
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PARTIAL PARAMETER UPDATES FOR EFFICIENT
DISTRIBUTED TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a memory- and compute-efficient method for low-communication
distributed training. Existing methods reduce communication by performing mul-
tiple local updates between infrequent global synchronizations. We demonstrate
that their efficiency can be significantly improved by restricting backpropagation:
instead of updating all the parameters, each node updates only a fixed subset while
keeping the remainder frozen during local steps. This constraint substantially
reduces peak memory usage and training FLOPs, while a full forward pass over all
parameters eliminates the need for cross-node activation exchange. Experiments
on a 1.3B-parameter language model trained across 32 nodes show that our method
matches the perplexity of prior low-communication approaches under identical
token and bandwidth budgets while reducing training FLOPs by 15% and peak
memory by up to 47%.

1 INTRODUCTION

Recent research has consistently shown that scaling language models (LLMs) improves their general-
ization and downstream capabilities (Yang et al., 2025; Team et al., 2025; Liu et al., 2024; Grattafiori
et al., 2024).

At scale, training is typically achieved by distributing data across many compute nodes and syn-
chronizing gradients at every optimization step. This synchronization relies on high-bandwidth
interconnects, limiting large-scale training to high-end clusters with large number of well-connected
nodes, a resource still accessible to only a small fraction of the machine learning community.

To reduce this dependence on high-bandwidth interconnects, prior work has explored three main
directions. The first reduces the amount of data exchanged between nodes, for example through
gradient sparsification, compression, or quantization (Alistarh et al., 2017; Lin et al., 2018; Tang
et al., 2021; Shi et al., 2019). The second aims to hide communication latency by overlapping it with
computation (Cohen et al., 2021; Sun et al., 2024; Kale et al., 2025), often by using delayed gradients
combined with correction terms to preserve convergence. The third line of research, which our paper
builds upon, lowers communication overhead by reducing the frequency of gradient synchronization.
This approach, first introduced in the federated learning setting (McMahan et al., 2017), allows each
model replica to perform multiple local updates before a global parameter average. Subsequent works
have proposed more sophisticated methods for global synchronization, such as treating aggregated
local differences as a pseudo-gradient for outer optimizer (Wang et al., 2019; Sun et al., 2022).

More recently, DiLoCo (Douillard et al., 2023) applies this dual-optimization scheme to LLM training,
reducing bandwidth requirements by orders of magnitude compared to standard every-step gradient
reduction. Streaming DiLoCo (Douillard et al., 2025) extends this idea by synchronizing only a
subset of parameters at a time, thereby lowering both peak bandwidth and memory usage.

In low-bandwidth environments, memory-sharding approaches such as FSDP (Zhao et al., 2023)
are impractical, since they require frequent communication across nodes that becomes prohibitively
slow without fast interconnects. As a result, each device must store weights, gradients, and optimizer
states locally, making memory the primary bottleneck (§ 3.1). These communication constraints also
prevent the use of tensor parallelism (Shoeybi et al., 2019), which relies on synchronization at every
step to reduce per-device computation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

W01 W11 WH1. . . WH∇W1 (∇W)Outer
Optim

W02 W12 WH2. . . WH∇W2)(Outer
Optim

 local updates with H Xk ℒ −k Synchronisation Outer update
time

low bandwidth ∇W

∇W

GPU 1

GPU 2

low bandwidthAll-Reduce

ΔW

ΔW

Figure 1: Partial Parameter Updates. Illustration of our low-communication distributed training
procedure in a two-node setup connected by a low-bandwidth interconnect. Each node k starts with
an identical replica of the parameter matrix Wk. During local training, each GPU updates only a
disjoint slice of Wk while keeping the remaining parameters frozen. After H local steps, parameter
updates are synchronized via an all-reduce, and an outer optimizer step is applied to the previously
frozen slices. This process repeats until convergence.

To address these limitations, we propose a simple yet effective alternative that improves both memory
efficiency and training FLOPs without introducing frequent synchronization. Our approach can be
viewed as distributed block coordinate optimization: each node backpropagates through and updates
only a fixed slice of the parameters, treating the remainder as constant. After several local steps,
parameter differences are averaged across nodes followed by an outer optimizer step (Figure 1). By
restricting both backpropagation and optimizer updates to the active slice, our method reduces peak
memory usage and total training FLOPs, while maintaining the low communication requirements and
final performance of prior works.

Our main contributions are as follows:

• We introduce an efficient algorithm for low-communication distributed data-parallel training
that performs local updates on a node-specific subset of parameters, thereby reducing both
memory usage and computational cost (Algorithm 1).

• We empirically validate the effectiveness of our method by training a 1.3B-parameter
language model on 32 nodes, achieving perplexity comparable to prior low-communication
training approaches under the same token and bandwidth budgets, while using 15% fewer
FLOPs and up to 47% less memory (Figure 2).

• We demonstrate that in simulated low-bandwidth settings, our method converges substan-
tially faster than standard distributed data parallel training with every step synchronization
(Figure 3).

2 METHOD

In this section, we formalize our proposed method for low-communication training. We begin in
§ 2.1 with a brief overview of language modeling and distributed data parallelism in both high- and
low-bandwidth settings. In § 2.2, we then present the core idea of our method, followed by its training
procedure and implementation details.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 BACKGROUND

Language Modeling Let D be a dataset of token sequences x = (x1, . . . , xS) with xs ∈ V ,
where V is the vocabulary and S is the sequence length. Language modeling aims to learn the data
distribution p(x), which can be factorized autoregressively as: p(x) =

∏S−1
s=1 p(xs+1 | x1:s; θ) where

θ denotes the model parameters. The parameters are typically estimated by minimizing the expected
negative log-likelihood over the dataset:

θ⋆ = argmin
θ

Ex∼D L(x; θ), (1)

L(x; θ) = −
S−1∑
s=1

log p(xs+1 | x1:s; θ). (2)

In practice, this objective is minimized using a variant of stochastic gradient descent, where at each
step the gradient∇θL(X; θ) is computed on a mini-batch of sequences X.

Distributed Data Parallelism (DDP) To scale the optimization in Eq. 1, a common approach is to
partition dataset D across K compute nodes, with each node k holding a shard Dk. At each training
step t, every node k computes a gradient on its local mini-batch X

(t)
k ∼ Dk:

g
(t)
k = ∇θL(X(t)

k ; θ(t)).

These local gradients are aggregated via an All-Reduce collective operation (Patarasuk & Yuan,
2009) to form g(t) = 1

K

∑K
k=1 g

(t)
k , which is then used to update the model parameters on all

nodes. The model parameters, optimizer states, and gradients may be fully replicated on each node or
partitioned to reduce memory usage (Zhao et al., 2023; Rajbhandari et al., 2020).

