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Abstract

Large language models (LLMs) are increas-001
ingly being used for complex research tasks002
such as literature review, idea generation, and003
scientific paper analysis, yet their ability to004
truly understand and process the intricate rela-005
tionships within complex research papers, such006
as the logical links between claims and support-007
ing evidence remains largely unexplored. In008
this study, we present CLAIM-BENCH, a com-009
prehensive benchmark for evaluating LLMs’010
capabilities in scientific claim-evidence extrac-011
tion and validation, a task that reflects deeper012
comprehension of scientific argumentation.013
We systematically compare three approaches014
which are inspired by divide and conquer ap-015
proaches, across six diverse LLMs, highlight-016
ing model-specific strengths and weaknesses017
in scientific comprehension. Through evalua-018
tion involving over 300 claim-evidence pairs019
across multiple research domains, we reveal020
significant limitations in LLMs’ ability to pro-021
cess complex scientific content. Our results022
demonstrate that closed-source models like023
GPT-4 and Claude consistently outperform024
open-source counterparts in precision and re-025
call across claim-evidence identification tasks.026
Furthermore, strategically designed three-pass027
and one-by-one prompting approaches signif-028
icantly improve LLMs’ abilities to accurately029
link dispersed evidence with claims, although030
this comes at increased computational cost.031
CLAIM-BENCH sets a new standard for evalu-032
ating scientific comprehension in LLMs, offer-033
ing both a diagnostic tool and a path forward034
for building systems capable of deeper, more035
reliable reasoning across full-length papers. 1036

1 Introduction037

Large Language Models (LLMs) have become im-038

portant tool in academic research, demonstrating039

1To facilitate future research and standardize evaluation in
this area, we release CLAIM-BENCH at [repository]

impressive capabilities such as automating com- 040

prehensive literature reviews, facilitating innova- 041

tive idea generation, and aiding experimental de- 042

sign. These advancements promise significant im- 043

provements in research productivity, creativity, and 044

efficiency, fueling excitement about the transfor- 045

mative potential of AI-driven methodologies in 046

science. However, as researchers increasingly as- 047

sign critical tasks to these models—from content 048

summarization and hypothesis generation to au- 049

tomated peer review (Checco et al., 2021; Agar- 050

wal et al., 2025; Lu et al., 2024)—a fundamen- 051

tal yet overlooked question emerges: how deeply 052

do these models truly understand scientific knowl- 053

edge beyond surface-level pattern recognition? De- 054

spite their widespread use and promising outcomes, 055

there remains uncertainty about the depth and ac- 056

curacy of their reasoning capabilities, particularly 057

in complex scientific contexts. 058

Scientific papers are characterized by intricate 059

relationships, primarily structured around claims 060

supported by corresponding evidence. The ability 061

to accurately identify and reason about these claim- 062

evidence pairs is essential for validating scientific 063

findings and ensuring research integrity, making 064

it a critical test of LLMs’ comprehension depth. 065

Unlike surface-level tasks such as summarization 066

or question answering, claim-evidence identifica- 067

tion requires global reasoning across paper sec- 068

tions, synthesis of dispersed information, and a 069

nuanced understanding of logical dependencies. 070

While existing works have assessed LLMs’ capa- 071

bilities in related research tasks such as summa- 072

rization (Agarwal et al., 2025), literature synthe- 073

sis (Lu et al., 2024), and hypothesis generation 074

(Vladika and Matthes, 2023), none have explicitly 075

benchmarked LLM performance on systematically 076

extracting and validating claims with supporting 077

evidence, leaving this area of scientific comprehen- 078

sion underexplored. 079

Despite the importance of accurately reasoning 080
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about claims and supporting evidence, no existing081

