
Unveiling LoRA Intrinsic Ranks via Salience Analysis

Wenjun Ke1,2, Jiahao Wang1, Peng Wang1,2*, Jiajun Liu1, Dong Nie3, Guozheng Li1, and Yining Li1

1School of Computer Science and Engineering, Southeast University
2Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary

Applications (Southeast University), Ministry of Education
3Meta Inc.

{kewenjun, wang_jh, pwang, jiajliu, gzli, liyining}@seu.edu.cn, dongnie@cs.unc.edu

Abstract

The immense parameter scale of large language models underscores the necessity
for parameter-efficient fine-tuning methods. Methods based on Low-Rank Adap-
tation (LoRA) assume the low-rank characteristics of the incremental matrix and
optimize the matrix obtained from low-rank decomposition. Although effective,
these methods are constrained by a fixed and unalterable rank, neglecting the vari-
able importance of matrices. Consequently, methods for adaptive rank allocation
are proposed, among which AdaLoRA demonstrates excellent fine-tuning perfor-
mance. AdaLoRA conducts adaptation based on singular value decomposition
(SVD), dynamically allocating ranks according to importance. However, it still
struggles to achieve a balance between fine-tuning effectiveness and efficiency,
leading to limited rank allocation space. Additionally, the importance measure-
ment focuses only on parameters with minimal impact on the loss, neglecting
the dominant role of singular values in SVD-based matrices and the fluctuations
during training. To address these issues, we propose SalientLoRA, which unveils
the intrinsic ranks of the weight matrix via salience measurement and adaptively
optimizes ranks of LoRA. This method measures the salience of rank within a
time-series by constructing inter-dependencies among the correlations of singular
values and prune ranks with low salience while retaining those with high signifi-
cance. Additionally, an adaptive adjustment of the time-series window enhances
the speed of rank allocation while ensuring training stability. This mechanism
enables matrics to set a higher initial rank, thus expanding the allocation space
for ranks. To evaluate the generality of our method across various tasks, we
conduct experiments on natural language understanding (NLU), natural language
generation (NLG), and large model instruction tuning tasks. Experimental results
demonstrate the superiority of SalientLoRA, which outperforms state-of-the-art
methods by 0.96%-3.56% on multiple datasets. Furthermore, as the rank alloca-
tion space expands, our method ensures fine-tuning efficiency, achieving a speed
improvement of 94.5% compared to AdaLoRA. The code is publicly available at
https://github.com/Heyest/SalientLoRA.

1 Introduction

Large language models (LLMs) [23, 28, 2, 4] exhibit robust generative and inferential capabilities,
excelling in various downstream tasks [26, 12, 14, 16]. However, the vast number of parameters
in LLMs makes fine-tuning computationally demanding and time-consuming. Notably, LLaMA
[23] encompasses parameters ranging from 7 billion to 65 billion, and fine-tuning LLaMA 65B
necessitates a substantial 780GB of GPU memory [5].

*Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Heyest/SalientLoRA

1.5rt 3rt 4.5rt 6rt 7.5rt
Intial Rank ri

69

69.5

70

70.5

M
cc

CoLA
Mcc

1.3K

1.6K

1.9K

2.2K

R
un

tim
e

(s
)Runtime

1 2 3 4 5 6 7 8 9 10
Time Step

0.02

0.03

0.04

0.05

0.06

R
eg

u
Lo

ss

Loss Fluctuations

Regu Loss
0.04

0.045

0.05

0.055

Si
ng

ul
ar

 V
al

ue

Singular Value

Figure 1: (Left) Fluctuations of regularization loss and singular values across multiple time steps.
(Right) Performance and runtime of fine-tuning DeBERTaV3-base model on the CoLA dataset with
increased initial rank in AdaLoRA. Here, the metric Mcc means Matthews Correlation Coefficient.

To improve fine-tuning efficiency, numerous parameter-efficient fine-tuning (PEFT) methods [9,
13, 18, 10, 29, 17, 34] have been developed with only a minimal number of trainable parameters,
significantly reducing computational resources. Incremental methods [9, 13, 18] introduce extra
trainable parameters into the existing architecture of LLMs. However, the increased model depth
introduces time delays during inference. Reparameterization methods [10, 29, 17, 34, 15], based on
low-rank adaptation (LoRA) [10], assume the low-rank nature of the incremental matrix and perform
low-rank decomposition on it. Although effective, they are still constrained by a fixed intrinsic rank,
potentially limiting their adaptability to the dynamic significance of different matrix elements.

To address the aforementioned limitations, dynamic rank allocation methods [25, 6, 29] have been
proposed, which can be seamlessly incorporated into LoRA-based PEFT approaches to significantly
enhance adaptability. Among these methods, AdaLoRA [29] stands out, having demonstrated
excellent fine-tuning performance, as evidenced by its widespread adoption in numerous research
studies [33]. AdaLoRA [29] introduces singular value decomposition (SVD) to the incremental
matrices, employing sophisticated importance-aware methods [30, 31] to adaptively allocate intrinsic
ranks. This method improves the alignment of ranks with the dynamic importance of matrix elements.
However, AdaLoRA still exhibits limitations in assessing the importance of LoRA ranks and fine-
tuning efficiency in the following two aspects: (1) The importance assessment focuses only on
parameters with minimal impact on loss, thereby neglecting the dominant role of singular values in
the SVD matrix. This assessment also fails to consider the variability of parameters across multiple
time steps, rendering it vulnerable to training fluctuations and probabilistic instability. Figure 1 (left)
illustrates significant fluctuations in singular values and the regularization loss of orthogonality, with
a sharp increase and decrease of regularization loss from steps 3 to 8. Such variability compromises
the reliability of the importance measurement. (2) AdaLoRA starts with a specific initial rank and
adjusts rank allocation by trimming unimportant parameters in groups during the fine-tuning process.
Despite this, it struggles to balance fine-tuning efficiency and effectiveness, resulting in a limited
rank allocation space. Figure 1 (right) illustrates that increasing the initial rank ri from 1.5 to 7.5
times the target rank rt improves fine-tuning performance by 0.78%. However, as the rank allocation
space expands, the fine-tuning time nearly doubles.

