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Abstract

Large language models (LLMs) are increas-
ingly being used for complex research tasks
such as literature review, idea generation, and
scientific paper analysis, yet their ability to
truly understand and process the intricate rela-
tionships within complex research papers, such
as the logical links between claims and support-
ing evidence remains largely unexplored. In
this study, we present CLAIM-BENCH, a com-
prehensive benchmark for evaluating LLMs’
capabilities in scientific claim-evidence extrac-
tion and validation, a task that reflects deeper
comprehension of scientific argumentation.
We systematically compare three approaches
which are inspired by divide and conquer ap-
proaches, across six diverse LLMs, highlight-
ing model-specific strengths and weaknesses
in scientific comprehension. Through evalua-
tion involving over 300 claim-evidence pairs
across multiple research domains, we reveal
significant limitations in LLMs’ ability to pro-
cess complex scientific content. Our results
demonstrate that closed-source models like
GPT-4 and Claude consistently outperform
open-source counterparts in precision and re-
call across claim-evidence identification tasks.
Furthermore, strategically designed three-pass
and one-by-one prompting approaches signif-
icantly improve LLMs’ abilities to accurately
link dispersed evidence with claims, although
this comes at increased computational cost.
CLAIM-BENCH sets a new standard for evalu-
ating scientific comprehension in LLMs, offer-
ing both a diagnostic tool and a path forward
for building systems capable of deeper, more
reliable reasoning across full-length papers. '

1 Introduction

Large Language Models (LLMs) have become im-
portant tool in academic research, demonstrating

ITo facilitate future research and standardize evaluation in
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impressive capabilities such as automating com-
prehensive literature reviews, facilitating innova-
tive idea generation, and aiding experimental de-
sign. These advancements promise significant im-
provements in research productivity, creativity, and
efficiency, fueling excitement about the transfor-
mative potential of Al-driven methodologies in
science. However, as researchers increasingly as-
sign critical tasks to these models—f{rom content
summarization and hypothesis generation to au-
tomated peer review (Checco et al., 2021; Agar-
wal et al., 2025; Lu et al., 2024)—a fundamen-
tal yet overlooked question emerges: how deeply
do these models truly understand scientific knowl-
edge beyond surface-level pattern recognition? De-
spite their widespread use and promising outcomes,
there remains uncertainty about the depth and ac-
curacy of their reasoning capabilities, particularly
in complex scientific contexts.

Scientific papers are characterized by intricate
relationships, primarily structured around claims
supported by corresponding evidence. The ability
to accurately identify and reason about these claim-
evidence pairs is essential for validating scientific
findings and ensuring research integrity, making
it a critical test of LLMs’ comprehension depth.
Unlike surface-level tasks such as summarization
or question answering, claim-evidence identifica-
tion requires global reasoning across paper sec-
tions, synthesis of dispersed information, and a
nuanced understanding of logical dependencies.
While existing works have assessed LLMs’ capa-
bilities in related research tasks such as summa-
rization (Agarwal et al., 2025), literature synthe-
sis (Lu et al., 2024), and hypothesis generation
(Vladika and Matthes, 2023), none have explicitly
benchmarked LLM performance on systematically
extracting and validating claims with supporting
evidence, leaving this area of scientific comprehen-
sion underexplored.

Despite the importance of accurately reasoning



about claims and supporting evidence, no existing
benchmarks explicitly assess LLM capabilities for
this specific type of high-level scientific reasoning.
Benchmarks such as LongGenBench (Wu et al.,
2025) and XL2Bench (Ni et al., 2024) have high-
lighted persistent limitations in LLMs’ abilities
to process long-context inputs and maintain logi-
cal coherence. Similarly, peer review frameworks
like MetaWriter (Sun et al., 2024b) and AGEN-
TREVIEW (Jin et al., 2024) evaluate LLMs in au-
tomated review contexts but do not specifically
test their capability to validate logical relationships
such as claims and evidence, a task crucial for rig-
orous scientific evaluation. Findings from Chain of
Evidence (CoE) frameworks (Chang et al., 2024)
underscore the complexity of structured, multi-
hop reasoning required to integrate and validate
information dispersed across documents. All these
works evaluate reasoning in the general domains,
but the scientific reasoning capability, which im-
poses unique challenges, is not benchmarked.

Within scientific reasoning, The Al Scientist (Lu
et al., 2024), LitLLM (Agarwal et al., 2025), and
ChatCite (Li et al., 2025) benchmark LLMs on
tasks such as literature review and hypothesis gener-
ation, while ScienceAgentBench (Chen et al., 2025)
and SCBENCH (LI et al., 2025) probe multi-step
reasoning and long-context understanding. How-
ever, none of these frameworks explicitly measure
the finer-grained ability to verify whether the evi-
dence presented in a full scientific paper truly sup-
ports its claims—precisely the claim-and-evidence
(C-E) reasoning capability our benchmark targets.