benchmarks explicitly assess LLM capabilities for082

this specific type of high-level scientific reasoning.083

Benchmarks such as LongGenBench (Wu et al.,084

2025) and XL2Bench (Ni et al., 2024) have high-085

lighted persistent limitations in LLMs’ abilities086

to process long-context inputs and maintain logi-087

cal coherence. Similarly, peer review frameworks088

like MetaWriter (Sun et al., 2024b) and AGEN-089

TREVIEW (Jin et al., 2024) evaluate LLMs in au-090

tomated review contexts but do not specifically091

test their capability to validate logical relationships092

such as claims and evidence, a task crucial for rig-093

orous scientific evaluation. Findings from Chain of094

Evidence (CoE) frameworks (Chang et al., 2024)095

underscore the complexity of structured, multi-096

hop reasoning required to integrate and validate097

information dispersed across documents. All these098

works evaluate reasoning in the general domains,099

but the scientific reasoning capability, which im-100

poses unique challenges, is not benchmarked.101

Within scientific reasoning, The AI Scientist (Lu102

et al., 2024), LitLLM (Agarwal et al., 2025), and103

ChatCite (Li et al., 2025) benchmark LLMs on104

tasks such as literature review and hypothesis gener-105

ation, while ScienceAgentBench (Chen et al., 2025)106

and SCBENCH (LI et al., 2025) probe multi-step107

reasoning and long-context understanding. How-108

ever, none of these frameworks explicitly measure109

the finer-grained ability to verify whether the evi-110

dence presented in a full scientific paper truly sup-111

ports its claims—precisely the claim-and-evidence112

(C-E) reasoning capability our benchmark targets.113

To address these gaps, we present CLAIM-114

BENCH, a novel benchmark designed to system-115

atically evaluate LLMs’ abilities to identify and116

validate claim-evidence relationships in scientific117

papers. CLAIM-BENCH challenges LLMs to pro-118

cess entire scientific papers, connect ideas across119

sections, and reason about them on a high level. In120

this work, we evaluate six state-of-the-art LLMs121

across diverse research domains. Our experiments122

indicate that larger models (e.g., GPT-4-Turbo,123

Claude 3.5) maintain high recall even with lengthy124

documents, especially when using iterative prompt-125

ing, whereas smaller models (e.g., LLaMA, Minis-126

tral) experience significant performance drops with127

increasing document length specially under Single-128

Pass prompting. These findings highlight crucial129

areas for enhancing long-context comprehension130

and inform the development of reliable AI-driven131

tools for scientific research and peer review.132

2 Related Work 133

AI for Science Large Language Models (LLMs) 134

have significantly advanced scientific workflows, 135

facilitating tasks such as peer review and hypothe- 136

sis generation. Tools like ReviewerGPT (Liu and 137

Shah, 2023) and ReviewFlow (Sun et al., 2024a) 138

have streamlined peer review processes, while 139

AGENTREVIEW (Jin et al., 2024) simulates col- 140

laborative review systems to improve research eval- 141

uation workflows. In parallel, fact-checking frame- 142

works, such as Scientific Fact-Checking (Vladika 143

and Matthes, 2023) and Exploring Multidimen- 144

sional Checkworthiness (Liu et al., 2025), em- 145

phasize validating claims in scientific literature. 146

However, these systems primarily focus on local- 147

ized tasks or prioritization mechanisms, leaving 148

the broader challenge of understanding the con- 149

nections across entire documents by LLMs unad- 150

dressed. Additional work such as AI-assisted peer 151

review (Checco et al., 2021) explores the feasibility 152

of algorithmically approximating peer-review judg- 153

ments, raising key ethical and practical concerns. 154

Benchmarks Long-context benchmarks, such as 155

SCBENCH (LI et al., 2025), MMLongBench-Doc 156

(Ma et al., 2024), and LongGenBench (Wu et al., 157

2025), have assessed LLMs’ ability to process ex- 158

tended inputs and maintain coherence, focusing 159

primarily on tasks like document summarization 160

and long-form generation. Specialized benchmarks 161

like U-MATH (Chernyshev et al., 2025) and Leave 162

No Document Behind (Godbole et al., 2024) exam- 163

ine domain-specific reasoning and multi-document 164

synthesis but address relatively structured and local- 165

ized relationships. The LCFO benchmark (Costa- 166

jussà et al., 2024a) targets summary expansion 167

with varying granularities of content compression, 168

revealing limits in semantic retention. The Y- 169

NQ dataset (Costa-jussà et al., 2024b) exposes 170

disparities in open-book comprehension across 171

low- & high-resource languages, hinting at deeper 172

weaknesses in cross-lingual and low-resource long- 173

context understanding. Data Interpreter (Hong 174

et al., 2024) showcases long-term data analysis 175

workflows with LLM agents, but primarily focuses 176

on task planning and execution rather than deep tex- 177

tual reasoning. In neuroscience, (Luo et al., 2025) 178

show LLMs surpassing expert predictions in future 179

experimental outcomes, yet such success doesn’t 180

imply comprehension of reasoning chains. In con- 181

trast, our work focuses specifically on research pa- 182

pers, which are characterized by more complex and 183
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dispersed relationships, such as claims supported184