In this paper, we argue that in LoRA optimization, the inter-dependencies among multidimensional
ranks are crucial for unveiling the intrinsic ranks, especially when a specific rank significantly
influences others. As a consequence, we propose SalientLoRA, a method that conducts salience
analysis within a time-series LoRA ranks, pruning ranks with low salience while retaining those
with high significance. Following AdaLoRA, we decompose the incremental matrix using SVD
through regularization constraints. The salience measurement calculates the correlation between
singular values across modules in a time-series and constructs a dependency graph of correlation
relationships. This graph reveals the inter-dependencies of ranks, assigning higher salience to rank
with a broader influences domain. The salience measurement also examines the variation of the
regularization loss of orthogonality and singular values in the time-series, mitigating instability
and randomness that may arise during training. Moreover, to balance fine-tuning performance and
efficiency, we propose an adaptive adjustment of time-series windows. This mechanism dynamically
controls the size of time-series for salience measurement and rank reduction, facilitating rapid rank
allocation while preserving training stability. This mechanism allows matrices to set a higher initial
rank, thereby expanding the rank allocation space with greater efficiency. To validate the generality
of our method, we conduct experiments on the GLUE dataset for NLU tasks, the XSum and CNN

2

datasets for NLG tasks, and the MT dataset for instruction tuning, separately fine-tuning encoder-
only (DeBERTaV3-base), encoder-decoder (BART-large and T5-base), and decoder-only (LLaMA)
models. Experimental results demonstrate the superiority of our approach, which outperforms other
existing fine-tuning methods by 0.96%-3.56% across multiple datasets, achieving state-of-the-art
results. Moreover, as the rank allocation space expands, our method ensures fine-tuning efficiency,
achieving a speed improvement of 94.5% compared to AdaLoRA.

2 Related Work

2.1 Parameter-Efficient Fine-Tuning

Parameter-efficient fine-tuning methods (PEFT) can be divided into two categories: incremental
[9, 13, 18] and reparameterization approaches [10, 29, 17]. Incremental methods add small neural
modules into the existing architecture of LLMs, focusing solely on training these newly integrated
modules. Adapter-Tuning [9] inserts simple Adapter modules after the feedforward layer of each
Transformer architecture. Prefix-Tuning [13] and Prompt-Tuning [18] introduce additional trainable
prefix vectors before the input layer or hidden layers. However, these approaches introduce time delays
during inference due to either increasing model depth or reducing the available input sequence length.
Additionally, they still exhibit performance discrepancies compared to full-parameter fine-tuning
approaches. Reparameterization techniques update the incremental weight matrix in a parameter-
efficient manner, without altering the existing architecture of models. LoRA [10] assumes the
low-rank nature of the incremental matrix and performs low-rank decomposition on it. DoRA
[17] decomposes pre-trained weights into magnitude and direction for fine-tuning, using low-rank
decomposition for directional updates. Although the LoRA-based reparameterization approaches are
effective, they assign the same rank to all weight matrices, failing to consider the varying importance
of weight matrices across different layers and modules.

2.2 Dynamic Rank Allocation

Intuitively, more important matrices are capable of learning more complex knowledge and thus
require a higher rank. Therefore, the dynamic rank allocation methods [25, 6, 29] are necessary,
which can be seamlessly applied to the LoRA-based approaches. To achieve the dynamic low-rank
adaptation, DyLoRA [25] trains LoRA blocks for a range of ranks by sorting the representation
learned by the adapter module at different ranks during training. SoRA [6] controls rank cardinality
under gate sparsity by integrating a gate unit optimized through the proximal gradient. AdaLoRA [29]
performs adaptation through singular value decomposition (SVD), dynamically adjusting intrinsic
ranks based on significance. Among these methods, AdaLoRA has demonstrated its effectiveness,
as proved by numerous studies and experiments. However, AdaLoRA still exhibits limitations in
assessing the importance of LoRA ranks and fine-tuning efficiency.

3 Overview

As illustrated in Figure 2, the overall architecture of our method comprises three parts: incremental
matrix SVD, salience measurement and adaptive rank allocation.

Firstly, given the pretrained weight W0 ∈ Rd1×d2 , the update process can be formalized as W =
W0 +∆, where ∆ represents the incremental updates. To reduce the parameter count and facilitate
rank allocation, we decompose ∆ into PVQ, where V ∈ Rr×r is a diagonal matrix, P ∈ Rd1×r

and Q ∈ Rr×d2 , with rank r ≪ {d1, d2}. Following AdaLoRA, the orthogonality of P and
Q is regularized through the auxiliary loss to simulate singular value decomposition (SVD). The
regularization loss R(P,Q) is defined as follows:

R(P,Q) = ||PTP− I||2F + ||QQT − I||2F (1)

Through this decomposition approach, the rank of the incremental matrix can be easily controlled
by zeroing out the singular values in V. Secondly, we measure the salience of singular values
within a time-series through orthogonality-aware singular value magnitudes and the influence domain,
unveiling the inter-dependencies among ranks. Thirdly, singular values are sorted by their salience
at the last step of each time-series, and those with low significance are zeroed out to achieve the

3

Salience Measurement

..
.

.. .

..
.

...
..

.
.. .
..

Step 1

Query

... ...

Incremental Matrix SVD

Orthogonality of P and Q

Step 1 Step

...
=？1

...
=？ 90°

Adaptive Rank Allocation

Salience of Singular Value

...

=？1

=？1

=？1
 90°=？ ...

... ...

Dependency GraphCorrelation of Singular Value

Orthogonality of P and Q

...
..
.

.. .

..
.

...
..

.
.. .
..

Step

Query

...

..
.

.. .

..
.

...
..

.
.. .
..

Key

...
..
.

.. .

..
.

...
..

.
.. .
..

Key

...

..
.

.. .

..
.

...
..

.
.. .
..

Dense

...
..
.

.. .

..
.

...
..

.
.. .
..

Dense

...

..
.

.. .

..
.

...
..

.
.. .
.. ...

..
.

.. .

..
.

...
..

.
.. .
..

Key

...

Query

....

...

Figure 2: The overall framework of SalientLoRA. First, the incremental matrix is decomposed
using SVD to facilitate rank allocation. During fine-tuning, the salience of singular values within
time-series is measured, which is composed of orthogonality-aware singular value magnitudes and
the influence domain of the dependency graph. Finally, in the rank allocation process, singular values
with lower significance are progressively trimmed.

adaptive rank allocation. The rank allocation space is determined by the initial total rank ri and the
target total rank rt, both of which are hyperparameters. Upon completion of the rank allocation, the
most critical rt ranks are retained. In this process, an adaptive time-series window is introduced to
accelerate the rank allocation process and maintain stability during training. Section 4 and 5 elaborate
on the Salience Measurement and the Adaptive Time-series Window, respectively.

