

000 001 002 003 004 005 PARTIAL PARAMETER UPDATES FOR EFFICIENT 006 DISTRIBUTED TRAINING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 We introduce a memory- and compute-efficient method for low-communication
026 distributed training. Existing methods reduce communication by performing mul-
027 tiple local updates between infrequent global synchronizations. We demonstrate
028 that their efficiency can be significantly improved by restricting backpropagation:
029 instead of updating all the parameters, each node updates only a fixed subset while
030 keeping the remainder frozen during local steps. This constraint substantially
031 reduces peak memory usage and training FLOPs, while a full forward pass over all
032 parameters eliminates the need for cross-node activation exchange. Experiments
033 on a 1.3B-parameter language model trained across 32 nodes show that our method
034 matches the perplexity of prior low-communication approaches under identical
035 token and bandwidth budgets while reducing training FLOPs by 15% and peak
036 memory by up to 47%.

1 INTRODUCTION

040 Recent research has consistently shown that scaling language models (LLMs) improves their general-
041 ization and downstream capabilities (Yang et al., 2025; Team et al., 2025; Liu et al., 2024; Grattafiori
042 et al., 2024).

043 At scale, training is typically achieved by distributing data across many compute nodes and syn-
044 chronizing gradients at every optimization step. This synchronization relies on high-bandwidth
045 interconnects, limiting large-scale training to high-end clusters with large number of well-connected
046 nodes, a resource still accessible to only a small fraction of the machine learning community.

047 To reduce this dependence on high-bandwidth interconnects, prior work has explored three main
048 directions. The first reduces the amount of data exchanged between nodes, for example through
049 gradient sparsification, compression, or quantization (Alistarh et al., 2017; Lin et al., 2018; Tang
050 et al., 2021; Shi et al., 2019). The second aims to hide communication latency by overlapping it with
051 computation (Cohen et al., 2021; Sun et al., 2024; Kale et al., 2025), often by using delayed gradients
052 combined with correction terms to preserve convergence. The third line of research, which our paper
053 builds upon, lowers communication overhead by reducing the frequency of gradient synchronization.
054 This approach, first introduced in the federated learning setting (McMahan et al., 2017), allows each
055 model replica to perform multiple local updates before a global parameter average. Subsequent works
056 have proposed more sophisticated methods for global synchronization, such as treating aggregated
057 local differences as a pseudo-gradient for outer optimizer (Wang et al., 2019; Sun et al., 2022).

058 More recently, DiLoCo (Douillard et al., 2023) applies this dual-optimization scheme to LLM training,
059 reducing bandwidth requirements by orders of magnitude compared to standard every-step gradient
060 reduction. Streaming DiLoCo (Douillard et al., 2025) extends this idea by synchronizing only a
061 subset of parameters at a time, thereby lowering both peak bandwidth and memory usage.

062 In low-bandwidth environments, memory-sharding approaches such as FSDP (Zhao et al., 2023)
063 are impractical, since they require frequent communication across nodes that becomes prohibitively
064 slow without fast interconnects. As a result, each device must store weights, gradients, and optimizer
065 states locally, making memory the primary bottleneck (§ 3.1). These communication constraints also
066 prevent the use of tensor parallelism (Shoeybi et al., 2019), which relies on synchronization at every
067 step to reduce per-device computation.