by evidence across multiple sections. CLAIM-185

BENCH evaluates the ability of LLMs to synthe-186

size these intricate connections, testing their capac-187

ity for global reasoning and coherence in a way188

that reflects the unique demands of scientific texts.189

Collaborative Reasoning Collaborative reason-190

ing frameworks offer a complementary perspective,191

with multi-agent systems like Two Heads Are Bet-192

ter Than One (Su et al., 2025) and iterative feed-193

back mechanisms such as CYCLERESEARCHER194

(Weng et al., 2025) showing promise in enhanc-195

ing reasoning capabilities. While these approaches196

address some limitations of Single-Pass LLM sys-197

tems, their primary focus remains on generating198

and refining content rather than validating com-199

plex logical relationships. Similarly, tools like200

AIGS (Liu et al., 2024) and LLM-Assisted Hy-201

pothesis Generation (Vladika and Matthes, 2023)202

explore reasoning and hypothesis testing but do not203

directly tackle the problem of scientific comprehen-204

sion. (Leng et al., 2024) introduce a graph-based205

approach for hypothesis generation and evaluation,206

demonstrating potential for structured creativity,207

yet falling short of validating interlinked arguments208

at scale.209

Ethical AI Finally, ethical considerations have210

been raised in works like Ethical Use of LLMs211

(Lissack and Meagher, 2024), which stresses the212

need for transparency and accountability in AI-213

driven research, and multimodal benchmarks like214

MileBench (Dingjie et al., 2024), which expand215

the scope of LLM evaluation to include visual and216

textual data. These efforts, while addressing impor-217

tant aspects of AI integration in research, highlight218

the absence of targeted benchmarks that evaluate219

claim-evidence validation across long, complex sci-220

entific texts—a gap CLAIM-BENCH aims to fill.221

3 Methodology222

In this section, we present the design of CLAIM-223

BENCH, our benchmark for evaluating how well224

LLMs identify and analyze claim–evidence rela-225

tionships in full-length research papers.226

3.1 Dataset227

Dataset Curation The dataset for this study was228

curated by 4 PhD students with research experience.229

Each annotator had at least one first-author confer-230

ence publication, ensuring familiarity with scien-231

tific writing standards. These researchers selected232

papers according to specific guidelines (Appendix 233

B.1) to ensure relevance and diversity. Selection 234

criteria included: papers from the year 2024, non- 235

math-intensive subjects, length between 0 to 20 236

pages. The aim was to represent a broad spectrum 237

of current AI/ML research topics within the dataset. 238

To facilitate easier annotations, we developed 239

a PDF annotation tool, it lets users load a paper, 240

drag a pointer over any sentence or paragraph to 241

mark it as a claim, then click-add evidence addi- 242

tional spans as linked evidence for that claim; each 243

claim–evidence pair is stored in a one-to-many 244

structure and exported as JSON. (see Appendix 245

B.3). 246

Annotation Quality Check After compiling the 247

initial annotations (100 papers), these were set 248

aside before evaluating the models to ensure an 249

unbiased assessment of their capabilities. To en- 250

hance the reliability of our dataset as ground truth, 251

we conducted a validation phase where a different 252

set of annotators re-annotated a subset of 30 papers. 253

We then assessed annotation consistency by cal- 254

culating Inter-Annotator Agreement (IAA) using 255

the average F1-score across annotator pairs. This 256

analysis yielded substantial agreement for identify- 257

ing claims (F1 = 0.755) and moderate agreement 258

for identifying evidence (F1 = 0.659) and linked 259

claim-evidence pairs (F1 = 0.617), confirming the 260

dataset’s suitability for benchmarking. The detailed 261

methodology used for this IAA is provided in Ap- 262

pendix B.2. 263

3.2 Evaluation Metrics 264

In this study, we employ four metrics to evaluate 265

the LLM performance: three established metrics 266

in information retrieval, precision, recall, F1-score, 267

and a novel metric, sentence_gap, to evaluate LLM 268

performance in claim-evidence retrieval tasks and 269

the effectiveness of our various prompting tech- 270

niques. 271

Precision (P) Used to measure the proportion of 272

spans the model predicts that are identified by the 273

annotators, reflecting their effectiveness in respond- 274

ing to precise and carefully structured prompts. 275

P =
TP

TP + FP
, (1) 276

where TP (true positive) is the number of correctly 277

retrieved claim/evidence, and FP (false positive) 278

is the number of retrieved “claim”/“evidence” that 279

are not claims/evidences. 280
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Single-Pass

@Research Paper Æ
LLM

� Claims
✓ Evidence

⋆ Conclusions

single
prompt

Three-Pass

@Research Paper Æ
LLM

� Claims
Æ
LLM

✓ Evidence
Æ
LLM

⋆ Conclusions

claims
prompt

evidence
prompt

conclusion
prompt

One-by-One Pass

@Research Paper Æ
LLM

� Claims

claims
prompt

� Claim 1
Æ
LLM

✓ Evidence. 1 _ Claim-Evi 1
...

...
...

...
� Claim n

Æ
LLM

✓ Evidence. n _ Claim-Evi n

evidence
prompt

evidence
prompt

Æ
LLM

⋆ Conc. 1
...

...
Æ
LLM

⋆ Conc. n

conclusion
prompt

conclusion
prompt

Phase 1: Extract All Claims

Phase 2: Extract Evidence & Form C-E Pairs Phase 3: Generate Conclusions

Figure 1: Three methods to prompt LLMs to analyze the papers. Single-Pass: Full paper processing with one
prompt. Three-Pass: Sequential claim → evidence → conclusion extraction. One-by-One Pass: Individual
evidence retrieval per claim.

