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Abstract

The double descent risk phenomenon has received much interest in the machine1

learning and statistics community. Motivated through Rissanen’s minimum descrip-2

tion length (MDL) principle, and Amari’s information geometry, we investigate3

how a double descent-like behavior may manifest by considering the log V mod-4

eling term - which is the logarithm of the model volume. In particular, the log V5

term will be studied for the general class of fully-observed statistical lattice models,6

of which Boltzmann machines form a subset. Ultimately, it is found that for such7

models the log V term can decrease with increasing model dimensionality, at a8

rate which appears to overwhelm the classically understood O(D) complexity9

terms of AIC and BIC. Our analysis aims to deepen the understanding of how the10

double descent behavior may arise in deep lattice structures, and by extension, why11

generalization error may not necessarily continue to grow with increasing model12

dimensionality.13

1 Introduction14

Model selection is a problem which underpins the field of machine learning. Key to its formulation15

is the notion of learning an appropriate predictor, h? : RD → R from an underlying model class,16

H, based on N input training examples {(xi, yi)}Ni=1, with each (xi, yi) ∈ RD × R. Typically, the17

predictor, h?, is chosen so as to minimize some risk functional; that is, h? = arg minh∈HR(h)18

with R(h) = Ep(x,y)[L(h(x), y)], where L : R× R→ R is the risk functional, and p(x, y) denotes19

the probability density function (pdf) over the data. Fundamentally, the aim of such an approach20

is to ensure that h? provides good generalization capability, so that after training it minimizes the21

out-of-sample test error [12]. This is historically estimated via the Akaike information criterion (AIC)22

[3], the Bayesian information criterion (BIC) [29], or through cross validation [12]. AIC and BIC are23

derived based on asymptotic assumptions in the sample size N , and work similarly. Moreover, both24

criteria suggest that out-of-sample error increases as O(D)1, suggesting that an over-parameterized25

model should generalize poorly, which is an idea consistent with traditional empirical evidence, via26

the U-shaped train-test curves [12].27

Recently, however, particular classes of highly parameterized models such as deep neural networks,28

and random forests have been shown to generalize extremely well, working in contrary to the implied29

O(D) model complexity effects. In fact, strong empirical evidence has been presented by Belkin et30

al. [10], where it was shown that a double descent risk phenomenon may be observed for a variety of31

models which transition into highly parameterized regimes. This phenomenon is shown in Figure32

A2a in Appendix, with many additional experiments made clear in [25]. In an effort to explain such33

trends Belkin et al. [11] have tried to infer some similarities between ReLU networks and traditional34

1Technically AIC has a 2D model complexity term, and BIC has a D logN model complexity term. We
will refer to the implied effects of both model complexities simply as the “O(D) terms”.
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kernel models, and Geiger et al. [15] have tried to connect the double descent cusp-like behaviour35

with diverging norms, through a neural tangent kernel framework. In addition, double descent risk36

has been explored in a variety of simpler (and shallow) model classes [17, 6, 13], with various risk37

asymptotics established [9, 20]. Lastly and rather interestingly, it has been found that there exist38

certain parallels between double descent risk, and the notion of the jamming transition which occurs39

in physical materials which undergo a phase transition [31, 16]. In this paper we look into the problem40

of how increasing the underlying dimensionality of statistical lattice models (of which Boltzmann41

machines form a subset) could imply increasing generalizability. Such ideas are motivated from the42

recent empirical findings of double descent risk. This will be achieved via the notion of a model43

volume, which carries interpretations from information theory, and Occam’s razor. In particular it44

will be shown the it is possible to have a decreasing model volume in such models as D increases,45

which tends to offset the O(D) complexity terms of AIC and BIC.46

1.1 Model Selection and Occam’s Razor47

In the late 90s and early 2000s, extensions to the base AIC and BIC formulations were developed48

by Rissanen [28] and Balasubramanian [8], which include additional model-specific terms. From49

the perspective of coding theory, Rissanen developed a notion of stochastic model complexity,50

which builds upon Shannon’s information criteria used for lossless encoding [30]. Upon this notion,51

Rissanen formalized an extension of binary Shannon entropy to continuous function classes, via the52

discretization of the model manifold over approximately equivalent model classes. This approach53

establishes an intuition behind “model distinguishability”, which is also echoed by Balasubramanian.54

In particular, under Risannen’s construction information is encoded in nats (as opposed to bits) and it55

is formally recognized as the Minimum Description Length (MDL). This is shown in Equation (1),56

− log(p(x)) =

AIC / BIC - like term︷ ︸︸ ︷
− log(L̂) +

D

2
log

(
N

2πe

)
+

Log - Model Volume︷ ︸︸ ︷
log

∫
Θ

√
det (I(θ))dθ+o(1), (1)

where x = {xi}Ni=1 denotes a random vector of N data samples, L̂ ∈ R, is the likelihood function57

evaluated at its optimal parameter setting, with Θ being the space of possible parameter settings,58

and I(θ) ∈ RD×D denotes the Fisher information matrix (FIM), which is traditionally used as59

a lower bound on the variance of unbiased estimators, and in Jeffrey’s prior [12]. In a parallel60

fashion, Balasubramanian approached the problem of model selection, albeit from a more Bayesian61

perspective, which yielded a very similar formulation to Rissanen’s MDL [7]. To achieve this he takes62

an alternate route based on specifying a Jeffrey’s prior over the underlying parameter space, which is63

noted to act as an appropriate measure for the density of distinguishable distributions [8]. Ultimately,64

in both Rissanen’s and Balasubramanian’s model selection criteria, there is a term which acts like the65

