence PSI algorithm with sample complexity of order101

(h2/∆2
min) log(1/δ). More recently, the preliminary work of Kim et al. [2023] proposed an extension102

of the fixed-confidence algorithm of Auer et al. [2016] with a robust estimator to simultaneously103

minimize the Pareto regret and identify the Pareto set. Their claimed sample complexity bound is in104

(h/∆2
min) log(1/δ).105

For the fixed-confidence variant of GEGE we prove an improved sample complexity bounds in106

which (h/∆2
min) is replaced by the sum

∑h
i=1 ∆

−2
(i) . Moreover, to the best of our knowledge the107

fixed-budget variant of GEGE is the first algorithm for fixed-budget PSI in a multi-output linear bandit108

model, and enjoys a similar sample complexity. Our experiments confirm these good theoretical109

properties, and illustrate the impact of the structural assumption.110

2 Setting111

We formalize the linear PSI problem. Let d, h ∈ N⋆ and K ≥ 2. ν1, . . . , νK are distributions over Rd112

with means (resp.) µ1, . . . , µK ∈ Rd. We assume there are known feature vectors x1, . . . , xK ∈ Rh113

associated to each arm and an unknown matrix Θ ∈ Rh×d such that for any arm k, µk = Θ⊺xk.114

Let X := (x1 . . . xK)⊺ and [K] = {1, . . . ,K}. The Pareto set is defined as S⋆ = {i ∈ [K] : ∄j ∈115

[K]\{i} : µi ⪯ µj} in the sense of the following (Pareto) dominance relationship.116

Definition 1. For any two arms i, j ∈ [K], i is weakly dominated by j if for any c ∈ {1, . . . , d},117

µi(c) ≤ µj(c). An arm i is dominated by j (µi ⪯ µj or simply i ⪯ j) if i is weakly dominated118

by j and there exists c ∈ {1, . . . , d} such that µi(c) < µj(c). An arm i is strictly dominated by j119

(µi ≺ µj or simply i ≺ j) if for any c ∈ {1, . . . , d}, µi(c) < µj(c).120

In each round t, an agent chooses an action at from [K] and observes a response yt = Θ⊺xat
+ ηt121

where (ηs)s≤t are i.i.d centered vectors in Rd whose marginal distributions are σ-subgaussian.1 In122

this stochastic game, the goal of the agent is to identify the Pareto set S⋆. In the fixed-confidence123

setting, given δ ∈ (0, 1), the agent collects samples up to a (random) stopping time τ and outputs a124

guess Ŝτ that should satisfy P(S⋆ ̸= Ŝτ ) ≤ δ while minimizing τ (either with high-probability or in125

expectation). In the fixed-budget setting, the agent should output a set ŜT after T (fixed) rounds and126

minimize eT := P(ŜT ̸= S⋆).127

We following notation is used throughout the paper. ∆n is the probability simplex of Rn and if128

A ∈ Rn×n is positive semidefinite, for x ∈ Rn, ∥x∥2A = x⊺Ax and x(i) denotes its i-th component.129

2.1 Complexity Measures for Pareto Set Identification130

Choosing the features vectors to be the canonical basis of RK and Θ = (µ1, . . . , µK), we recover131

the unstructured multi-dimensional bandit model, in which the complexity of Pareto set identification132

is known to depend on some notion of sub-optimality gaps, first introduced by Auer et al. [2016].133

These gaps can be expressed with the quantities134

m(i, j) := min
c∈[d]

[µj(c)− µi(c)] and M(i, j) := −m(i, j).

We can observe that m(i, j) > 0 iff i ≺ j and represents the amount by which j dominates i when135

positive. Similarly M(i, j) > 0 iff i ⪯̸ j and when positive represents the quantity that should be136

added component-wise to j for it to dominate i. The sub-optimality gap ∆i measures the difficulty to137

1A centered random variable X is σ- subgaussian if for any λ ∈ R, logE[exp(λX)] ≤ λ2σ2/2.
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classify arm i as optimal or sub-optimal and can be written (Lemma 1 of Kone et al. [2024])138

∆i :=

{
∆⋆

i := maxj∈[K] m(i, j) if i /∈ S⋆
δ⋆i else, (1)

where δ⋆i := minj ̸=i[M(i, j) ∧ (M(j, i)+ + (∆⋆
j )+)]. For a sub-optimal arm i, ∆i is the smallest139

quantity by which µi should be increased to make i non dominated. For an optimal arm i, ∆i is the140

minimum between some notion of distance to the other optimal arms, minj∈S⋆\{i}[M(i, j)∧M(j, i)]141

and the smallest margin to the sub-optimal arms minj /∈S⋆ [M(j, i)+ + (∆⋆
j )+]. These quantities are142

illustrated Appendix G. We assume without loss of generality that ∆1 ≤ · · · ≤ ∆K and we recall143

the quantities H1 =
∑K

i=1 ∆
−2
i and H2 := maxi∈[K] i∆

−2
i which have been used to measure144

the difficulty of Pareto set identification respectively in fixed-confidence [Auer et al., 2016] and145

fixed-budget [Kone et al., 2024] settings. In this work we introduce two analogue quantities for linear146

PSI namely147

H1,lin =

h∑
i=1

1

∆2
i

and H2,lin := max
i∈[h]

i

∆2
i

(2)

and we will show that the hardness of linear PSI can be characterized by H1,lin and H2,lin respectively148

in the fixed-confidence and fixed-budget regimes. These complexity measures are smaller than H1149

and H2 respectively as they only feature the h smallest gaps. In order to obtain this reduction in150

complexity, it is crucial to estimate the underlying parameter Θ ∈ Rh×d instead of the K mean151

vectors.152

2.2 Least Square Estimation and Optimal Designs153

Given n arm choices in the model, a1, . . . , an, we define Xn := (xa1
. . . xan

)⊺ ∈ Rn×h and we154

denote by Yn := (y1 . . . yn)
⊺ ∈ Rn×d the matrix gathering the vector of responses collected. We155

define the information matrix as Vn := X⊺
nXn =

∑K
i=1 Tn(i)xix

⊺
i ∈ Rh×h where Ti(n) denotes156

the number of observations from arm i among the n samples. More generally, given ω ∈ RK , we157

define V ω :=
∑K

i=1 ω(i)xix
⊺
i .158

The multi-output regression model can be written in matrix form as Yn = XnΘ + Hn where159

Hn = (η1 . . . ηn)
⊺ is the noise matrix. The least-square estimate Θ̂n of the matrix Θ is defined as160

the matrix minimizing the least-square error Errn(A) := ∥XnA− Yn∥2F. Computing the gradient of161

the loss yields VnΘ̂n = X⊤
n Yn. If the matrix Vn is non-singular, the least-square estimator can be162

written163

Θ̂n = V −1
n X⊺

nYn.

In the course of our elimination algorithm, we will compute least-square estimates based on obser-164

vation from a restricted number of arms, and we will face the case in which Vn is singular. In this165

case, different choices have been made in prior work on linear bandits: Alieva et al. [2021] defines a166

custom “pseudo-inverse” while Yang and Tan [2022] define new contexts x̃i that are projections of the167

xi onto a sub-space of dimension rank(XS) where XS := (xi : i ∈ S)⊺ and S is the set of arms that168

are active. We adopt an approach close to the latter which is described below. Let the singular-value169

decomposition of (XS)
⊺ be USV ⊺ where U, V are orthogonal matrices and B := (u1, . . . , um) is170

formed with the first m columns of U where m = rank(XS). We then define171

V †
n := B(B⊺VnB)−1B⊺ and Θ̂n = V †

nX
⊺
nYn. (3)

The following result addresses the statistical uncertainty of this estimator.172

Lemma 1. If the noise ηt has covariance Σ ∈ Rd×d and a1, . . . , an are deterministically chosen173

then for any xi ∈ {xa1 , . . . , xan}, Cov(Θ̂⊺
nxi) = ∥xi∥2V †

n
Σ.174

Therefore, estimating all arms’mean uniformly efficiently amounts to pull {a1, . . . , an} to minimize175

maxi∈S ∥xi∥2V †
n

. The continuous relaxation of this problem is equivalent to computing an allocation176

ω⋆
S ∈ argmin

ω∈∆|S|

max
i∈S
∥x̃i∥2(Ṽ w)−1 (4)

where x̃i := B⊺xi, Ṽ ω :=
∑

i∈S ω(si)x̃ix̃
⊺
i and i 7→ si maps S to {1, . . . , |S|}. (4) is a G-optimal177

design over the features (B⊺xi, i ∈ S) and it can be interpreted as a distribution over S that yields a178

uniform estimation of the mean responses for (3). This is formalized in Appendix H.179
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3 Optimal design algorithms for linear PSI180

Our elimination algorithms operate in rounds. They progressively eliminate a portion of arms and181

classify them as optimal or sub-optimal based on empirical estimation of their gaps. In each round, a182

sampling budget is allocated among the surviving arms based on a G-optimal design.183

3.1 Optimal Designs and Gap Estimation184

At round r, we denote by Ar the set of arms that are still active. To estimate the means and henceforth185

the gaps, we first compute an estimate of the matrix Θ̂r. This estimate is obtained by carefully186

sampling the arms using the integral rounding of a G-optimal design.187

Algorithm 1: OptEstimator(S,N, κ)

Input: Subset S ⊂ [K], sample size N , precision κ

Compute the transformed features X̃S = (B⊺xi, i ∈ S) with B as defined in Section 2.2
Compute a G-optimal design w⋆

S over the set X̃
Pull (a1, . . . , aN )← ROUND(N, X̃S , ω

⋆
S , κ) and collect responses y1, . . . , yN

Compute V †
N as in Eq. (3) and compute the OLS estimator on the samples collected

Θ̂← V †
N

N∑
t=1

x⊺
at
yt

return: Θ̂

188

Algorithm 1 takes as input a set of arms S, a budget N and chooses some N arms to pull (with189

repetitions) based on an integer rounding of w⋆
S , a continuous G-optimal design over the set {x̃i, i ∈190

S} of (transformed) features associated to that arms. Several rounding procedures have been191

proposed in the literature and we use that of Allen-Zhu et al. [2017], henceforth referred to as ROUND.192

In Appendix H, we show that ROUND(N, X̃S , w
⋆
S , κ) outputs a sequence of arms a1, . . . , aN ∈ S193

such that maxi∈S ||xi||2V †
N

≤ (1 + 6κ)
FS(w⋆

S)
N , where FS(w

⋆
S) is the optimal value of (4). Using the194

Kiefer-Wolfowitz theorem [Kiefer and Wolfowitz, 1960], we further prove that FS(w
⋆
S) = hS , the195

dimension of span({xi, i ∈ S}). This observation is crucial to prove the following concentration196

result, at the heart of our analysis.197

Lemma 2. Let S ⊂ [K], κ ∈ (0, 1/3] and N ≥ 5hS/κ
2 where hS = dim(span({xi : i ∈ S})). The

output Θ̂ of OptEstimator(S, N , κ) satisfies for all ε > 0 and i ∈ S

P
(
∥(Θ− Θ̂)⊺xi∥∞ ≥ ε

)
≤ 2d exp

(
− Nε2

2(1 + 6κ)σ2hS

)
.