To address these gaps, we present CLAIM-
BENCH, a novel benchmark designed to system-
atically evaluate LLMs’ abilities to identify and
validate claim-evidence relationships in scientific
papers. CLAIM-BENCH challenges LLMs to pro-
cess entire scientific papers, connect ideas across
sections, and reason about them on a high level. In
this work, we evaluate six state-of-the-art LLMs
across diverse research domains. Our experiments
indicate that larger models (e.g., GPT-4-Turbo,
Claude 3.5) maintain high recall even with lengthy
documents, especially when using iterative prompt-
ing, whereas smaller models (e.g., LLaMA, Minis-
tral) experience significant performance drops with
increasing document length specially under Single-
Pass prompting. These findings highlight crucial
areas for enhancing long-context comprehension
and inform the development of reliable Al-driven
tools for scientific research and peer review.

2 Related Work

Al for Science Large Language Models (LLMs)
have significantly advanced scientific workflows,
facilitating tasks such as peer review and hypothe-
sis generation. Tools like ReviewerGPT (Liu and
Shah, 2023) and ReviewFlow (Sun et al., 2024a)
have streamlined peer review processes, while
AGENTREVIEW (Jin et al., 2024) simulates col-
laborative review systems to improve research eval-
uation workflows. In parallel, fact-checking frame-
works, such as Scientific Fact-Checking (Vladika
and Matthes, 2023) and Exploring Multidimen-
sional Checkworthiness (Liu et al., 2025), em-
phasize validating claims in scientific literature.
However, these systems primarily focus on local-
ized tasks or prioritization mechanisms, leaving
the broader challenge of understanding the con-
nections across entire documents by LLMs unad-
dressed. Additional work such as Al-assisted peer
review (Checco et al., 2021) explores the feasibility
of algorithmically approximating peer-review judg-
ments, raising key ethical and practical concerns.

Benchmarks Long-context benchmarks, such as
SCBENCH (LI et al., 2025), MMLongBench-Doc
(Ma et al., 2024), and LongGenBench (Wu et al.,
2025), have assessed LLMs’ ability to process ex-
tended inputs and maintain coherence, focusing
primarily on tasks like document summarization
and long-form generation. Specialized benchmarks
like U-MATH (Chernyshev et al., 2025) and Leave
No Document Behind (Godbole et al., 2024) exam-
ine domain-specific reasoning and multi-document
synthesis but address relatively structured and local-
ized relationships. The LCFO benchmark (Costa-
jussa et al., 2024a) targets summary expansion
with varying granularities of content compression,
revealing limits in semantic retention. The Y-
NQ dataset (Costa-jussa et al., 2024b) exposes
disparities in open-book comprehension across
low- & high-resource languages, hinting at deeper
weaknesses in cross-lingual and low-resource long-
context understanding. Data Interpreter (Hong
et al., 2024) showcases long-term data analysis
workflows with LLM agents, but primarily focuses
on task planning and execution rather than deep tex-
tual reasoning. In neuroscience, (Luo et al., 2025)
show LLMs surpassing expert predictions in future
experimental outcomes, yet such success doesn’t
imply comprehension of reasoning chains. In con-
trast, our work focuses specifically on research pa-
pers, which are characterized by more complex and



dispersed relationships, such as claims supported
by evidence across multiple sections. CLAIM-
BENCH evaluates the ability of LLMs to synthe-
size these intricate connections, testing their capac-
ity for global reasoning and coherence in a way
that reflects the unique demands of scientific texts.

Collaborative Reasoning Collaborative reason-
ing frameworks offer a complementary perspective,
with multi-agent systems like Two Heads Are Bet-
ter Than One (Su et al., 2025) and iterative feed-
back mechanisms such as CYCLERESEARCHER
(Weng et al., 2025) showing promise in enhanc-
ing reasoning capabilities. While these approaches
address some limitations of Single-Pass LLM sys-
tems, their primary focus remains on generating
and refining content rather than validating com-
plex logical relationships. Similarly, tools like
AIGS (Liu et al., 2024) and LLM-Assisted Hy-
pothesis Generation (Vladika and Matthes, 2023)
explore reasoning and hypothesis testing but do not
directly tackle the problem of scientific comprehen-
sion. (Leng et al., 2024) introduce a graph-based
approach for hypothesis generation and evaluation,
demonstrating potential for structured creativity,
yet falling short of validating interlinked arguments
at scale.

Ethical AI Finally, ethical considerations have
been raised in works like Ethical Use of LLMs
(Lissack and Meagher, 2024), which stresses the
need for transparency and accountability in Al-
driven research, and multimodal benchmarks like
MileBench (Dingjie et al., 2024), which expand
the scope of LLM evaluation to include visual and
textual data. These efforts, while addressing impor-
tant aspects of Al integration in research, highlight
the absence of targeted benchmarks that evaluate
claim-evidence validation across long, complex sci-
entific texts—a gap CLAIM-BENCH aims to fill.

3 Methodology

In this section, we present the design of CLAIM-
BENCH, our benchmark for evaluating how well
LLMs identify and analyze claim—evidence rela-
tionships in full-length research papers.

3.1 Dataset

Dataset Curation The dataset for this study was
curated by 4 PhD students with research experience.
Each annotator had at least one first-author confer-
ence publication, ensuring familiarity with scien-
tific writing standards. These researchers selected

papers according to specific guidelines (Appendix
B.1) to ensure relevance and diversity. Selection
criteria included: papers from the year 2024, non-
math-intensive subjects, length between 0 to 20
pages. The aim was to represent a broad spectrum
of current AI/ML research topics within the dataset.