Low-communication Distributed Data Parallelism Standard DDP communicates gradients at
every step, making it impractical on hardware lacking high-bandwidth, low-latency interconnects.
Low-communication methods relax this requirement by reducing the synchronization frequency.

A training round (global step) t begins with all K nodes holding identical global parameters θ(t).
Each node k then performs H local updates independently using an inner optimizer. At each local
step h = 0, . . . ,H − 1, node k computes a gradient g(t,h)k on its local mini-batch and applies the
inner update:

θ
(t,h+1)
k ← INNEROPT

(
θ
(t,h)
k , g

(t,h)
k

)
. (3)

After H local steps, each node computes its parameter delta relative to the starting point and
participates in an all-reduce to compute the average update:

∆(t) =
1

K

K∑
k=1

(
θ
(t,H)
k − θ(t)

)
. (4)

The global parameters are then updated via an outer optimizer:

θ(t+1) ← OUTEROPT
(
θ(t), ∆(t)

)
. (5)

In practice, the outer optimizer may simply apply ∆θ(t) directly (McMahan et al., 2017) or interpret
it as a pseudo-gradient for an optimizer such as SGD (Wang et al., 2019; Sun et al., 2022). For
large-scale language model training, DiLoCo (Douillard et al., 2023) reports that using AdamW as
the inner optimizer and Nesterov SGD (Nesterov, 2013) as the outer optimizer yields lower validation
loss than other combinations.

Memory Usage and Computational Costs Techniques designed to lower peak memory usage by
sharding the optimizer state, gradients, and parameters across devices are impractical on hardware
without high-speed interconnects, as they require all-gather and reduce-scatter at every optimization
step (Zhao et al., 2023; Ren et al., 2021). In addition to model weights and gradients, the state of
the outer optimizer (e.g., momentum) must also remain in device memory. While synchronizing
only a subset of parameters at a time and offloading the remainder to the host can reduce peak

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1
1: Inputs: outer rounds T , local steps H , number of nodes K
2: Notation: Itraink ⊆ {1, . . . , |θ|}; I frozenk = {1, . . . , |θ|} \ Itraink ;
3: count vector m ∈ {0, . . . ,K}|θ| with m[i] :=

∑K
k=1 1{i ∈ Itraink }

4: for t = 0 . . . T − 1 do
5: for k = 0 . . .K − 1 do # Execute in parallel on K nodes
6: θ

(t,0)
k ← θ(t)

7: for h = 0 . . . H − 1 do # Perform H local steps independently on each node
8: X

(t,h)
k ∼ Dk

9: g
(t,h)
k [i] =

{
∇θ[i] L

(
θ
(t,h)
k ; X

(t,h)
k

)
, if i ∈ Itraink

0, otherwise

10: θ
(t,h+1)
k [Itraink]← INNEROPT

(
θ
(t,h)
k [Itraink], g

(t,h)
k [Itraink]

)
11: end for

12: ∆
(t)
k [i] =

{
θ
(t,H)
k [i]− θ(t)[i], i ∈ Itraink

0, otherwise
13: end for
14: ∆(t)[i] = 1

m[i]

∑K
k=1 ∆

(t)
k [i], i = 1, . . . , |θ| # Element-wise average by count vector m

15: θ(t+1) ← OUTEROPT(θ(t),∆(t))
16: end for

usage (Douillard et al., 2025), the overall footprint remains large. As a result, even a relatively modest
1.3B-parameter model with full activation checkpointing consumes roughly 18 GB of GPU memory
when trained without sharding using Adam optimizer (Loshchilov & Hutter, 2017) (Fig. 2a, § 3.1).

Our objective is to reduce memory footprint and per node FLOPs without degrading model quality
or increasing communication compared to existing low-communication methods. In practice, this
enables billion-parameter training on commodity GPUs with limited memory, connected over Wi-Fi
or Ethernet.

2.2 PARTIAL PARAMETER UPDATES

Our method can be viewed as a distributed variant of block coordinate descent: on each node k,
we partition the model parameters θ into a trainable parameters, indexed by a fixed set Itraink ⊆
{1, . . . , |θ|}, and a frozen parameters, indexed by its complement I frozenk . As discussed in § 2.2.1,
the trainable parameter sets assigned to different nodes overlap, i.e., Ii ∩ Ij ̸= ∅, for some i, j ∈
{0, . . . ,K − 1}.
During local training, node k only computes gradients for and applies updates to its designated
trainable slice. The training process for a local step h (within a global step t) on node k proceeds
as follows. The forward pass is standard, using the full local parameters θ(t,h)k . The backward pass,
however, is modified to compute gradients only for the trainable parameters (line 9):

g
(t,h)
k [i] =

{
∇θ[i] L(θ

(t,h)
k ; X

(t,h)
k), if i ∈ Itraink

0, otherwise.

The inner optimizer then updates only the active parameters corresponding to these non-zero gradients
(line 10):

θ
(t,h+1)
k [Itraink]← INNEROPT

(
θ
(t,h)
k [Itraink], g

(t,h)
k

)
.

After H local steps, the nodes synchronize. First, each node k computes its local parameter delta,
which is also non-zero only on its trainable slice (line 12):

∆
(t)
k [i] =

{
θ
(t,H)
k [i]− θ(t)[i], if i ∈ Itraink

0, otherwise.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Next, these sparse deltas are aggregated across all nodes using an All-Reduce operation to form:
∆(t) =

∑K
k=1 ∆

(t)
k . Finally, this summed delta is normalized element-wise by a count vector

m ∈ {1, . . . ,K}|θ|, where m[i] is the number of nodes responsible for updating parameter θ[i]
(line 14). The normalized update is then applied by the outer optimizer (line 15). The full training
procedure is detailed in Algorithm 1.

This design offers two benefits: (i) reduced per-node memory usage, as no gradient buffers or
optimizer state are allocated for parameters in I frozenk (Figure 2a), and (ii) lower training FLOPs,
since gradients for θ[i] with i ∈ I frozenk are never computed (Figure 2b, Appendix C). In § 3.2, we
demonstrate that despite fewer updates per parameter than full-model baselines, our method achieves
comparable perplexity.

2.2.1 PARAMETER SLICING

The assignment of trainable parameters Itraink to each node is controlled by a hyperparameter N ,
which specifies the number of distinct parameter slices. We assume that the total number of nodes K
is a multiple of N . Each node k is assigned a slice index n = k mod N . This assignment determines
how many nodes participate in updating each parameter block, which is captured by the count vector
m (line 12):

m[i] =

{
K
N , i ∈ Itrain

K, otherwise
.