Once the parameter Θ̂r has been obtained as an output of Algorithm 1 with S = Ar and an appropriate198

value of the budget N , we compute estimates of the mean vectors as µ̂i,r := Θ̂⊺
rxi and the empirical199

Pareto set of active arms,200

Sr := {i ∈ Ar : ∄j ∈ Ar : µ̂i,r ≺ µ̂j,r}.
In both the fixed-confidence and fixed-budget settings, at round r, after collecting new samples from
the surviving arms, GEGE discards a fraction of the arms based on the empirical estimation of their
gaps. We first introduce the empirical quantities used to compute the gaps:

M(i, j; r) := max
c∈[d]

[µ̂i,r(c)− µ̂j,r(c)] and m(i, j; r) := min
c∈[d]

[µ̂j,r(c)− µ̂i,r(c)].

We define for any arm i ∈ Ar,201

∆̂i,r :=

{
∆̂⋆

i,r := maxj∈Ar m(i, j; r) if i ∈ Ar\Sr

δ̂⋆i,r := minj∈Ar\{i}[M(i, j; r) ∧ (M(j, i; r)+ + (∆̂⋆
i,r)+)] if i ∈ Sr

(5)

the empirical estimates of the gaps introduced earlier. Differently from BAI, as the size of the Pareto202

set is unknown, we need an accept/reject mechanism to classify any discarded arm, described in203

details in the next sections for the fixed budget and fixed-confidence versions.204
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Final output In both cases, letting Ar be the set of active arms and Br be the set of arms already205

classified as optimal at the beginning of round r, GEGE outputs Bτ+1∪Aτ+1 as the candidate Pareto206

optimal set, where τ denotes the final round. And Aτ+1 contains at most one arm.207

3.2 Fixed-budget algorithm208

Algorithm 2, operates over ⌈log2(h)⌉ rounds, with an equal budget of T/⌈log2(h)⌉ allocated per209

round. By construction |A⌈log2(h)⌉+1|= 1. At the end of round r, the ⌈h/2r⌉ arms with the smallest210

empirical gaps are kept active while the remaining arms are discarded and classified as Pareto optimal211

(added to Br+1) if they are empirically optimal (belonging to set Sr) and deemed sub-optimal212

otherwise. If a tie occurs, we break it to eliminate arms that are empirically sub-optimal. This is213

crucial to prove the guarantees on the algorithm, as sketched in Section 4.214

Algorithm 2: GEGE: G-optimal Empirical Gap Elimination [fixed-budget]
Input: budget T
Initialize: let A1 ← [K], B1 ← ∅, D1 ← ∅
for r = 1 to ⌈log2(h)⌉ do

Compute Θ̂r ← OptEstimator(Ar, T/ log2(h), 1/3)

Compute Sr the empirical Pareto set and the empirical gaps ∆̂i,r with Eq.(5)
Compute Ar+1 the set of

⌈
h
2r

⌉
arms in Ar with the smallest empirical gaps // ties

broken by keeping arms of Sr

Update Br+1 ← Br ∪ {Sr ∩ (Ar\Ar+1)} and Dr+1 ← Dr ∪ {(Ar\Ar+1)\Sr}
return: B⌈log2(h)⌉+1

⋃
A⌈log2(h)⌉+1

215

Theorem 1. The probability of error of Algorithm 2 run with budget T ≥ 45h log2 h is at most

exp

(
− T

1200σ2H2,lin⌈log2 h⌉
+ logC(h, d,K)

)
where C(h, d,K) = 2d

(
K + h

2 + ⌈log2 h⌉
)
.216

To the best of our knowledge GEGE is the first algorithm with theoretical guarantees for fixed-budget
linear PSI. Our result shows that in this setting, the probability of error scales only with the first h
gaps. Kone et al. [2024] proposed EGE-SH, an algorithm for fixed-budget PSI in the unstructured
setting whose probability of error is essentially upper-bounded by

exp

(
− T

288σ2H2 log2 K
+ log(2d(K − 1)|S⋆|log2 K)

)
.

Therefore, GEGE largely improves upon EGE-SH when K ≫ h. Moreover, when K = h and217

x1, . . . , xK is the canonical Rh-basis, both algorithms coincide, thus, GEGE can be seen as a218

generalization of EGE-SH.219

We state below a lower bound for linear PSI in the fixed-budget setting, showing that GEGE is optimal220

in the worse case, up to constants and a log2(h) factor.221

Theorem 2. Let WH be the set of instances with complexity H2,lin at most H . For any budget T ,
letting ŜA

T be the output of algorithm A, it holds that

min
A

max
ν∈WH

Pν(Ŝ
A
T ̸= S⋆(ν)) ≥

1

4
exp

(
− 2T

Hσ2

)
.

3.3 Fixed-confidence algorithm222

At round r, Algorithm 3, allocates a budget tr to compute an estimator Θ̂r of Θ∗ by calling Al-223

gorithm 1. tr is computed so that through Θ̂r, the mean of each arm is estimated with precision224

εr/4 with probability larger than 1 − δr (using Lemma 2). Then, the empirical Pareto set Sr, of225

the active arms is computed and the empirical gaps are updated following (5). At the end of round226

r, empirically optimal arms (those in Sr) whose empirical gap is larger than εr are discarded and227

classified as optimal (added to Br+1). Empirically sub-optimal arms whose empirical gap is larger228

than εr/2 are also discarded and classified as sub-optimal (added to Dr+1).229

6



Algorithm 3: GEGE: G-optimal Empirical Gap Elimination [fixed-confidence]
Initialize: A1 ← [K], B1 ← ∅, D1 ← ∅, r ← 1
while |Ar|> 1 do

Let εr ← 1/(2 · 2r) and δr ← 6δ/π2r2 and hr ← dim(span({xi : i ∈ Ar}))
Update tr :=

⌈
32(1+3εr)σ

2hr

ε2r
log( |Ar|d

2δr
)
⌉

Compute Θ̂r ← OptEstimator(Ar, tr, εr)

Compute Sr and the empirical gaps ∆̂i,r with Eq. (5)
Update Br+1 ← Br ∪{i ∈ Sr : ∆̂i,r ≥ εr} and Dr+1 ← Dr ∪{i ∈ Ar\Sr : ∆̂i,r ≥ εr/2}
Update Ar+1 ← Ar\ (Dr+1 ∪Br+1)
r ← r + 1

return: Br ∪Ar

230

Theorem 3. The following statement holds with probability at least 1− δ: Algorithm 3 identifies the
Pareto set using at most

log2(2/∆1) +

h∑
i=2

64σ2

∆2
i

log

(
Kd

δ
log2

(
2

∆i

))
samples and ⌈log2(1/∆1)⌉ rounds.231

This result shows that complexity of Algorithm 3 scales only with the first h gaps. In particular,232

when K ≫ h using our algorithm substantially reduces the sample complexity of PSI. In Table 1,233

we compare the sample complexity of GEGE to that of existing fixed-confidence PSI algorithms,234

showing that GEGE enjoys stronger guarantees than its competitors. We emphasize that both Kim235

et al. [2023] and Zuluaga et al. [2016] use uniform sampling and do not exploit an optimal design236

which prevents them from reaching the guarantees given in Theorem 3.

Table 1: Sample complexity up to constant multiplicative terms for different algorithms for PSI in the fixed-
confidence setting.

Algorithm Upper-bound on τδ Linear PSI

Zuluaga et al. [2016]
(

h2

∆2
min

)
log3

(
dK
δ

)
✔

Kone et al. [2023]
∑K

i=1
1
∆2

i
log( 12Kd

δ log( 1
∆i

)) ✘

Kim et al. [2023] h
∆2

min
log(d(h∨K)

δ∆2
min

) ✔

GEGE (Ours)
∑h

i=1
1
∆2

i
log(Kd

δ log2(
2
∆i

)) ✔

237

We state a lower bound showing that our algorithm is essentially minimax optimal for linear PSI.238

Theorem 4. For any K, d, h ∈ N, there exists a set B(K, d, h) of linear PSI instances s.t for
ν ∈ B(K, d, h) and for any δ-correct algorithm for PSI, with probability at least 1− δ,

τAδ = Ω
(
H1,lin(ν) log(δ

−1)
)
.

Remark 1. When K = h and x1, . . . , xK forms the canonical Rh basis we recover the classical239

PSI problem. We note that unlike its fixed-budget version, GEGE does not coincide with an existing240

PSI identification algorithm. Instead, it matches the optimal guarantees of Kone et al. [2023] while241

needing only ⌈log(1/∆1)⌉ rounds of adaptivity, which is the first fixed-confidence PSI algorithm242

having this property. Such a batched algorithm may be desirable in some applications e.g. in clinical243

trials where measuring different biological indicators of efficacy can take time.244

4 A unified analysis of GEGE245

Before sketching our proof strategy, we highlight a key property of PSI that makes the analysis differ246

from classical BAI settings. Let a be a (Pareto) sub-optimal arm. From (1), there exits a⋆ ∈ S⋆247
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such that ∆a = m(a, a⋆) and importantly, a⋆ could be the unique arm dominating a. Therefore,248

discarding a⋆ before a may result in the latter appearing as optimal in the remaining rounds, thus249

leading to mis-identification of the Pareto set.250

To avoid this, an elimination algorithm for PSI should guarantee that if a sub-optimal arm a is active,
then a⋆ is also active. We introduce the following event

Pr := {∀ s ≤ r : ∀i ∈ (S⋆)c, i ∈ As ⇒ i⋆ ∈ Ar}.

An important aspect of our proofs is to control the occurrence of P∞ (by convention, if Pt holds and251

As = ∅ for any s ≥ t then P∞ holds). The first step of the proof is to show that when Pr holds, we252

can control the deviations of the empirical gaps. We now define for η > 0, the good event253

Er(η) =
{
∀ i, j ∈ Ar : ∥(Θ̂r −Θ)⊺(xi − xj)∥∞ ≤ η

}
. (6)

Letting nr = |Ar| and λ a constant to be specified, we introduce Eλfb := ∩⌈log2(h)⌉
r=1 Er(λ∆nr+1+1)254

and Efc := ∩∞r=1Er(εr/2). We then prove by concentration and induction the following key result.255

Proposition 1. Let λ ∈ (0, 1/5) and assume Efc (resp. Eλfb in fixed-budget) holds. Then at any round
r, Pr holds and for all arm i ∈ Ar,

∆̂i,r −∆i ≥
{
−ηr if i ∈ S⋆
−ηr/2 else,

where ηr =

{
2λ∆nr+1+1 (fixed-budget)
εr (fixed-confidence).