O(D) model complexity used in AIC and BIC, and an additional term: log
∫

Θ

√
det (I(θ))dθ, which66

they collectively referred to as the model distinguishability-like term [19]. Moreover, since these67

methods are built upon the log-marginal: − log(p(x)), they also appeal to a Bayesian Occam’s razor-68

like principle. Ultimately, the ensuing study will aim to explore the term: log
∫

Θ

√
det (I(θ))dθ, for69

statistical lattice models. In particular, it will be made clear that this term describes the underlying70

log-model volume, which we denote by log V , and that this term can in fact decrease with increasing71

D in statistical lattice models. This behaviour is significant as it suggests that certain model classes72

can have the power to generalize well when transitioning into the over-parameterized regimes.73

Before proceeding to analyze this volume term, it is important to clarify certain points of Equation74

(1). In particular, it should be noted that the o(1) term is defined with respect to N , and thus it is not75

necessarily o(1) with respect to D. In fact, it is possible for there to exist additional terms which76

behave as a function of D. Indeed if one approaches the derivation of an MDL-like criteria through77

Balasubramanian’s razor, the additional modeling term: log

√
det(I(θ̂))/det(Ĩ(θ̂)) appears, where78

Ĩ denotes the empirical FIM, and θ̂ denotes the value of θ at the maximum likelihood location. This is79

often interpreted as an indicator of model robustness with respect to the location θ̂ on the manifold [8].80

It is also possible to derive explicit notions of geometric curvature (in particular, the Ricci-curvature81

tensor) in the MDL expression if one so wishes [23] - but such expressions are not central to the82

present study. This is because the authors are more concerned with the holistic (i.e. geometrically83

intrinsic) viewpoint of the underlying model space, but these model curvature terms typically require84

a specific θ̂ value. Moreover, the geometric model volume provides an intuitive means in which to85
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establish notions of model distinguishability [7, 28, 24]. In other words, we are concerned with terms86

which encode intrinsic geometric complexity, whereas log

√
det(I(θ̂))/det(Ĩ(θ̂)) is often said to87

model relative complexity [24].88

1.2 Information Geometry89

Information geometry concerns the application of differential geometry to statistical models. In90

particular, it considers a statistical manifold, M = {p(x; θ)}, over a θ co-ordinate system. A91

Riemannian metric, G, can be placed onM, where G : Tp(M) × Tp(M) → R≥0 for each point92

p ∈ M, with Tp(M) defined as the local tangent space at point p on the manifold. Principally, G93

is a generalization of the inner product on Euclidean spaces to Riemannian manifolds. In addition,94

Amari defines a dually coupled affine co-ordinate system on statistical manifolds. Dually coupled co-95

ordinates arise naturally from the dually flat property which is intrinsic to many information manifolds.96

These co-ordinates are known as the θ (e-flat) and η (m-flat) co-ordinates for the exponential family97

in particular, and are related through the Legendre transformation η = ∇ψ(θ) and θ = ∇ϕ(η)98

via two convex functions ψ,ϕ : RD → R [5]. The θ and η co-ordinates for exponential models99

correspond to the natural and expectation parameters, respectively. Furthermore, the FIM defines100

a natural Riemannian metric tensor: Gij = E[∂i log(p(x; θ))∂j log(p(x; θ))] = Iij [26, 5]. Thus101

the motivation for using information geometry is clear as Rissanen’s MDL, and Balasubramanian’s102

Occam Razor, depend on the FIM, which is, geometrically speaking, the metric tensor. Consequently,103

the term log
∫

Θ

√
det (I(θ))dθ has a clear definition in differential geometry as being the log-volume104

of the underlying information manifold; that is, the square root of the determinant of the Fisher105

information matrix is the manifold volume [5, 21].106

2 Statistical Lattice Models and Model Volumes107

Statistical lattice models are popular, traditional machine learning models which include Boltzmann108

machines (or Ising models) [1], log-linear models [4], and the matrix balancing problem [33]. In this109

section, we will work the hierarchical encoding of a probability distribution via a lattice structure110

[22, 32], which will be shown to naturally lead into the η co-ordinates (m-flat) from information111

geometry (see §1.2), and analyze the learning of distributions over a lattice structured domain.112

Formally, a partially ordered set (poset) is a tuple, (P,≤P), where P is a set of elements, and ≤P113

denotes an ordering structure, such that (1) ∀p2 ∈ P, p ≤P p (reflexivity), (2) If p ≤P q, and114

q ≤P p, then p = q (antisymmetry), and (3) If p ≤P q, and q ≤P r, then p ≤P r. Note that115

not every element may be directly comparable to every other element in the set (which would be116

known as a total ordering). In addition, a poset (P,≤P) is called a lattice if every pair of elements117

p, q ∈ P has the least upper bound p ∨ q and the greatest lower bound p ∧ q [14]. We assume that118

P is finite. In working with posets it is common to consider the zeta function, ζ : P × P → {0, 1}119

such that ζ(p, q) = 1p≤q [18]. The lattice structure always gives us the θ and η co-ordinates of a120

statistical manifold: logP(p) =
∑
q∈P ζ(q, p)θq =

∑
q≤p θq and ηp =

∑
q∈P = ζ(p, q)P(q) =121 ∑

q≥p P(q) [33]. For example, for Boltzmann machines with d binary variables, the lattice space122