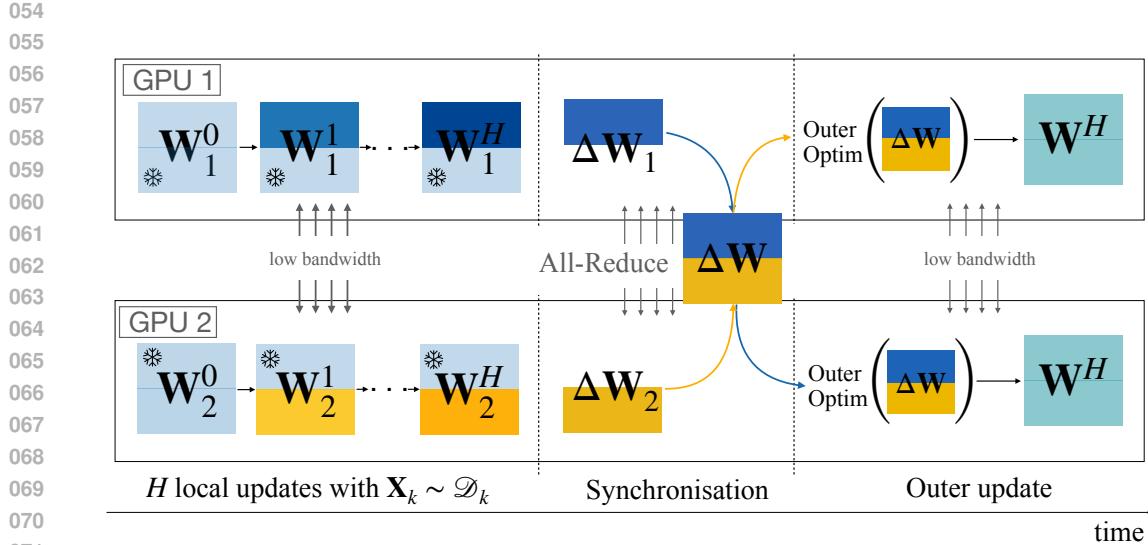


Figure 1: **Partial Parameter Updates.** Illustration of our low-communication distributed training procedure in a two-node setup connected by a low-bandwidth interconnect. Each node k starts with an identical replica of the parameter matrix \mathbf{W}_k . During local training, each GPU updates only a disjoint slice of \mathbf{W}_k while keeping the remaining parameters frozen. After H local steps, parameter updates are synchronized via an all-reduce, and an outer optimizer step is applied to the previously frozen slices. This process repeats until convergence.

To address these limitations, we propose a simple yet effective alternative that improves both memory efficiency and training FLOPs without introducing frequent synchronization. Our approach can be viewed as distributed block coordinate optimization: each node backpropagates through and updates only a fixed slice of the parameters, treating the remainder as constant. After several local steps, parameter differences are averaged across nodes followed by an outer optimizer step (Figure 1). By restricting both backpropagation and optimizer updates to the active slice, our method reduces peak memory usage and total training FLOPs, while maintaining the low communication requirements and final performance of prior works.

Our main contributions are as follows:

- We introduce an efficient algorithm for low-communication distributed data-parallel training that performs local updates on a node-specific subset of parameters, thereby reducing both memory usage and computational cost (Algorithm 1).
- We empirically validate the effectiveness of our method by training a 1.3B-parameter language model on 32 nodes, achieving perplexity comparable to prior low-communication training approaches under the same token and bandwidth budgets, while using 15% fewer FLOPs and up to 47% less memory (Figure 2).
- We demonstrate that in simulated low-bandwidth settings, our method converges substantially faster than standard distributed data parallel training with every step synchronization (Figure 3).

2 METHOD

In this section, we formalize our proposed method for low-communication training. We begin in § 2.1 with a brief overview of language modeling and distributed data parallelism in both high- and low-bandwidth settings. In § 2.2, we then present the core idea of our method, followed by its training procedure and implementation details.

108 2.1 BACKGROUND
109

110 **Language Modeling** Let \mathcal{D} be a dataset of token sequences $\mathbf{x} = (x_1, \dots, x_S)$ with $x_s \in \mathcal{V}$,
111 where \mathcal{V} is the vocabulary and S is the sequence length. Language modeling aims to learn the data
112 distribution $p(\mathbf{x})$, which can be factorized autoregressively as: $p(\mathbf{x}) = \prod_{s=1}^{S-1} p(x_{s+1} | \mathbf{x}_{1:s}; \theta)$ where
113 θ denotes the model parameters. The parameters are typically estimated by minimizing the expected
114 negative log-likelihood over the dataset:

$$115 \quad \theta^* = \arg \min_{\theta} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \mathcal{L}(\mathbf{x}; \theta), \quad (1)$$

$$117 \quad 118 \quad \mathcal{L}(\mathbf{x}; \theta) = - \sum_{s=1}^{S-1} \log p(x_{s+1} | \mathbf{x}_{1:s}; \theta). \quad (2)$$

120 In practice, this objective is minimized using a variant of stochastic gradient descent, where at each
121 step the gradient $\nabla_{\theta} \mathcal{L}(\mathbf{X}; \theta)$ is computed on a mini-batch of sequences \mathbf{X} .
122