To facilitate easier annotations, we developed
a PDF annotation tool, it lets users load a paper,
drag a pointer over any sentence or paragraph to
mark it as a claim, then click-add evidence addi-
tional spans as linked evidence for that claim; each
claim—evidence pair is stored in a one-to-many
structure and exported as JSON. (see Appendix
B.3).

Annotation Quality Check After compiling the
initial annotations (100 papers), these were set
aside before evaluating the models to ensure an
unbiased assessment of their capabilities. To en-
hance the reliability of our dataset as ground truth,
we conducted a validation phase where a different
set of annotators re-annotated a subset of 30 papers.
We then assessed annotation consistency by cal-
culating Inter-Annotator Agreement (IAA) using
the average F1-score across annotator pairs. This
analysis yielded substantial agreement for identify-
ing claims (F1 = 0.755) and moderate agreement
for identifying evidence (F1 = 0.659) and linked
claim-evidence pairs (F1 = 0.617), confirming the
dataset’s suitability for benchmarking. The detailed
methodology used for this IAA is provided in Ap-
pendix B.2.

3.2 Evaluation Metrics

In this study, we employ four metrics to evaluate
the LLM performance: three established metrics
in information retrieval, precision, recall, F1-score,
and a novel metric, sentence_gap, to evaluate LLM
performance in claim-evidence retrieval tasks and
the effectiveness of our various prompting tech-
niques.

Precision (P) Used to measure the proportion of
spans the model predicts that are identified by the
annotators, reflecting their effectiveness in respond-
ing to precise and carefully structured prompts.

TP

P=—_ 1
TP +FP’ M

where TP (true positive) is the number of correctly
retrieved claim/evidence, and FP (false positive)
is the number of retrieved “claim’/“evidence” that
are not claims/evidences.
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Figure 1: Three methods to prompt LLMs to analyze the papers. Single-Pass: Full paper processing with one
prompt. Three-Pass: Sequential claim — evidence — conclusion extraction. One-by-One Pass: Individual

evidence retrieval per claim.

Recall (R) Quantifying the portion of claim/evi-
dence that are retrieved. Recall assesses the ability
to capture pertinent data, a measure of the model’s
responsiveness to exhaustive prompt inquiries

TP

= 2
B=p v &

where FN (false negative) is the number of claim-
s/evidences that are incorrectly missed.

F1-score This is the harmonic mean of P and R.
The F1-score provides a balanced measure of ac-
curacy, crucial for evaluating the efficacy of the
prompting techniques in eliciting detailed and rele-
vant responses.

sentence_gap The sentence_gap metric mea-
sures the distance between a retrieved claim and
each of its associated retrieved evidence. It is par-
ticularly valuable for evaluating long-range con-
textual comprehension by quantitatively assess-
ing models’ ability to handle textual relationships
over extended contexts. This assessment is crucial
for complex prompts designed to challenge such

comprehension and is instrumental as we explore
how increasing LLM context length capabilities
enhance performance in realistic scenarios.

. > stp) = slg)], @

sentence_gap = W

(p.g)EM
where M is the set of matched evidence pairs (us-
ing Intersection over Union matching rule). s(-)
returns the sentence index of a span inside the doc-
ument. The sentence_gap metric is therefore the
average absolute sentence-level distance between
each predicted claim span p and its evidence span
g, capturing how far a model must reason across
the paper to link claims with supporting evidence.

Secondary metrics Additionally, we consider
secondary metrics that focus on operational aspects
of model performance: the time to generate out-
puts and how each model’s recall changes as input
length (token count) increases. These metrics are
crucial for understanding efficiency and scalability.
They help compare how models manage computa-
tional resources and handle large input sizes under
varying conditions.
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models and strategies (shapes: Single-Pass o, Three-Pass A, One-by-One B). Models show higher precision for
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4 Experimental Setup

We evaluate six state-of-the-art LLLMs, chosen
to span both licensing regimes and architec-
tural families while sharing a >128K-token con-
text window. Open-source include Ministral-8B
(Mistral Al, 2024), Phi-3.5-MoE (Abdin et al.,
2024), and LLaMA-70B (Wang et al., 2025) and
Closed-source includes GPT-4 (OpenAl, 2024),
Gemini-Exp_1114 (Gemini Team, 2024), and
Claude 3.5 Sonnet (Anthropic, 2025).

4.1 Analysis Methods

As illustrated in Figure 1, we explore three dis-
tinct prompting methods to assess and enhance
model performance on claim-evidence identifica-
tion tasks.

Single-Pass Initially, we present the models with
a research paper, instructing (Appendix A.1) them
to identify claims, evidences, and conclusions in a
single comprehensive prompt.

’

Three-Pass Building on the “divide and conquer’
strategy from prior research, we then deconstruct
the task into sequential stages. In the first stage, the
model identifies claims using a dedicated prompt.
Subsequently, these claims are supplied to the next

stage, where separate prompts elicit correspond-
ing evidences. Finally, we combine the identified
claims and evidences, using another prompt to ex-
tract conclusions (Appendix A.2).