4 Salience Measurement

4.1 Orthogonality-Aware Singular Value Magnitudes

Following the objective of SVD, which utilizes singular values to represent the primary charac-
teristics of a matrix, we assess their importance based on the magnitudes. However, the relia-
bility of SVD heavily relies on the orthogonality of P and Q. Inadequate orthogonality under-
mines the efficacy of importance assessment with magnitudes. Therefore, we consider variations
of regularization losses within a time-series, assigning weights to singular value magnitudes ac-
cording to the orthogonality. Specifically, for the singular value λa, we record its magnitude
λa = {λ(1)

a , λ
(2)
a , . . . , λ

(n)
a } and regularization losses of the corresponding incremental matrix

R(P
(1)
a ,Q

(1)
a), R(P

(2)
a ,Q

(2)
a), . . . , R(P

(n)
a ,Q

(n)
a) within the n time steps. A high regularization

loss indicates low reliability of the SVD at that step, and consequently, the weight assigned to it
should be small. Therefore, the weight of step i is calculated as follows:

w(i) =

∑n
j=0 R(P

(j)
a , Q

(j)
a)

R(P
(i)
a , Q

(i)
a)

(2)

Subsequently, we normalize the weights with Min-Max normalization, then calculate the
orthogonality-aware singular values magnitudes:

ma =

n∑
j=1

w(j)λ(j)
a (3)

4.2 Influence Domain of Singular Value

During training, there exist dependency relationships among singular values, wherein the variation of
one singular value can influence multiple others. In light of this, we construct the dependency graph
of the correlations between singular values and determine their significance through the influence
domain. Initially, the correlation is calculated between any pair of singular values within the n time

4

windows λa = {λ(1)
a , λ

(2)
a , . . . , λ

(n)
a } and λb = {λ(1)

b , λ
(2)
b , . . . , λ

(n)
b } by the Pearson coefficient:

pab =
Cov(λa, λb)√
D(λa, λb)

(4)

If the pab exceeds β, it indicates a correlation between λa and λb. For a correlated pair of singular
values, the slope kab between them is further computed through linear regression fitting to determine
the extent of influence of λa on λb. A larger slope kab indicates a greater influence of λa on
λb, signifying a dependency relationship between them. Thus, we obtain the dependency matrix
D ∈ Rm×m and the element Dab of D is calculated as follows:

Dab =

{
kab pab > β and kab > γ

0 else
(5)

where m denotes the total number of singular values and γ is the threshold for filtering dependency
relationships. Note that the Pearson correlation coefficients and slopes are calculated using matrix
parallel multiplication, incurring only minimal computational and time costs. Subsequently, we trans-
form matrix D into a dependency graph, with singular values as nodes and dependency relationships
as edges. The dependency graph among singular values forms a directed cyclic graph, containing
numerous redundant dependencies within the cycles. Therefore, we employ a depth-first search (DFS)
algorithm for de-cycling to eliminate these redundancies. The pseudocode of de-cycling algorithm is
provided in Algorithm 1.

Finally, based on the dependency graph, the influence domain of singular values is computed:

Ii =

{
1 node i without subsequent nodes∑

k DikIk node i with subsequent node k
(6)

As illustrated in the dependency graph of Figure 2, some singular value determines multiple others,
with its variation can consequently lead to changes in several other singular values, thus signifying a
higher level of importance.

Ultimately, we combine the influence domain with orthogonality-aware magnitudes to obtain the
salience for each singular value. Here, the λ is a hyperparameter that controls the contribution of two
components to the salience measurement. The salience of the λa is denoted as sa:

sa = λma + (1− λ)Ia (7)

Algorithm 1 De-Cycling Algorithm for Dependency Graphs
Input: Dependency graph G
Output: Directed acyclic graph G′

1: Path = stack() ▷ Initialize a stack to record the traversal path
2: V isited = ∅ ▷ Record the nodes that have been visited
3: for each node v in G do
4: if v not in V isited then
5: DFS_VISIT(v)
6: end if
7: end for
8:
9: def DFS_VISIT(v)

10: V isited.add(v)
11: Path.push(v)
12: for each node u adjacent to v do
13: if u not in V isited ▷ If u is in the path, a cycle has been detected.
14: DFS_VISIT(u)
15: else if u in Path
16: Remove the edge with the smallest weight in the cycle
17: end if
18: end for
19: Path.pop(v)

5

5 Adaptive Time-Series Window

During the rank allocation for nf steps, we implement an adaptive adjustment of time-series window.
Within each time-series, the salience of singular values is assessed and the unimportant singular
values are dropped at the last step of the time-series. This mechanism follows the principle that
during the early stages of training, rank adjustment can be swiftly executed, while in the later stages,
rank allocation should be approached more cautiously. Specifically, we initially maintain a small time
window during the early stages of training, facilitating rapid rank reduction to enhance rank allocation
efficiency. The pruned singular values and their corresponding singular vectors are excluded from
gradient updates and salience calculations to expedite fine-tuning. As training progresses, the time
window expands, and the allocation becomes more cautious. The broad time window reduces the
frequency of importance calculations, thereby further accelerating the fine-tuning process. The
adjustment of the time window is as follows:

T = Tf + (Ti − Tf)(1−
nt

nf
)3 (8)

where T, Ti, and Tf represent the current time window size, the initial time window size, and the
final time window size during the rank allocation phase, respectively, with Ti < Tf . nt denotes the
current training step during the rank allocation phase.

The model starts with a relatively high initial rank ri and zeros out a certain number of singular
values within each time window to allocate rank. At the end of the rank allocation process, the rank
is pruned to the target total rank rt. The total rank count maintained in each time window is:

r = ri −
T

Tf
× (ri − rt) (9)

6 Experiment

6.1 Experimental Settings

Datasets To evaluate the applicability of our fine-tuning approach across multiple tasks and various
models, we conduct experiments on natural language understanding (NLU), natural language genera-
tion (NLG), and large-scale model instruction fine-tuning tasks, respectively. The specific datasets
chosen for each task and the statistics will be detailed in Section 6.2, 6.3, 6.4 and Appendix A.