123 **Distributed Data Parallelism (DDP)** To scale the optimization in Eq. 1, a common approach is to
124 partition dataset \mathcal{D} across K compute nodes, with each node k holding a shard \mathcal{D}_k . At each training
125 step t , every node k computes a gradient on its local mini-batch $\mathbf{X}_k^{(t)} \sim \mathcal{D}_k$:

$$126 \quad 127 \quad g_k^{(t)} = \nabla_{\theta} \mathcal{L}(\mathbf{X}_k^{(t)}; \theta^{(t)}).$$

128 These local gradients are aggregated via an All-Reduce collective operation (Patarasuk & Yuan,
129 2009) to form $g^{(t)} = \frac{1}{K} \sum_{k=1}^K g_k^{(t)}$, which is then used to update the model parameters on all
130 nodes. The model parameters, optimizer states, and gradients may be fully replicated on each node or
131 partitioned to reduce memory usage (Zhao et al., 2023; Rajbhandari et al., 2020).
132

133 **Low-communication Distributed Data Parallelism** Standard DDP communicates gradients at
134 every step, making it impractical on hardware lacking high-bandwidth, low-latency interconnects.
135 Low-communication methods relax this requirement by reducing the synchronization frequency.

136 A training round (global step) t begins with all K nodes holding identical global parameters $\theta^{(t)}$.
137 Each node k then performs H local updates independently using an inner optimizer. At each local
138 step $h = 0, \dots, H-1$, node k computes a gradient $g_k^{(t,h)}$ on its local mini-batch and applies the
139 inner update:

$$140 \quad 141 \quad \theta_k^{(t,h+1)} \leftarrow \text{INNEROPT}(\theta_k^{(t,h)}, g_k^{(t,h)}). \quad (3)$$

142 After H local steps, each node computes its parameter delta relative to the starting point and
143 participates in an all-reduce to compute the average update:
144

$$145 \quad 146 \quad \Delta^{(t)} = \frac{1}{K} \sum_{k=1}^K (\theta_k^{(t,H)} - \theta^{(t)}). \quad (4)$$

147 The global parameters are then updated via an *outer optimizer*:

$$149 \quad 150 \quad \theta^{(t+1)} \leftarrow \text{OUTEROPT}(\theta^{(t)}, \Delta^{(t)}). \quad (5)$$

151 In practice, the outer optimizer may simply apply $\Delta \theta^{(t)}$ directly (McMahan et al., 2017) or interpret
152 it as a pseudo-gradient for an optimizer such as SGD (Wang et al., 2019; Sun et al., 2022). For
153 large-scale language model training, DiLoCo (Douillard et al., 2023) reports that using AdamW as
154 the inner optimizer and Nesterov SGD (Nesterov, 2013) as the outer optimizer yields lower validation
155 loss than other combinations.
156

157 **Memory Usage and Computational Costs** Techniques designed to lower peak memory usage by
158 sharding the optimizer state, gradients, and parameters across devices are impractical on hardware
159 without high-speed interconnects, as they require all-gather and reduce-scatter at every optimization
160 step (Zhao et al., 2023; Ren et al., 2021). In addition to model weights and gradients, the state of
161 the outer optimizer (e.g., momentum) must also remain in device memory. While synchronizing
only a subset of parameters at a time and offloading the remainder to the host can reduce peak