Building on this result, we show that the recommendation of Algorithm 2 is correct on Eλfb, so its256

probability of error is upper-bounded by infλ∈(0,1/5) P(Eλfb). We conclude the proof of Theorem 1 by257

upper bounding this probability (see Appendix D).258

Similarly, using Proposition 1 we prove the correctness of Algorithm 3 on Efc: at any round r,259

Br ⊂ S⋆ and Dr ⊂ (S⋆)c. To upper bound its sample complexity we need an additional result to260

control the size of Ar.261

Lemma 3. The following holds for Algorithm 3 on Efc: for all p ∈ [K], after ⌈log(1/∆p)⌉ rounds it262

remains less than p active arms. In particular, GEGE stops after at most ⌈log(1/∆1)⌉ rounds.263

To get the sample complexity bound of Theorem 3 some extra arguments are needed. We sketch264

some elements below (the full proof is given in Appendix E.3). Assume Efc holds and let τδ be the265

sample complexity of Algorithm 3. Lemma 3 yields τδ ≤
∑⌈log(1/∆1)⌉

r=1 Ω(hr/ε
2
r) with hr ≤ |Ar|.266

Using Lemma 3, we introduce "checkpoints rounds” between which we control |Ar| and thus hr. Let
the sequence (αs)s≥0 defined as α0 = 0 and αs = ⌈log2(1/∆⌊h/2s⌋)⌉, for s ≥ 1. Simple calculation

yields α⌊log2(h)⌋ = ⌈log2(1/∆1)⌉ and {1, . . . , ⌈log2(1/∆1)⌉} = ∪⌊log2(h)⌋
s=1 Jαs−1, αsK. Therefore

τδ ≤
⌊log2(h)⌋∑

s=1

αs∑
r=αs−1+1

Ω(|Ar|/ε2r).

Now by Lemma 3, for r > αs, |Ar|≤ ⌊h/2s⌋, so essentially τδ ≤
∑⌊log2(h)⌋

s=1 Ω(4αs⌊h/2s⌋).267

Carefully re-indexing this sum and addressing some few more technicalities we obtain the result in268

Theorem 3. Showing that P(Efc) ≥ 1− δ using Lemma 2 completes the proof.269

5 Experiments270

We evaluate GEGE on real-world and synthetic instances. In the fixed-budget setting we compare271

against EGE-SH and EGE-SR [Kone et al., 2024], two algorithms for unstructured PSI in fixed-budget272

setting, and a uniform sampling baseline. In the fixed-confidence setting we compare to APE [Kone273

et al., 2023], a fully adaptive algorithm for unstructured PSI and PAL [Zuluaga et al., 2013], an274

algorithm that uses Gaussian process modeling for PSI, instantiated with a linear kernel.275

5.1 Experimental protocol276

We describe below the datasets in our experiments and we detail our experimental setup.277
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Figure 1: Average
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K on the synthetic dataset
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synthetic experiment
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T on NoC experiment
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bution of the sample com-
plexity on the NoC dataset

Synthetic instances We fix features x1, . . . , xh and Θ common to the instances described below. For278

any K ≥ h we define a linear PSI instance νK augmented with arms xh+1, . . . , xK chosen so that279

arms 1, . . . , h have the same lowest gaps in νK . This implies that the complexity terms H1,lin and280

H2,lin are equal on such instances, irrespective of the number of arms. We set h = 8, d = 2.281

Real-world dataset NoC [Almer et al., 2011] is a bi-objective optimization dataset for hardware282

design. The goal is to optimize d = 2 performance criteria: energy consumption and runtime of the283

implementation of a Network on Chip (NoC). The dataset contains K = 259 implementations, each284

of them described by h = 4 features.285

On each instance, we report, for different algorithms, the empirical error probability (fixed-budget)286

and empirical distribution of the sample complexity (fixed-confidence), averaged over 500 seeded287

runs. We set δ = 0.01 for the fixed-confidence experiments and T = H2,lin for fixed-budget.288

5.2 Summary of the results289

By Theorem 1 and 3, on the synthetic instance with K arms the sample complexity of GEGE should290

be a constant plus a log(K) term. This is coherent with what we observe: Fig.1 shows that the291

probability of error of GEGE merely increases with K whereas for EGE-SH/SR it grows much faster.292

Similarly, on Fig.2, the sample complexity of GEGE does not significantly increase with K, unlike293

that of APE. Therefore, GEGE only suffers a small cost for the number of arms.294

For the real-world scenario, GEGE significantly outperforms its competitors in both settings. Fig.4295

shows that it uses significantly fewer samples to identify the Pareto set compared to both APE and296

PAL. Fig.3 shows that the probability of misidentification of GEGE is reduced by up to 0.5 compared297

to EGE-SH. Moreover, it is worth noting that EGE-SH requires T ≥ K log2(K) ≈ 2000 (for NoC)298

to run on this instance while GEGE only needs T ≥ log2(h).299

We reported runtimes around 10 seconds for single runs on instances with up to K = 500, d = 8300

(cf Table 2 in Appendix I.1). The time and memory complexity of is addressed in Appendix I.1301

and additional details about the implementation are provided. Appendix I.2 contains additional302

experimental results on a real-world multi-criteria optimization problem with K = 768 arms.303

6 Conclusion and remarks304

We have proposed the first algorithms for PSI in a multi-output linear bandit model that are guaranteed305

to outperform their un-structured counterparts. They leverage optimal design approaches to estimate306

the means vector and some sub-optimality gaps for PSI. In the fixed-budget setting GEGE is the307

first algorithm with nearly optimal guarantees for linear PSI. In the fixed-confidence setting, GEGE308

provably outperforms its competitors both in theory and in our experiments. It is also the first309

fixed-confidence PSI algorithm using a limited number of batches.310

While the sample complexity of GEGE features a complexity term depending only on h gaps we still311

have log(K) terms due to union bounds. Katz-Samuels et al. [2020] showed that such union bounds312

can be avoided in linear BAI by using results from supremum of empirical processes. Further work313

could investigate if these observations would apply in linear PSI. In the alternative situation where314

h≫ K for example in a RKHS, following the work of Camilleri et al. [2021], we could investigate315

how to extend this optimal design approach to PSI with high dimensional features.316
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A Outline405

In section C, we prove Proposition 1, which is a crucial result to prove the guarantees of GEGE in406

fixed-confidence and fixed-budget settings. Section D proves the fixed-budget guarantees of GEGE,407

in particular Theorem 1. In section E we prove the fixed-confidence guarantees of GEGE by proving408

Theorem 3. Section F contains some ingredient concentration lemmas that are used in our proofs.409

In section G we analyze the lower bounds in both fixed-confidence and fixed-budget settings. In410

section H we analyze the properties of Algorithm 1 by using some results on G-optimal design.411

Finally section I contains additional experimental results and the detailed experimental setup.412

B Notation413

We introduce some additional notation used in the following sections.414

In the subsequent sections, r will always denote a round of GEGE which should be clear from the415

context. We then denote by Ar active arms at round r and by Θ̂r the empirical estimate of Θ at round416

r, computed by a call to Algorithm 1. By convention we let max∅ = −∞.417

For any sub-optimal arm i there exists a Pareto-optimal arm i⋆ (not necessarily unique) such that418

∆i = m(i, i⋆). More generally given a sub-optimal i we denote by i⋆ any arm of argmaxj∈S⋆ m(i, j).419

At a round r we let420

Pr := {∀ s ∈ {1, . . . , r}, ∀ i ∈ As, i ∈ (S⋆)c ∩As ⇒ i⋆ ∈ As} (7)

and P = P∞. In particular if for some τ , Pτ is true and Aτ+1 = ∅ then we say that P holds.421

C Proof of Proposition 1422

We first recall the result.423

Proposition 1. Let λ ∈ (0, 1/5) and assume Efc (resp. Eλfb in fixed-budget) holds. Then at any round
r, Pr holds and for all arm i ∈ Ar,

∆̂i,r −∆i ≥
{
−ηr if i ∈ S⋆
−ηr/2 else,

where ηr =

{
2λ∆nr+1+1 (fixed-budget)
εr (fixed-confidence).

In both the fixed-budget and fixed-confidence setting, the proof proceeds by induction on the round r.424

Before presenting the inductive argument separately in each case, we establish in Appendix C.1 an425

important result that is used in both cases (Lemma 7): if Pr holds at some round r then, the empirical426

gaps computed at this round are good estimators of the true PSI gaps.427

To establish this first result, we need the following intermediate lemmas, proved in Appendix F.428

Lemma 4. At any round r and for any arms i, j ∈ Ar it holds that429

|M(i, j; r)−M(i, j)|≤ ∥(Θ̂r −Θ)⊺(xi − xj)∥∞ and

|m(i, j; r)−m(i, j)|≤ ∥(Θ̂r −Θ)⊺(xi − xj)∥∞.

Lemma 5. At any round r, for any sub-optimal arm i ∈ Ar, if i⋆ ∈ Ar and i⋆ does not empirically430

dominate i then ∆⋆
i < ∥(Θ̂r −Θ)⊺(xi − xi⋆)∥∞.431

C.1 Deviations of the gaps when Pr holds432

In this part, we control the deviations of the empirical gaps when proposition Pr holds.433

Lemma 6. Assume that the proposition Pr holds at some round r. Then for any arm i ∈ Ar it holds
that ∣∣∣(∆̂⋆

i,r)+ − (∆⋆
i )+

∣∣∣ ≤ ∣∣∣∆̂⋆
i,r −∆⋆

i

∣∣∣ ≤ γi,r

where γi,r := maxj∈Ar
∥(Θ̂r −Θ)⊺(xi − xj)∥∞.434
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Proof. This inequality is a direct consequence of Lemma 4 and the relation |x+ − y+|≤ |x − y|)435

which holds for any x, y ∈ R. Note that for a Pareto-optimal arm i we trivially have (∆⋆
i )

+ = 0 =436

(maxj∈Ar m(i, j))+. And for a sub-optimal arm i ∈ Ar, as i⋆ ∈ Ar (from proposition Pr) we have437

∆⋆
i = m(i, i⋆) = maxj∈Ar

m(i, j). Thus for any arm i ∈ Ar we have438 ∣∣∣(∆̂⋆
i,r)+ − (∆⋆

i )+

∣∣∣ =

∣∣∣∣(max
j∈Ar

m(i, j; r))+ − (max
j∈Ar

m(i, j))+

∣∣∣∣ ,
≤

∣∣∣∣(max
j∈Ar

m(i, j; r))− (max
j∈Ar

m(i, j))

∣∣∣∣ ,
≤ max

j∈Ar

|m(i, j; r)−m(i, j)| ,

≤ max
j∈Ar

∥∥∥(Θ̂r −Θ)⊺(xi − xj)
∥∥∥
∞

= γi,r,

where the last inequality follows from Lemma 4.439

Lemma 7. If the proposition Pr holds at some round r then for any arm i ∈ Ar,

∆̂i,r −∆i ≥
{
−2γr if i ∈ S⋆,
−γi,r else,

where γi,r := maxj∈Ar
∥(Θ̂r −Θ)⊺(xi − xj)∥∞ and γr := maxi∈Ar

γi,r.440

Proof. We first prove the result a sub-optimal arm i. From the proposition Pr, as i ∈ Ar we have441

i⋆ ∈ Ar so ∆i = maxj∈Ar m(i, j) and we recall that442

∆̂i,r := max(∆̂⋆
i,r, δ̂

⋆
i,r). (8)

Note that by reverse triangle we have for any arm i ∈ Ar (sub-optimal or not)443 ∣∣∣∣(max
j∈Ar

m(i, j; r)

)
−
(
max
j∈Ar

m(i, j)

)∣∣∣∣ ≤ max
j∈Ar

|m(i, j; r)−m(i, j)|, (9)

≤ max
j∈Ar

∥(Θ̂r −Θ)T (xi − xj)∥∞ = γi,r. (10)

where the last inequality follows from Lemma 4. If i a sub-optimal arm (i /∈ S⋆) then as ∆i = ∆⋆
i , it

follows
∆̂i,r −∆i ≥ ∆̂⋆

i,r −∆⋆
i

therefore444

∆̂i,r −∆i ≥ −|∆̂⋆
i,r −∆⋆

i |
= −|(max

j∈Ar

m(i, j; r))− (max
j∈Ar

m(i, j))|

≥ −γi,r (see (10))

Now we assume i is a Pareto-optimal arm (i ∈ S⋆) so that now

∆i = δ⋆i .