Baselines We choose full fine-tuning (Full FT) and several existing incremental and reparameter-
ization methods as baselines. Full FT denotes fine-tuning all parameters of the model, requiring
significant computational resources. Adapter [9] integrates additional neural network layers into the
model, only fine-tuning the newly added parameters. AdapterFusion [20] propose a more efficient
design with adapters only applied after FFN and LayerNorm modules [3]. LoRA [10] performs
low-rank decomposition on the incremental parameter matrices, substantially reducing the number of
parameters for fine-tuning. SoRA [6] introduces a gating module with a proximal gradient decent
update to control the sparsity of the updated matrices. AdaLoRA [29] dynamically distributes the
parameter budget among weight matrices by evaluating the importance. DoRA [17] decomposes the
pre-trained weights into magnitude and direction for fine-tuning, using LoRA for directional updates.

Settings Our experiments are conducted on four NVIDIA RTX 3090Ti GPUs for NLU and NVIDIA
Ampere A100 for NLG and instruction tuning tasks. During salience measurement, the slope threshold
for dependency calculation γ = 2, the correlation threshold β = 0.9, and the λ is set to 0.7. For
adaptive time-window adjustment, the initial time window size Ti = 10, the final time window size
Tf = 200, and the initial total rank ri is set to 7.5 times the target total rank rt. The selected weight
matrix of transformer layer for fine-tuning includes query/key/value projection (Wq , Wk, Wv), output
projection (Wo) in the self-attention, and two weight matrices (Wf1 , Wf2) in two feedforward layers
(FFNs). We select the learning rate from {8× 10−5, 5× 10−5, 3× 10−5, 1× 10−4, 3× 10−4, 5×
10−4, 8 × 10−4, 1 × 10−3}, and pick the best-performing learning rate for every method. Further
details on other hyperparameters are shown in Appendix C.

6

6.2 Natural Language Understanding

For NLU, we evaluate our method on the GLUE [27] benchmark utilizing the encoder-only model
DeBERTaV3-base [7]. The GLUE benchmark consists of eight datasets: CoLA, SST-2, MRPC, QQP,
STS-B, MNLI, QNLI, and RTE. We use Matthew’s correlation coefficient, Spearman’s correlation
coefficient, and overall accuracy to evaluate the CoLA, STS-B, and MNLI datasets. For the remaining
datasets, we apply accuracy as the evaluation metric. To compare under the same parameter budget,
we set the hidden dimensions d of adapters to 8 and 32, the rank r of LoRA and DoRA to 2 and 8,
and the target total ranks rt for AdaLoRA and SalientLoRA to 144 and 276, respectively.

Table 1: Experimental results of SalientLoRA and other baselines on the GLUE benchmark across
varying parameter budgets. The bold scores indicate the best results. We report the average perfor-
mance over 5 runs using different random seeds, with SalientLoRA significantly better than AdaLoRA
and DoRA with p-value < 0.05 based on paired t-test.

Method #Params MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B Ave.

Full FT 184M 89.98 95.64 69.21 92.05 93.78 82.49 89.22 91.59 88.00
Adapterd=8 0.31M 90.10 95.41 67.65 91.54 93.52 83.39 89.25 91.31 87.60
AdapterFusiond=8 0.30M 89.89 94.72 69.06 91.40 93.87 84.48 89.71 91.38 87.90
LoRAr=2 0.32M 90.04 94.95 68.71 91.61 94.01 85.31 89.65 91.58 88.23
DoRAr=2 0.34M 90.14 95.78 70.21 91.77 94.17 87.48 90.27 91.24 88.88
AdaLoRArt=144 0.32M 90.22 95.76 70.04 91.78 94.13 87.36 90.13 91.21 88.83
SalientLoRArt=144 0.32M 90.94 96.23 71.87 91.97 94.83 88.43 91.68 92.36 89.79
Adapterd=32 1.21M 90.13 95.53 68.64 91.91 94.11 84.48 89.95 91.48 88.28
AdapterFusiond=32 1.18M 90.33 95.61 68.77 92.04 94.29 85.20 89.46 91.54 88.41
SoRA 0.91M 90.35 95.64 71.48 92.39 94.28 87.77 91.98 92.22 89.36
LoRAr=8 1.27M 90.47 95.67 69.73 91.95 93.76 85.32 89.71 91.86 88.56
DoRAr=8 1.29M 90.37 96.02 71.46 92.36 94.47 87.74 91.15 92.12 89.46
AdaLoRArt=276 1.27M 90.27 95.95 70.86 92.13 94.28 87.36 90.22 91.39 89.06
SalientLoRArt=276 1.27M 91.07 96.58 72.68 92.41 95.04 88.93 92.34 92.76 90.23

The results are shown in Table 1. Firstly, compared to incremental methods, reparameterization
approaches generally yield better results. Under the parameter budget of 0.3M, LoRA and DoRA
outperform adapters by average scores of 0.63% and 1.28% respectively. This demonstrates the
superiority of reparameterization methods, achieving enhanced fine-tuning performance without
adding extra inference latency. Secondly, both AdaLoRA and SalientLoRA consistently outperform
LoRA across all eight datasets, showing an average improvement of 0.6% and 1.56% in 0.32
million parameters, and 0.5% and 1.67% in 1.27 million parameters, respectively. This suggests that
adaptively adjusting the rank based on the importance of matrices indeed leads to better fine-tuning
performance. Third, SalientLoRA surpasses all other fine-tuning methods with margins of 0.91%-
1.79% and 0.77%-1.95% under two parameter budgets, achieving state-of-the-art results. Specifically,
SalientLoRA outperforms AdaLoRA by 0.96% and 1.17% on average, which indicates the superiority
of our method for salience measurement.