Recall (R) Quantifying the portion of claim/evi-281

dence that are retrieved. Recall assesses the ability282

to capture pertinent data, a measure of the model’s283

responsiveness to exhaustive prompt inquiries284

R =
TP

TP + FN
, (2)285

where FN (false negative) is the number of claim-286

s/evidences that are incorrectly missed.287

F1-score This is the harmonic mean of P and R.288

The F1-score provides a balanced measure of ac-289

curacy, crucial for evaluating the efficacy of the290

prompting techniques in eliciting detailed and rele-291

vant responses.292

sentence_gap The sentence_gap metric mea-293

sures the distance between a retrieved claim and294

each of its associated retrieved evidence. It is par-295

ticularly valuable for evaluating long-range con-296

textual comprehension by quantitatively assess-297

ing models’ ability to handle textual relationships298

over extended contexts. This assessment is crucial299

for complex prompts designed to challenge such300

comprehension and is instrumental as we explore 301

how increasing LLM context length capabilities 302

enhance performance in realistic scenarios. 303

sentence_gap =
1

|M|
∑

(p,g)∈M

∣∣s(p)− s(g)
∣∣, (3) 304

where M is the set of matched evidence pairs (us- 305

ing Intersection over Union matching rule). s(·) 306

returns the sentence index of a span inside the doc- 307

ument. The sentence_gap metric is therefore the 308

average absolute sentence-level distance between 309

each predicted claim span p and its evidence span 310

g, capturing how far a model must reason across 311

the paper to link claims with supporting evidence. 312

Secondary metrics Additionally, we consider 313

secondary metrics that focus on operational aspects 314

of model performance: the time to generate out- 315

puts and how each model’s recall changes as input 316

length (token count) increases. These metrics are 317

crucial for understanding efficiency and scalability. 318

They help compare how models manage computa- 319

tional resources and handle large input sizes under 320

varying conditions. 321
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Figure 2: Precision vs. Recall for claim (solid markers) and evidence (transparent markers) identification across
models and strategies (shapes: Single-Pass •, Three-Pass ▲, One-by-One ■). Models show higher precision for
claims, higher recall for evidence, with most results below F1 = 0.7.

4 Experimental Setup322

We evaluate six state-of-the-art LLMs, chosen323

to span both licensing regimes and architec-324

tural families while sharing a ≥128K-token con-325

text window. Open-source include Ministral-8B326

(Mistral AI, 2024), Phi-3.5-MoE (Abdin et al.,327

2024), and LLaMA-70B (Wang et al., 2025) and328

Closed-source includes GPT-4 (OpenAI, 2024),329

Gemini-Exp_1114 (Gemini Team, 2024), and330

Claude 3.5 Sonnet (Anthropic, 2025).331

4.1 Analysis Methods332

As illustrated in Figure 1, we explore three dis-333

tinct prompting methods to assess and enhance334

model performance on claim-evidence identifica-335

tion tasks.336

Single-Pass Initially, we present the models with337

a research paper, instructing (Appendix A.1) them338

to identify claims, evidences, and conclusions in a339

single comprehensive prompt.340

Three-Pass Building on the “divide and conquer”341

strategy from prior research, we then deconstruct342

the task into sequential stages. In the first stage, the343

model identifies claims using a dedicated prompt.344

Subsequently, these claims are supplied to the next345

stage, where separate prompts elicit correspond- 346

ing evidences. Finally, we combine the identified 347

claims and evidences, using another prompt to ex- 348

tract conclusions (Appendix A.2). 349

One-by-One Pass We adopt a more granular ap- 350

proach where each claim is processed individually 351

to retrieve evidence. This means for n claims, the 352

model runs n times to gather evidence for each, and 353

similarly for conclusions. Although this approach 354

provides detailed analysis, it significantly increases 355

the demand on computational resources and time 356

(Appendix A.3). These methods combine care- 357

ful prompting with our annotated claim–evidence 358

dataset, allowing us to benchmark each model’s ex- 359

traction accuracy and probe how different prompt 360

strategies improve performance. 361

5 Results 362

The following section details the experimental re- 363

sults, highlighting comparative model performance 364

and strategic impacts. 365

5.1 Precision vs Recall 366

As shown in Figure 2, models exhibit a clear 367

precision-recall trade-off: settings that achieve 368
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Figure 3: Sentence distance distribution (box plots) between claims and linked evidence vs. Human baseline
(leftmost). LLMs, especially with iterative strategies, link over longer distances than humans, showing capability
but potential noise.

higher recall often incur reduced precision. For in-369

stance, Claude and LLaMA achieve high recall but370

at the cost of extracting numerous false positives,371

which is evident from their large maximum linking372

distances (Figure 7), exceeding 2,200 sentences in373

some cases. Although valuable, such long-range374

links raise the risk of false claim–evidence pairs.375

Conversely, models like GPT prioritize precision,376

maintaining moderate linking distances (around377

658–708 sentences) with fewer spurious matches,378

though this approach slightly limits recall. Minis-379

tral offers a balanced precision-recall profile, char-380

acterized by consistent, shorter linking distances.381

Comparing the precision-recall tradeoff trends382

between open- and closed-source models, we see383

that closed-source models balance precision and384

recall better. Overall, GPT often balances high pre-385

cision and moderate recall; Claude achieves higher386

recall rates but exhibits noticeable trade-offs in pre-387

cision. Gemini remains stable across strategies.388

Among open-source models, LLaMA came close389

to matching closed-source recall but with some out-390

liers, also shows variability in precision; Ministral391

is moderate in both coverage & precision; Phi ex-392

hibits the widest swings, at times matching larger393

models but also dropping in accuracy.394

5.2 Smaller vs Larger Models 395

Larger models, such as GPT-4-Turbo, Claude, 396

Gemini, and LLaMA, generally exhibit strong 397

recall in identifying claims, with GPT-4-Turbo 398

achieving high precision (0.68) and recall (0.81), 399

demonstrating effective balance at different strate- 400

gies. Claude also shows strong recall (0.83), al- 401

beit with a moderate precision drop (0.61). Also, 402

LLaMA achieves similar recall (0.76) but compara- 403

tive precision (0.60), indicating a tendency to iden- 404

tify extensive and highly precise connections, con- 405

sidering the best cases of each model. 406

Smaller models, such as Ministral and Phi, typi- 407

cally exhibit lower recall and precision. Ministral 408

shows modest recall (0.60) with precision around 409

0.38, reflecting a conservative approach to claim- 410

evidence linking. Phi demonstrates similar preci- 411

sion (approximately 0.39) but notably higher recall 412

(around 0.7) in the best cases. These observations 413

highlight a clear trade-off: larger models generally 414

identify broader and more nuanced claim–evidence 415

relationships but often at the cost of precision, 416

whereas smaller models maintain more consistent 417

precision with significantly reduced recall. In both 418

the cases similar pattern holds in evidence extrac- 419

tion as well. 420
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Figure 4: Execution time comparison (box plots): Single-Pass (■) is fastest, One-by-One (■) is slowest. Models
vary greatly in speed (e.g., Claude consistently fast; LLaMA/Phi often requiring >1000s).