We consider two strategies for partitioning the parameters into trainable and frozen subsets.

MLP-Only Slicing We slice only the MLP blocks, while all other parameters (attention, embed-
dings, normalization layers) are trained on all K nodes. The rationale is that MLPs contain the
majority of a Transformer’s parameters, and when sliced, each block can be treated as an independent
feed-forward pathway (similar in spirit to a Mixture-of-Experts layer (Shazeer et al., 2017)). This
makes the partitioning straightforward both conceptually and in implementation.

An MLP block is typically defined as: MLP(x) = V
(
ReLU(Wx)

)
, where W ∈ R4d×d and

V ∈ Rd×4d are the up- and down-projection matrices, respectively. We partition W row-wise into
N blocks {W1, . . . ,WN} and V column-wise into {V1, . . . ,VN}, where Wn ∈ R(4d/N)×d and
Vn ∈ Rd×(4d/N). The MLP computation can then be expressed as a sum over these slices:

MLP(x) =

N∑
n=1

Vn

(
ReLU(Wnx)

)
.

On a given node k with slice index n, the trainable parameters Itraink consist of all non-MLP
parameters plus the specific MLP slices {Wn,Vn} from every layer. The remaining N − 1 MLP
slices are kept frozen.

Slicing MLPs and Attention Heads We further extend the MLP-only slicing strategy by applying
partial updates to the multi-head attention (MHA) block. In a standard MHA block (Vaswani, 2017),
the input is projected by the query, key, and value matrices: WQ,WK ,WV ∈ Rd×(h·dh), where h
is the number of heads and dh the per-head dimension (so that d = h · dh). Then the concatenated
head outputs are projected by a final matrix WO ∈ R(h·dh)×d. We slice the input projections only
since extending it to the entire attention block (including the output projection) led to noticeable
performance degradation (Appendix C).

We divide the h total attention heads into N disjoint groups of size h/N . For node k, the assigned
slice index is n = k mod N , with head group:

Hn = {n · (h/N), . . . , (n+ 1) · (h/N)− 1}.
On this node, the trainable attention parameters are limited to the columns:

W
(n)
Q = WQ[:, Hn],W

(n)
K = WK [:, Hn],W

(n)
V = WV [:, Hn].

All other columns in these three projections are kept frozen.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3 EXPERIMENTS

In this section, we present an empirical evaluation of our method. In § 3.1 we describe the experimen-
tal setup and explain how we measure memory usage and communication overhead. In § 3.2 we first
compare our method to Streaming DiLoCo (Douillard et al., 2025) in terms of memory consumption
and total training FLOPs, showing that our approach achieves comparable test perplexity while using
fewer FLOPs, less memory, and the same bandwidth. We then demonstrate that low-communication
methods (including ours), although requiring more training tokens to reach a target test loss, achieve
shorter wall-clock training time than standard Distributed Data Parallel (DDP) with full gradient
synchronization. Finally, we analyze how varying the size of the parameter subset updated on each
node affects both test perplexity and memory usage.

3.1 EXPERIMENTAL SETUP

We use the RedPajama-V2 dataset (Weber et al., 2024), which consists of data from different sources,
including Arxiv, Common Crawl, GitHub, and Wikipedia. In all experiments we use sequences of
1,024 tokens. n our experiments, we use Transformer models (Vaswani, 2017) with 1.3B and 2.6B
parameters, matching the GPT-3 architectures (Brown et al., 2020): the 1.3B model has 24 layers
with a hidden size of 2048, and the 2.6B model has 32 layers with a hidden size of 2560. We use
rotary positional encodings (Su et al., 2024) and a SentencePiece tokenizer (Kudo & Richardson,
2018) with a vocabulary size of 32,000.

All models are trained using the AdamW optimizer (Loshchilov & Hutter, 2017) with β1 = 0.9,
β2 = 0.99, and a weight decay of 0.1. The learning rate is linearly warmed up to 3× 10−4 over the
first 1,500 steps, followed by cosine decay.

For both our method and Streaming DiLoCo, we adopt the outer optimization setup of Douillard et al.
(2025): SGD with Nesterov momentum (m = 0.9) (Nesterov, 2013), learning rate 4 × 10−1, and
synchronization frequency H = 100. We also follow their streaming synchronization scheme: the 24
layers are divided into 8 groups of 3 layers each synchronized every H local steps (see Appendix A.1).

We train with a batch size of 512, distributed across 32 NVIDIA H100 GPUs (80GB each) for 1.3B
model and 64 H100 for 2.6B, resulting in a per-GPU batch size of 16. Each GPU is treated as an
independent compute node; we do not assume faster communication within an 8-GPU server.

Memory Usage We assume training in bfloat16 with full activation recomputation during
the backward pass. In mixed-precision training, a master copy of model parameters is typically
maintained in float32 for updates, with parameters cast to bfloat16 on the fly for forward
and backward computation. Gradients are stored in bfloat16, while optimizer states remain in
float32. For low-bandwidth training with an outer optimizer, additional memory must be reserved
for offloaded weights and momentum buffers. When synchronization is performed in a streaming
fashion (grouped communication, as in Douillard et al. (2025)), this additional overhead is relatively
small (see Figure 2a).

With activation recomputation, peak memory is dominated by: (i) optimizer states, (ii) weights, (iii)
gradients, (iv) outer-optimizer states (if used), and (v) offloaded parameters (if any), as illustrated in
Figure 2a.

Communication Overhead Let M denote the total gradient size (in bytes), K the number of
nodes, and B the peak per-link bandwidth. We assume that gradient synchronization is performed
using a bandwidth-optimal ring all-reduce, implemented as a reduce–scatter followed by an all–
gather (Thakur et al., 2005). Under bandwidth-optimality assumption, each node transmits a total
of 2K−1

K M bytes per synchronization, leading to the following estimate of communication time:
Tcomm ≈ 2(K−1)

K
M
B .