162 **Algorithm 1**

```

1: Inputs: outer rounds  $T$ , local steps  $H$ , number of nodes  $K$ 
2: Notation:  $I_k^{\text{train}} \subseteq \{1, \dots, |\theta|\}$ ;  $I_k^{\text{frozen}} = \{1, \dots, |\theta|\} \setminus I_k^{\text{train}}$ ;
3: count vector  $\mathbf{m} \in \{0, \dots, K\}^{|\theta|}$  with  $\mathbf{m}[i] := \sum_{k=1}^K \mathbf{1}\{i \in I_k^{\text{train}}\}$ 
4: for  $t = 0 \dots T - 1$  do
5:   for  $k = 0 \dots K - 1$  do # Execute in parallel on  $K$  nodes
6:      $\theta_k^{(t,0)} \leftarrow \theta^{(t)}$ 
7:     for  $h = 0 \dots H - 1$  do # Perform  $H$  local steps independently on each node
8:        $\mathbf{X}_k^{(t,h)} \sim \mathcal{D}_k$ 
9:       
$$g_k^{(t,h)}[i] = \begin{cases} \nabla_{\theta[i]} \mathcal{L}(\theta_k^{(t,h)}; \mathbf{X}_k^{(t,h)}), & \text{if } i \in I_k^{\text{train}} \\ 0, & \text{otherwise} \end{cases}$$

10:       $\theta_k^{(t,h+1)}[I_k^{\text{train}}] \leftarrow \text{INNEROPT}\left(\theta_k^{(t,h)}[I_k^{\text{train}}], g_k^{(t,h)}[I_k^{\text{train}}]\right)$ 
11:    end for
12:    
$$\Delta_k^{(t)}[i] = \begin{cases} \theta_k^{(t,H)}[i] - \theta^{(t)}[i], & i \in I_k^{\text{train}} \\ 0, & \text{otherwise} \end{cases}$$

13:  end for
14:   $\Delta^{(t)}[i] = \frac{1}{\mathbf{m}[i]} \sum_{k=1}^K \Delta_k^{(t)}[i], \quad i = 1, \dots, |\theta|$  # Element-wise average by count vector  $\mathbf{m}$ 
15:   $\theta^{(t+1)} \leftarrow \text{OUTEROPT}(\theta^{(t)}, \Delta^{(t)})$ 
16: end for
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
```

usage (Douillard et al., 2025), the overall footprint remains large. As a result, even a relatively modest 1.3B-parameter model with full activation checkpointing consumes roughly 18 GB of GPU memory when trained without sharding using Adam optimizer (Loshchilov & Hutter, 2017) (Fig. 2a, § 3.1).

Our objective is to reduce memory footprint and per node FLOPs without degrading model quality or increasing communication compared to existing low-communication methods. In practice, this enables billion-parameter training on commodity GPUs with limited memory, connected over Wi-Fi or Ethernet.

2.2 PARTIAL PARAMETER UPDATES

Our method can be viewed as a distributed variant of block coordinate descent: on each node k , we partition the model parameters θ into a **trainable parameters**, indexed by a fixed set $I_k^{\text{train}} \subseteq \{1, \dots, |\theta|\}$, and a **frozen parameters**, indexed by its complement I_k^{frozen} . As discussed in § 2.2.1, the trainable parameter sets assigned to different nodes overlap, i.e., $I_i \cap I_j \neq \emptyset$, for some $i, j \in \{0, \dots, K - 1\}$.

During local training, node k only computes gradients for and applies updates to its designated trainable slice. The training process for a local step h (within a global step t) on node k proceeds as follows. The forward pass is standard, using the full local parameters $\theta_k^{(t,h)}$. The backward pass, however, is modified to compute gradients only for the trainable parameters (line 9):

$$g_k^{(t,h)}[i] = \begin{cases} \nabla_{\theta[i]} \mathcal{L}(\theta_k^{(t,h)}; \mathbf{X}_k^{(t,h)}), & \text{if } i \in I_k^{\text{train}} \\ 0, & \text{otherwise.} \end{cases}$$

The inner optimizer then updates only the active parameters corresponding to these non-zero gradients (line 10):

$$\theta_k^{(t,h+1)}[I_k^{\text{train}}] \leftarrow \text{INNEROPT}\left(\theta_k^{(t,h)}[I_k^{\text{train}}], g_k^{(t,h)}\right).$$

After H local steps, the nodes synchronize. First, each node k computes its local parameter delta, which is also non-zero only on its trainable slice (line 12):

$$\Delta_k^{(t)}[i] = \begin{cases} \theta_k^{(t,H)}[i] - \theta^{(t)}[i], & \text{if } i \in I_k^{\text{train}} \\ 0, & \text{otherwise.} \end{cases}$$

216 Next, these sparse deltas are aggregated across all nodes using an All-Reduce operation to form:
 217 $\Delta^{(t)} = \sum_{k=1}^K \Delta_k^{(t)}$. Finally, this summed delta is normalized element-wise by a count vector
 218 $\mathbf{m} \in \{1, \dots, K\}^{|\theta|}$, where $\mathbf{m}[i]$ is the number of nodes responsible for updating parameter $\theta[i]$
 219 (line 14). The normalized update is then applied by the outer optimizer (line 15). The full training
 220 procedure is detailed in Algorithm 1.
 221