6.3 Natural Language Generation

For the NLG task, we finetune the encoder-decoder model BART-large [11] and T5-base [21] on the
text summarization datasets XSum [19] and CNN/DailyMail [8], with evaluation metrics of ROUGE
1/2/L scores. We set the rank r of LoRA and DoRA to 2, and the target total ranks rt for AdaLoRA
and SalientLoRA to 144, respectively. Fine-tuning results on two datasets are shown in Table 2.
The experimental results indicate that under the same parameter budget, SalientLoRA achieves
the best performance when fine-tuning T5-base and BART-large, surpassing other methods by
margins of 0.36%-2.2%. Specifically, when fine-tuning the BART-large model on the XSum dataset,
SalientLoRA exceeds AdaLoRA by 0.64%, 0.86%, and 1% in ROUGE 1/2/L scores, respectively,
and outperforms DoRA by 0.54%, 0.36%, and 0.65%. Moreover, SalientLoRA even surpasses the
performance of full fine-tuning on the CNN/DailyMail dataset, with improvements of 1.42%, 0.18%,
and 1.51% by T5-base and 0.78%, 0.58%, and 0.88% by BART-large, respectively.

7

Table 2: Performance comparison of different fine-tuning methods on NLG tasks. The three metrics
on each dataset are ROUGE 1/2/L scores.

Model Method #Params XSum CNN/DailyMail

T5-base

Full FT 212.6M 38.81 16.50 31.27 42.05 20.34 39.40
LoRA 0.34M 36.35 14.16 28.88 41.27 19.33 38.76

AdaLoRA 0.34M 36.68 14.27 28.13 41.53 19.52 39.01
SoRA 0.46M 36.87 14.54 28.32 41.78 19.86 40.18
DoRA 0.36M 36.89 14.68 28.49 42.92 20.03 40.28

SalientLoRA 0.34M 37.36 15.03 29.14 43.47 20.52 40.91

BART-large

Full FT 375.5M 45.49 22.33 37.26 44.16 21.28 40.90
LoRA 0.60M 42.81 19.68 34.73 43.68 20.63 40.71

AdaLoRA 0.60M 43.29 19.95 35.04 43.94 20.83 40.96
SoRA 0.72M 43.46 20.27 35.28 44.21 21.21 41.18
DoRA 0.64M 43.39 20.45 35.39 44.35 21.34 41.34

SalientLoRA 0.60M 43.93 20.81 36.04 44.94 21.86 41.78

6.4 Instruction Tuning

Table 3: The average score on MT-Bench and train-
able parameter count of LLaMA-7B after instruc-
tion tuning by different fine-tuning methods.

Model Method #Params. Score

LLaMA

Full FT 6426.3M 5.12
LoRA 159.9M 4.89

AdaLoRA 159.9M 5.06
SoRA 163.7M 5.11
DoRA 161.2M 5.17

SalientLoRA 159.9M 5.28

LLaMA2

Full FT 6426.3M 5.25
LoRA 159.9M 5.05

AdaLoRA 159.9M 5.17
SoRA 163.7M 5.24
DoRA 161.2M 5.31

SalientLoRA 159.9M 5.42

To evaluate the effectiveness of our method
in fine-tuning large language models of the
decoder-only architecture, we fine-tune the
LLaMA-7B [23] and LLaMA2-7B [24] model
on the Alpaca [22] instruction dataset, which
consists of 52k instances generated by GPT-4
[1] based on inputs from Alpaca. The fine-tuned
LLaMA and LLaMA2 are evaluated on the MT-
Bench [32], generating model responses to a
pre-defined set of 80 high-quality, multi-turn
questions. These responses are then assessed
using GPT-4, which assigns a quantitative score
on a scale of 10 to each answer. We set the
rank r of LoRA and DoRA to 64, and the target
total ranks rt for AdaLoRA and SalientLoRA
to 12280, respectively. We present the aver-
age scores alongside the number of trainable
parameters in Table 3. All compared fine-tuning
methods utilized only 159.9M to 163.7M trainable parameters, which is merely 2.4% of Full FT.
Experimental results indicate that LoRA still lags behind Full FT by 0.23 and 0.2 points. Notably,
SalientLoRA surpasses all fine-tuning methods, even outperforming Full FT by 0.12 and 0.17 points,
demonstrating the superior performance of SalientLoRA.

6.5 Ablation Results

To validate the effectiveness of the two components in our salience measurement, we conduct
experiments on the full SalientLoRA and its variants. Here, OAM represents the orthogonality-aware
magnitude and ID represents the influence domain. SalientLoRA w/o OAM indicates using the mean
of magnitudes within a time-series without adjusting weights based on orthogonality. We follow the
experimental setup for the NLU task, setting the target total rank rt of SalientLoRA to 144. As shown
in Table 4, we observe that both components of salience measurement (OAM and ID) significantly
contribute to the final results. SalientLoRA w/o OAM experiences a performance decrease ranging
from 0.18% to 0.73% across the eight datasets, with an average performance drop of 0.48%. This
indicates that adaptively controlling the weights of magnitudes based on the matrix orthogonality
effectively alleviates the problem of unreliable salience measurement caused by the orthogonality
fluctuation during training. Additionally, SalientLoRA w/o ID shows a performance decline ranging
from 0.32% to 1.13% across the eight datasets, with an average decrease of 0.8%. This highlights the
crucial role of ID in performance enhancement. ID constructs dependency between singular values
and further effectively measures importance by calculating the influence domain.

8

Table 4: The results of ablation experiments. Here, ↓ represents the performance declines of variants.

Method MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B Ave. ↓
SalientLoRA 90.94 96.23 71.87 91.97 94.83 88.43 91.68 92.36 89.79 -
w/o OAM 90.36 95.87 71.14 91.79 94.28 88.04 91.05 91.94 89.31 0.48
w/o ID 90.12 95.59 70.56 91.65 94.11 87.52 90.63 91.76 88.99 0.8

6.6 Analysis of Space Allocation and Time Consumption
We remark that as the rank allocation space expands, both SalientLoRA and AdaLoRA exhibit
performance improvements, and SalientLoRA achieves a better balance between performance and
fine-tuning time due to the adaptive time-series window and parallelized computation. Given the
resource-intensive nature of the experiments, we choose the CoLA, RTE, STS-B, and MRPC datasets
from NLU tasks for validation. We set the target total rank rt at 144 and gradually increase the
average initial rank r̄i for each matrix from 3 to 18. Here, r̄i = ri

n , where n represents the number
of matrices fine-tuned, and ri denotes the initial total rank. The results in Figure 3 indicate that as
the initial rank increases, AdaLoRA shows performance improvements by 0.39% - 1.44%, while
SalientLoRA improves by 0.55% - 1.5%. Furthermore, the fine-tuning time of AdaLoRA significantly
rises by 108% on average, whereas SalientLoRA experiences only marginal increases, ranging from
7% to 9%. This highlights the superiority of our method in balancing fine-tuning performance
and efficiency by the adaptive time-series window and parallelized computation during salience
measurement, resulting in reduced fine-tuning time.