This estimate is a lower bound since it assumes that each link achieves its peak bandwidth with
perfect overlap of send and receive operations, and it neglects non communication overhead such as
kernel launch latency, stream synchronizations.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

DDP Streaming
diloco

1
4

mlps 1
4

mlps
1
4

heads

1
2

mlps 1
2

mlps
1
2

heads

0

5

10

15

20

25

M
em

or
y

(G
B

) RTX 3090

inner optimizer state

weights, fp32 copy

gradients

outer optimizer state

offloaded weights

(a) Memory usage (GB)

50000 100000 150000 200000

PFLOPs

2.5

2.6

2.7

2.8

L
os

s

Streaming Diloco, 26B tokens

Streaming Diloco, 28B tokens

1/4 mlps, 26B tokens

1/2 mlps, 26B tokens

1/2 mlps + 1/2 heads, 28B tokens

1/4 mlps + 1/4 heads, 28B tokens

(b) Training FLOPs vs test loss

Figure 2: Less memory, fewer FLOPs, same performance. Comparison of memory usage and
total training FLOPs between our approach and Streaming DiLoCo. In each Transformer layer we
either slice only the MLPs (1

N MLPs) or slice both MLPs and attention heads (1
N MLPs, 1

N heads).
In both cases, only 1/N of the parameters in the corresponding projections are trained on each node
(§ 2.2.1). (a) Estimated memory usage for DDP, Streaming DiLoCo, and our four variants (§ 3.1). (b)
Test perplexity as a function of total training FLOPs for our method and to Streaming DiLoCo (§ 3.2,
Appendix C)

3.2 RESULTS

Peak Memory Footprint Figure 2a demonstrates that our method requires significantly less
memory than Streaming DiLoCo and DDP. This reduction comes from the fact that we do not train a
large portion of parameters (detailed in Table 3.2), which means we neither maintain optimizer state
nor store gradients for these parameters. For instance, 1/4 mlps + 1/4 heads configuration of our
method uses 47% less memory compared to full model training, while achieving similar test loss.
This allows us to fit training with activation checkpointing of a 1.3B model using devices with less
than 16GB of RAM.

Compute Efficiency We compare our method to Streaming DiLoCo in terms of training FLOPs.
Figure 2b shows test loss as a function of total training FLOPs. For this comparison, we trained the
1/4-MLP, 1/2-MLP, and Streaming DiLoCo configurations with the Chinchilla-optimal token budget
(26B). To match the performance of the 1/2-MLP configuration, we slightly increased the token
budget for Streaming DiLoCo to 28B. We also trained the 1/N -MLP+1/N -heads configurations
on 28B tokens to match the performance of their corresponding 1/N -MLP runs. Across these
performance-matched comparisons, our method consistently required 15% fewer total FLOPs.

Convergence Speed Under Bandwidth Constraints We compare our method with Streaming
DiLoCo and standard DDP by simulating total training time under bandwidth-constrained conditions
(Figure 3). While low-communication methods require more training tokens to achieve the same
performance as Distributed Data Parallel (DDP), they are significantly faster in terms of wall-clock
time on slow networks.

Our simulation model deliberately favors DDP by assuming perfect overlap between computation
and communication, giving a per-step runtime of T = max

(
Tcomm, Tcomp

)
. In contrast, for low-

communication methods we assume no overlap: T = Tcomm + Tcomp.

We intentionally model a best-case scenario for DDP to demonstrate that even when its step time is
minimized, low-communication methods converge faster under bandwidth constraints settings (see
Appendix B for details). Our method as Streaming DiLoCo uses identical bandwwidth budget (more
details in Appendix B).

Parameter Slicing Table 3.2 reports the relation between the number of slices, memory usage,
number of trainable parameters, and final loss. As expected, reducing memory by freezing more
parameters per node leads to drops in performance. To better understand this trade-off, we overtrained

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

d
d
p

d
il
o
co

ou
rs

Wi-Fi 5 (0.863 GB/s)

Wi-Fi 6/6E (1.200 GB/s)

10 Gbps Ethernet (1.250 GB/s)

Wi-Fi 7/8 (2.875 GB/s)

25 Gbps Ethernet (3.125 GB/s)

B
an

d
w

id
th

2.5 4.5 6.5 8.5 10.5

Time (104 s)

2.5

2.6

2.7

2.8

2.9

L
o
ss

DDP, 26B tokens

Streaming DiLoCo, 44B tokens

1/4 mlps, 44B tokens

Figure 3: Faster convergence without fast interconnects. Simulated training time
for our method, Streaming DiLoCo, and standard DDP under varying bandwidth limits.
Blue, orange, and purple denote our method, Streaming DiLoCo, and DDP, respectively;
transparency levels indicate different peak bandwidths (in GB/s). For DDP, step time is
estimated as the maximum of single-GPU compute and gradient communication (perfect
overlap), whereas for low-communication methods it is the sum (no overlap) (§ 3.2).
Although low-communication methods require 1.7× more tokens to reach a validation
loss of 2.41, they complete training in significantly less wall-clock time when network
bandwidth is limited.

Method Perplexity Memory, GB Trainable parameters, B Tokens, B
Streaming DiLoCo 12.75 19.36 1.3 26
1/2 mlps 12.24 14.87 0.87 26
1/4 mlps 12.72 12.77 0.67 26
1/8 mlps 13.59 11.72 0.57 26
1/16 mlps 14.21 11.19 0.52 26

1/8 mlps, overtrained 12.68 11.72 0.57 37

1/2 mlps + 1/2 heads 12.22 13.29 0.72 28
1/4 mlps + 1/4 heads 12.79 10.41 0.44 28

1/4 heads 12.83 16.95 1.07 26

Streaming DiLoCo 10.47 38.7 2.59 52
1/4 mlps 10.49 25.55 1.34 52

Table 1: Comparison of perplexity, memory usage, number of trainable parameters, and training
tokens across different methods for 1.3B and 2.6B parameter models trained on 32 and 64 GPUs on
RedPajama-V2 dataset. Different background colors correspond to different model sizes.

the configuration with 8 slices (each slice is updated on 4 nodes out of 32) and found that it required
almost 50% more tokens to match the performance of smaller-slice configurations. As shown in
Table 3.2, freezing only MLPs is less effective for memory savings than freezing a combination of
MLPs and attention heads. Moreover, when freezing only 1/4 of attention heads, the performance is
similar to the 1/4 MLP slicing configuration, but the number of active parameters, and therefore the
memory usage, is higher.

In our setup, the set of trainable parameters is fixed throughout training. While dynamically reassign-
ing parameters could, in principle, improve convergence, it would require either replicating the full
optimizer state on every node or transferring optimizer state whenever a parameter’s owner changes,
both of which eliminate the memory and communication benefits we target. Exploring lightweight
forms of adaptive parameter assignment during training that preserve these benefits remains an open

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

direction for future work. We also evaluated alternative parameter assignment strategies; details are
provided in Appendix A.2.

4 RELATED WORK

We review prior work in two areas most relevant to our contributions: methods for low-communication
distributed training and approaches for improving memory and computational efficiency during
training. For the latter, we focus on memory-efficient optimizers and tensor parallelism, which are
most directly related to our method.