222 This design offers two benefits: (i) reduced per-node memory usage, as no gradient buffers or
 223 optimizer state are allocated for parameters in I_k^{frozen} (Figure 2a), and (ii) lower training FLOPs,
 224 since gradients for $\theta[i]$ with $i \in I_k^{\text{frozen}}$ are never computed (Figure 2b, Appendix C). In § 3.2, we
 225 demonstrate that despite fewer updates per parameter than full-model baselines, our method achieves
 226 comparable perplexity.
 227

2.2.1 PARAMETER SLICING

229 The assignment of trainable parameters I_k^{train} to each node is controlled by a hyperparameter N ,
 230 which specifies the number of distinct parameter slices. We assume that the total number of nodes K
 231 is a multiple of N . Each node k is assigned a slice index $n = k \bmod N$. This assignment determines
 232 how many nodes participate in updating each parameter block, which is captured by the count vector
 233 \mathbf{m} (line 12):
 234

$$\mathbf{m}[i] = \begin{cases} \frac{K}{N}, & i \in I^{\text{train}} \\ K, & \text{otherwise} \end{cases}.$$

236 We consider two strategies for partitioning the parameters into trainable and frozen subsets.
 237

238 **MLP-Only Slicing** We slice only the MLP blocks, while all other parameters (attention, embed-
 239 dings, normalization layers) are trained on all K nodes. The rationale is that MLPs contain the
 240 majority of a Transformer’s parameters, and when sliced, each block can be treated as an independent
 241 feed-forward pathway (similar in spirit to a Mixture-of-Experts layer (Shazeer et al., 2017)). This
 242 makes the partitioning straightforward both conceptually and in implementation.
 243

244 An MLP block is typically defined as: $\text{MLP}(\mathbf{x}) = \mathbf{V}(\text{ReLU}(\mathbf{W}\mathbf{x}))$, where $\mathbf{W} \in \mathbb{R}^{4d \times d}$ and
 245 $\mathbf{V} \in \mathbb{R}^{d \times 4d}$ are the up- and down-projection matrices, respectively. We partition \mathbf{W} row-wise into
 246 N blocks $\{\mathbf{W}_1, \dots, \mathbf{W}_N\}$ and \mathbf{V} column-wise into $\{\mathbf{V}_1, \dots, \mathbf{V}_N\}$, where $\mathbf{W}_n \in \mathbb{R}^{(4d/N) \times d}$ and
 247 $\mathbf{V}_n \in \mathbb{R}^{d \times (4d/N)}$. The MLP computation can then be expressed as a sum over these slices:
 248

$$\text{MLP}(\mathbf{x}) = \sum_{n=1}^N \mathbf{V}_n(\text{ReLU}(\mathbf{W}_n \mathbf{x})).$$

251 On a given node k with slice index n , the trainable parameters I_k^{train} consist of all non-MLP
 252 parameters plus the specific MLP slices $\{\mathbf{W}_n, \mathbf{V}_n\}$ from every layer. The remaining $N - 1$ MLP
 253 slices are kept frozen.
 254

255 **Slicing MLPs and Attention Heads** We further extend the MLP-only slicing strategy by applying
 256 partial updates to the multi-head attention (MHA) block. In a standard MHA block (Vaswani, 2017),
 257 the input is projected by the query, key, and value matrices: $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V \in \mathbb{R}^{d \times (h \cdot d_h)}$, where h
 258 is the number of heads and d_h the per-head dimension (so that $d = h \cdot d_h$). Then the concatenated
 259 head outputs are projected by a final matrix $\mathbf{W}_O \in \mathbb{R}^{(h \cdot d_h) \times d}$. We slice the input projections only
 260 since extending it to the entire attention block (including the output projection) led to noticeable
 261 performance degradation (Appendix C).
 262

263 We divide the h total attention heads into N disjoint groups of size h/N . For node k , the assigned
 264 slice index is $n = k \bmod N$, with head group:
 265

$$\mathcal{H}_n = \{n \cdot (h/N), \dots, (n + 1) \cdot (h/N) - 1\}.$$

266 On this node, the trainable attention parameters are limited to the columns:
 267

$$\mathbf{W}_Q^{(n)} = \mathbf{W}_Q[:, \mathcal{H}_n], \mathbf{W}_K^{(n)} = \mathbf{W}_K[:, \mathcal{H}_n], \mathbf{W}_V^{(n)} = \mathbf{W}_V[:, \mathcal{H}_n].$$