P = {0, 1}n, where p = (p1, . . . , pn) ≤P q = (q1, . . . , qn) if pi ≤ qi for all i ∈ {1, . . . , n}. The123

size D = |P| = 2n in this case. The metric tensor for the information manifold of the proposed124

lattice structure is shown in Theorem 1, which was previously derived by Sugiyama et al. [33]. We125

assume that P = {1, . . . , |P|} such that 1 corresponds to the least element without loss of generality.126

Theorem 1 (Lattice Metric Tensor [33]). Gij =
∑
p∈P ζ(i, p)ζ(j, p)P(p)− ηiηj = ηi∨j − ηiηj .127

In Theorem 1, we can replace
∑
p∈P ζ(i, p)ζ(j, p)P(p) with ηi∨j as we assume that P is a lattice and128

ηi∨j always exists, which says that we only consider those poset structures in which the η co-ordinate129

values are shared (nested) between ηi and ηj for the off-digagonal terms in the metric tensor. In130

Theorem 1 it is clear that this metric tensor is expressed in terms of the η co-ordinates. The equivalent131

metric tensor in terms of the θ co-ordinates is available, but it is much more difficult to work with132

(requires the Möbius function instead of the zeta function). Moreover, in this definition of the metric133

tensor, the first row and column are always zeros, resulting in again, a singular geometry. Luckily this134

2Since elements from a poset are denoted by p, we denote a probability measure as P when referencing poset
systems.
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time however, since−θ1 corresponds to the partition function, it is generally removed in practice, [34]135

so that we effectively work with co-ordinates η′ = (η2, . . . , ηD), resulting in G′ � 0.136

Based on this set-up, it is possible to derive the upper and lower bounds for log V . For lattice models,137

the η co-ordinates lie compactly on a simplex within the unit D-hypercube, that is Ω = [0, 1]D,138

which makes evaluations much simpler [32]. In fact, it is possible to perform the re-parameterization:139

δ = f(η), which allows δ to be sampled from a Dirichlet distribution. This makes the η co-ordinate140

more intuitive to work with, and provides us with a tractable way to evaluate the volume integral via141

sampling. We provide details of this re-parameterization in Appendix A.1. The log V bounds which142

result are shown in Theorem 2, with the proof clarified in Appendix A.2.143

Theorem 2 (Lattice Log Volume Bounds). log V is bound as in Equation (2), where G =MᵀM,144

δ = f(η) is a re-paramterization, and Γ(D) = (D − 1)! is the standard Gamma function.145

“Richness”︷ ︸︸ ︷
E

[
D∑
i=1

log (Mii(δ))

]
+

“Distinguishability ”︷ ︸︸ ︷
log

(
1

Γ(D)

)
≤ log V ≤

“Richness”︷ ︸︸ ︷
log

E


√√√√ D∏

i=1

Gii(δ)

+

“Distinguishability ”︷ ︸︸ ︷
log

(
1

Γ(D)

)
(2)

As Theorem 2 makes clear, the log V term can be decomposed into two components which we define146

as: (i) Model richness: which is driven by the elements found in the metric tensor, and (ii) Model147

distinguishability: which refers to the volume of a probability simplex. Intuitively, (i) For (higher-148

order) Boltzmann machines, multi-way interactions can be encoded in a desired lattice structure, and149

this in turn will drive the construction of the metric tensor via the η co-ordinate system (Theorem150

1). Thus, since the metric tensor depends strongly upon the chosen lattice, and since it is used in151

defining angles and geodesics over a manifold, it would appear that this expression encodes a notion152

of model richness and or expressibility over the manifold. As for point (ii), since the η co-ordinate153

system is constrained to lie on a simplex geometry (as made explicit by the poset structuring) the154

volume is: 1/Γ(D) = 1/(D − 1)!. Evidently, as dimensionality increases the simplex volume155

decreases. A nice combinatorial intuition of this is that for D randomly sampled numbers {ni}Di , the156

probability of obtaining a permutation which is precisely the total ordering of these D points (i.e.157

n1 < n2 < ... < nD) is 1/D!. Thus, even if the AIC O(D) model complexity term grows without158

bound, the simplex constraint over the D parameters serves to act as a strong counter-balance. In159

fact, this counter-balancing imbues the MDL expression with a double descent-like behaviour. As D160

increases, the value of the MDL expression first increases, and then decreases. Since MDL relates161

strongly to the notion of model generalizbility the double descent phenomenon which arises here162

paints an intriguing picture for the double descent risk phenomenon that has empirically arisen in163

the deep learning field. A visual example of this on toy values is made clear in Figure A2b. It is164

important to note that our analysis assumes access to a fully observable lattice model (and thus is165

not immediately applicable to restricted Boltzmann machines without careful consideration). This is166

because in latent hierarchical settings the underlying geometry can become geometrically singular,167

which complicates the global model volume calculation with respect to the FIM [36? , 35].168

In regards to (ii) model distinguishability, it should be noted that the term distinguishability is169

somewhat overloaded here, since in classic MDL literature it has been traditionally reserved for the170

entire expression:
∫
Θ

√
det(I(θ))dθ [8, 28]. Our proposal is to elaborate it slightly by splitting this171

term into two terms, where one term works to clarify the importance of the model architecture, and172

the other term clarifies the constraints that exist in the underlying parameter space.173

Inspecting these terms in the limit of the over-parameterized regime results in the following (see174