3 6 9 12 15 18
Average Initial Rank

70
70.5

71
71.5

M
cc

CoLA

AdaLoRA SalientLoRA

1.2K
1.8K
2.4K
3.0K

AdaLoRA SalientLoRA

3 6 9 12 15 18
Average Initial Rank

87

87.5

88

88.5

A
cc

RTE

2.0K
3.0K
4.0K
5.0K
6.0K

3 6 9 12 15 18
87

87.5

88

88.5

A
cc

RTE

3 6 9 12 15 18
91.5

91.8

92.1

92.4

C
or

r

STS-B

1.3K
1.9K
2.5K
3.1K
3.7K

3 6 9 12 15 18
Average Initial Rank

91.5

91.8

92.1

92.4

C
or

r

STS-B

3 6 9 12 15 18
90

90.5

91

91.5

M
cc

MRPC

1.8K
2.4K
3.0K
3.6K
4.2K
4.8K

R
un

tim
e

(s
)

3 6 9 12 15 18
Average Initial Rank

MRPC

Figure 3: Comparison of fine-tuning effectiveness and runtime for AdaLoRA and SalientLoRA
across multiple datasets as the rank space increases. The line graph illustrates their the fine-tuning
performance, while the bar chart depicts the fine-tuning time.

6.7 Analysis of Hyperparameter λ

This section investigates the impact of the different contributions of two components in salience
measurement on the final fine-tuning results, namely orthogonality-aware magnitude and influence
domain. The degree of contribution is controlled by the hyperparameter λ. A higher λ indicates
a greater contribution of orthogonality-aware magnitude to the salience measurement. Conversely,
as λ decreases, the influence domain plays a greater role. The results in Figure 4 show an upward
trend in fine-tuning performance across CoLA, RTE, STS-B, and MRPC datasets as λ increases,
reaching a peak when λ reaches 0.7. This suggests that a greater contribution of orthogonality-aware
magnitude leads to a more effective salience measurement. The primary reason lies in the SVD
decomposition of the incremental matrix, where the magnitude of the singular values still represents
the most fundamental factor of matrix characteristics. However, when λ further rises, fine-tuning
performance declines. This suggests that when the contribution of orthogonality-aware magnitude
slightly outweighs that of the influence domain (i.e., when λ approaches 0.7), salience measurement
of singular values can achieve optimal performance, yielding the best fine-tuning results. This also
demonstrates the effectiveness of both components in the salience measurement.

6.8 Salience Illustration across Different LoRA Ranks

In this section, we visualize the salience of singular values and analyze their distribution across
different layers and modules in models. Here, we primarily illustrate the influence domain of singular
values regarding inter-dependencies. Due to the presence of multiple singular values in each weight
matrix, we average and normalize the influence domains for easier presentation. Figure 5 depicts the

9

0.3 0.4 0.5 0.6 0.7 0.8
Hyperparameter

70.9
71.2
71.5
71.8
72.1
72.4
72.7

73

M
cc

 (%
)

71.29
71.51

71.67
71.8771.78

70.94

71.89
72.23

72.5372.6872.66

71.61

CoLA

rt = 144
rt = 276

0.3 0.4 0.5 0.6 0.7 0.8
Hyperparameter

87.8
88.1
88.4
88.7

89

A
cc

 (%
)

88.2188.3188.3788.43
88.32

88.04

88.63
88.7988.8588.9388.92

88.43

RTE

rt = 144
rt = 276

0.3 0.4 0.5 0.6 0.7 0.8
Hyperparameter

91.8

92.1

92.4

92.7

93

C
or

r (
%

)

91.96
92.15

92.27
92.3692.31

91.85

92.34
92.53

92.66
92.76

92.67

92.15

STS-B

rt = 144
rt = 276

0.3 0.4 0.5 0.6 0.7 0.8
Hyperparameter

91
91.2
91.4
91.6
91.8

92
92.2
92.4

M
C

C
 (%

)

91.36
91.5191.6191.6891.65

91.12

91.9
92.13

92.2692.3492.26

91.72

MRPC

rt = 144
rt = 276

Figure 4: Variations of fine-tuning performance with different λ, which controls the contributions of
two components in salience measurement: orthogonality-aware magnitude and influence domain.