268 All other columns in these three projections are kept frozen.
 269

270

3 EXPERIMENTS

271
 272 In this section, we present an empirical evaluation of our method. In § 3.1 we describe the experimen-
 273 tal setup and explain how we measure memory usage and communication overhead. In § 3.2 we first
 274 compare our method to Streaming DiLoCo (Douillard et al., 2025) in terms of memory consumption
 275 and total training FLOPs, showing that our approach achieves comparable test perplexity while using
 276 fewer FLOPs, less memory, and the same bandwidth. We then demonstrate that low-communication
 277 methods (including ours), although requiring more training tokens to reach a target test loss, achieve
 278 shorter wall-clock training time than standard Distributed Data Parallel (DDP) with full gradient
 279 synchronization. Finally, we analyze how varying the size of the parameter subset updated on each
 280 node affects both test perplexity and memory usage.
 281

282

3.1 EXPERIMENTAL SETUP

283 We use the RedPajama-V2 dataset (Weber et al., 2024), which consists of data from different sources,
 284 including Arxiv, Common Crawl, GitHub, and Wikipedia. In all experiments we use sequences of
 285 1,024 tokens. **n our experiments, we use Transformer models (Vaswani, 2017) with 1.3B and 2.6B**
 286 **parameters, matching the GPT-3 architectures (Brown et al., 2020): the 1.3B model has 24 layers**
 287 **with a hidden size of 2048, and the 2.6B model has 32 layers with a hidden size of 2560.** We use
 288 rotary positional encodings (Su et al., 2024) and a SentencePiece tokenizer (Kudo & Richardson,
 289 2018) with a vocabulary size of 32,000.
 290

291 All models are trained using the AdamW optimizer (Loshchilov & Hutter, 2017) with $\beta_1 = 0.9$,
 292 $\beta_2 = 0.99$, and a weight decay of 0.1. The learning rate is linearly warmed up to 3×10^{-4} over the
 293 first 1,500 steps, followed by cosine decay.
 294

295 For both our method and Streaming DiLoCo, we adopt the outer optimization setup of Douillard et al.
 296 (2025): SGD with Nesterov momentum ($m = 0.9$) (Nesterov, 2013), learning rate 4×10^{-1} , and
 297 synchronization frequency $H = 100$. We also follow their streaming synchronization scheme: the 24
 298 layers are divided into 8 groups of 3 layers each synchronized every H local steps (see Appendix A.1).

299 We train with a batch size of 512, distributed across 32 NVIDIA H100 GPUs (80GB each) for 1.3B
 300 model and 64 H100 for 2.6B, resulting in a per-GPU batch size of 16. Each GPU is treated as an
 301 independent compute node; we do not assume faster communication within an 8-GPU server.
 302

303 **Memory Usage** We assume training in `bfloat16` with full activation recomputation during
 304 the backward pass. In mixed-precision training, a master copy of model parameters is typically
 305 maintained in `float32` for updates, with parameters cast to `bfloat16` on the fly for forward
 306 and backward computation. Gradients are stored in `bfloat16`, while optimizer states remain in
 307 `float32`. For low-bandwidth training with an outer optimizer, additional memory must be reserved
 308 for offloaded weights and momentum buffers. When synchronization is performed in a streaming
 309 fashion (grouped communication, as in Douillard et al. (2025)), this additional overhead is relatively
 310 small (see Figure 2a).

311 With activation recomputation, peak memory is dominated by: (i) **optimizer states**, (ii) **weights**, (iii)
 312 **gradients**, (iv) **outer-optimizer states** (if used), and (v) **offloaded parameters** (if any), as illustrated in
 313 Figure 2a.
 314

315 **Communication Overhead** Let M denote the total gradient size (in bytes), K the number of
 316 nodes, and B the peak per-link bandwidth. We assume that gradient synchronization is performed
 317 using a bandwidth-optimal ring all-reduce, implemented as a reduce–scatter followed by an all-
 318 gather (Thakur et al., 2005). Under bandwidth-optimality assumption, each node transmits a total
 319 of $2\frac{K-1}{K}M$ bytes per synchronization, leading to the following estimate of communication time:
 320 $T_{\text{comm}} \approx \frac{2(K-1)}{K} \frac{M}{B}$.
 321

322 This estimate is a lower bound since it assumes that each link achieves its peak bandwidth with
 323 perfect overlap of send and receive operations, and it neglects non communication overhead such as
 kernel launch latency, stream synchronizations.