Combining with Eq. (54) yields

∆̂i,r −∆i,r ≥ δ̂⋆i,r − δ⋆i,r,

where we recall that

δ̂⋆i,r = min
j∈Ar\{i}

[M(i, j; r) ∧ (M(j, i; r)+ + (∆̂⋆
j,r)+)]

and
δ⋆i := min

j∈[K]\{i}
[M(i, j) ∧ (M(j, i)+ + (∆⋆

j )+)].
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As for any x, y ∈ R we have |x+ − y+|≤ |x− y|, the following holds for any i, j ∈ Ar445

|M(j, i; r)+ −M(j, i)+| ≤ |M(j, i; r)−M(j, i)| (11)
≤ γj,r. (12)

From Lemma 6 we have for any j ∈ Ar446

(∆̂⋆
j,r)+ − (∆⋆

j )+ ≥ −γj,r. (13)

Combining (12) and (13) yields for any j ∈ Ar447

M(j, i; r)+ + (∆̂⋆
j,r)+ ≥ M(j, i)+ + (∆⋆

j )+ − 2γj,r, (14)

which in addition to M(j, i; r) ≥ M(j, i)− γj,r yields

[M(i, j; r) ∧ (M(j, i; r)+ + (∆̂⋆
j,r)+)] ≥ [M(i, j) ∧ (M(j, i)+ + (∆⋆

j )+)]− 2γj,r

for any arm j ∈ Ar. Thus taking the min over Ar yields448

δ̂⋆i,r = min
j∈Ar\{i}

[M(i, j; r) ∧ (M(j, i; r)+ + (∆̂⋆
j,r)+)]

≥ min
j∈Ar\{i}

[M(i, j) ∧ (M(j, i)+ + (∆⋆
j )+)]− 2γr,

≥ min
j∈[K]\{i}

[M(i, j) ∧ (M(j, i)+ + (∆⋆
j )+)]− 2γr,

= δ⋆i − 2γr

which concludes the proof the proof of this lemma.449

Building on this result, we show that P∞ holds in the fixed-confidence and fixed-budget settings.450

C.2 Fixed-budget setting451

We recall the definition of the good event for any λ > 0.

Er,λfb =
{
∀ i, j ∈ Ar : ∥(Θ̂r −Θ)⊺(xi − xj)∥∞ ≤ λ∆nr+1+1

}
and Eλfb := ∩⌈log2(h)⌉

r=1 Er,λfb . We prove that proposition P∞ holds on the event Eλfb for some any452

λ ∈ (0, 1/5).453

Lemma 8. The proposition holds P∞ on the event Eλfb for any λ ∈ (0, 1/5): at any round r ∈454

{1, . . . , ⌈log2 h⌉+ 1} and for any arm i ∈ Ar ∩ (S⋆)c, i⋆ ∈ Ar.455

Proof. We prove P∞ by induction on the round r. In the sequel we assume Eλfb holds. We also456

assume Pr is true until some round r. As Eλfb holds, we have by application of Lemma 7: for any arm457

i ∈ Ar,458

∆̂i,r −∆i ≥
{
−2λ∆nr+1+1 if i ∈ S⋆
−λ∆nr+1+1 else.

(15)

We shall prove that if a Pareto-optimal arm i is discarded at the end of round r then there exists no459

arm sub-optimal j ∈ Ar+1 such that j⋆ = i. Since i is removed and |Ar+1|= nr+1 there exists460

kr ∈ Ar+1 ∪ {i} such that461

∆kr
≥ ∆nr+1+1. (16)

If i is empirically sub-optimal then as it is discarded we have

∆̂i,r = ∆̂⋆
i,r ≥ ∆̂k,r

for any arm k ∈ Ar+1. So ∆̂⋆
i,r ≥ ∆̂kr,r thus using (15) and (16) it comes that462

max
q∈Ar\{i}

m(i, q) ≥ ∆nr+1+1 − 3λ∆nr+1+1

= (1− 3λ)∆nr+1+1
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and the latter inequality is not possible for λ < 1/3 as the LHS of the inequality is negative as i is a463

Pareto-optimal arm.464

Next we assume that i is empirically optimal. We claim that j is not dominated by i. To see this, first465

note that as j ∈ Ar+1 we have466

∆̂i,r ≥ ∆̂j,r (17)
so that as i is empirically optimal, if j was empirically dominated by i we would have467

∆̂i,r ≤ M(j, i; r)+ + (∆̂⋆
j,r)+ = ∆̂j,r. (18)

Combining (17) and (18) yield ∆̂i,r = ∆̂j,r, i is empirically optimal and j is empirically sub-optimal.
However our breaking rule ensures that this case cannot occur. Therefore j is not dominated by i.
But, by assumption, j is such that j⋆ = i and we have proved that i does not empirically dominate j
so by Lemma 5

∆j ≤ ∥(Θ̂r −Θ)⊺(xj − xi)∥∞
which on the event Efb yields468

∆j ≤ λ∆nr+1+1. (19)
On the other side, as i is discarded as an empirically optimal arm we have

∆̂i,r = δ̂⋆i,r ≥ ∆̂k,r

for any arm k ∈ Ar+1. Since kr ∈ Ar+1 ∪ {i} it comes δ̂⋆i,r ≥ ∆̂kr,r thus using (15) and (16) yields469

M(j, i)+ +∆j ≥ ∆nr+1+1 − 4λ∆nr+1+1

which further combined with (19) yields

M(j, i)+ ≥ (1− 5λ)∆nr+1+1.

However, as j⋆ = i we have M(j, i)+ = 0 so the latter inequality is not possible as long as λ < 1/5.470

Put together, we have proved proved that if Pr holds then for any Pareto-optimal arm i which is471

removed at the end of round r, there does not exist an arm j ∈ Ar+1 such that j⋆ = i. So Pr+1 holds.472

Finally noting that Pr trivially holds for r = 1 we conclude that P∞ holds on the event Eλfb for any473

λ < 1/5.474

Combining this result with Lemma 7 and assuming Eλfb holds then yields at any round r ∈475

{1, . . . , ⌈log2 h⌉} and for any arm i ∈ Ar:476

∆̂i,r −∆i ≥
{
−2λ∆nr+1+1 if i ∈ S⋆
−λ∆nr+1+1 else,

(20)

which proves Proposition 1 in the fixed-budget setting.477

C.3 Fixed-confidence setting478

We recall below the good events we study in the fixed-confidence setting:

Erfc =
{
∀ i, j ∈ Ar : ∥(Θ̂r −Θ)⊺(xi − xj)∥∞ ≤ εr/2

}
and Efc := ∩∞r=1Erfc.479

Lemma 9. The proposition P∞ holds on the event Efc: at any round r for any arm i ∈ Ar ∩ (S⋆)c,480

i⋆ ∈ Ar.481

Proof of Lemma 9. We prove the proposition by induction on the round r. Note that the proposition
Pr trivially holds for r = 1. Assume the property holds until the beginning of some round r. Let
i ∈ S⋆ be an optimal arm and assume i is discarded at the end of round r. We will prove that there
exists no sub-optimal arm j ∈ Ar+1 such that j⋆ = i. Recall that when i is discarded, we have either
i ∈ Sr (empirically optimal) or i /∈ Sr (empirically sub-optimal). We analyze both cases below. If
i /∈ Sr then it holds that

∆̂i,r ≥ εr/2,
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then, as i /∈ Sr it follows that ∆̂i,r = ∆̂⋆
i := maxj∈Ar\{i} m(i, j; r), so

max
j∈Ar\{i}

m(i, j; r) ≥ εr/2

which using Lemma 4 and assuming event Erfc holds would yield

max
j∈Ar\{i}

m(i, j) > 0.

The latter inequality is not possible as i ∈ S⋆ is a Pareto-optimal arm. Therefore, on Erfc, when i ∈ S⋆482

is discarded we have i ∈ Sr.483

Next, we analyze the case i ∈ Sr: that is i is discarded and classified as optimal. In this case it484

follows from the definition of ∆̂i,r that485

min
j∈Ar\{i}

[M(j, i; r)+ + (∆̂⋆
j,r)+] ≥ εr. (21)

Let j ∈ Ar+1 ∩ (S⋆)c be such that j⋆ = i. If j is empirically optimal then (∆̂⋆
j,r)+ = 0 thus

M(j, i; r)+ ≥ εr. On the contrary, if j is empirically sub-optimal then because it has not been
removed at the end of round r it holds that

∆̂⋆
j,r < εr/2,

which combined with (21) yields M(j, i; r)+ > εr/2. Thus, in both cases we have M(j, i; r)+ >
εr/2 which using Lemma 4 and assuming event Erfc would imply that

M(j, i)+ > 0,

which is impossible as, by assumption j⋆ = i, so j is dominated by i.486

Put together with what precedes, on Efc, if Pr holds then Pr+1 holds. Since the property trivially487

holds for r = 1 we have proved that the property Pr holds at any round when Efc holds.488

Combining this result with Lemma 7 proves that, on the event Efc, for any round r and for any arm489

i ∈ Ar490

∆̂i,r −∆i ≥
{
−εr if i ∈ S⋆
−εr/2 else,

(22)

which proves Proposition 1 in the fixed-confidence setting.491

D Upper bound on the probability of error492

In this section, we prove the theoretical guarantees of GEGE in the fixed-budget setting. We prove493

Theorem 1 and some ingredient lemmas.494

Theorem 1. The probability of error of Algorithm 2 run with budget T ≥ 45h log2 h is at most

exp

(
− T

1200σ2H2,lin⌈log2 h⌉
+ logC(h, d,K)

)
where C(h, d,K) = 2d

(
K + h

2 + ⌈log2 h⌉
)
.495

Proof of Theorem 1. We first prove the correctness of GEGE on the event Eλfb for some λ small496

enough. Let us assume Eλfb holds which by Proposition 1 implies that P∞ holds and at round r, we497

have for any arm i ∈ Ar498

∆̂i,r −∆i ≥
{
−2λ∆nr+1+1 if i ∈ S⋆
−λ∆nr+1+1 else.