Appendix A.3 for its proof).175

Remark 1 (Limiting Lattice Volume). limD→∞ V = 0.176

Thus, the volume of the proposed statistical lattice models tends towards zero for large D, and this177

limit can be said to converge factorially due to the simplex volume. Finally, it is interesting (and178

tempting) to relate the volume calculations established here to the model volumes of tree structures,179

particularly since these models have similar graphical topologies to statistical lattices. Doing so, one180

is able to establish Remark 2, in which it can be seen that two topologically similar models do indeed181

consider similar volume expressions, and that in both expressions limD→∞ V = 0 holds.182

Remark 2 (Rissanen’s Tree Volume [28]). Binary decision trees for encoding D-classes have183

log-volume: log2 V = D/2 log2 π − log2 Γ(D/2). Ignoring higher order terms, statistical lattice184

structures have their log-volume upper-bounded as: loge V ≤ D/2 loge π − loge Γ(D/2).185

4



References186

[1] David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learning algorithm for187

Boltzmann machines. Cognitive Science, 9(1):147–169, 1985.188

[2] Alan Agresti. Categorical Data Analysis. Wiley, 3 edition, 2012.189

[3] Hirotogu Akaike. Information theory and an extension of the maximum likelihood principle.190

In B. N. Petrov and F. Caski, editors, Proceedings of the 2nd International Symposium on191

Information Theory, pages 267–281, 1973.192

[4] Shun-ichi Amari. Information geometry on hierarchy of probability distributions. IEEE193

Transactions on Information Theory, 47(5):1701–1711, 2001.194

[5] Shun-ichi Amari and Hiroshi Nagaoka. Methods of information geometry, volume 191. Ameri-195

can Mathematical Soc., 2007.196

[6] Jimmy Ba, Murat Erdogdu, Taiji Suzuki, Denny Wu, and Tianzong Zhang. Generalization of197

two-layer neural networks: An asymptotic viewpoint. In International Conference on Learning198

Representations, 2020.199

[7] Vijay Balasubramanian. A geometric formulation of occam’s razor for inference of parametric200

distributions. arXiv:adap-org/9601001, 1996.201

[8] Vijay Balasubramanian. MDL, Bayesian inference, and the geometry of the space of probability202

distributions. Advances in Minimum Description Length: Theory and Applications, pages203

81–98, 2005.204

[9] Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in205

linear regression. arXiv:1906.11300, 2019.206

[10] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-207

learning practice and the classical bias–variance trade-off. Proceedings of the National Academy208

of Sciences, 116(32):15849–15854, 2019.209

[11] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to210

understand kernel learning. arXiv:1802.01396, 2018.211

[12] Christopher M Bishop. Pattern Recognition and Machine Learning. Springer, 2006.212

[13] Stéphane d’Ascoli, Maria Refinetti, Giulio Biroli, and Florent Krzakala. Double trouble in213

double descent: Bias and variance(s) in the lazy regime. arXiv:2003.01054, 2020.214

[14] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order. Cambridge215

University Press, 2 edition, 2002.216

[15] Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun, Stéphane d’Ascoli,217

Giulio Biroli, Clément Hongler, and Matthieu Wyart. Scaling description of generalization218

with number of parameters in deep learning. Journal of Statistical Mechanics: Theory and219

Experiment, 2020(2):023401, 2020.220

[16] Mario Geiger, Stefano Spigler, Stéphane d’Ascoli, Levent Sagun, Marco Baity-Jesi, Giulio221

Biroli, and Matthieu Wyart. Jamming transition as a paradigm to understand the loss landscape222

of deep neural networks. Physical Review E, 100(1):012115, 2019.223

[17] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized224

two-layers neural networks in high dimension. arXiv:1904.12191, 2019.225

[18] Gerhard Gierz, Karl H. Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael Mislove, and226

Dana S. Scott. Continuous Lattices and Domains. Cambridge University Press, 2003.227

[19] Peter D Grünwald. The minimum description length principle. MIT press, 2007.228

[20] Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-229

dimensional ridgeless least squares interpolation. arXiv:1903.08560, 2019.230

5



[21] Harold Jeffreys. An invariant form for the prior probability in estimation problems. Proceedings231

of the Royal Society of London. Series A. Mathematical and Physical Sciences, 186(1007):453–232

461, 1946.233

[22] Simon Luo and Mahito Sugiyama. Bias-variance trade-off in hierarchical probabilistic models234

using higher-order feature interactions. In Proceedings of the AAAI Conference on Artificial235

Intelligence, volume 33, pages 4488–4495, 2019.236

[23] Bruno Mera, Paulo Mateus, and Alexandra M Carvalho. On the minmax regret for statistical237

manifolds: the role of curvature. arXiv preprint arXiv:2007.02904, 2020.238

[24] In Jae Myung, Vijay Balasubramanian, and Mark A Pitt. Counting probability distributions:239

Differential geometry and model selection. Proceedings of the National Academy of Sciences,240

97(21):11170–11175, 2000.241

[25] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever.242

Deep double descent: Where bigger models and more data hurt. In International Conference on243

Learning Representations, 2020.244

[26] C Radhakrishna Rao. Information and the accuracy attainable in the estimation of statistical245

parameters. In Breakthroughs in Statistics, pages 235–247. Springer, 1992.246

[27] Jorma J Rissanen. Fisher information and stochastic complexity. IEEE Transactions on247

Information Theory, 42(1):40–47, 1996.248

[28] Jorma J Rissanen. Stochastic complexity in learning. Journal of Computer and System Sciences,249

55(1):89–95, 1997.250

[29] Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464,251

1978.252

[30] Claude E Shannon. A mathematical theory of communication. Bell System Technical Journal,253