One-by-One Pass We adopt a more granular ap-
proach where each claim is processed individually
to retrieve evidence. This means for n claims, the
model runs n times to gather evidence for each, and
similarly for conclusions. Although this approach
provides detailed analysis, it significantly increases
the demand on computational resources and time
(Appendix A.3). These methods combine care-
ful prompting with our annotated claim—evidence
dataset, allowing us to benchmark each model’s ex-
traction accuracy and probe how different prompt
strategies improve performance.

5 Results

The following section details the experimental re-
sults, highlighting comparative model performance
and strategic impacts.

5.1 Precision vs Recall

As shown in Figure 2, models exhibit a clear
precision-recall trade-off: settings that achieve
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higher recall often incur reduced precision. For in-
stance, Claude and LLaMA achieve high recall but
at the cost of extracting numerous false positives,
which is evident from their large maximum linking
distances (Figure 7), exceeding 2,200 sentences in
some cases. Although valuable, such long-range
links raise the risk of false claim—evidence pairs.
Conversely, models like GPT prioritize precision,
maintaining moderate linking distances (around
658-708 sentences) with fewer spurious matches,
though this approach slightly limits recall. Minis-
tral offers a balanced precision-recall profile, char-
acterized by consistent, shorter linking distances.

Comparing the precision-recall tradeoff trends
between open- and closed-source models, we see
that closed-source models balance precision and
recall better. Overall, GPT often balances high pre-
cision and moderate recall; Claude achieves higher
recall rates but exhibits noticeable trade-offs in pre-
cision. Gemini remains stable across strategies.
Among open-source models, LLaMA came close
to matching closed-source recall but with some out-
liers, also shows variability in precision; Ministral
is moderate in both coverage & precision; Phi ex-
hibits the widest swings, at times matching larger
models but also dropping in accuracy.

5.2 Smaller vs Larger Models

Larger models, such as GPT-4-Turbo, Claude,
Gemini, and LLaMA, generally exhibit strong
recall in identifying claims, with GPT-4-Turbo
achieving high precision (0.68) and recall (0.81),
demonstrating effective balance at different strate-
gies. Claude also shows strong recall (0.83), al-
beit with a moderate precision drop (0.61). Also,
LLaMA achieves similar recall (0.76) but compara-
tive precision (0.60), indicating a tendency to iden-
tify extensive and highly precise connections, con-
sidering the best cases of each model.

Smaller models, such as Ministral and Phi, typi-
cally exhibit lower recall and precision. Ministral
shows modest recall (0.60) with precision around
0.38, reflecting a conservative approach to claim-
evidence linking. Phi demonstrates similar preci-
sion (approximately 0.39) but notably higher recall
(around 0.7) in the best cases. These observations
highlight a clear trade-off: larger models generally
identify broader and more nuanced claim—evidence
relationships but often at the cost of precision,
whereas smaller models maintain more consistent
precision with significantly reduced recall. In both
the cases similar pattern holds in evidence extrac-
tion as well.
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5.3 Claims vs Evidence Extraction

Best C Performances Best E Performances

Model Fl p R Fl p R

GPT-4-Turbo 056 0.66 057 047 034  0.69
Claude 3.5 059 062 060 042 033 066
Gemini-Exp_1114  0.54 048  0.64 040 030  0.52
LLaMA-70B 058 060 056 045 042 049
Ministral-8B 048 039 061 039 031 052
Phi-3.5-MoE 0.50 040 072 035 025 063

Table 1: The highest performance (across all strategies)
for Claim (C) and Evidence (E) extraction; “P@R” de-
notes precision at the corresponding recall.

Analyzing claim versus evidence extraction sep-
arately reveals distinct performances among LLMs
(see Table 1). Across all models, precision is con-
sistently higher for claims than for evidence, in-
dicating the models more readily detect explicit
claims compared to the contextually dispersed evi-
dence. Also, the evidence extraction of all models
yields higher recall than precision. In addition to
the common trends, the models exhibit distinct
patterns. For instance, Claude and LLaMA ex-
hibit high recall in evidence extraction but with
substantial variability in linking distances (Claude:
mean gap of 119.4 sentences, variance of 33,674;
LLaMA: mean 95.1 sentences, variance of 34,207),
suggesting increased noise and inconsistent perfor-
mance. Conversely, Ministral maintains lower link-
ing distances (mean 75.9 sentences) with minimal
variance, signifying a more cautious and controlled

approach.

5.4 Impact of Strategy

The Single-pass strategy is highly efficient but has
limited coverage, e.g., GPT-4 produces 152 pairs
with a 98.5 average sentence_gap, while Ministral
generates 166 pairs (average gap: 64.2). Mean-
while, the Three-pass strategy enhances recall and
coverage at moderate computational cost. Claude
yields 174 pairs (average gap: 122.2), and Phi
captures 279 pairs, albeit with significant vari-
ance (11,490.2) in sentence_gap. Finally, the One-
by-One strategy maximizes recall but increases
computational demand significantly. Claude and
LLaMA produce the highest counts (639 and 659
pairs, respectively), with substantial gaps (Claude:
119.4, LLaMA: 95.1) and high variance (Claude:
33,673.9, LLaMA: 34,207.0). Phi also achieves
substantial coverage (347 pairs) with notable vari-
ance (13,188.2).