(23)

We recall the definition of the good event for any λ > 0,

Er,λfb =
{
∀ i, j ∈ Ar : ∥(Θ̂r −Θ)⊺(xi − xj)∥∞ ≤ λ∆nr+1+1

}
16



and Efb := ∩⌈log2(h)⌉
r=1 Er,λfb . Applying Lemma 4 on this event then yields for all arms i, j ∈ Ar,499

|M(i, j; r)−M(i, j)|≤ λ∆nr+1+1 and (24)
|m(i, j; r)−m(i, j)|≤ λ∆nr+1+1. (25)

Let i be an arm discarded at the end of round r. Since i is discarded and |Ar+1|= nr+1 there exists500

kr ∈ Ar+1 ∪ {i} such that501

∆kr ≥ ∆nr+1+1. (26)

If i /∈ Sr that is i is empirically sub-optimal then

∆̂i,r = ∆̂⋆
i,r ≥ ∆̂kr,r,

then, recalling that
∆̂⋆

i,r := max
j∈Ar\{i}

m(i, j; r)

and further applying (23) to kr and using (25) yields

max
j∈Ar\{i}

m(i, j) ≥ (1− 3λ)∆nr+1+1

which for λ < 1/3 implies that maxj∈Ar
m(i, j) > 0, that is there exists j ∈ Ar such that µi ≺ µj502

so i is a sub-optimal arm.503

Next, assume i ∈ Sr (i.e i is empirically Pareto-optimal). In this case we have ∆̂i,r = δ̂⋆i,r ≥ ∆̂kr,r.504

We recall that505

δ̂⋆i,r = min
j∈Ar\{i}

[M(i, j; r) ∧ (M(j, i; r)+ + (∆̂⋆
i,r)+)].

Applying (23) to kr and using (24), it follows that

min
j∈Ar\{i}

M(i, j) ≥ (1− 3λ)∆nr+1+1.

Thus, for λ < 1/3, we have minj∈Ar\{i} M(i, j) > 0. Therefore, no active arm at round r dominates506

i which together with proposition P∞ yields that i is a Pareto-optimal arm (otherwise, we would507

have i⋆ ∈ Ar that dominates i).508

All put together, we have proved that for any λ < 1/5 (we need λ < 1/5 forP∞ to hold), Algorithm 2509

does not make any error on the event Eλfb. It then follows that the probability of error of GEGE is at510

most511

inf
λ∈(0,1/5)

P
(
(Eλfb)c

)
(27)

Now we upper-bound Eq. (27) which will conclude the proof. Let λ ∈ (0, 1/5) be fixed. We have by512

union bound513

P
(
(Eλfb)c

)
≤

⌈log2 h⌉∑
r=1

E
[
P
(
(Er,λfb )c|Ar

)]

≤
⌈log2 h⌉∑
r=1

E

[∑
i∈Ar

P(∥(Θ̂r −Θ)⊺xi∥∞ >
1

2
λ∆nr+1+1|Ar)

]

Note that for i fixed, we can use Lemma 2 with κ = 1/3 and the conditions of this theorem are514

satisfied as the budget per phase is T/ log2(h) ≥ 45h (recall from the theorem that GEGE is run with515

T ≥ 45h log2(h)). Thus applying this theorem yields516

P
(
(Eλfb)c

)
≤ 2d

⌈log2 h⌉∑
r=1

nrE

[
exp

(
−

λ2∆2
nr+1+1T

24σ2hr log2 h⌉

)]

≤ 2d

⌈log2 h⌉∑
r=1

nr exp

(
−

λ2T∆2
nr+1+1

24σ2 min(h, nr)⌈log2 h⌉

)
, as hr ≤ min(nr, h)
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Then, note that517

∆2
nr+1+1

min(h, nr)
=

∆2
⌈h/2r⌉+1

⌈h/2r−1⌉

=
∆2

⌈h/2r⌉+1

⌈h/2r⌉+ 1

⌈h/2r⌉+ 1

⌈h/2r−1⌉

≥
∆2

⌈h/2r⌉+1

⌈h/2r⌉+ 1

h/2r + 1

h/2r−1 + 1

≥
∆2

⌈h/2r⌉+1

⌈h/2r⌉+ 1

1

2
,

which follows as (x+ 1)/(2x+ 1) ≥ 1
2 for x ≥ 1. Therefore,518

∆2
nr+1+1

min(h, nr)
≥ 1

2

∆2
⌈h/2r⌉+1

⌈h/2r⌉+ 1

≥ 1

2H2,lin
.

Finally,519

P
(
(Eλfb)c

)
≤ 2 exp

(
− λ2T

48σ2H2,lin⌈log2 h⌉
+ log(d)

) ⌈log2 h⌉∑
r=1

nr

≤ 2

(
K +

h

2
+ ⌈log2 h⌉

)
exp

(
− λ2T

48σ2H2,lin⌈log2 h⌉
+ log(d)

)
Finally it follows that

inf
λ∈(0,1/5)

P
(
(Eλfb)c

)
≤ 2

(
K +

h

2
+ ⌈log2 h⌉

)
exp

(
− T

1200σ2H2,lin⌈log2 h⌉
+ log(d)

)
,

which concludes the proof.520

E Upper bound on the sample complexity521

We prove the theoretical guarantees in the fixed-confidence setting. We prove the correctness of522

Algorithm 3 and we prove the sample complexity bound of Theorem 3 and some key lemmas. We523

first prove the correctness of the fixed-confidence variant of GEGE.524

E.1 Proof of the correctness525

We need to prove that the final recommendation of Algorithm 3 is correct: that is we should show526

that : at any round r, Br ⊂ S⋆ and Dr ⊂ (S⋆)c.527

Lemma 10. On the event Efc, Algorithm 3 identifies the correct Pareto set.528

Proof of Lemma 10. In this part let τ denotes the stopping time of Algorithm 3. We assume Efc holds.529

Using Proposition 1 : for any round r ≤ τ for any (Pareto) sub-optimal i ∈ Ar we have i⋆ ∈ Ar.
We then prove the correctness of the algorithm as follows. Let i be an arm that is removed at the
end of some round r. Assume i ∈ Sr then, as i is discarded and empirically optimal we have
∆̂i,r = δ̂⋆i ≥ εr. In particular, it holds that

min
j∈Ar\{i}

M(i, j; r) ≥ εr

which using Lemma 4 on the event Efc yields

min
j∈Ar\{i}

M(i, j) > εr/2 > 0,

18



that is no active arm dominates i. Put together with proposition P∞ (cf Lemma 9) the latter inequality
yields i ∈ S⋆. Now assume we have i /∈ Sr: i is discarded and it is empirically sub-optimal. Then

∆̂i,r = max
j∈Ar

m(i, j; r) ≥ εr/2,

so using Lemma 4 again on event Efc it follows that there exists j ∈ Ar such that m(i, j) > 0: that is
i /∈ S⋆. Put together, we have proved that if Efc holds then for any arm i discarded at some round r,

i ∈ Br+1 ⇐⇒ i ∈ S⋆.
Note that if Aτ is non-empty then it contains a single arm and because P∞ holds, this arm is also530

Pareto optimal.531

Thus, Algorithm 3 is correct on Efc. Before proving Theorem 3 we need Lemma 3 to control the size532

of the active set Ar in the fixed-confidence setting.533

E.2 Controlling the size of the active set534

We prove the following result that controls the size of the active set.535

Lemma 3. The following holds for Algorithm 3 on Efc: for all p ∈ [K], after ⌈log(1/∆p)⌉ rounds it536

remains less than p active arms. In particular, GEGE stops after at most ⌈log(1/∆1)⌉ rounds.537

Proof of Lemma 3. By Lemma 9 we on the event Efc: for any round r and for any arm i ∈ Ar,

∆̂i,r −∆i ≥
{
−εr if i ∈ S⋆
−εr/2 else.

Then let p ∈ [K] and let assume an arm i ∈ {p, . . . ,K} is still active at round r = ⌈log2(1/∆p)⌉.538

We have ∆̂i,r ≥ ∆i − εr with εr = 1/2r+1 and ∆i ≥ ∆p which combined with ∆̂i,r ≥ ∆i − εr539

yields540

∆̂i,r ≥ ∆p − εr. (28)

As r = ⌈log2(1/∆p) it holds that 2εr ≤ ∆p so Eq. (28) yields ∆̂i,r ≥ εr thus i will be discarded at541

the end of round r that is any arm i ∈ {p, . . . ,K} will be discarded at the end of round ⌈log2(1/∆p)⌉.542

543

We now prove the main lemma on the sample complexity of GEGE in the fixed-confidence setting.544

E.3 Proof of Theorem 3545

We provide an upper bound on the sample complexity of the algorithm.546

Theorem 3. The following statement holds with probability at least 1− δ: Algorithm 3 identifies the
Pareto set using at most

log2(2/∆1) +

h∑
i=2

64σ2

∆2
i

log

(
Kd

δ
log2

(
2

∆i

))
samples and ⌈log2(1/∆1)⌉ rounds.547

Proof. We assume Efc holds. The correctness of Algorithm 3 is then proven in Lemma 10 and548

Lemma 3 upper-bounds the number of rounds before termination. It remains to bound the sample549

complexity of the algorithm on Efc and compute P(Efc) to conclude.550

By Lemma 3 an upper-bound on |Ar| for some specific rounds. Interestingly we can bound the sample551

complexity between consecutive "checkpoints rounds”. In what follows, we rewrite the complexity552

as a sum of number of pulls between these intermediate "checkpoints rounds”. Let us introduce the553

sequence {αs : s ≥ 0} defined as α0 = 0 and for any s ≥ 1, αs = ⌈log2(1/∆⌊h/2s⌋)⌉. We assume554

w.l.o.g that the sequence is increasing. Simple calculation shows that α⌊log2(h)⌋ = ⌈log2(1/∆1)⌉ and555

{1, . . . , ⌈log2(1/∆1)⌉} =
⌊log2(h)⌋⋃

s=1

Jαs−1, αsK. (29)
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Letting

Tr =
32(1 + 3εr)σ

2hr

ε2r
log

(
dnr

δr

)
,

where nr = |Ar| and tr = ⌈Tr⌉, so tr ≤ Tr + 1. Using (29) then leads to556

⌈log2(1/∆1)⌉∑
r=1

Tr =

⌊log2(h)⌋−1∑
s=0

αs+1∑
r=αs+1

Tr

=:

⌊log2(h)⌋−1∑
s=0

Ns

where Ns =
∑αs+1

r=αs+1 Tr is "the number of arms pulls” between round (αs + 1) and αs+1.557

Next we bound the term Ns for s ∈ {0, . . . , ⌊log2(h)⌋ − 1}. We recall that hr ≤ min(h, nr) as,558

nr = |Ar| is the number of active arms at round r and hr is the dimension of the space spanned by559

the features of the active arms. Using Lemma 3 on Efc, it holds that for r ≥ αs + 1560

nr ≤
{
K if s = 0

⌊h/2s⌋ if s ≥ 1
(30)

Therefore for s ∈ {0, . . . , ⌊log2(h)⌋ − 1} and for any r ≥ αs + 1, we simply have min(h, nr) ≤561