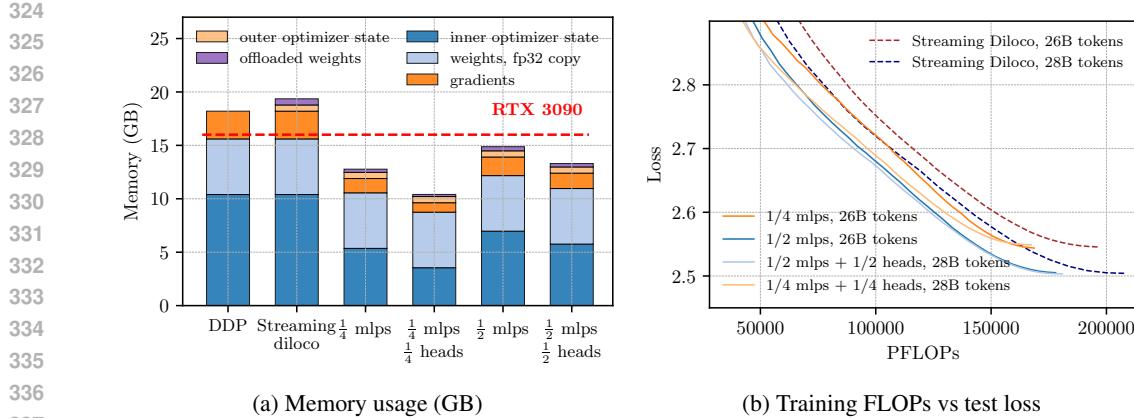


Figure 2: **Less memory, fewer FLOPs, same performance.** Comparison of memory usage and total training FLOPs between our approach and Streaming DiLoCo. In each Transformer layer we either slice only the MLPs ($\frac{1}{N}$ MLPs) or slice both MLPs and attention heads ($\frac{1}{N}$ MLPs, $\frac{1}{N}$ heads). In both cases, only $1/N$ of the parameters in the corresponding projections are trained on each node (§ 2.2.1). **(a)** Estimated memory usage for DDP, Streaming DiLoCo, and our four variants (§ 3.1). **(b)** Test perplexity as a function of total training FLOPs for our method and to Streaming DiLoCo (§ 3.2, Appendix C)

3.2 RESULTS

Peak Memory Footprint Figure 2a demonstrates that our method requires significantly less memory than Streaming DiLoCo and DDP. This reduction comes from the fact that we do not train a large portion of parameters (detailed in Table 3.2), which means we neither maintain optimizer state nor store gradients for these parameters. For instance, $1/4$ mlps + $1/4$ heads configuration of our method uses 47% less memory compared to full model training, while achieving similar test loss. This allows us to fit training with activation checkpointing of a 1.3B model using devices with less than 16GB of RAM.

Compute Efficiency We compare our method to Streaming DiLoCo in terms of training FLOPs. Figure 2b shows test loss as a function of total training FLOPs. For this comparison, we trained the $1/4$ -MLP, $1/2$ -MLP, and Streaming DiLoCo configurations with the Chinchilla-optimal token budget (26B). To match the performance of the $1/2$ -MLP configuration, we slightly increased the token budget for Streaming DiLoCo to 28B. We also trained the $1/N$ -MLP+ $1/N$ -heads configurations on 28B tokens to match the performance of their corresponding $1/N$ -MLP runs. Across these performance-matched comparisons, our method consistently required 15% fewer total FLOPs.

Convergence Speed Under Bandwidth Constraints We compare our method with Streaming DiLoCo and standard DDP by simulating total training time under bandwidth-constrained conditions (Figure 3). While low-communication methods require more training tokens to achieve the same performance as Distributed Data Parallel (DDP), they are significantly faster in terms of wall-clock time on slow networks.

Our simulation model deliberately favors DDP by assuming perfect overlap between computation and communication, giving a per-step runtime of $T = \max(T_{\text{comm}}, T_{\text{comp}})$. In contrast, for low-communication methods we assume no overlap: $T = T_{\text{comm}} + T_{\text{comp}}$.