5.5 Impact of Token Length on Recall

We observed how the documents’ token length af-
fected the models’ recall performances. In long
documents, we expected performance drops, but
these observed drops are tied to the prompting strat-
egy. With the Single-pass strategy, the recall perfor-
mances dropped as the document length increased.
With the iterative prompting strategies (Three-pass
or One-by-One), the performance drops are less



significant, indicating that the iterative prompting
imposes less “processing load” onto the LLMs. Ad-
ditionally, the recall drops differ by the sizes of
the models. Relatively smaller models (LLaMA
70B and Ministral 8B) showed more notable de-
clines, especially with Single-pass, whereas the
larger models (Claude and GPT-4) maintained rel-
atively high recalls, underlining the advantage of
their long context capabilities. Additional details
in Appendix C.

Claude and LLaMA frequently produce the high-
est pair counts (up to 639 and 659), reflecting broad
coverage. This can coincide with their large context
window sizes—helpful for capturing distant rela-
tionships—yet also introduces potential noise. GPT
and Gemini keep moderate distances, suggesting
they discovered fewer links. Ministral remains con-
servative with fewer pairs with shorter distances,
while Phi’s extreme variance indicates inconsistent
linking across long contexts. We include the details
in Figure 7 (in Appendix C).

5.6 Execution Time Analysis

As shown in Figure 4, the execution times differ
considerably across models and strategies. GPT
is highly efficient in the Single-Pass (under 200s)
and relatively moderate in one-by-one approaches
(~500s). Gemini exhibits intermediate execu-
tion times across all strategies, notably higher
for the three-pass (~600s). Claude consistently
achieves the fastest execution across all strate-
gies, maintaining execution times under 200 sec-
onds. LLaMA shows extensive variability, espe-
cially with one-by-one strategies frequently exceed-
ing 1,200 seconds, reflecting significant computa-
tional demands. Ministral shows relatively bal-
anced execution times, with three-pass and one-
by-one strategies averaging around 600-900 sec-
onds. Phi demonstrates the highest computational
intensity, especially in one-by-one strategies, often
surpassing 1,200 seconds, highlighting the consid-
erable resource investment required for thorough
analyses. The execution times recorded for Gem-
ini exhibit some variability, which may partially
stem from fluctuations in API response latency dur-
ing our experiments, combined with the necessary
sleep() intervals implemented for rate limiting.

6 Discussion

The insights from CLAIM-BENCH emphasize crit-
ical directions for future research and practical

applications leveraging the capabilities of LLMs
in scientific claim-evidence reasoning. Improv-
ing LLMs’ ability to accurately validate claim-
evidence pairs could enhance their practical use
in designing experiments and generating scientif-
ically valid hypotheses. Furthermore, improved
claim identification and validation methods provide
a foundation for developing sophisticated claim
quality scoring tools that can greatly enhance peer-
review processes. The capability to systemati-
cally link and integrate evidence across multiple
scientific papers could lead to powerful retrieval-
augmented laboratory assistants and cross-paper
evidence graphs, accelerating knowledge discovery.
These advancements would not only strengthen the
robustness of scientific validations but also facil-
itate the creation of more sophisticated scientific
QA systems, thus laying foundational benchmarks
for future scientific text generation and evaluation
methods. This research thus serves as a pivotal
foundation for transformative applications in scien-
tific inquiry and discourse.

7 Conclusion

Motivated by the limited evaluation in prior litera-
ture of LLLMs’ abilities in scientific reasoning, we
introduced CLAIM-BENCH, a novel benchmark
specifically designed to evaluate LL.Ms’ capabili-
ties in identifying and validating claim-evidence
relationships within scientific texts. We system-
atically explored diverse LLM architectures and
prompting strategies. Our results demonstrate
significant limitations in LLMs’ comprehension,
specifically in their precision and recall balance
when processing complex scientific documents.
Notably, models showed higher precision in extract-
ing explicit claims, whereas extracting dispersed
evidence proved challenging, yielding higher re-
call but lower precision and increased sentence
gaps. Moreover, our comparative analysis across 3
strategies revealed substantial trade-offs between
computational efficiency, precision, and coverage.
Closed-source models generally displayed more
stable performances, while open-source models
offered broad yet inconsistent coverage. CLAIM-
BENCH provides a framework for the assessment
of LLMs in complex scientific contexts, and our
study provides useful material and insights for con-
tinuing the advancement in LLMs’ high-level com-
prehension and scientific reasoning capabilities.



8 Limitations

While CLAIM-BENCH provides comprehensive
insights into the capabilities of LLMs in scientific
claim-evidence reasoning. Despite these insights,
CLAIM-BENCH has several limitations worth not-
ing. First, the benchmark primarily focuses on
recent papers from select domains, which are after
the LLMs’ knowledge cutoff but might limit the
generalizability. Second, the evaluation relies on
existing LLM architectures. While we leave the
exploration of the impact of model architecture de-
velopment to future works, CLAIM-BENCH could
be a useful material that supports future projects
that develop novel LLM architectures that have
enhanced long-context language understanding ca-
pabilities and scientific reasoning capabilities.
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A.1 Single-Pass Prompt

Comprehensive Evaluation Prompt

Analyze the research paper and provide a comprehensive evaluation following these guide-
lines:

1. Identify ALL claims in the paper where each claim:

» Makes a specific, verifiable assertion

* Is supported by concrete evidence

» Represents findings, contributions, or methodological advantages
* Can be from any section except abstract