⌊h/2s⌋, so hr ≤ ⌊h/2s⌋. It then follows that562

Ns =

αs+1∑
r=αs+1

Tr (31)

≤ 64σ2⌊h/2s⌋ log
(

Kd

δαs+1

) αs+1∑
r=αs+1

1

ε2r
(32)

= 64σ2⌊h/2s⌋ log
(

Kd

δαs+1

) αs+1∑
r=αs+1

4r (33)

≤ 64σ2⌊h/2s⌋ log
(

Kd

δαs+1

) αs+1∑
r=1

4r (34)

=
64σ2⌊h/2s⌋

3
log

(
Kd

δαs+1

)
(4αs+1 − 1) (35)

then further using that

αs ≥
{
log2(1/∆⌊h/2s⌋) if s ≥ 1

0 if s = 0

yields

4αs+1 ≤ 1

∆2
⌊h/2s+1⌋

which combined with (35) yields563

Ns ≤
64σ2⌊h/2s⌋
3∆2

⌊h/2s+1⌋
log

(
Kd

δαs+1

)
. (36)

We can now bound N =
∑

s Ns in terms of the sub-optimality gaps:564

N =

⌊log2 h⌋−1∑
s=0

Ns (37)

≤ 64σ2

3

⌊log2 h⌋−1∑
s=0

⌊h/2s⌋
∆2

⌊h/2s+1⌋
log

(
π2Kd⌈log2(1/∆⌊h/2s+1⌋)⌉2

6δ

)
(38)
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then we note that the mapping

u 7→ 1

∆2
u

log

(
π2Kd⌈log2(1/∆u)⌉2

6δ

)
is non-increasing and it is easy to check that

⌊h/2s⌋ − ⌈⌊h/2s⌋/2⌉+ 1 ≥ 1

2
⌊h/2s⌋

therefore565

⌊h/2s⌋
∆2

⌊h/2s⌋
log

(
π2Kd⌈log2(1/∆⌊h/2s⌋)⌉2

12δ

)
≤ 2

⌊h/2s⌋∑
u=⌈⌊h/2s⌋/2⌉

1

∆2
u

log

(
π2K(K − 1)d⌈log2(1/∆u)⌉2

6δ

)
(39)

Combining (38) and (39) yields566

N ≤ 128

3
σ2

⌊log2 h⌋∑
s=1

⌊h/2s⌋∑
u=⌈⌊h/2s⌋/2⌋

1

∆2
u

log

(
π2Kd⌈log2(1/∆u)⌉2

6δ

)
(40)

Now let us introduce for any s, the set of integers Is = J⌈⌊h/2s⌋/2⌉, ⌊h/2s⌋K. We have
⌊log2 h⌋⋃
s=1

Is ⊂ {2, . . . , h}.

We show that for any p, q ∈ {1, . . . , ⌊log2(h)⌋} if |p− q|≥ 2 then Ip ∩ Iq = ∅. Assuming p ≤ q we567

claim that568

⌊h/2p+2⌋ < ⌈⌊h/2p⌋/2⌉ (41)
Assume otherwise then ⌊h/2p+2⌋ ≥ ⌈⌊h/2p⌋/2⌉ ≥ ⌊h/2p⌋/2 so

h/2p+1 ≥ ⌊h/2p⌋
which is impossible since for any p ∈ {0, . . . , ⌊log2(h)⌋ − 1}, h/2p ≥ 1. Therefore we have proved
(41) and for any q ≥ p+ 2 it holds that

⌊h/2q⌋ ≤ ⌊h/2p+2⌋ < ⌈⌊h/2p⌋/2⌉
thus Iq∩Ip = ∅ and for any i ∈ {2, . . . , h}, i belongs to no more than 2 of the subsets I1, . . . I⌊log2 h⌋569

so it comes that570

N ≤ 128

3
σ2

⌊log2 h⌋∑
s=1

⌊h/2s⌋∑
u=⌈⌊h/2s⌋/2⌋

1

∆2
u

log

(
π2Kd⌈log2(1/∆u)⌉2

6δ

)
(42)

≤ 128

3
σ2

h∑
i=2

1

∆2
i

log

(
π2Kd⌈log2(1/∆i)⌉2

6δ

)
(43)

≤ 128

3
σ2

h∑
i=2

1

∆2
i

log

(
π2Kd log2(2/∆i)

2

6δ

)
(44)

≤ 128

3
σ2

h∑
i=2

1

∆2
i

log

(
Kd

δ
log2

(
2

∆i

))
(45)

Then, from Lemma 9 it holds that with probability at least 1− δ the sample complexity Nδ of GEGE
is upper-bounded as

log2(2/∆1) +

h∑
i=2

64σ2

∆2
i

log

(
Kd

δ
log2

(
2

∆i

))
.

571

Therefore, we have shown the sample complexity bound and the correctness on Efc. Thus proving572

that P(Efc) ≥ 1− δ will conclude the proof.573
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E.4 Probability of the good event Efc.574

At round r,575

P ((Erfc)c | Ar) ≤
∑
i∈Ar

P
(
∥(Θ̂r −Θ)⊺xi∥∞ > εr/4|Ar

)
Then, note that at round r, Algorithm 3 calls OptEstimator with precision εr/2 and budget tr and576

by design we have tr ≥ 20hr/ε
2
r , so using Lemma 2, it follows577

P ((Erfc)c | Ar) ≤ 2d exp

(
− trε

2
r

32(1 + 3εr)σ2hr

)
≤ δr/|Ar|

which follows by plugging in the value of tr. Therefore, by union bound over Ar and r it holds that578

P (Efc) ≥ 1−
∑

r≥ δr ≥ 1− δ. This conludes the proof of Theorem 3.579

F Concentration results580

In this section we prove some concentration inequalities that are essential to the proofs of others581

results.582

Lemma 4. At any round r and for any arms i, j ∈ Ar it holds that583

|M(i, j; r)−M(i, j)|≤ ∥(Θ̂r −Θ)⊺(xi − xj)∥∞ and

|m(i, j; r)−m(i, j)|≤ ∥(Θ̂r −Θ)⊺(xi − xj)∥∞.

Proof. We have584

|M(i, j; r)−M(i, j)| =
∣∣∣max

c
[µ̂i,r(c)− µ̂j,r(c)]−max

c
[µi(c)− µj(c)]

∣∣∣ ,
(i)

≤ max
c
|(µ̂i,r(c)− µ̂j,r(c))− (µi(c)− µj(c))| ,

= ∥(µ̂i,r − µ̂j,r)− (µi − µj)∥∞ ,

= ∥(Θ̂r −Θ)⊺(xi − xj)∥∞.

where (i) follows from reverse triangle inequality. The second part of the lemma is a direct conse-585

quence of the relation M(i, j) = −m(i, j) as well as M(i, j; r) = −m(i, j; r) that holds for any586

pair of arms i, j.587

Lemma 5. At any round r, for any sub-optimal arm i ∈ Ar, if i⋆ ∈ Ar and i⋆ does not empirically588

dominate i then ∆⋆
i < ∥(Θ̂r −Θ)⊺(xi − xi⋆)∥∞.589

Proof. Since i⋆ does not empirically dominate i it holds that M(i, i⋆; r) > 0 so M(i, i⋆; r) −
M(i, i⋆) > −M(i, i⋆). Then noting that

−M(i, i⋆) = m(i, i⋆) = ∆i

yields M(i, i⋆; r)−M(i, i⋆) > ∆i. Therefore590

∆i = ∆⋆
i < M(i, i⋆; r)−M(i, i⋆)

≤ ∥(Θ̂r −Θ)⊺(xi − xi⋆)∥∞,

where the last inequality is a consequence of Lemma 4.591

We recall the following lemma from the main paper.592

Lemma 1. If the noise ηt has covariance Σ ∈ Rd×d and a1, . . . , an are deterministically chosen593

then for any xi ∈ {xa1
, . . . , xan

}, Cov(Θ̂⊺
nxi) = ∥xi∥2V †

n
Σ.594
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We actually prove a stronger statement that is stated below.595

Lemma 11. If the noise ηt has covariance Σ ∈ Rd×d and a1, . . . , aN are deterministically. Assuming596

the set of active arms is x1, . . . , xK then for any x ∈ span({x1, . . . , xK}), Cov(Θ̂⊺
Nx) = ∥x∥2

V †
N

Σ.597

Proof. In what follows we let E := span({x1, . . . , xK}) be the space spanned the vectors x1, . . . xK .
As the columns of B forms an orthogonal basis of E, P = B(B⊺B)−1B⊺ = BB⊺ is a matrix that
project onto E. Therefore, for any x ∈ E

Θ⊺x = Θ⊺BB⊺x = (B⊺Θ)⊺B⊺x.

Thus recalling that XN = (xa1 , . . . , xaN
)⊺ it holds that XNΘ = (XNB)(B⊺Θ). Rewriting the598

solution of the least squares leads to599

Θ̂N = B(B⊺VNB)−1B⊺X⊺
N (XNΘ+HN )

= B(B⊺VNB)−1B⊺X⊺
N (XNΘ) + V †

NX⊺
NHN

= B(B⊺VNB)−1B⊺X⊺
N (XNB)(B⊺Θ) + V †

NX⊺
NHN

= B(B⊺VNB)−1(B⊺VNB)(B⊺Θ) + V †
NX⊺

NHN

= BB⊺Θ+ V †
NX⊺

NHN

then for any x ∈ E, as BB⊺x = x it follows that600

Θ̂⊺
Nx = Θ⊺BB⊺x+ (V †

NX⊺
NHN )⊺x

= Θ⊺x+ (V †
NX⊺

NHN )⊺x

thus we have for x ∈ E,601

(Θ̂N −Θ)⊺x = (V †
NX⊺

NHN )⊺x. (46)

Computing the covariance follows as602

Cov((Θ̂N −Θ)⊺x) = E
[
(V †

NX⊺
NHN )⊺xx⊺(V †

NX⊺
NHN )

]
(47)

= E [H⊺
N x̃x̃⊺HN ] (48)

where x̃ := XNV †
Nx. Letting h⊺

i denotes the i-th row of H⊺
N , for each i, j603

E[h⊺
i x̃x̃

⊺hj ] = x̃⊺E[hih
⊺
j ]x (49)

= x̃⊺σi,j x̃ (50)

where Σ := (σr,s)r,s≤d and the last line follows since for any t, t′ ≤ N by independence of
successive observations we have E[hi(t)hj(t

′)] = δkro
t,t′σi,j . Combining Eq. (50) with Eq. (48) yields

Cov((Θ̂N −Θ)⊺x) = Σx̃⊺x̃

then further noting that604

x̃⊺x̃ = x⊺V †
NX⊺

NXNV †
Nx

= x⊺B(B⊺VNB)−1B⊺VNB(B⊺VNB)−1B⊺x

= x⊺V †
Nx = ∥x∥2

V †
N

concludes the proof.605

The following results is proven in Appendix H.606

Lemma 2. Let S ⊂ [K], κ ∈ (0, 1/3] and N ≥ 5hS/κ
2 where hS = dim(span({xi : i ∈ S})). The

output Θ̂ of OptEstimator(S, N , κ) satisfies for all ε > 0 and i ∈ S

P
(
∥(Θ− Θ̂)⊺xi∥∞ ≥ ε

)
≤ 2d exp

(
− Nε2

2(1 + 6κ)σ2hS

)
.
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Figure 5: PSI gaps and distances