27(3):379–423, 1948.254

[31] Stefano Spigler, Mario Geiger, Stéphane d’Ascoli, Levent Sagun, Giulio Biroli, and Matthieu255

Wyart. A jamming transition from under-to over-parametrization affects loss landscape and256

generalization. arXiv:1810.09665, 2018.257

[32] Mahito Sugiyama, Hiroyuki Nakahara, and Koji Tsuda. Information decomposition on struc-258

tured space. In 2016 IEEE International Symposium on Information Theory, pages 575–579,259

2016.260

[33] Mahito Sugiyama, Hiroyuki Nakahara, and Koji Tsuda. Tensor balancing on statistical manifold.261

In Proceedings of the 34th International Conference on Machine Learning, volume 70, pages262

3270–3279, 2017.263

[34] Mahito Sugiyama, Hiroyuki Nakahara, and Koji Tsuda. Legendre decomposition for tensors. In264

Advances in Neural Information Processing Systems, pages 8811–8821, 2018.265

[35] Ke Sun and Frank Nielsen. Lightlike neuromanifolds, occam’s razor and deep learning.266

arXiv:1905.11027, 2019.267

[36] Sumio Watanabe. Algebraic Geometry and Statistical Learning Theory, volume 25. Cambridge268

University Press, 2009.269

6



(0,0,0)
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(0,1,1)

(1,1,1)

(0,1,0)

(1,0,1)
η{₂,₃} ≤ η{₃}

log ℙ((1,1,0))
= θ{₁,₂} + θ{₁} + θ{₂} – ψ

(1,0,0)

(1,1,0)

Figure A1: An example of a lattice structure for the binary domain {0, 1}3. Each arrow denotes the
partial order between elements in the lattice.

Appendix270

A Statistical Lattice Models271

A.1 Reparameterzing the Dual Geometry of Lattices272

Lattices are useful structures, as they allow one to efficiently encode information hierarchically. A273

geometry over lattice-type structures based on modelling higher order feature interactions via log274

probabilities has been derived in the work of Sugiyama et al. [32]. The well-known log-linear model275

for binary variables in question is formulated as,276

logP(x) =
∑
i

θ{i}xi +
∑
i<j

θ{i,j}xixj +
∑
i<j<k

θ{i,j,k}xixjxk + · · ·+ θ{1,...,n}x1 . . . xn − ψ,

where x ∈ {0, 1}n, each θ ∈ R denotes the connection strength of a particular higher order277

interaction, each xi ∈ {0, 1} denotes a binary valued variable which activates a particular connection278

strength, ψ ∈ R denotes the normalization constant for the probability model [4, 2]. Under this279

structure, P(x) is a member of the exponential family of distributions. If we define a particular280

instance of the partial ordering as x = (x1, . . . , xn) ≤ y = (y1, . . . , yn), where xi ≤ yi for all281

i ∈ {1, . . . , n}, and denote by Σ(x) as the set of indices of “1” in x, then when can instantiate a282

lattice, and can condense the representation of the above log-linear model as:283

logP(x) =
∑
s

δ(s,x)θΣ(s) =
∑
s≤x

θΣ(s), where ψ = −θ∅.

Hence the lattice is a natural representation of this hierarchical structure over the sample space of284

{0, 1}n. Sugiyama et al. [32] studied geometric structure of statistical lattice models and showed that285

distributions over not only {0, 1}n but any lattices belong to the exponential family. Note that posets286

are originally used in [32], which is a more general structure than lattices. Although we treat only287

lattices in this paper, most interesting statistical models (such as Boltzmann machines) are lattices.288

We thus proceed in this direction as lattice structures entail a simple co-ordinate representation of the289

metric tensor as we have described in Theorem 1. An example of a lattice structure for {0, 1}3 is290

illustrated in Figure A1.291

As Amari notes [5], the exponential family of distributions induces a statistical manifold which292

possesses an interesting dualisitc structure. That is, two co-ordinate systems can be dually connected293

and allow one to generalize notions such as the Pythagoras theorem in Euclidean manifolds, to more294

general statistical manifolds. In particular, for the exponential family the first of these co-ordinate295

systems is given by θ = (θ1, ..., θD) (as defined in the specified log-linear model of this subsection),296

and the second is given by η = (η1, ..., ηD). Note that in the case of a binary log-linear model, we297

have D = 2n and298

η{i} = E[xi] = Pr(xi = 1)

η{i,j} = E[xixj ] = Pr(xi = 1, xj = 1)

η{1,...,n} = E[x1...xn] = Pr(x1 = 1, ..., xn = 1),
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and (θ,η) are explicitly dually connected via the Legendre transformation [5, 32]. Note that since299

the η co-ordinate system is defined probabilistically, and is thus constrained to be in [0, 1]D, which300

is convenient, and simplifies many calculations. Moreover, note that the η co-ordinate system is301

built hierarchically, in the sense that it adheres to a partial ordering similar to the following example302

structure:303

η1 ≥ η2, η3 η2 ≥ η4, η3 ≥ η5, . . .