Low-Communication Training Communication overhead in distributed data-parallel training has
been tackled in three main ways: reducing the volume of data exchanged between nodes with gradient
compression or quantization (Dettmers, 2015; Alistarh et al., 2017; Lin et al., 2018; Li et al., 2023),
hiding latency by overlapping communication with computation (Cohen et al., 2021; Sun et al., 2024;
Kale et al., 2025), and lowering frequency of communication by performing multiple local updates
between synchronizations (McMahan et al., 2017; Wang et al., 2019; Sun et al., 2022; Douillard et al.,
2023; 2025). We show that the latter can be made substantially more memory- and compute-efficient
by restricting backpropagation to partial parameter subsets. The three strategies are complementary,
and compression or overlap techniques can be applied together with our method to further reduce
communication costs. More recently, Beton et al. (2025) proposed sparse parameter synchronization,
which reduces communication by synchronizing only a random fraction of parameters at each step.
While this lowers divergence across nodes, all parameters are still updated on every device, meaning
each node must store the full optimizer state and perform full backpropagation. In contrast, our
method updates only a fixed subset of parameters per node, which directly reduces both memory and
compute.

Another line of work studies pipeline parallelism in slow-network settings (Huang et al., 2019), which
requires inter-stage communication of activations in every step. To mitigate this communication
overhead, recent methods propose compressing or quantizing activations (Wang et al., 2022; Ryabinin
et al., 2023; Yuan et al., 2022; Ramasinghe et al., 2025). Unlike these approaches, which still
depend on activation exchange, our method operates purely in the data-parallel regime and targets an
orthogonal axis of parallelization, and could in principle be combined with pipeline parallelism and
activation compression in large-scale settings.

Memory and Compute Efficiency A large fraction of GPU memory during training is occupied by
optimizer states, particularly for adaptive methods such as Adam (Loshchilov & Hutter, 2017), which
maintain first- and second-order moments for every parameter. The main savings of our approach
come from the fact that each node only updates a subset of parameters. As a result, momentum states
for the remaining parameters do not need to be stored locally, yielding substantial memory savings.
This is especially important in low-communication settings, where sharding optimizer states across
devices is impractical due to the communication overhead it introduces. Several methods aim to
reduce optimizer state memory directly. One strategy is to quantize optimizer states to lower precision,
for example 8-bit quantization (Dettmers et al., 2021; Li et al., 2023). Another is to apply low-rank
projections to compress gradients and optimizer states (Zhao et al., 2024). Parameter grouping has
also been explored: Zhang et al. (2024) maintain a single momentum vector per block of parameters,
while Han et al. (2025) combine grouping with quantization. Such efficient optimizers are orthogonal
to our method and could be combined with it for further savings.

Another line of work distributes compute and memory through tensor parallelism, where large matrix
multiplications are partitioned across GPUs and results are gathered after each operation (Shoeybi
et al., 2019). Our method is conceptually related, but applies slicing only in the backward pass: each
device updates a portion of the parameter matrix while still executing the full forward computation.
In contrast to tensor parallelism, our approach avoids frequent all-to-all communication and therefore
does not depend on high-bandwidth interconnects.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 CONCLUSION

We proposed an efficient method for low-communication distributed training. The core design of our
approach is partial backpropagation: only a subset of parameters is updated on each node, reducing
per-device memory and compute while maintaining convergence. We have shown that, despite some
parameters receiving fewer gradient updates, our method matches the performance of prior low-
communication approaches under identical bandwidth and token budgets. Future directions include
exploring alternative parameter-partitioning strategies and investigating different backpropagation
sparsity patterns (Appendix D).

REFERENCES

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-
efficient sgd via gradient quantization and encoding. Advances in neural information processing
systems, 2017.

Matt Beton, Seth Howes, Alex Cheema, and Mohamed Baioumy. Improving the efficiency of
distributed training using sparse parameter averaging. In ICLR 2025 Workshop on Modularity for
Collaborative, Decentralized, and Continual Deep Learning, 2025.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren, and Mariano Schain. Asynchronous stochastic
optimization robust to arbitrary delays. Advances in Neural Information Processing Systems, 2021.

Tim Dettmers. 8-bit approximations for parallelism in deep learning. arXiv preprint
arXiv:1511.04561, 2015.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861, 2021.

Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
communication training of language models. arXiv preprint arXiv:2311.08105, 2023.

Arthur Douillard, Yanislav Donchev, Keith Rush, Satyen Kale, Zachary Charles, Zachary Garrett,
Gabriel Teston, Dave Lacey, Ross McIlroy, Jiajun Shen, et al. Streaming diloco with overlapping
communication: Towards a distributed free lunch. arXiv preprint arXiv:2501.18512, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Yizhou Han, Chaohao Yang, Congliang Chen, Xingjian Wang, and Ruoyu Sun. Q-adam-mini:
Memory-efficient 8-bit quantized optimizer for large language model training. In ES-FoMo III:
3rd Workshop on Efficient Systems for Foundation Models, 2025.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32, 2019.

Satyen Kale, Arthur Douillard, and Yanislav Donchev. Eager updates for overlapped communication
and computation in diloco. arXiv preprint arXiv:2502.12996, 2025.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, 2018.

Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states. Advances in
Neural Information Processing Systems, 36, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression:
Reducing the communication bandwidth for distributed training. International Conference on
Learning Representations, 2018.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics. PMLR, 2017.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course. Springer Science &
Business Media, 2013.

Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-reduce algorithms for clusters of workstations.
J. Parallel Distrib. Comput., 2009.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2020.

Sameera Ramasinghe, Thalaiyasingam Ajanthan, Gil Avraham, Yan Zuo, and Alexander Long.
Protocol models: Scaling decentralized training with communication-efficient model parallelism.
arXiv preprint arXiv:2506.01260, 2025.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model training. In
2021 USENIX Annual Technical Conference (USENIX ATC 21), 2021.

Max Ryabinin, Tim Dettmers, Michael Diskin, and Alexander Borzunov. Swarm parallelism: Training
large models can be surprisingly communication-efficient. In International Conference on Machine
Learning. PMLR, 2023.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Shaohuai Shi, Xiaowen Chu, Ka Chun Cheung, and Simon See. Understanding top-k sparsification
in distributed deep learning. arXiv preprint arXiv:1911.08772, 2019.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 2024.

Tao Sun, Dongsheng Li, and Bao Wang. Decentralized federated averaging. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.

Weigao Sun, Zhen Qin, Weixuan Sun, Shidi Li, Dong Li, Xuyang Shen, Yu Qiao, and Yiran Zhong.
Co2: Efficient distributed training with full communication-computation overlap. arXiv preprint
arXiv:2401.16265, 2024.

Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Conglong Li, Xiangru
Lian, Ji Liu, Ce Zhang, and Yuxiong He. 1-bit adam: Communication efficient large-scale training
with adam’s convergence speed. In International Conference on Machine Learning, 2021.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective communication
operations in mpich. The International Journal of High Performance Computing Applications,
2005.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. Slowmo: Improving
communication-efficient distributed sgd with slow momentum. arXiv preprint arXiv:1910.00643,
2019.

Jue Wang, Binhang Yuan, Luka Rimanic, Yongjun He, Tri Dao, Beidi Chen, Christopher Re, and
Ce Zhang. Fine-tuning language models over slow networks using activation compression with
guarantees. arXiv preprint arXiv:2206.01299, 2022.

Maurice Weber, Dan Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov, Xi-
aozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, et al. Redpajama: an open dataset for
training large language models. Advances in neural information processing systems, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Binhang Yuan, Yongjun He, Jared Davis, Tianyi Zhang, Tri Dao, Beidi Chen, Percy S Liang,
Christopher Re, and Ce Zhang. Decentralized training of foundation models in heterogeneous
environments. Advances in Neural Information Processing Systems, 2022.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik P Kingma, Yinyu Ye,
Zhi-Quan Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv preprint
arXiv:2406.16793, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully sharded data
parallel. arXiv preprint arXiv:2304.11277, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Method 2

2.1 Background . 3

2.2 Partial Parameter Updates . 4

2.2.1 Parameter Slicing . 5

3 Experiments 6

3.1 Experimental Setup . 6

3.2 Results . 7

4 Related Work 9

5 Conclusion 10

A Ablations 13

A.1 Streaming Synchronization . 13

A.2 Parameter Slicing . 14

B Communication Overhead 15

C Computational Overhead 15

C.1 Partial Backward . 15

C.2 FLOPs calculation . 17

C.2.1 Forward . 17

C.2.2 Backward . 18

D Additional Results 19

A ABLATIONS

A.1 STREAMING SYNCHRONIZATION

One way to reduce peak memory usage in low-communication distributed training is to lower the
memory consumed by the outer optimizer state and offloaded parameters. When parameters are
synchronized in groups with multiple local steps in between, it is unnecessary to keep the full
optimizer state in memory at every step. Instead, only the states and parameters of the currently active
group need to be loaded. Douillard et al. (2025) explored this idea by grouping parameters at the
granularity of transformer layers.

We experimented with alternative grouping strategies. In particular, rather than grouping by layers,
we grouped by parameter slices. Under the slicing strategy described in § 2.2.1, at step t we all-reduce
gradients and update all MLP slices Wl

0 and Vl
0 for l ∈ {0, . . . , L}. At step t+ τ , we update Wl

1
and Vl

1; at step t + 2τ , Wl
2 and Vl

2; and so on, until all slices are synchronized. We found that
this strategy degraded performance (Table 5b): while grouping by layers had little to no impact on
final accuracy, grouping by slices did. A likely explanation is that only part of each weight matrix is
updated by the outer optimizer, and these updates are much larger than the small local changes made

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

DDP Diloco 1
4

mlps Streaming
diloco

Streaming
1
4

mlps

0

10

20

30
M

em
or

y
(G

B
)

inner optimizer state

weights, fp32 copy

gradients

outer optimizer state

offloaded weights

(a) Memory usage (GB)

Method Test perplexity
DiLoCo 12.78
Streaming DiLoCo 12.75
Ours (14 MLPs) 12.73
Ours (by slices, 1

4 MLPs) 13.47
Ours (by layers, 1

4 MLPs) 12.72

(b) Test perplexity

Figure 5: Streaming synchronization. Comparison of memory usage and test perplexity with and
without streaming synchronization for DiLoCo and our method on a 1.3B-parameter language model
trained across 32 nodes. “By layers” means the 24 transformer layers are grouped sequentially
into 8 groups of 3, plus a ninth group for embeddings and outer normalization. “By slices” means
synchronization is performed by grouping MLP slices in each layer—4 groups, plus a 5th for
embeddings and a 6th for attention and normalization layers. (a) Estimated memory usage per GPU
(§ 3.1). (b) Final test perplexity after training on 26B tokens.

by the inner optimizer and probably such sudden change in only a part of matrix make the overall
optimization problem more difficult.

5 10 15 20 25

Tokens (B)

2.50

2.75

3.00

3.25

3.50

3.75

4.00

L
o
ss

1/4 mlps, by layers

1/4 mlps, by slices

1/4 mlps + 1/4 heads, by slices

1/4 mlps + 1/4 heads + 1/4 wo, by slices

Figure 4: Test loss as a function of training to-
kens for different variants of trainable parameter
assignment. “By layers” corresponds to training
only a subset of layers on each node – slicing
model horizontally, whereas “by slices” refers
to slicing parameters vertically as described in
§ 2.2.1.

In all our experiments, we adopt the stream-
ing synchronization strategy of Douillard et al.
(2025). Our method is orthogonal to this idea:
our main contribution is reducing the memory
footprint of the inner optimizer state and gra-
dients. Streaming synchronization can be com-
bined with our approach to further reduce mem-
ory usage (Figure 5a). Consistent with prior ob-
servations (Douillard et al., 2025), synchroniza-
tion in groups does not affect final performance,
either for our method or for DiLoCo (Table 5b).

A.2 PARAMETER SLICING

In our main experiments, we considered two
strategies for assigning trainable parameters to
each node (§ 2.2.1): freezing parts of the MLPs,
and freezing MLPs together with a part of atten-
tion heads. We also experimented with alternative
slicing strategies. For instance, we attempted to
slice the outer attention projection Wo, but as shown in Figure 4, this led to some performance
degradation.

Another variant we explored was training only a subset of layers on each node. Instead of slicing
parameters vertically (by splitting weight matrices into slices), we partitioned the model horizontally,
such that each node updates MLP layers parameters within a smaller set of layers. However, this
proved to be a significantly harder optimization problem. We were unable to find a hyperparameter
configuration that avoided gradient explosion, and training quickly diverged. An example training
curve is shown in Figure 4. It is possible that with more extensive hyperparameter exploration or
alternative stabilization techniques, this variant could be made to work, but we leave this for future
investigation.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B COMMUNICATION OVERHEAD

We consider training a 1.3B-parameter model in bf16, corresponding to M = 2.6 GB of gradients,
on K = 32 nodes. Assume the nodes are connected via a high-speed Wi-Fi 7/8 network with a peak
bandwidth of B = 2.875 GB/s. The per-step communication time can be approximated by

Tcomm ≈
2(K − 1)

K

M

B

Then for DDP:

Tcomm ≈
2(K − 1)

K

M

B
≈ 1.75 s.