G Lower Bounds607

Before proving the lower bounds, we illustrate the PSI and the quantities M,m on Fig.5608

We note that, in this instance ∆i = m(i, j) and by increasing i by ∆i on both x and y axes it will609

become non-dominated.610

We also have ∆ℓ = m(ℓ, j). As ℓ is only dominated by j, if is it translated by m(ℓ, j) on the x-axis it611

will become Pareto optimal.612

For Pareto-optimal arms k, j, δ+k = δ+j = M(j, k). As k dominates both i and ℓ its margin to613

sub-optimal arms is δ−k = min(∆i,∆ℓ) and we have δ−j = min(M(ℓ, j) + ∆ℓ,∆i).614

Observe that for both j, k, ∆j = ∆k = M(j, k). If k is translated by M(j, k) on the y-axis it will615

dominate j. Similarly, if j is translated by −M(j, k) on the y-axis, it will be dominated by k.616

We now prove minimax lower bounds in both fixed-confidence and fixed-budget settings. We recall617

the lower-bound below for un-structured PSI in the fixed confidence setting.618

Theorem 5 (Theorem 17 of Auer et al. [2016]). For any set of operating points µi ∈ [1/4, 3/4]d,
i = 1, . . . ,K, there exist distributions Di such that with probability at least 1 − δ, any δ-correct
algorithm for PSI requires at least

Ω

(
K∑
i=1

1

∆̃2
i

log(δ−1)

)

samples to identify the Pareto set. Where for any sub-optimal arm ∆̃i = ∆i and for an optimal arm619

∆̃i = δ+i .620

In particular, there exist instances where ∆i = δ+i for any Pareto-optimal arm i. Thus, this result621

shows that H1 is a good proxy to measure the complexity of PSI in the fixed-confidence setting. The622

proof of this result is based on the celebrated change of distribution technique (see e.g Kaufmann623

et al. [2016]) which given the instance ν := (ν1, . . . , νK) shifts the mean of νi for an arm i while624

keeping the others fixed constant. However in linear PSI the arms’ means are correlated through Θ.625

So that in general Theorem 5 does not directly apply to linear PSI. We recall below our lower-bound626

for linear PSI in the fixed-confidence setting.627

Theorem 4. For any K, d, h ∈ N, there exists a set B(K, d, h) of linear PSI instances s.t for
ν ∈ B(K, d, h) and for any δ-correct algorithm for PSI, with probability at least 1− δ,

τAδ = Ω
(
H1,lin(ν) log(δ

−1)
)
.

Proof of Theorem 4. The idea of the proof is to transform an unstructured bandit instance into a
linear PSI instance. Let ν be a bandit instance with K ≥ 2 arms and dimension d ≥ 1 and with
means µ1, . . . , µK ∈ [0, 1]d. Let e1, . . . eh denote the canonical basis of Rh. We define a linear PSI
instance νlin with features

xi =

{
ei if i ≤ h

0 else.

24



We assume that the learner knows that µi ∈ [0, 1]d for any arm i. We claim that with this information628

an "efficient” algorithm for PSI should not pull arms from {h+ 1, . . . ,K}. To see this, first note that629

these arms will be sub-optimal so S⋆ ⊂ [h]. Moreover, even if an arm i ∈ {h+1, . . . ,K} dominates630

another arm j ∈ {1, . . . , h}, as j is not Pareto-optimal there exits another arm j⋆ ∈ S⋆ ⊂ {1, . . . , h}631

which dominates j with a larger margin, so is "cheaper” to pull. Therefore the complexity of νlin632

reduces to the complexity of a linear bandit ν̃lin with only h arms. As the features in x1, . . . , xh633

forms the canonical Rh basis, ν̃lin reduces to an un-structured bandit instance with (un-correlated)634

means µ̃i = Θ⊺xi, i = 1, . . . , h. Therefore, by choosing µ1, . . . , µh ∈ [1/4, 3/4]d, we can apply635

Theorem 5 to ν̃lin.636

Actually in the result stated above we have proved that this bound holds for a class of instances637

B(K, d, h) of and not just a single fixed instance .638

For the fixed-budget setting Kone et al. [2024] proved a lower-bound for a class of instances. We
recall their result below after introducing some notation. Their lower-bound applies to class of
instances B defined as follows. B contains the instances such that each sub-optimal arm i is only
dominated by a Pareto-optimal arm denoted by i⋆ and that for each optimal arm j there exists a
unique sub-optimal arm which is dominated by j, denoted by j. Moreover for any instance in B the
authors require its Pareto-optimal arms not to be close to the sub-optimal arms they don’t dominate:
for any sub-optimal arm i and Pareto-optimal arm j such that µi ⊀ µj ,

M(i, j) ≥ 3max(∆i,∆j).

Let ν := (ν1, . . . , νK) be an unstructured instance whose means belongs to B and with isotropic639

multi-variate normal arms νi ∼ N (µi, σ
2I). For every i ∈ [K], define the alternative instance640

ν(i) := (ν1, . . . ν
(i)
i , . . . , νK) in which only the mean of arm i is shifted:641

µ
(i)
i :=

{
µi − 2∆iẽdi

if i ∈ S⋆(ν),
µi + 2∆iẽdi

else,
(51)

where ẽ1, . . . , ẽd denotes the canonical basis of Rd and for any arm i, di := argminc∈[d][µi⋆(c)−642

µi(c)]. Defining ν(0) := ν, the theorem below holds.643

Theorem 6 (Theorem 5 of Kone et al. [2024]). Let ν = (ν1, . . . , νK) be an instance in B with means
µ := (µ1 . . . µK)⊺ and νi ∼ N (µi, σ

2I). For any algorithm A, there exists i ∈ {0, . . . ,K} such
that H(ν(i)) ≤ H(ν) and the probability of error A on ν(i) is at least

1

4
exp

(
− 2T

σ2H(ν(i))

)
.

As explained above for the fixed-confidence setting. The proof of this lower bound also uses the644

change of distribution lemma. In the instances ν(i) introduced above, it is crucial that only the mean645

of arm i has changed w.r.t ν(0). Therefore, Theorem 6 does not apply to general instances in linear646

PSI. We recall our lower-bound for linear PSI in the fixed-budget.647

Theorem 2. Let WH be the set of instances with complexity H2,lin at most H . For any budget T ,
letting ŜA

T be the output of algorithm A, it holds that

min
A

max
ν∈WH

Pν(Ŝ
A
T ̸= S⋆(ν)) ≥

1

4
exp

(
− 2T

Hσ2

)
.

Proof of Theorem 2. Let H be fixed and recall that WH : {νlin : H2,lin(ν) ≤ H} is the set of
linear PSI instances with complexity less than H . The proof of Theorem 2 follows similar lines to
Theorem 4. Let ν be an un-structured bandit instance with K ≥ 2 arms, dimension d ≥ 1, with
means µ1, . . . , µK ∈ [0, 1]d and such that H2(ν) ≤ H . We construct a linear PSI instance νlin from
an unstructured multi-dimensional instance ν by setting xi := ei for any i ≤ h and for i > h, xi = 0
where e1, . . . , eh is the canonical Rh-basis. We also assume that the agent knows that µi ∈ [0, 1]d for
any arm i. For νlin the arms {h+ 1, . . . ,K} are necessarily sub-optimal so S⋆ ⊂ [h] thus to identify
the Pareto set and efficient algorithm should reduce to pull arms in {1, . . . , h}. Indeed, as explained
in the proof of Theorem 4 even if an arm i ∈ {h+ 1, . . . ,K} dominates another arm j ∈ {1, . . . , h},
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as j is not Pareto-optimal there exits another arm j⋆ ∈ S⋆ ⊂ {1, . . . , h} which is "cheaper” to pull
as it dominates j with a larger margin. νlin reduces to a linear bandit ν̃lin with only h arms and since
the features x1, . . . , xh forms the canonical basis of Rh, ν̃lin is an un-structured bandit instance with
(un-correlated) means µ̃i = Θ⊺xi, i = 1, . . . , h. Therefore, by choosing ν̃ := (ν1, . . . , νh) that
belongs to B, we can apply Theorem 6 which yields

max
i∈{0,...,K}

Pν̃(i)(SA
T ̸= S⋆(ν̃(i))) ≥

1

4
exp

(
− 2T

Hσ2

)
where by construction ν̃(i) (see construction above) is also a linear PSI instance. Then further noting
that H ≥ H2(ν) ≥ H2(ν̃) and by Theorem 6 for any i ≤ h H2,lin(ν̃) ≥ H2(ν̃

(i)). Then recalling
that νlin is equivalent to ν̃ it comes

min
A

max
ν∈WH

Pν(S
A
T ̸= S⋆(ν)) ≥

1

4
exp

(
− 2T

Hσ2

)
,

which is the claimed result.648

H Computing and rounding a G-optimal design649

In this section, we discuss the results related to the G-design and the rounding. In what follows let650

S ⊂ [K] be a set of arms. To ease notation we re-index the arms of S by assuming S := {1, . . . , |S|}.651

Let N be the allocation budget (the total number of pulls of arms in S) and κ ∈ (0, 1/3] the parameter652

of the rounding algorithm to be fixed. hS = dim(span({xi : i ∈ S})) is the dimension of the space653

spanned by the covariates of S. XS := (xi, i ∈ S)⊺ and BS := (u1, . . . , um) is the matrix formed654

with the first m = hS = rank(S) columns of U , the matrix of left singular vectors of X ⊺
S obtained by655

singular value decomposition. We recall that for N pulls of arms in [S], letting Ti(N) be number of656

samples collected from arm i,657

V †
N := BS(B

⊺
SVNBS)

−1B⊺
S and VN :=

K∑
i=1

Ti(N)xix
⊺
i . (52)

As from Lemma 1 the statistical uncertainty from estimating the mean of arm i scales with ∥xi∥V †
N

, a658

call to OptEstimator(S, N , κ) is meant to estimate the hidden parameter Θ by collecting N samples659

from arms in S according to an approximation of the solution of the following problem (ordinal660

G-optimal design):661

argmin
s∈[0,...,N ]|S|

max
i∈S

∥xi∥(V s)†

s.t.
∑
i∈S

s(i) = N .
(53)

Finding such an optimal design with integer values is a NP-hard problem [Allen-Zhu et al., 2017].662

Instead, its continuous relaxation (obtained by normalizing by N ), amounts to finding an allocation663

ω that minimizes664

max
i∈S

(B⊺
Sxi)

⊺

(∑
i∈S

ω(i)B⊺
Sxix

⊺
i BS

)−1

B⊺
Sxi, (54)

which reduces to compute a G-optimal allocation on the covariates B⊺
Sxi, i ∈ S :665

w⋆
S ∈ argmin

ω∈∆|S|

max
i∈S
∥x̃i∥2(Ṽ ω)−1 , and Ṽ ω :=

∑
i∈S

ω(i)x̃ix̃
⊺
i . (55)