This ordering is model specific and always uniquely determined from the lattice structure, and304

it is thus difficult to perform integrations over such arbitrary orderings. However, owing to the305

probabilistic nature of the η co-ordinate system, it is possible to impose the following recursive306

re-parameterisation:307

η1 = δ1
η2 = η1 + δ2
η3 = η1 + δ3

...
ηD = ηD−1 + δD

where each δi ∈ [0, 1] for 1 ≤ i ≤ D, and
∑D
i=1 δi = 1. Geometrically speaking, δ = {δi}Di=1308

represents points in a D-simplex. We can then proceed to formally encode the lattice ordering309

constraints via an additional zeta matrix, resulting in η = Zδ, where each Zij ∈ {0, 1} is the value310

of zeta function ζ(qi, qj) = 1qi≤qj for the corresponding elements qi and qj in the lattice. In other311

words, points from the D simplex, δ, can be transformed into η co-ordinates for the poset manifold312

through a linear mapping. In order to re-express the volume integral via the δ co-ordinates, it is313

necessary to calculate the determinant of the Jacobian transformation matrix between the co-ordinate314

systems. However this is trivially one, since Z is by construction upper triangular, resulting in315

det
(
∂η
∂δ

)
= 1. Therefore it is possible to calculate the log-volume integral as,316

log

∫
4D

√
det (G(δ)) · det

(
∂η

∂δ

)2

dδ

 = log

(∫
4D

√
det (G(δ))dδ

)
, (3)

where the coordinate transformation was performed using the square of the determinant, as the317

metric tensor is rank (0,2) - that is, it is a doubly covariant object, and we define the D-simplex as318

4D. In this form it is natural to re-express the volume integral via the expectation operator, where319

the expectation is taken with respect to a Dirichlet distribution over δ, as the Dirichlet distribution320

represents a pdf over the probability simplex. In other words we consider,321

log

(∫
4D

√
det (G(δ))dδ

)
= log

(∫
4D

√
det (G(δ)) · w(δ)

w(δ)
dδ

)
= log

(
E

[√
det (G(δ))

w(δ)

])
, (4)

where w(δ) =
∏D

i=1 Γ(αi)

Γ(
∑D

i=1 αi)

∏D
i=1 x

αi−1
i := Dir(δ;α), with α = (α1, . . . , αD), and Γ : R → R322

being the standard Gamma function. Here, the choice of α controls the manner in which sampling323

is performed over 4D. We opt for a uniform exploration over the D-simplex, which equates to324

requiring that αd = 1 for all d ∈ D. Doing so means that we get, w(δ) =
∏D

i=1 Γ(1)

Γ(
∑D

i=1 1)
= 1

Γ(D) , where325

Γ(D) = (D − 1)!. Ultimately, Equation (4) becomes,326

log

(
E

[√
det (G(δ))

w(δ)

])
= log

(
E
[√

det (G(δ))
])
− log Γ(D), (5)

implying that bounding the volume can be equivalently achieved by bounding the behaviour of327

log
(
E
[√

det(G(δ))
])

, and then appending the log Γ(D) term. The upper and lower bounds on this328

volume integral, are shown in Appendix A.2.329
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A.2 Proof of Theorem 2330

In this subsection we proceed to find lower and upper bounds for the log V in the case of the331

prescribed lattice geometry, by exploiting the re-parameterization of the η co-ordinate system.332

Proof. Volume Upper Bound:333

From Hadamarad’s inequality: |det(A)| ≤
∏D
i=1Aii, for A ∈ RD×D. Thus:334

|det(G(δ))| = det (G(δ)) (G(δ) � 0)

≤
D∏
i=1

Gii(δ),

⇒
√

det(G(δ)) ≤

√√√√ D∏
i=1

Gii(δ)

⇐⇒ E
[√

det(G(δ))
]
≤ E


√√√√ D∏
i=1

Gii(δ)


⇐⇒ log

(
E
[√

det(G(δ))
])
≤ log

E


√√√√ D∏
i=1

Gii(δ)


⇐⇒ log

(
E
[√

det(G(δ))
])
− log Γ(D) ≤ log

E


√√√√ D∏
i=1

Gii(δ)

− log Γ(D)

⇐⇒ log V ≤ log

E
[√∏D

i=1 Gii(δ)

]
Γ(D)

 ,

335

336

Volume Lower Bound:337

log
(
E
[√

det (G(δ))
])
≥ E

[
log
(√

det (G(δ))
)]

(6)

=
1

2
E [log ◦ det (G(δ))] , (7)

where Inequality (6) is Jensen’s inequality. Moreover, G � 0⇒ ∃M s.t. G =MMᵀ, whereM is a338

triangular matrix (Cholesky decomposition). Thus,339

det (G) = det (MMᵀ)

= det (M) · det (Mᵀ)

= det (M) · det (M)

= det (M)
2

=

(
D∏
i=1

Mii

)2

, (8)
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⇒ 1

2
E [log ◦det (G(δ))] =

1

2
E

log

(
D∏
i=1

Mii(δ)

)2


= E

[
D∑
i=1

log (Mii(δ))

]
,

⇒ log
(
E
[√

det (G(δ))
])
≥ E

[
D∑
i=1

log (Mii(δ))

]

⇐⇒ log
(
E
[√

det (G(δ))
])
− log Γ(D) ≥ E

[
D∑
i=1

log (Mii(δ))

]
− log Γ(D)

⇐⇒ log V ≥ E

[
D∑
i=1

log (Mii(δ))

]
+ log

(
1

Γ(D)

)
341

A.3 Proof of Remark 1342

Here we show that as D → ∞, V → 0 which implies that log V → −∞. This is an important343

indicator in the increase of generalization performance, as sufficiently largeD can therefore overpower344

the O(D) model complexity term, present in traditional AIC and BIC.345

Proof. As this represents a volume integral a trivial lower bound is zero. It follows that346

0 ≤ V ≤ E


√∏D

i=1 Gii(δ)

Γ(D)


⇒ lim

D→∞
0 ≤ lim

D→∞
V ≤ lim

D→∞
E


√∏D

i=1 Gii(δ)

(D − 1)!