5.3 Claims vs Evidence Extraction421

Model Best C Performances Best E Performances
F1 P R F1 P R

GPT-4-Turbo 0.56 0.66 0.57 0.47 0.34 0.69
Claude 3.5 0.59 0.62 0.60 0.42 0.33 0.66
Gemini-Exp_1114 0.54 0.48 0.64 0.40 0.30 0.52
LLaMA-70B 0.58 0.60 0.56 0.45 0.42 0.49
Ministral-8B 0.48 0.39 0.61 0.39 0.31 0.52
Phi-3.5-MoE 0.50 0.40 0.72 0.35 0.25 0.63

Table 1: The highest performance (across all strategies)
for Claim (C) and Evidence (E) extraction; “P@R” de-
notes precision at the corresponding recall.

Analyzing claim versus evidence extraction sep-422

arately reveals distinct performances among LLMs423

(see Table 1). Across all models, precision is con-424

sistently higher for claims than for evidence, in-425

dicating the models more readily detect explicit426

claims compared to the contextually dispersed evi-427

dence. Also, the evidence extraction of all models428

yields higher recall than precision. In addition to429

the common trends, the models exhibit distinct430

patterns. For instance, Claude and LLaMA ex-431

hibit high recall in evidence extraction but with432

substantial variability in linking distances (Claude:433

mean gap of 119.4 sentences, variance of 33,674;434

LLaMA: mean 95.1 sentences, variance of 34,207),435

suggesting increased noise and inconsistent perfor-436

mance. Conversely, Ministral maintains lower link-437

ing distances (mean 75.9 sentences) with minimal438

variance, signifying a more cautious and controlled439

approach. 440

5.4 Impact of Strategy 441

The Single-pass strategy is highly efficient but has 442

limited coverage, e.g., GPT-4 produces 152 pairs 443

with a 98.5 average sentence_gap, while Ministral 444

generates 166 pairs (average gap: 64.2). Mean- 445

while, the Three-pass strategy enhances recall and 446

coverage at moderate computational cost. Claude 447

yields 174 pairs (average gap: 122.2), and Phi 448

captures 279 pairs, albeit with significant vari- 449

ance (11,490.2) in sentence_gap. Finally, the One- 450

by-One strategy maximizes recall but increases 451

computational demand significantly. Claude and 452

LLaMA produce the highest counts (639 and 659 453

pairs, respectively), with substantial gaps (Claude: 454

119.4, LLaMA: 95.1) and high variance (Claude: 455

33,673.9, LLaMA: 34,207.0). Phi also achieves 456

substantial coverage (347 pairs) with notable vari- 457

ance (13,188.2). 458

5.5 Impact of Token Length on Recall 459

We observed how the documents’ token length af- 460

fected the models’ recall performances. In long 461

documents, we expected performance drops, but 462

these observed drops are tied to the prompting strat- 463

egy. With the Single-pass strategy, the recall perfor- 464

mances dropped as the document length increased. 465

With the iterative prompting strategies (Three-pass 466

or One-by-One), the performance drops are less 467
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significant, indicating that the iterative prompting468