This is a convex optimization problem on the probability simplex of R|S|. Efficient solvers have666

been used in the literature for linear BAI and experiment design optimization see (e.g Fiez et al.667

[2019], Soare et al. [2014]). In this work, we follow Allen-Zhu et al. [2017] and we recommend an668

entropic mirror descent algorithm to solve Eq. (55), which is recalled as Algorithm 4 for the sake of669

completeness.670

Then, computing an integer allocation whose value is close to the optimal value of Eq. (55) can be671

done in different ways. Tao et al. [2018] and Camilleri et al. [2021] use a stochastic rounding: they672

26



sample N arms from S following the distribution ω⋆
S and use a novel estimator different from the673

least-squares estimate. Yang and Tan [2022], Azizi et al. [2022] use floors and ceilings of Nω⋆
S .674

Although practical, it is known that the value of such rounded allocations can deviate a lot from the675

optimal value of Eq. (53) [Tao et al., 2018].676

Algorithm 4: Entropic mirror descent algorithm for computing w⋆
S Tao et al. [2018]

Input: A set of arms S and covariates (x̃i, i ∈ S), tolerance ε and Lipschitz constant Lf

Initialize: t← 1 and w(1) ← (1/|S|, . . . , 1/|S|)
while |maxi∈S x̃⊺

i (Ṽ
w(t)

)−1x̃i − hS |≥ ε do
set ηt ←

√
2 lnN
Lf

1√
t

Compute gradient g(t)i ← Tr
(
Ṽ
(
w(t)

)−1 (
x̃ix̃

T
i

))
Update w

(t+1)
i ←

w
(t)
i exp

(
ηtg

(t)
i

)
∑N

i=1 w
(t)
i exp

(
ηtg

(t)
i

)
t← t+ 1

return: w(t)

Allen-Zhu et al. [2017] proposed an efficient rounding procedure that guarantees that the value of the677

returned integer allocation is within a small factor of the optimal value of Eq. (55). Before recalling678

their result we introduce the notation FS(s) := maxi∈S ∥xi∥2(V s)† .679

We recall the celebrated Kiefer–Wolfowitz equivalence theorem below.680

Theorem 7 (Restatement of Kiefer and Wolfowitz [1960]). Let covariates {xi : i ∈ S} ⊂ Rh and for681

any ω ∈∆|S| define V ω =
∑

i∈S ω(i)xix
⊺
i and when V ω is non-singular f(x;ω) := x⊺(V ω)−1x.682

The following two extremum problems:683

a) ω maximizing det(V ω)684

b) ω minimizing maxi∈S f(xi;ω)685

are equivalent and a sufficient condition to satisfy Eq. (b) is maxi∈S f(xi, ω) = h, which is satisfied686

when the covariates {xi : i ∈ S} span Rh.687

Theorem 8 (reformulated; rounding of Allen-Zhu et al. [2017]). Suppose κ ∈ (0, 1/3] and N ≥
5hS/κ

2. Let ω⋆
S = argminω∈∆S

FS(ω). Then, there exists an algorithm that outputs an integer
allocation s⋆ satisfying

s⋆ ∈ DS,N and FS(s
⋆) ≤ (1 + 6κ)

FS(ω
⋆
S)

N

where DS,N := {s ∈ {0, . . . , N}|S| :
∑

i∈S s(i) = N}. This algorithm runs in time complexity688

Õ
(
N |S|h̃2

)
.689

We refer to a call to this algorithm as ROUND(N, {x̃i, i ∈ S}, ω⋆
S , κ). It returns an integer allocation690

s⋆ = (s∗(1), . . . , s∗(|S|)) from which we can immediately deduce a list of arms to pull (the first arm691

in S replicated s∗(1) times, the second replicated s∗(2) times, etc.).692

Simple arguments from linear algebra show that the hS columns of BS form a basis of span({xi : i ∈
S}), hence {B⊺

Sxi : i ∈ S} spans RhS . Using Theorem 7 applied to the covariates {B⊺
Sxi : i ∈ S}

yields
FS(ω

⋆
S) = hS

and thus the integer allocation s⋆ output by ROUND(N, {x̃i, i ∈ S}, ω⋆
S , κ) satisfies for N ≥ 5hS/κ

2,

F (s⋆) ≤ (1 + 6κ)
hS

N
,

which is stated below.693

Lemma 12. Let S ⊂ [K], κ ∈ (0, 1/3] and N ≥ 5hS/κ
2 where hS = dim(span({xi : i ∈ S})).

The allocation {Ti(N) : i ∈ S} computed by OptEstimator(S, N , κ) to estimate Θ satisfies

max
i∈S
∥xi∥2V †

N

≤ (1 + 6κ)
hS

N
.
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Building on this result, we derive the following concentration result.694

Lemma 2. Let S ⊂ [K], κ ∈ (0, 1/3] and N ≥ 5hS/κ
2 where hS = dim(span({xi : i ∈ S})). The

output Θ̂ of OptEstimator(S, N , κ) satisfies for all ε > 0 and i ∈ S

P
(
∥(Θ− Θ̂)⊺xi∥∞ ≥ ε

)
≤ 2d exp

(
− Nε2

2(1 + 6κ)σ2hS

)
.

Proof of Lemma 2. We recall that by assumption the vector noise has σ-sub-gaussian marginals.695

From the proof of Lemma 11 it is easy to see that for any i ∈ S, the marginals of (Θ − Θ̂)xi are696

σ∥X⊺
NV †

Nxi∥2-sub-gaussian. Then direct calculations shows that697

∥X⊺
NV †

Nxi∥22 = x⊺
i V

†
NVNV †

Nxi

= x⊺
i

(
BS(B

⊺
SVNBS)

−1B⊺
S

)
VN

(
BS(B

⊺
SVNBS)

−1B⊺
S

)
xi

= x⊺
i BS(B

⊺
SVNBS)

−1B⊺
Sxi

= x⊺
i V

†
Nxi = ∥xi∥2V †

N

.

Therefore, by concentration of sub-gaussian variables (see e.g Lattimore and Szepesvári [2020]) we698

have for i fixed,699

P(∥(Θ− Θ̂)⊺xi∥∞ ≥ ε) ≤ 2d exp

− ε2

2σ2∥xi∥2
V †
N


≤ 2d exp

− ε2

2σ2 maxk∈S ∥xk∥2
V †
N


then the G-optimal design and the rounding (Lemma 12) ensure that

max
k∈S
∥xk∥2V †

N

≤ (1 + 6κ)hS/N.

Therefore

P
(
∥(Θ− Θ̂)⊺xi∥∞ ≥ ε

)
≤ 2d exp

(
− Nε2

2(1 + 6κ)σ2hS

)
.

700

I Implementation details and additional experiments701

In this section we detail our experimental setup and provide additional experimental results.702

I.1 Complexity and setup703

Time and memory complexity The main computational cost of GEGE (excepting calls to704

OptEstimator) is the computation of the empirical gaps. Which requires to compute M(i, j; r)705

for any tuple (i, j) of active arms and to temporarily store them. Computing the gaps results in a total706

O(K2d) time complexity and O(K2) memory complexity. Note that for the memory allocation we707

can maintain the same arrays for the whole execution of the algorithm thus only cheap memory alloca-708

tions are made after initialization. The overall computational complexity is reasonable as GEGE is an709

elimination algorithm the computational cost reduces after rounds and we have proven that no more710

than ⌈log2(1/∆1)⌉ rounds are required in the fixed-confidence regime and only ⌈log2(h)⌉ rounds in711

the fixed-budget setting. For this reason the computational complexity of a call to OptEstimator has712

a limited impact in practice. We report below the average runtime on a personal computer with an713

ARM CPU 8GB RAM and 256GB SSD storage. The values are averaged over 50 runs.714
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Table 2: Runtime of GEGE recorded different instances.

[K,h, d] GEGE[δ = 0.1] GEGE[T = 500]

[10, 2, 2] 6ms 217ms

[50, 8, 2] 7ms 464ms

[100, 8, 4] 545ms 791ms

[200, 8, 8] 768ms 1139ms

[500, 8, 8] 1013ms 2425ms

Setup We have implemented the algorithms mainly in python3 and C++. For each experiment,715

the value reported (sample complexity or probability of error) are averaged over 500 runs. For the716

experiments on synthetic instances we generate and instance satisfying the conditions reported in717

the main by first choosing the h vectors by hand (and thus Θ) then the remaining arms are generated718

by sampling and normalizing some features from U([0, 1]h) to satisfy the contraints. For the real-719

world datasets we normalize the features and (when mentioned) we use a least square to estimate a720

regression parameter Θ̂ or we use the dataset as such (mis-specified setting). PAL is run with same721

confidence bonus used in Zuluaga et al. [2016] (which are tuned empirically) and for APE we follow722

Kone et al. [2023] and we use their confidence bonuses on pair of arms, which was already suggested723

by Auer et al. [2016].724

I.2 Additional experiments725

We provide additional experiments on synthetic and real-world datasets. GEGE is evaluated both in726

the fixed-confidence and fixed-budget regimes.727

Multi-objective optimization of energy efficiency We use the energy efficiency dataset of Tsanas728

and Xifara [2012]. This dataset is made for buildings energy performance optimization. The efficiency729

of each building is characterized by d = 2 quantities: the cooling load and the heating load. The730

heating load is the amount of energy that should be brought to maintain a building in an acceptable731

temperature and the cooling load is the amount of energy that should be extracted from a building to732

sustain a temperature in an acceptable range. Ideally both heating and cooling loads should be low for733

energy efficiency and they are characterized by different factors like glazing area and the orientation734

of the building, amongst other parameters. Tsanas and Xifara [2012] reported the simulated heating735

and cooling loads of K = 768 buildings together with h = 8 features characterizing each building736

including surface, roof and wall areas, the relative compactness, overall hight etc. The dataset was737

primarily made for multivariate regression but we use it for linear PSI as the goal is to optimize738

simultaneously heating and cooling loads which in general (and in this case), results into a Pareto739

front of 3 arms. We evaluate Algorithm 2 with a budget T = 10000 and in the fixed-confidence we740

set δ = 0.1 for Algorithm 3. We report the results average over 500 runs on Fig.6 and Fig.7. In the741

fixed-confidence experiment, "Racing” is the algorithm of Auer et al. [2016] for unstructured PSI.742
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Figure 6: Average probability of error on
the energy efficiency dataset.
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Figure 7: Sample complexity distribution
on the energy efficiency dataset.
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We observe that in both fixed-confidence and fixed-budget, GEGE largely outperforms its competitors.744

It worth noting in the fixed-budget setting, as K = 768, Uniform Allocation requires T ≥ 768 to be745

run correctly while EGE-SH requires T ≥ 7360. On the contrary GEGE just requires T ≥ h = 8746

which is negligible w.r.t K = 768. Moreover we observed that its probability of error is reasonable747

even for a budget T < K.748
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