 .
Since each Gii(δ) ∈ [0, 1], the factorial in the denominator strongly dominates, so that:347

lim
D→∞

E


√∏D

i=1 Gii(δ)

(D − 1)!

 = 0.

Thus from via an application of squeeze theorem we see that,348

0 ≤ lim
D→∞

V ≤ 0,

⇒ lim
D→∞

V = 0.

349

A.4 Visual Summary of the Effect of logV350

A visual summary of the effect of the log V term in the modeling behaviour for test is made clear351

in Figure A2b. This plot has been produced with respect to toy data, where the behaviour of the352

log likelihood has been modeled wlog as: log(103/D10) to model rapidly increasing log likelihood353

as D increases. The O(D) term has been modeled in accordance to BIC as: D/2 logN , and the354

value of N in Figure A2b has been changed accordingly (for three different cases). Lastly, the log V355

value has been determined by constructing the metric tensor from first principles and evaluating the356

volume integral from first Monte Carlo sampling. Firstly, it is clear that the presence of log V term357

seems to drive a generalization behaviour that bears striking resemblance to the double-descent risk358
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curves. Similar intuitions were shown by Sun & Nielsen [35] for deep neural networks, which is359

shown in Figure A3. However, in their analysis it was necessary to consider an additional term in360

the MDL expansion, and instead of decreasing volume, they report having an increasing volume361

term. Thus it would appear that these higher order terms in the MDL-like expansion are highly362

model specific, and are required to be examined on a case-by-case basis. Indeed a blanket statement363

such as: the log-volume term drives a double descent behavior is not correct, but it can be said that364

for fully-observed statistical lattice models this appears to be the case. Regardless, it would appear365

that for a more complete understanding of the peculiarities of the modern ML regime, a geometric366

perspective seems to be certainly invaluable.367

Secondly, in Figure A2b the double descent peak is observed to shift to the right with increasing N .368

Information theoretically, increasing N proliferates the total number of possible encodings which369

may be able to explain the observed data. This is an interpretation which is consistent with Rissanen’s370

original derivation of MDL, in which he states: “the number of distinguishable models grows with the371

length of the data, which seems reasonable. In view of this we define the model complexity (as seen372

through the data)” [27]. Interestingly, this can imply that when a model’s total distinguishability is373

insufficient (weak regularization, and or insufficient noise), it is possible for the model to generalize374

well on one quantity of data, N1, and then upon re-training on some new data such that N2 > N1, to375

then generalize poorly, due to the ability of the double-descent cusp to shift towards the right. Similar376

ideas have been uttered recently by Nakkiran et al., in that: “for a fixed architecture and training377

procedure, more data (can) actually hurt” [25]. Ultimately, such analysis seem to suggest that for a378

more holistic understanding on the double-descent phenomenon a geometric approach provides a379

more complete understanding, with invaluable intuition and assistance.380

Training-risk

Under-
parameterized

Ri
sk

Training-risk
Model class capacity

Model
volume

Over-
parameterized

Test-risk

(a) Double descent risk proposed behavior for
lattice-type statistical models.

(b) Three different data cases on MDL evaluations
(y-values).

Figure A2: Comparing double descent risk shapes to MDL calculations for statistical lattice machines
(of which Boltzmann machines form a subset).

Figure A3: Deep learning razor based on inspecting the geometric structure of MDL-like expressions
in Sun & Nielsen [35].

A.5 Proof of Remark 2381

In Risannen’s MDL derivation for decision trees [28] (and finite alphabet processes), he derives382

a log-volume term as follows, log V = log πD/2

Γ(D/2) . Since there is a topological similarity in the383
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structure between lattice models and tree structures (not necessarily one-to-one), it is tempting384

to determine under what conditions Risannen’s volume expression can be derived from the poset385

formulations shown here. Note that in Risannen’s tree structure there is no inequality symbol needed386

for his log-volume expression. This is because the FIM for his model is diagonal, and so there is no387

need to invoke Hadamarad’s inequality to make the volume integral tractable (which is done here).388

Proof. Consider an upper-bound on log V , established through Hadamarad’s inequality of determi-389

nants:
√

det(G(η)) ≤
√∏D

i=1 G(η)ii =
√∏D

i=1 ηi(1− ηi), which results because each diagonal390

term in our formulation, G(η)ii = ηi(1− ηi). Thus,391

V =

∫
4D−1

√
det(G(η))dη

≤
∫
4D−1

√√√√ D∏
i=1

G(η)iidη

=

∫
4D−1

√√√√D−1∏
i=1

ηi(1− ηi)dη

where we denote the D-1 dimensional simplex via4D−1. Our aim here is to transform the expression392 √∏D−1
i=1 ηi(1− ηi) into a more amenable term, from which the above integral can be evaluated.393

This can be established by expanding and collecting polynomial terms. Consider,394

D−1∏
i=1

ηi(1− ηi) =

D−1∏
i=1

ηi(1− η1)(1− η2)...(1− ηD−1)

=

D−1∏
i=1

ηi(1− η1 − η2 + η1η2)(1− η3)...(1− ηD−1)