imposes less “processing load” onto the LLMs. Ad-469

ditionally, the recall drops differ by the sizes of470

the models. Relatively smaller models (LLaMA471

70B and Ministral 8B) showed more notable de-472

clines, especially with Single-pass, whereas the473

larger models (Claude and GPT-4) maintained rel-474

atively high recalls, underlining the advantage of475

their long context capabilities. Additional details476

in Appendix C.477

Claude and LLaMA frequently produce the high-478

est pair counts (up to 639 and 659), reflecting broad479

coverage. This can coincide with their large context480

window sizes—helpful for capturing distant rela-481

tionships—yet also introduces potential noise. GPT482

and Gemini keep moderate distances, suggesting483

they discovered fewer links. Ministral remains con-484

servative with fewer pairs with shorter distances,485

while Phi’s extreme variance indicates inconsistent486

linking across long contexts. We include the details487

in Figure 7 (in Appendix C).488

5.6 Execution Time Analysis489

As shown in Figure 4, the execution times differ490

considerably across models and strategies. GPT491

is highly efficient in the Single-Pass (under 200s)492

and relatively moderate in one-by-one approaches493

(∼500s). Gemini exhibits intermediate execu-494

tion times across all strategies, notably higher495

for the three-pass (∼600s). Claude consistently496

achieves the fastest execution across all strate-497

gies, maintaining execution times under 200 sec-498

onds. LLaMA shows extensive variability, espe-499

cially with one-by-one strategies frequently exceed-500

ing 1,200 seconds, reflecting significant computa-501

tional demands. Ministral shows relatively bal-502

anced execution times, with three-pass and one-503

by-one strategies averaging around 600–900 sec-504

onds. Phi demonstrates the highest computational505

intensity, especially in one-by-one strategies, often506

surpassing 1,200 seconds, highlighting the consid-507

erable resource investment required for thorough508

analyses. The execution times recorded for Gem-509

ini exhibit some variability, which may partially510

stem from fluctuations in API response latency dur-511

ing our experiments, combined with the necessary512

sleep() intervals implemented for rate limiting.513

6 Discussion514

The insights from CLAIM-BENCH emphasize crit-515

ical directions for future research and practical516

applications leveraging the capabilities of LLMs 517

in scientific claim-evidence reasoning. Improv- 518

ing LLMs’ ability to accurately validate claim- 519

evidence pairs could enhance their practical use 520

in designing experiments and generating scientif- 521

ically valid hypotheses. Furthermore, improved 522

claim identification and validation methods provide 523

a foundation for developing sophisticated claim 524

quality scoring tools that can greatly enhance peer- 525

review processes. The capability to systemati- 526

cally link and integrate evidence across multiple 527

scientific papers could lead to powerful retrieval- 528

augmented laboratory assistants and cross-paper 529

evidence graphs, accelerating knowledge discovery. 530

These advancements would not only strengthen the 531

robustness of scientific validations but also facil- 532

itate the creation of more sophisticated scientific 533

QA systems, thus laying foundational benchmarks 534

for future scientific text generation and evaluation 535

methods. This research thus serves as a pivotal 536

foundation for transformative applications in scien- 537

tific inquiry and discourse. 538

7 Conclusion 539

Motivated by the limited evaluation in prior litera- 540

ture of LLMs’ abilities in scientific reasoning, we 541

introduced CLAIM-BENCH, a novel benchmark 542

specifically designed to evaluate LLMs’ capabili- 543

ties in identifying and validating claim-evidence 544

relationships within scientific texts. We system- 545

atically explored diverse LLM architectures and 546

prompting strategies. Our results demonstrate 547

significant limitations in LLMs’ comprehension, 548

specifically in their precision and recall balance 549

when processing complex scientific documents. 550

Notably, models showed higher precision in extract- 551

ing explicit claims, whereas extracting dispersed 552

evidence proved challenging, yielding higher re- 553

call but lower precision and increased sentence 554

gaps. Moreover, our comparative analysis across 3 555

strategies revealed substantial trade-offs between 556

computational efficiency, precision, and coverage. 557

Closed-source models generally displayed more 558

stable performances, while open-source models 559

offered broad yet inconsistent coverage. CLAIM- 560

BENCH provides a framework for the assessment 561

of LLMs in complex scientific contexts, and our 562

study provides useful material and insights for con- 563

tinuing the advancement in LLMs’ high-level com- 564

prehension and scientific reasoning capabilities. 565
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8 Limitations566

While CLAIM-BENCH provides comprehensive567

insights into the capabilities of LLMs in scientific568

claim-evidence reasoning. Despite these insights,569

CLAIM-BENCH has several limitations worth not-570

ing. First, the benchmark primarily focuses on571

recent papers from select domains, which are after572

the LLMs’ knowledge cutoff but might limit the573

generalizability. Second, the evaluation relies on574

existing LLM architectures. While we leave the575

exploration of the impact of model architecture de-576

velopment to future works, CLAIM-BENCH could577

be a useful material that supports future projects578

that develop novel LLM architectures that have579

enhanced long-context language understanding ca-580

pabilities and scientific reasoning capabilities.581
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A.1 Single-Pass Prompt 768

Comprehensive Evaluation Prompt

Analyze the research paper and provide a comprehensive evaluation following these guide-
lines:

1. Identify ALL claims in the paper where each claim:

• Makes a specific, verifiable assertion
• Is supported by concrete evidence
• Represents findings, contributions, or methodological advantages
• Can be from any section except abstract

2. For each identified claim:

• Extract ALL supporting or contradicting evidence (experimental results, data, or method-
ology)

• Evaluate the evidence strength and limitations
• Assess how well conclusions align with evidence

Return ONLY the following JSON structure:

{
"analysis": [

{
"claim_id": number,
"claim": {

"text": "statement of the claim",
"type": "methodology/result/contribution/performance",
"location": "section/paragraph",
"exact_quote": "verbatim text from paper"

},
"evidence": [

{
"evidence_text": "specific experimental result/data",
"strength": "strong/moderate/weak",
"limitations": "specific limitations",
"location": "section/paragraph",
"exact_quote": "verbatim text from paper"

}
],
"evaluation": {

"conclusion_justified": true/false,
"robustness": "high/medium/low",
"justification": "explanation of evidence-conclusion alignment",
"key_limitations": "critical limitations affecting validity",
"confidence_level": "high/medium/low"

}
}

]
}

Ensure:

• ALL substantive claims are captured

• Evaluations are objective and well-reasoned

• All locations and quotes are precise

• Multiple pieces of evidence per claim are included when present
769
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A.2 Three-Pass Prompt770

Claims Extraction Prompt

Paper text: {text}
Task: Identify all statements in the text that meet the following criteria for a claim:

1. Makes a specific, testable assertion about results, methods, or contributions.

2. Represents a novel finding, improvement, or advancement.

3. Presents a clear position or conclusion.

Requirements:

• Include both major and minor claims.