This is nearly 4× longer than the measured per-step compute time on a single H100 GPU (≈ 0.44 s),
indicating that communication dominates overall step time even under optimistic peak-bandwidth
assumptions.

In contrast, our method and Streaming DiLoCo synchronize only once every S = 100 steps, reducing
the amortized communication cost to

Tlow-comm =
Tcomm

S
≈ 1.75

100
= 0.0175 s.

As shown in Figure 3, this substantial reduction in communication time allows our method and
Streaming DiLoCo to achieve roughly 2× faster simulated wall-clock convergence than DDP at
Wi-Fi 7 bandwidth, despite requiring more training tokens to reach comparable test loss (44B vs.
26B).

Our method requires the same bandwidth budget as Streaming DiLoCo. Although the outer gradients
are sparse, ring all-reduce communicates full-sized tensors in multiple hops across devices, so the
total amount of data exchanged, and thus the communication cost, remains unchanged.

C COMPUTATIONAL OVERHEAD

C.1 PARTIAL BACKWARD

MLP with frozen slices Consider a single MLP block with up-/down-projection matrices W ∈
R4d×d and V ∈ Rd×4d, with an elementwise ReLU in between. Let the input activations for a
batch/sequence be X ∈ Rd×m (feature dimension d, m tokens).

We slice the hidden dimension into N parts as described in § 2.2.1:

W =

W1

...
WN

 , Wn ∈ R
4d
N ×d, V = [V1 · · · VN] , Vn ∈ Rd× 4d

N .

Define the per-slice pre-activations and activations:

Hn = WnX ∈ R
4d
N ×m, An = ReLU(Hn) ∈ R

4d
N ×m.

Stacking along the hidden dimension gives H =

[
H1

· · ·
HN

]
∈ R4d×m and A =

[
A1

· · ·
AN

]
∈ R4d×m.

The MLP forward then decomposes additively over slices:

Y = VA =

N∑
n=1

VnAn ∈ Rd×m.

Given the upstream gradient G = ∂L
∂Y ∈ Rd×m, the backward pass:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

1. Output projection Vn:

∂L
∂Vn

= GA⊤
n , An = ReLU(WnX).

2. Activations An:
∂L
∂An

= V⊤
nG.

3. Through ReLU:

∂L
∂Hn

=
(

∂L
∂An

)
⊙ I(Hn > 0), Hn = WnX.

4. Up-projection Wn:
∂L

∂Wn
=

(
∂L
∂Hn

)
X⊤.

5. Input X:
∂L
∂X

=

N∑
n=1

W⊤
n

(
∂L
∂Hn

)
.

As a result, since we do not update all the slices except k, we do not compute gradients with respect
to the frozen weights. This yields FLOP savings, because we skip the multiplications needed to form

∂L
∂Wn

,
∂L
∂Vn

, ∀n ∈ {1, . . . , k − 1, k + 1, . . . , N}.

Note that we still need to compute the full Jacobian with respect to the input X.

∂L
∂X

=

N∑
n=1

W⊤
n

(
(V⊤

nG)⊙ I(Hn > 0)
)
,

where Hn = WnX and G = ∂L
∂Y .

Even if the weights of slice n are frozen, its contribution W⊤
n

(
(V⊤

nG)⊙ I(Hn > 0)
)

is still required
to correctly propagate gradients to earlier layers (see Appendix D).

MHA with Frozen Heads Recall the forward pass of multi-head attention:

Q = W⊤
QX, K = W⊤

KX, V = W⊤
V X,

with Q,K,V ∈ Rhdh×m. We split them into h heads:

Q =

Q
(1)

...
Q(h)

 , Q(j) ∈ Rdh×m,

and similarly for K(j) and V(j). Each head computes

S(j) = 1√
dh

Q(j)⊤K(j), A(j) = softmaxrow(S
(j)), U(j) = V(j)A(j)⊤.

Concatenate U = [U(1); . . . ;U(h)] ∈ Rhdh×m, then project

Y = W⊤
OU ∈ Rd×m.

Given upstream gradient G = ∂L/∂Y:

1. Output projection.
∂L

∂WO
= UG⊤,

∂L
∂U

= WOG.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

2. Per head j:
∂L

∂V(j)
= G

(j)
U A(j),

∂L
∂A(j)

= G
(j)⊤
U V(j).

3. Through softmax:
∂L
∂S(j)

= softmax
(
A(j), ∂L

∂A(j)

)
.

4. Back to Q(j) and K(j):

∂L
∂Q(j)

= 1√
dh

K(j)
(

∂L
∂S(j)

)⊤
,

∂L
∂K(j)

= 1√
dh

Q(j)
(

∂L
∂S(j)

)
.

5. Back to projection matrices. Since Q(j) = W
(j)⊤
Q X:

∂L
∂W

(j)
Q

= X
(

∂L
∂Q(j)

)⊤
,

∂L
∂W

(j)
K

= X
(

∂L
∂K(j)

)⊤
,

∂L
∂W

(j)
V

= X
(

∂L
∂V(j)

)⊤
.

6. Input gradient.

∂L
∂X

=

h∑
j=1

(
W

(j)
Q

∂L
∂Q(j) +W

(j)
K

∂L
∂K(j) +W

(j)
V

∂L
∂V(j)

)
.

LetHtrain ⊆ {1, . . . , h} be the set of trainable heads on this node (see § 2.2.1). Then for all j /∈ Htrain,

∂L
∂W

(j)
Q

=
∂L

∂W
(j)
K

=
∂L

∂W
(j)
V

= 0.

Gradients for j ∈ Htrain are computed as above. Note that the input gradient ∂L/∂X still aggregates
contributions from all heads, so freezing heads saves FLOPs only on parameter gradients computation.

C.2 FLOPS CALCULATION

For a Transformer with batch size B, sequence length S, hidden dimension H , number of layers L,
feedforward dimension Dff, vocabulary size V .

C.2.1 FORWARD

The forward FLOPs can be decomposed as:

• Embedding Layer: Although embeddings are typically implemented as lookups with
negligible computational cost, for completeness, we estimate the FLOPs as:

FLOPsemb = B × S ×H

• Multi-Head Attention (MHA):
1. Linear Projections (Queries, Keys, Values):

FLOPsproj = 3× 2×B × S ×H ×H = 6×B × S ×H2

2. Scaled Dot-Product Attention:

FLOPsattn = FLOPsQK+FLOPsV = 2×B×S2×H+2×B×S2×H = 4×B×S2×H

3. Output Projection:
FLOPsout_proj = 2×B × S ×H ×H

Total Multi-Head Attention (MHA):

FLOPsMHA = FLOPsproj + FLOPsattn + FLOPsout_proj

= 6×B × S ×H2 + 4×B × S2 ×H + 2×B × S ×H2

= 8×B × S ×H2 + 4×B × S2 ×H

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Feedforward Network (FFN):

FLOPsFFN = 2× 2×B × S ×H ×Dff = 4×B × S ×H ×Dff

• Output projection:

FLOPsout = FLOPsoutproj + FLOPssoftmax = 2×B × S ×H × V + 3×B × S × V

Total Forward FLOPs per Layer:

FLOPslayer = (FLOPsMHA + FLOPsFFN)× L

Total Forward FLOPs per Step:

FLOPsforward = FLOPsemb + FLOPslayer + FLOPsout

C.2.2 BACKWARD

As discussed in Appendix C.1, for the backward computation all slices contribute to the gradients
with respect to the input.