=

D−1∏
i=1

ηi

1−
D−1∑
i=1

ηi +

D−1∑
i 6=j

ηiηj −
D−1∑
i 6=j 6=k

ηiηjηk + ...+ (−1)D
D−1∏
i=1

ηi


=

(
D−1∏
i=1

ηi

)(
1−

D−1∑
i=1

ηi

)
+

(
D−1∏
i=1

ηi

)D−1∑
i 6=j

ηiηj −
D−1∑
i 6=j 6=k

ηiηjηk + ...+ (−1)D
D−1∏
i=1


where the above is a result of expanding the polynomial terms and collecting like expressions into395

their respective groups, and expanding the brackets. Therefore the integrand can be considered to396

evaluate as:397

√√√√ D∏
i=1

G(η)ii =

√√√√D−1∏
i=1

ηi(1− ηi)

=

√√√√√(D−1∏
i=1

ηi

)(
1−

D−1∑
i=1

ηi

)
+

(
D−1∏
i=1

ηi

)D−1∑
i 6=j

ηiηj −
D−1∑
i6=j 6=k

ηiηjηk + ...+ (−1)D
D−1∏
i=1


=

√√√√(D−1∏
i=1

ηi

)(
1−

D−1∑
i=1

ηi

)
+O(η3)

≈

√√√√(D−1∏
i=1

ηi

)(
1−

D−1∑
i=1

ηi

)
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where the approximation results from observing that each ηi ∈ [0, 1]. In particular, high polynomial398

orders of ηi must quickly approach zero, with the speed of approach increasing as the order becomes399

higher. This would only not be the case if many ηi = 1. However, such a system would imply a trivial400

poset structure, since our partial ordering needs ηi > ηj for i > j for non-trivial lattice structures. In401

other words, since the geometric co-ordinates for the lattice structure are expressed through η, for402

non-trivial co-ordinate space it is required for the majority of η ∈ (0, 1).403

The purpose of re-writing the integrand in this way, was to motivate the usage of a Type I Dirichlet404

Integral for its evaluation. In particular, such integrals subscrie to the following evluation rule:405

∫
4D

D∏
i=1

xαi−1f

(
D∑
i=1

xi

)
dDxi =

∏D
i=1 Γ(αi)

Γ(
∑D
i=1 αi)

∫ 1

0

f(τ)τ
∑D

i=1 αi−1dτ.

In order to evaluation our volume integral we must consider, (i) Defining the function f : y 7→
√

1− y,406

where y :=
∑D−1
i=1 ηi and (ii) Each αi = 3/2. These reasons are made explicit as follows:407

∫
4D−1

D−1∏
i=1

xαi−1f

(
D−1∑
i=1

xi

)
dD−1xi =

∫
4D−1

D−1∏
i=1

η1.5−1f

(
D−1∑
i=1

ηi

)
dη

=

∫
4D−1

D−1∏
i=1

η0.5

(
1−

D−1∑
i=1

ηi

)0.5

dη

=

∫
4D−1

√√√√D−1∏
i=1

ηi(1− ηi)dη

where evidently it can be seen that αi = 3/2, and f
(∑D−1

i=1 ηi

)
=

√(
1−

∑D−1
i=1 ηi

)
. Therefore,408

we can evaluate the volume integral upper-bound as follows:409

∫
4D−1

√√√√D−1∏
i=1

ηi(1− ηi)dη =

∏D−1
i=1 Γ

(
3
2

)
Γ
(∑D−1

i=1
3
2

) ∫ 1

0

(1− τ)1/2τ
∑D−1

i=1 (3/2)−1dτ (9)

From this evaluation, it can be noticed that the new integral on the RHS is in fact an Euler-Beta410

integral, which evaluates according to the following rule:411

∫ 1

0

(1− x)β−1xα−1dx =
Γ(α)Γ(β)

Γ(α+ β)
,

where β = 3/2 and α =
∑D−1
i=1 (3/2) in this case. Thus:412

∫
4D−1

√√√√D−1∏
i=1

ηi(1− ηi)dη =

∏D−1
i=1 Γ

(
3
2

)
Γ
(∑D−1

i=1
3
2

) · Γ
(

3
2

)
Γ
(∑D−1

i=1
3
2

)
Γ
(∑D−1

i=1
3
2 + 3

2

)
=

∏D
i=1 Γ

(
3
2

)
Γ
(∑D

i=1
3
2

) .
From the Legendre relation for the Γ function, the following recurrence relation holds: Γ(x)Γ(x+413

1/2) = 21−2x
√
πΓ(2x). This allows one to evaluation Γ(3/2) as follows:414
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Γ(1)Γ(3/2) = 2−1
√
πΓ(2)

⇒ Γ(3/2) = 2−1
√
π.

Moreover, since by definition of the Gamma function we can write Γ
(∑D

i=1
3
2

)
= Γ

(
D + D

2

)
=415

Γ
(
D
2

)
(D − 1)!, it can therefore be established that:416

∏D
i=1 Γ

(
3
2

)
Γ
(∑D

i=1
3
2

) =
πD/2

Γ (D/2)
· 1

2D(D − 1)!
,

Establishing now the log V term one can arrive at the following conclusions:417

log V ≤ log

(
πD/2

Γ(D/2)

)
+ log

(
1

2D(D − 1)!

)
= log

(
πD/2

Γ(D/2)

)
− log

(
2DΓ(D)

)
≤ log

(
πD/2

Γ(D/2)

)
Evidently, the second expression 1

2DΓ(D)
goes to zero much faster than πD/2

Γ(D/2) , especially for large418

D. Thus, as before we take the dominant (first) term in this approximation and arrive at:419

log V ≤ log

(
πD/2

Γ(D/2)

)
as required.420
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