• Don’t miss any claims.

• Present each claim as a separate item.

Return ONLY the following JSON structure:
{

"claims": [
{

"claim_id": 1,
"claim_text": "statement of the claim",
"location": "section/paragraph where this claim appears",
"claim_type": "Nature of the claim",
"exact_quote": "complete verbatim text containing the claim"

}
]

}

771

Evidence Identification Prompt

Paper text: {text}
For these claims: {claims_text}
Please identify relevant evidence that:

1. Directly supports or contradicts the claim’s specific assertion.

2. Is presented with experimental results, data, or concrete examples.

3. Can be traced to specific methods, results, or discussion sections.

4. Is not from the abstract or introduction.

Return ONLY the following JSON:
{

"evidence_sets": [
{

"claim_id": number,
"evidence": [

{
"evidence_id": number,
"evidence_text": "specific evidence",
"strength": "strong/moderate/weak",
"limitations": "key limitations",
"location": "section/paragraph",
"exact_quote": "verbatim text"

772
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}
]

}
]

}

773

Conclusion Evaluation Prompt

Analyze these claims and their evidence: {analysis_text}
For each claim-evidence pair, evaluate:

1. Whether the evidence justifies the claim.

2. The overall strength of support.

3. Any important limitations.

Return ONLY the following JSON:
{

"conclusions": [
{

"claim_id": number,
"conclusion_justified": true/false,
"robustness": "high/medium/low",
"key_limitations": "specific limitations",
"confidence_level": "high/medium/low"

}
]

}

774

A.3 One-by-One Prompt 775

Claims Extraction Prompt

Analyze this research paper and extract ALL possible claims made by the authors. Paper text:
{text}
Your task is to identify all statements in the text that meet the following criteria for a claim:

1. Makes a specific, testable assertion about results, methods, or contributions.

2. Represents a novel finding, improvement, or advancement.

3. Presents a clear position or conclusion.

Make sure to:

• Include both major and minor claims.

• Don’t miss any claims.

• Present each claim as a separate item.

Return ONLY the following JSON structure:

{
"claims": [

{

776
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"claim_id": 1,
"claim_text": "statement of the claim",
"location": "section/paragraph where this claim appears",
"claim_type": "Nature of the claim",
"exact_quote": "complete verbatim text containing the claim"

}
]

}

777

Evidence Analysis Prompt

Paper text: {text}
For the following claim from the paper: "{claim[’claim_text’]}"
Please identify relevant evidence that:

1. Directly supports or contradicts the claim’s specific assertion.

2. Is presented with experimental results, data, or methodology.

3. Can be traced to specific methods, results, or discussion sections.

4. Is not from the abstract or introduction.

If NO evidence is found for the given Claim, return:

{
"claim_id": {claim['claim_id']},
"evidence": [],
"no_evidence_reason": "Explain why no evidence was found (e.g., 'Claim is unsupported', '

↪→ Claim is theoretical without empirical evidence', etc.)"
}

ELSE: Return ONLY the following JSON structure:

{
"claim_id": {claim['claim_id']},
"evidence": [

{
"evidence_id": 1,
"evidence_text": "specific experimental result/data point",
"evidence_type": "primary/secondary",
"strength": "strong/moderate/weak",
"limitations": "stated limitations or assumptions",
"location": "specific section & paragraph",
"exact_quote": "verbatim text from paper"

}
]

}

778

Conclusion Analysis Prompt

Paper text: {text}
Analyze the following claim and its supporting evidence: {single_claim_analysis}
Provide a comprehensive conclusion analysis following these guidelines:

1. Evidence Assessment:

• Evaluate the strength and quality of ALL evidence presented.
• Consider both supporting and contradicting evidence.
• Assess the methodology and reliability of evidence.

779
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2. Conclusion Analysis:

• Determine what the authors concluded about this specific claim.
• Evaluate if the conclusion is justified by the evidence.
• Consider the relationship between evidence quality and conclusion strength.

3. Robustness Evaluation:

• Assess how well the evidence supports the conclusion.
• Consider methodological strengths and weaknesses.
• Evaluate the consistency of evidence.

4. Limitations Analysis:

• Identify specific limitations in both evidence and conclusion.
• Consider gaps in methodology or data.
• Note any potential biases or confounding factors.

Return ONLY the following JSON structure:

{
"conclusions": [

{
"claim_id": {claim_id},
"author_conclusion": "detailed description of authors' conclusion based on evidence

↪→ ",
"conclusion_justified": true/false,
"justification_explanation": "detailed explanation of why conclusion is/isn't

↪→ justified",
"robustness_analysis": "comprehensive analysis of evidence strength and reliability

↪→ ",
"limitations": "specific limitations and caveats",
"location": "section/paragraph where conclusion appears",
"evidence_alignment": "analysis of how well evidence aligns with conclusion",
"confidence_level": "high/medium/low based on evidence quality"

}
]

}
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B Additional Details on Annotation781

B.1 Annotator Guidelines782

• Select one recent research paper in the field of artificial intelligence or machine learning.783

• Prioritize papers published in 2024 to ensure relevance to current developments.784

• When possible, select a paper with fewer than 20 pages to facilitate thorough annotation.785