MHA backward Let ρattn = 1
N be the trained fraction of heads. Using the forward costs:

FLOPsproj = 6×B×S×H2, FLOPsattn = 4×B×S2×H, FLOPsout_proj = 2×B×S×H2,

the backward splits as follows:

(i) Output projection WO : input Jacobian: 2×B × S ×H2,

parameter gradient: 2×B × S ×H2,

(ii) Attention matmuls (QK⊤ and AV): backward ≈ 2× FLOPsattn = 8×B × S2 ×H,

(iii) Q/K/V projections (WQ,WK ,WV) : input Jacobian: 2× FLOPs(half)
proj = 6×B × S ×H2,

parameter gradients: 2× FLOPs(half)
proj × ρattn.

FLOPsbwd
MHA = 8×B × S2 ×H︸ ︷︷ ︸

attn matmuls

+
(
10 + 6× ρattn

)
×B × S ×H2︸ ︷︷ ︸

Q/K/V input Jacobian (6)
+ Q/K/V param grads (6ρattn)

+ WO input Jacobian (2)
+ WO param grad (2)

.

When ρattn = 1 (no freezing), this reduces to the usual “backward ≈ 2× forward” for MHA:

FLOPsbwd
MHA(ρattn=1) = 8×B×S2×H + 16×B×S×H2 = 2×

(
4×B×S2×H + 8×B×S×H2

)
.

FFN backward Similarly as for MHA for FFN let ρmlp = 1
N . Then:

FLOPsbwd
FFN = 4×B × S ×H ×Dff︸ ︷︷ ︸

full input Jacobian

+ 4× ρmlp ×B × S ×H ×Dff︸ ︷︷ ︸
parameter gradients

This results in total backward per step:

FLOPsbwd
step = 2× FLOPsemb + L×

(
FLOPsbwd

MHA + FLOPsbwd
FFN

)
+ 2× FLOPsout.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D ADDITIONAL RESULTS

0 2 4 6 8

Tokens, B

2.8

3.0

3.2

3.4

3.6

3.8

4.0

L
os

s

1/4 MLPs, 1/4 Jacobian

1/4 MLPs, full Jacobian

1/4 MLPs, 1/2 Jacobian

Figure 6: Training loss as a function of train-
ing tokens for a 335M-parameter model trained
with the 1/4 MLP slicing strategy described in
§ 2.2.1. Full Jacobian denotes our standard ap-
proach where all slices contribute to the Jacobian.
1/4 Jacobian corresponds to the detach-all-but-k
variant, where only the k-th slice contributes. 1/2
Jacobian refers to the k+random variant, where
the k-th slice and one additional randomly se-
lected slice are retained.

As discussed in Appendix C.1, the only gradi-
ents we omit are those with respect to frozen
parameters. While this reduces FLOPs during
the backward pass, it does not decrease activation
memory. A natural question is whether one could
go further — not only skipping parameter gradi-
ents but also fully detaching their contributions
from the gradient flow. We therefore investigated
how such a complete detachment of frozen MLP
slices affects convergence.

Backward detach-all-but-k In this setting, the
forward pass still uses all parameters, but during
backpropagation we compute only the Jacobian
components corresponding to the active slice.

Backward with zeroed slices (only slice k active):

Ãn =

{
Ak, n = k,

0, n ̸= k,

M̃n =

{
I(Hk > 0), n = k,

0, n ̸= k,

where Mn = I(Hn > 0) is the elementwise
activation mask (e.g., ReLU).

Given upstream G = ∂L
∂Y ∈ Rd×m:

∂L
∂Vn

= GÃ⊤
n =

{
GA⊤

k , n = k,

0, n ̸= k,

∂L
∂An

= V⊤
nG,

∂L
∂Hn

=
(

∂L
∂An

)
⊙ M̃n =

{
(V⊤

k G)⊙ I(Hk > 0), n = k,

0, n ̸= k,

The full-Jacobian input gradient is

∂L
∂X

=

N∑
n=1

W⊤
n

(
∂L
∂Hn

)
=

N∑
n=1

W⊤
n

((
V⊤

nG
)
⊙Mn

)
. (6)

Under the detach-all-but-k rule, this can be written as single-slice contribution:

∂L
∂X

= W⊤
k

((
V⊤

k G
)
⊙ I(Hk > 0)

)
since ∂L

∂Hn
= 0 for all n ̸= k.

As expected, since the full backward pass is disrupted, naively detaching all but one slice resulted in
gradient explosion in the middle of training (Figure 6).

Backward detach-all-but-k + random To study this further, we considered a variant where, instead
of keeping only the k-th slice, we retain the k-th slice plus one additional slice chosen at random.
Concretely, during the forward pass we randomly sample an index g ∼ Unif

(
{1, . . . , N} \ {k}

)
and

keep the corresponding contributions in the backward Jacobian.

Given the full Jacobian in Eq. 6,

∂L
∂X

=

N∑
n=1

W⊤
n

(
(V⊤

nG)⊙ I(Hn > 0)
)
,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

the detach-all-but-k+random variant reduces this to
∂L
∂X

= W⊤
k

(
(V⊤

k G)⊙ I(Hk > 0)
)

+W⊤
g

(
(V⊤

g G)⊙ I(Hg > 0)
)
,

where g is resampled independently at each step.

Despite this modification, performance still degraded (perplexity 17.38 vs. 16.44). Further investiga-
tion of how much of the Jacobian can be dropped could be an interesting direction for future work.
Adjusting hyperparameters, or scaling the activations might improve the performance. Also better
strategies than picking uniformly at random can be explored.

20

	Introduction
	Method
	Background
	Partial Parameter Updates
	Parameter Slicing

	Experiments
	Experimental Setup
	Results

	Related Work
	Conclusion
	Ablations
	Streaming Synchronization
	Parameter Slicing

	Communication Overhead
	Computational Overhead
	Partial Backward
	FLOPs calculation
	Forward
	Backward

	Additional Results