2. For each identified claim:

 Extract ALL supporting or contradicting evidence (experimental results, data, or method-
ology)
 Evaluate the evidence strength and limitations

* Assess how well conclusions align with evidence

Return ONLY the following JSON structure:
{

"analysis": [
{
"claim_id": number,
"claim": {
"text": "statement of the claim”,
"type": "methodology/result/contribution/performance”,
"location”: "section/paragraph”,
"exact_quote”: "verbatim text from paper”
}’
"evidence"”: [
{
"evidence_text"”: "specific experimental result/data”,
"strength”: "strong/moderate/weak”,
"limitations”: "specific limitations”,
"location”: "section/paragraph”,
"exact_quote”: "verbatim text from paper”
}
]y
"evaluation”: {
"conclusion_justified”: true/false,
"robustness”: "high/medium/low",
"justification”: "explanation of evidence-conclusion alignment”,
"key_limitations”: "critical limitations affecting validity”,
"confidence_level”: "high/medium/low”

3

Ensure:
* ALL substantive claims are captured
 Evaluations are objective and well-reasoned
* All locations and quotes are precise

» Multiple pieces of evidence per claim are included when present

11



A.2 Three-Pass Prompt

Claims Extraction Prompt

Paper text: {text}
Task: Identify all statements in the text that meet the following criteria for a claim:

1. Makes a specific, testable assertion about results, methods, or contributions.
2. Represents a novel finding, improvement, or advancement.
3. Presents a clear position or conclusion.
Requirements:
* Include both major and minor claims.
* Don’t miss any claims.
* Present each claim as a separate item.

Return ONLY the following JSON structure:

{
"claims”: [
{
"claim_id": 1,
"claim_text": "statement of the claim”,
"location”: "section/paragraph where this claim appears”,
"claim_type"”: "Nature of the claim”,
"exact_quote”: "complete verbatim text containing the claim”
}
]
}

Evidence Identification Prompt

Paper text: {text}
For these claims: {claims_text}
Please identify relevant evidence that:

1. Directly supports or contradicts the claim’s specific assertion.
2. Is presented with experimental results, data, or concrete examples.
3. Can be traced to specific methods, results, or discussion sections.

4. Ts not from the abstract or introduction.

Return ONLY the following JSON:
{

"evidence_sets": [

"claim_id": number,
"evidence"”: [
{

"evidence_id": number,
"evidence_text": "specific evidence”,
"strength”: "strong/moderate/weak”,
"limitations”: "key limitations”,
"location”: "section/paragraph”,
"exact_quote”: "verbatim text”
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Conclusion Evaluation Prompt

Analyze these claims and their evidence: {analysis_text}
For each claim-evidence pair, evaluate:

1. Whether the evidence justifies the claim.
2. The overall strength of support.
3. Any important limitations.

Return ONLY the following JSON:

"conclusions”: [

{
"claim_id": number,
"conclusion_justified”: true/false,
"robustness”: "high/medium/low”,
"key_limitations"”: "specific limitations”,
"confidence_level”: "high/medium/low”

}

A.3 One-by-One Prompt

Claims Extraction Prompt

Analyze this research paper and extract ALL possible claims made by the authors. Paper text:
{text}
Your task is to identify all statements in the text that meet the following criteria for a claim:

1. Makes a specific, testable assertion about results, methods, or contributions.
2. Represents a novel finding, improvement, or advancement.
3. Presents a clear position or conclusion.
Make sure to:
* Include both major and minor claims.
* Don’t miss any claims.
* Present each claim as a separate item.

Return ONLY the following JSON structure:
{

"claims": [

{
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"claim_id": 1,

"claim_text"”: "statement of the claim”,

"location”: "section/paragraph where this claim appears”,
"claim_type"”: "Nature of the claim”,

"exact_quote”: "complete verbatim text containing the claim”

Evidence Analysis Prompt

Paper text: {text}
For the following claim from the paper: "{claim[’claim_text’]}"
Please identify relevant evidence that:

1. Directly supports or contradicts the claim’s specific assertion.

2. Is presented with experimental results, data, or methodology.

3. Can be traced to specific methods, results, or discussion sections.
4. Is not from the abstract or introduction.

If NO evidence is found for the given Claim, return:

{
"claim_id": {claim['claim_id']},
"evidence": [],
"no_evidence_reason”: "Explain why no evidence was found (e.g., 'Claim is unsupported', '
< Claim is theoretical without empirical evidence', etc.)"
}

ELSE: Return ONLY the following JSON structure:

{
"claim_id": {claim['claim_id']},
"evidence": [
{
"evidence_id": 1,
"evidence_text": "specific experimental result/data point”,
"evidence_type": "primary/secondary”,
"strength”: "strong/moderate/weak”,
"limitations”: "stated limitations or assumptions”,
"location”: "specific section & paragraph”,
"exact_quote”: "verbatim text from paper”
}
]
}

Conclusion Analysis Prompt

Paper text: {text}
Analyze the following claim and its supporting evidence: {single_claim_analysis}
Provide a comprehensive conclusion analysis following these guidelines:

1. Evidence Assessment:

» Evaluate the strength and quality of ALL evidence presented.
* Consider both supporting and contradicting evidence.
* Assess the methodology and reliability of evidence.
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2. Conclusion Analysis:

* Determine what the authors concluded about this specific claim.
 Evaluate if the conclusion is justified by the evidence.
* Consider the relationship between evidence quality and conclusion strength.