• Avoid papers with heavily mathematical content to ensure accessibility.786

• Complete all annotation tasks independently, without employing large language models for assistance787

at any stage of the process.788

Task Description789

Your task is to identify all statements in the text that qualify as claims under the following criteria:790

1. Specificity: The statement makes a specific, testable assertion about results, methods, or contribu-791

tions.792

2. Novelty: The statement represents a novel finding, improvement, or advancement.793

3. Clarity: The statement presents a clear position or conclusion.794

Requirements795

• Include both major and minor claims.796

• Ensure no claim is overlooked.797

• Present each claim as a separate item.798

Evidence Identification799

For each identified claim, find and document relevant evidence that:800

1. Relevance: Directly supports or contradicts the claim’s specific assertion.801

2. Concrete Support: Is presented with experimental results, data, or concrete examples.802

3. Traceability: Can be traced to specific methods, results, or discussion sections in the text.803

4. Exclusions: Evidence must not be derived from the abstract or introduction sections of the text.804

Conclusion Analysis805

• Justification: Evaluate whether the conclusions drawn in the text are justified by the evidence806

provided.807

Annotation Format808

Each annotation should be formatted as follows:809

{810

"Claim_id": "<unique_identifier>",811

"Claim_text": "<text_of_the_claim>",812

"Evidence_text": "<text_supporting_or_contradicting_the_claim>",813

"Justification_Conclusion": "<evaluator's_comment_on_evidence_justification>"814

}815
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B.2 Inter-Annotator Agreement Methodology 816

To evaluate the reliability of the CLAIM-BENCH annotations, we calculated Inter-Annotator Agreement 817

on a subset of 30 papers, each annotated by two different annotators on the Claims and the Evidence. For 818

each of the claims and the evidences, we take one set (“set A”) as the ground truth and compute the F1- 819

score of the other set (“set B”). Considering the symmetry, we also computed the F1-score swapping sets 820

A and B, and reported the averaged F1-score. We chose F1 because our annotation task (identifying and 821

linking spans) closely parallels standard information extraction tasks, where F1 is a standard evaluation 822

measure balancing precision and recall; this reflects the need for agreement on both the correctness and 823

comprehensiveness of annotations. Furthermore, in our LLM-based assessment, the requested F1-score 824

provides an interpretable measure of semantic concordance derived from the model’s understanding of 825

semantic equivalence beyond exact string matches. 826

B.3 Annotation Tool 827

Figure 5: The custom annotation tool interface used for CLAIM-BENCH dataset creation, enabling direct PDF text
selection and structured labeling (e.g., ’Add as Claim’ button) of claim-evidence pairs.
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(a) LLAMA Recall (b) Ministral Recall

(c) Claude Recall (d) GPT-4 Recall

Figure 6: Mean recall by document size groups (small, medium, large) for different models and prompting strategies,
illustrating performance trends across increasing token counts.

C Impact of Documents’ Token Length828

Figure 6 plots mean recall for three prompting strategies—Three-Pass, One-by-One, and Single-Pass—829

across three document-length buckets (< 15 k, 15–20 k, ≥ 20 k tokens). A closer reading of the bars830

yields three key observations:831

1. Performance drops are tied to the strategy more than the model size.832

• For every model, the Single-Pass run shows the steepest decline as documents grow.833

• Example: LLaMA’s recall plunges from about 0.60 in small papers to roughly 0.40 in ≥20834

k-token papers under Single-Pass.835

2. Once an iterative strategy is used, the size-related gap all but disappears.836

• Iterative prompting (Three-Pass or One-by-One) largely neutralises length effects—even for the837

smaller models.838

• LLaMA 70B: In One-by-One mode the large-document group matches or exceeds the small-839

document group (≈ 0.78 vs ≈ 0.76).840

• Ministral 8B: Three-Pass recall stays virtually flat (∼ 0.72–0.75) across all three size buckets;841

the length penalty only appears in Single-Pass.842

3. Larger models still benefit, but their advantage is greatest with fine-grained prompts.843

• Claude 3.5 Sonnet: Recall rises with document size under Three-Pass (≈ 0.72 → 0.85), and844

remains ≥ 0.75 in One-by-One.845

• GPT-4-Turbo: One-by-One keeps recall at or above 0.80 for medium- and large-size papers; the846

drop to ∼ 0.66 for large papers occurs only in Three-Pass, not in Single-Pass.847
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The figure shows that prompt granularity is the dominant lever for long-context recall. Single-pass 848

prompting amplifies context-window limits—especially in smaller models—but iterative, claim-level 849

prompting (Three-Pass and One-by-One) recovers performance, sometimes even improving it as the text 850

grows. Larger models are naturally more stable, yet they, too, realise their full potential only when given 851

finer-grained, multi-step instructions. 852

C.1 Sentence Distance Detailed Analysis 853

Figure 7: Aggregated statistics of the sentence_gap metric Count, Max, Mean, and Variance (Var)—for each model
under the three prompting strategies (Three-Pass, One-pass, and One-by-One). Larger counts and wider gaps (e.g.,
Claude and LLaMA exceeding 2,200-sentence links in One-by-One) reflect broader retrieval, whereas smaller
models such as Mistral keep distances short and variance low. “N/A” indicates the model-strategy combination was
not executed.
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