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Wq

Wk

Wv

Wo

Wf1

Wf2

0.18 0.24 0.44 0.57 0.69 0.86 0.63 0.79 0.83 0.74 0.55 0.36

0.26 0.26 0.34 0.33 0.55 0.63 0.74 0.82 0.81 0.81 0.78 0.67

0.7 0.38 0.47 0.5 0.66 0.77 0.84 0.81 0.8 0.8 0.76 0.77

0.58 0.47 0.66 0.79 0.78 0.82 0.82 0.82 0.81 0.83 0.85 0.79

0.52 0.66 0.69 0.77 0.8 0.84 0.85 0.82 0.84 0.83 0.89 0.87

0.19 0.13 0.34 0.46 0.57 0.75 0.84 0.78 0.83 0.87 0.86 0.77

CoLA

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Wq

Wk

Wv

Wo

Wf1

Wf2

0.14 0.18 0.24 0.33 0.48 0.51 0.59 0.64 0.68 0.67 0.65 0.42

0.23 0.34 0.19 0.38 0.42 0.72 0.65 0.73 0.74 0.72 0.68 0.6

0.37 0.43 0.29 0.53 0.53 0.63 0.76 0.71 0.8 0.74 0.73 0.71

0.52 0.47 0.53 0.57 0.7 0.75 0.72 0.73 0.76 0.76 0.8 0.75

0.58 0.73 0.71 0.82 0.74 0.83 0.82 0.85 0.86 0.85 0.89 0.88

0.28 0.27 0.36 0.58 0.64 0.72 0.8 0.83 0.84 0.86 0.88 0.85

RTE

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Wq

Wk

Wv

Wo

Wf1

Wf2

0.15 0.34 0.17 0.25 0.46 0.69 0.51 0.53 0.61 0.49 0.46 0.27

0.23 0.31 0.2 0.39 0.32 0.57 0.62 0.66 0.68 0.61 0.67 0.64

0.27 0.66 0.23 0.43 0.48 0.6 0.66 0.61 0.7 0.63 0.65 0.59

0.66 0.38 0.47 0.52 0.65 0.69 0.79 0.71 0.69 0.68 0.86 0.89

0.58 0.65 0.7 0.79 0.71 0.82 0.72 0.8 0.83 0.81 0.91 0.85

0.33 0.29 0.38 0.51 0.6 0.7 0.79 0.83 0.84 0.87 0.89 0.81

STS-B

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Wq

Wk

Wv

Wo

Wf1

Wf2

0.12 0.25 0.17 0.37 0.49 0.54 0.61 0.6 0.65 0.72 0.43 0.44

0.27 0.22 0.18 0.39 0.45 0.69 0.67 0.69 0.74 0.77 0.63 0.55

0.32 0.43 0.28 0.52 0.59 0.64 0.71 0.69 0.79 0.76 0.74 0.71

0.46 0.75 0.53 0.57 0.68 0.76 0.72 0.88 0.85 0.86 0.89 0.74

0.58 0.74 0.72 0.84 0.74 0.85 0.82 0.86 0.87 0.86 0.92 0.89

0.32 0.26 0.37 0.59 0.62 0.73 0.89 0.77 0.88 0.9 0.78 0.87

MRPC

Figure 5: Distribution of influence domain across different layers and modules when fine-tuning
DeBERTaV3-base model on different datasets.

distribution of the influence domains after the completion of rank allocation for DeBERTaV3-base on
different datasets. The results reveal that deeper layers and Feedforward Network (FFN) modules
generally possess larger influence domains compared to shallower layers and other components. This
indicates that the variations of singular values in these modules can significantly influence other
parameters, therefore possessing a higher importance. This observation also aligns with the empirical
conclusions in AdaLoRA that weight matrices of FFN modules and deep layers are more crucial for
model performance. Therefore, this validates the effectiveness of the influence domain for salience
measurement to identify important parameters.

7 Conclusion

This paper proposes SalientLoRA, a novel adaptive rank allocation method for LoRA-based PEFT by
salience analysis. This method measures the salience of rank within a time-series by constructing
inter-dependencies among the correlations of singular values and prune ranks with low salience while
retaining those with high significance, thereby unveiling the intrinsic ranks of the weight matrix.
Additionally, an adaptive adjustment of the time-series window enhances the speed of rank allocation
while ensuring training stability. Extensive experiments conducted in natural language understanding
(NLU), natural language generation (NLG), and large model instruction tuning tasks demonstrate
that our method achieves state-of-the-art fine-tuning performance, effectively balancing fine-tuning
efficiency and performance.

10

Acknowledgments

We thank the anonymous reviewers for their insightful comments. This work was supported by
National Science Foundation of China (Grant Nos.62376057), the Start-up Research Fund of South-
east University (RF1028623234) and the Fundamental Research Funds for the Central Universi-
ties(2242024k30035). All opinions are of the authors and do not reflect the view of sponsors.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report.
arXiv preprint arXiv:2305.10403, 2023.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[4] Mann Benjamin et al. Brown, Tom. Language models are few-shot learners. In NeurIPS, 2020.

[5] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

[6] Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and Maosong
Sun. Sparse low-rank adaptation of pre-trained language models. In EMNLP, 2023.

[7] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced
bert with disentangled attention. In ICLR, 2021.

[8] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In NeurIPS, 2015.

[9] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for nlp. In ICML, 2019.

[10] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In ICLR,
2022.

[11] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension. In ACL, 2020.

[12] Guozheng Li, Peng Wang, and Wenjun Ke. Revisiting large language models as zero-shot
relation extractors. In EMNLP, 2023.

[13] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In ACL, 2021.

[14] Jiajun Liu, Wenjun Ke, Peng Wang, Ziyu Shang, Jinhua Gao, Guozheng Li, Ke Ji, and Yanhe
Liu. Towards continual knowledge graph embedding via incremental distillation. In AAAI,
2024.

[15] Jiajun Liu, Wenjun Ke, Peng Wang, Jiahao Wang, Jinhua Gao, Ziyu Shang, Guozheng Li, Zijie
Xu, Ke Ji, and Yining Li. Fast and continual knowledge graph embedding via incremental lora.
In IJCAI, 2024.

[16] Jiajun Liu, Peng Wang, Ziyu Shang, and Chenxiao Wu. Iterde: an iterative knowledge distillation
framework for knowledge graph embeddings. In AAAI, 2023.

11

[17] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation.
arXiv preprint arXiv:2402.09353, 2024.

[18] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang.
P-tuning: Prompt tuning can be comparable to fine-tuning across scales and tasks. In ACL,
2022.

[19] Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the
summary! topic-aware convolutional neural networks for extreme summarization. In EMNLP,
2018.

[20] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych.
Adapterfusion: Non-destructive task composition for transfer learning. In EACL, 2021.

[21] Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2019.

[22] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: an instruction-following llama model
(2023). URL https://github. com/tatsu-lab/stanford_alpaca, 2023.

[23] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[24] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[25] Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In EACL,
2023.

[26] Zhen Wan, Fei Cheng, Zhuoyuan Mao, Qianying Liu, Haiyue Song, Jiwei Li, and Sadao
Kurohashi. GPT-RE: In-context learning for relation extraction using large language models.
In EMNLP, 2023.

[27] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
ICLR, 2019.

[28] Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan
Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang
Chen, Zhiyuan Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. GLM-130b: An open bilingual
pre-trained model. In ICLR, 2023.

[29] Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In ICLR, 2023.

[30] Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen,
and Tuo Zhao. Super tickets in pre-trained language models: From model compression to
improving generalization. In ACL, 2021.

[31] Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen,
and Tuo Zhao. Platon: Pruning large transformer models with upper confidence bound of weight
importance. In ICML, 2022.

[32] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. In NeurIPS, 2023.

12

[33] Han Zhou, Xingchen Wan, Ivan Vulić, and Anna Korhonen. AutoPEFT: Automatic configuration
search for parameter-efficient fine-tuning. Transactions of the Association for Computational
Linguistics, 12:525–542, 2024.

[34] Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang, Kam-Fai Wong, and Lei Zhang. Delta-
lora: Fine-tuning high-rank parameters with the delta of low-rank matrices. arXiv preprint
arXiv:2309.02411, 2023.