3. Robustness Evaluation:

* Assess how well the evidence supports the conclusion.
* Consider methodological strengths and weaknesses.
* Evaluate the consistency of evidence.

4. Limitations Analysis:

* Identify specific limitations in both evidence and conclusion.
* Consider gaps in methodology or data.
* Note any potential biases or confounding factors.

Return ONLY the following JSON structure:

{
"conclusions”: [
{
"claim_id": {claim_id},
"author_conclusion”: "detailed description of authors' conclusion based on evidence
(_> ”?
"conclusion_justified”: true/false,
"justification_explanation”: "detailed explanation of why conclusion is/isn't
— justified”,
"robustness_analysis”: "comprehensive analysis of evidence strength and reliability
C_} "Y
"limitations”: "specific limitations and caveats”,
"location”: "section/paragraph where conclusion appears”,
"evidence_alignment”: "analysis of how well evidence aligns with conclusion”,
"confidence_level”: "high/medium/low based on evidence quality”
}
]
}
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B Additional Details on Annotation

B.1 Annotator Guidelines

* Select one recent research paper in the field of artificial intelligence or machine learning.
* Prioritize papers published in 2024 to ensure relevance to current developments.

* When possible, select a paper with fewer than 20 pages to facilitate thorough annotation.
* Avoid papers with heavily mathematical content to ensure accessibility.

» Complete all annotation tasks independently, without employing large language models for assistance
at any stage of the process.

Task Description
Your task is to identify all statements in the text that qualify as claims under the following criteria:

1. Specificity: The statement makes a specific, testable assertion about results, methods, or contribu-
tions.

2. Novelty: The statement represents a novel finding, improvement, or advancement.
3. Clarity: The statement presents a clear position or conclusion.

Requirements

* Include both major and minor claims.

* Ensure no claim is overlooked.

* Present each claim as a separate item.

Evidence Identification
For each identified claim, find and document relevant evidence that:

1. Relevance: Directly supports or contradicts the claim’s specific assertion.
2. Concrete Support: Is presented with experimental results, data, or concrete examples.
3. Traceability: Can be traced to specific methods, results, or discussion sections in the text.

4. Exclusions: Evidence must not be derived from the abstract or introduction sections of the text.

Conclusion Analysis

* Justification: Evaluate whether the conclusions drawn in the text are justified by the evidence
provided.

Annotation Format
Each annotation should be formatted as follows:

{
"Claim_id": "<unique_identifier>",
"Claim_text"”: "<text_of_the_claim>",
"Evidence_text": "<text_supporting_or_contradicting_the_claim>",
"Justification_Conclusion”: "<evaluator's_comment_on_evidence_justification>"
}
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B.2 Inter-Annotator Agreement Methodology

To evaluate the reliability of the CLAIM-BENCH annotations, we calculated Inter-Annotator Agreement
on a subset of 30 papers, each annotated by two different annotators on the Claims and the Evidence. For
each of the claims and the evidences, we take one set (“set A”) as the ground truth and compute the F1-
score of the other set (“set B”). Considering the symmetry, we also computed the F1-score swapping sets
A and B, and reported the averaged F1-score. We chose F1 because our annotation task (identifying and
linking spans) closely parallels standard information extraction tasks, where F1 is a standard evaluation
measure balancing precision and recall; this reflects the need for agreement on both the correctness and
comprehensiveness of annotations. Furthermore, in our LLM-based assessment, the requested F1-score
provides an interpretable measure of semantic concordance derived from the model’s understanding of

semantic equivalence beyond exact string matches.

B.3 Annotation Tool

Load PDF - +

.

Evidence added successfully

Figure 5: The custom annotation tool interface used for CLAIM-BENCH dataset creation, enabling direct PDF text

PDF Annotation Tool

Fit
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The Transformer uses multi-head attention in three different ways:

« In "encoder-decoder attention” layers, the queries come from the previous decoder layer,
and the memory keys and values come from the output of the encoder. This allows every
position in the decoder to attend over all positions in the input sequence. This mimics the
typical der-decoder attention i in seq 1 models such as
[38.2,9].

* The encoder contains self-attention layers. In a self-attention layer all of the keys, values
and queries come from the same place. in this case, the output of the previous layer in the
encoder. Each position in the encoder can attend to all positions in the previous layer of the
encoder.

« Similarly, self-attention layers in the decoder allow cach position in the decoder to attend to
all positions in the decader up to and including that position. We need to prevent leftward
information flow in the decoder to preserve the auto-regressive property. We implement this
inside of scaled dot-product attention by masking out (setting to —oc) all values in the input
of the softmax which correspond to illegal connections, See Figure 2.