13

A Dataset Statistics

The GLUE benchmark consists of eight datasets: CoLA, SST-2, MRPC, QQP, STS-B, MNLI, QNLI,
and RTE. We use Matthew’s correlation coefficient, Spearman’s correlation coefficient, and overall
accuracy to evaluate the CoLA, STS-B, and MNLI datasets. For the remaining datasets, we apply
accuracy as the evaluation metric. Table 5 displays the statistics of the GLUE benchmark.

Table 5: The statistics of GLUE benchmark. Here, Mcc denotes Matthews correlation coefficient and
Scc denotes Spearmans correlation coefficient.

Dataset #Train #Test #Dev Metrics

Single-Sentence Classification

COLA 8.5k 1K 1k Mcc
SST 67K 872 1.8K Accuracy

Pairwise Text Classification

MNLI 393K 20K 20K Accuracy
RTE 2.5K 276 3K Accuracy
QQP 364K 40K 391K Accuracy
MRPC 3.7K 408 1.7K Accuracy
QNLI 108K 5.7K 5.7K Accuracy

Text Similarity

STS-B 7K 1.5K 1.4K Scc

The CNN/Daily Mail dataset serves as a corpus for single-document generative summarization,
comprising news articles collected from CNN and Daily Mail, with each summary containing
multiple summary sentences. XSum dataset consists of BBC articles and accompanying single
sentence summaries. The statistics for the CNN/DailyMail and XSum datasets are shown in Table 6.

Table 6: The statistics of XSum and CNN/DailyMail datasets.

Dataset #Train #Test #Dev

CNN/DailyMail 286k 13K 11k
XSum 204K 11k 11K

B Experimental Analyses on Hyperparameter

We conduct additional experimental analyses on two sets of hyperparameters β, γ, Ti and Tf to
explore their impact. These experiments are conducted on the CoLA and MRPC datasets to fine-tune
the DeBERTaV3-base model. The total target rank is set to 144, and all the other parameters are
consistent with the main experiments.

Table 7: Experimental results with differ-
ent values of hyperparameters and γ.

β γ
CoLA MRPC

MCC Time Acc Time

0.5 2 71.87 29 91.65 42
0.7 2 71.82 24 91.57 34
0.9 2 71.87 21 91.68 33
0.9 2 71.78 27 91.63 39
0.9 1.5 71.83 34 91.67 47

β and γ are thresholds that control the relevance and de-
pendency relationships of singular values, respectively.
To explore their effects, we keep other hyperparameters
constant and change the values of β and γ separately to
observe the timing and effects of SalientLoRA fine-tuning.
The results are presented in the Table 7, where MCC repre-
sents Matthew’s Correlation Coefficient and Acc denotes
accuracy. The performance exhibits minimal sensitivity
to variations in the values of β and γ. This insensitivity
stems from the decycling operation for the dependency
graph , which effectively eliminates the majority of redun-
dant dependency relationships. However, setting exces-
sively low values for β and γ can lead to a large number of redundant dependencies in the graph, which
increases the time cost of the decycling process and thus impacts the efficiency of fine-tuning. There-
fore, we select hyperparameter values that ensure high efficiency of fine-tuning, with β=0.9 and γ=2.

14

Table 8: Experimental results with differ-
ent values of hyperparameters Ti and Tf .

Ti Tf
CoLA MRPC

MCC Time Acc Time

10 200 71.87 21 91.68 33
30 200 71.81 23 91.59 37
50 200 71.85 27 91.64 41
10 100 71.52 22 91.32 34
10 150 71.71 21 91.56 34
10 250 71.84 23 91.64 35

Ti and Tf control the sizes of the initial and final time
windows in the adaptive time-series window mechanism,
respectively. The results in Table 8 indicate that the im-
pact of Ti on performance is minimal, with differences
only ranging from 0.02% to 0.09%. However, as Ti in-
creases, the fine-tuning time significantly lengthens. This
is due to a slower reduction in rank during the early stages
of fine-tuning, which impacts the efficiency of rank al-
location. Moreover, when Ti remains constant and Tf

increases from 100 to 250, there is a slight improvement
in performance, while the fine-tuning time remains rela-
tively unchanged. This improvement can be attributed to
the significance analysis in the later stages of fine-tuning,
which incorporates singular values under more time steps,
yielding more reliable allocation outcomes. Therefore, we set Ti = 10 and Tf = 200 to achieve a
balance between performance and efficiency.

C Hyperparameter Statistics

The hyperparameter settings for NLU, NLG and instruction tuning tasks are shown in Table 9. Here,
rt denotes the target total rank, ni represents the number of steps to warm up the training before rank
allocation, and nf indicates the number of steps during the rank allocation phase.

Table 9: The hyperparameter settings for NLU, NLG and instruction tuning tasks.

Task Dataset Learning Rate Batch Size Epochs rt ni nf

NLU

MNLI 5× 10−4 32 7 144/276 8000 35000
RTE 8× 10−4 32 50 144/276 600 1500

QNLI 8× 10−4 32 5 144/276 2000 8500
MRPC 5× 10−4 32 30 144/276 600 1000
QQP 3× 10−4 32 5 144/276 8000 25000
SST-2 8× 10−5 32 24 144/276 6000 20000
CoLA 1× 10−3 32 25 144/276 800 2000
STS-B 8× 10−4 32 25 144/276 800 2500

NLG XSum 8× 10−4 64 25 144 6000 25000
CNN/DailyMail 8× 10−4 32 15 144 5000 90000

Instruction Tuning Alpaca 5× 10−4 4 1 12280 2000 6000

15

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

16

Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

17

Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

19

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We respect the license of LLaMA and so on.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

20

paperswithcode.com/datasets

Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21

	Introduction
	Related Work
	Parameter-Efficient Fine-Tuning
	Dynamic Rank Allocation

	Overview
	Salience Measurement
	Orthogonality-Aware Singular Value Magnitudes
	Influence Domain of Singular Value

	Adaptive Time-Series Window
	Experiment
	Experimental Settings
	Natural Language Understanding
	Natural Language Generation
	Instruction Tuning
	Ablation Results
	Analysis of Space Allocation and Time Consumption
	Analysis of Hyperparameter
	Salience Illustration across Different LoRA Ranks

	Conclusion
	Dataset Statistics
	Experimental Analyses on Hyperparameter
	Hyperparameter Statistics