33 Position-wise Feed-Forward Networks

In addiition to attention sub-layers, each of the layers in our encoder and decoder contains a fully
connected feed-forward network, which is applied to each position separately and identically. This
consists of two linear transformations with a ReLU activation in between

FFN(x) = max(0, Wy + by )W + ba @

While the linear transformations are the same across different positions, they use different parameters
from layer to layer. Another way of describing this is as two convolutions with kernel size 1.
The dimensionality of input and output is dmoser = 512, and the inner-layer has dimensionality
dyy = 2048.

ff

34 Embeddings and Softmax

Similarly to other sequence transduction models, we use learned embeddings to convert the input
tokens and output tokens to vectors of dimension dyq.. We also use the usual learned linear transfor-
‘mation and softmax function to convert the decoder output to predicted next-token probabilities. In
our model, we share the same weight matrix between the two embedding layers and the pre-softmax
Tinear transformation, similar to [30]. In the embedding layers, we multiply those weights by +/Tmoder.

5

‘Current Selection:

Selected: In addition to attention sub-layers, each of the layers in our
encoder and decoder contains a fully connected feed-forward network,
which is applied to each position separately and identically. This ¢...

Clear Selection Preview Edit

Add as Evidence

Claims and Evidence:

The two most commonly used attention functions are additive
attention [2], and dot-product (multi- plicative) attention. Dot-
product attention is identical to our algorithm, except for the
scaling factor of 1 /dk . Additive attention computes the
‘compatibility function using a feed-forward network with a single
hidden layer. While the two are similar in theoretical complexity,
dot-product attention is much faster and more space-efficient in
practice, since it can be implemented using highly optimized matrix
multiplication code

Evidence:

The two most commonly used attention functions are additive attention [2

In addition to attention sub-layers, each of the layers in our encoder and o

Claim:

The two most commonly used attention functions are additive

attention [2], and dot-product (multi- plicative) attention. Dot-

ttention is identical to our al pt for the
i h

Aririitin

Select Claim for New Evidence:

The two most commenly used attention functions are additive attention [2], j

o Save Annotations

selection and structured labeling (e.g., ’Add as Claim’ button) of claim-evidence pairs.
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Figure 6: Mean recall by document size groups (small, medium, large) for different models and prompting strategies,
illustrating performance trends across increasing token counts.

C Impact of Documents’ Token Length

Figure 6 plots mean recall for three prompting strategies—Three-Pass, One-by-One, and Single-Pass—
across three document-length buckets (< 15 k, 15-20 k, > 20 k tokens). A closer reading of the bars
yields three key observations:

1. Performance drops are tied to the strategy more than the model size.

* For every model, the Single-Pass run shows the steepest decline as documents grow.

* Example: LLaMA’s recall plunges from about 0.60 in small papers to roughly 0.40 in >20
k-token papers under Single-Pass.

2. Once an iterative strategy is used, the size-related gap all but disappears.
* Iterative prompting (Three-Pass or One-by-One) largely neutralises length effects—even for the
smaller models.

* LLaMA 70B: In One-by-One mode the large-document group matches or exceeds the small-
document group (=2 0.78 vs ~ 0.76).

* Ministral 8B: Three-Pass recall stays virtually flat (~ 0.72-0.75) across all three size buckets;
the length penalty only appears in Single-Pass.

3. Larger models still benefit, but their advantage is greatest with fine-grained prompts.

¢ Claude 3.5 Sonnet: Recall rises with document size under Three-Pass (= 0.72 — 0.85), and
remains > 0.75 in One-by-One.

* GPT-4-Turbo: One-by-One keeps recall at or above 0.80 for medium- and large-size papers; the
drop to ~ 0.66 for large papers occurs only in Three-Pass, not in Single-Pass.
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The figure shows that prompt granularity is the dominant lever for long-context recall. Single-pass
prompting amplifies context-window limits—especially in smaller models—but iterative, claim-level
prompting (Three-Pass and One-by-One) recovers performance, sometimes even improving it as the text
grows. Larger models are naturally more stable, yet they, too, realise their full potential only when given
finer-grained, multi-step instructions.

C.1 Sentence Distance Detailed Analysis

3-pass ‘ 1-pass ‘ 1-by-1

Count Max Mean Var ‘ Count Max Mean Var ‘ Count Max Mean Var
GPT 203 696 93.8 10640.4 ‘ 152 658 98.5 14738.0 ‘ 396 708 90.2 9798.3
CLAUDE 174 2226 12222 391474 ‘ 250 2222 90.7 331223 ‘ 639 2230 19.4 33673.9

GEMINI 84 720 107.4 23584.2 ‘ 194 710 72.8 18017.5 ‘ NIA NiA NIA N/A
LLAMA 183 2226 98.1 359741 ‘ 145 2228 109.1 718575 ‘ 659 2228 95.1 34207.0

MISTRAL 38 357 75.9 8030.5 ‘ 166 632 64.2 8316.9 ‘ NIA NiA NIA N/A
PHI 279 2282 130.6 114904.2 ‘ 294 2232 121.4 56085.7 ‘ 347 579 105.9 13188.2

Figure 7: Aggregated statistics of the sentence_gap metric Count, Max, Mean, and Variance (Var)—for each model
under the three prompting strategies (Three-Pass, One-pass, and One-by-One). Larger counts and wider gaps (e.g.,
Claude and LLaMA exceeding 2,200-sentence links in One-by-One) reflect broader retrieval, whereas smaller
models such as Mistral keep distances short and variance low. “N/A” indicates the model-strategy combination was
not executed.
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