We intentionally model a best-case scenario for DDP to demonstrate that even when its step time is minimized, low-communication methods converge faster under bandwidth constraints settings (see Appendix B for details). **Our method as Streaming DiLoCo uses identical bandwidth budget (more details in Appendix B).**

Parameter Slicing Table 3.2 reports the relation between the number of slices, memory usage, number of trainable parameters, and final loss. As expected, reducing memory by freezing more parameters per node leads to drops in performance. To better understand this trade-off, we overtrained

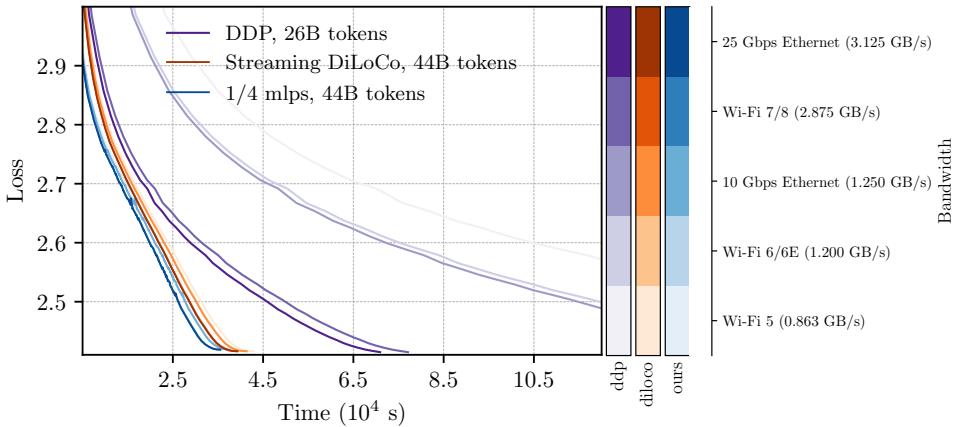


Figure 3: **Faster convergence without fast interconnects.** Simulated training time for our method, Streaming DiLoCo, and standard DDP under varying bandwidth limits. Blue, orange, and purple denote [our method](#), [Streaming DiLoCo](#), and [DDP](#), respectively; transparency levels indicate different peak bandwidths (in GB/s). For DDP, step time is estimated as the maximum of single-GPU compute and gradient communication (perfect overlap), whereas for low-communication methods it is the sum (no overlap) (§ 3.2). Although low-communication methods require $1.7 \times$ more tokens to reach a validation loss of 2.41, they complete training in significantly less wall-clock time when network bandwidth is limited.

Method	Perplexity	Memory, GB	Trainable parameters, B	Tokens, B
Streaming DiLoCo	12.75	19.36	1.3	26
1/2 mlps	12.24	14.87	0.87	26
1/4 mlps	12.72	12.77	0.67	26
1/8 mlps	13.59	11.72	0.57	26
1/16 mlps	14.21	11.19	0.52	26
1/8 mlps, overtrained	12.68	11.72	0.57	37
1/2 mlps + 1/2 heads	12.22	13.29	0.72	28
1/4 mlps + 1/4 heads	12.79	10.41	0.44	28
1/4 heads	12.83	16.95	1.07	26
Streaming DiLoCo	10.47	38.7	2.59	52
1/4 mlps	10.49	25.55	1.34	52

Table 1: Comparison of perplexity, memory usage, number of trainable parameters, and training tokens across different methods for 1.3B and 2.6B parameter models trained on 32 and 64 GPUs on RedPajama-V2 dataset. Different background colors correspond to different model sizes.

the configuration with 8 slices (each slice is updated on 4 nodes out of 32) and found that it required almost 50% more tokens to match the performance of smaller-slice configurations. As shown in Table 3.2, freezing only MLPs is less effective for memory savings than freezing a combination of MLPs and attention heads. [Moreover, when freezing only 1/4 of attention heads, the performance is similar to the 1/4 MLP slicing configuration, but the number of active parameters, and therefore the memory usage, is higher.](#)

In our setup, the set of trainable parameters is fixed throughout training. While dynamically reassigning parameters could, in principle, improve convergence, it would require either replicating the full optimizer state on every node or transferring optimizer state whenever a parameter’s owner changes, both of which eliminate the memory and communication benefits we target. Exploring lightweight forms of adaptive parameter assignment during training that preserve these benefits remains an open

432 direction for future work. We also evaluated alternative parameter assignment strategies; details are
 433 provided in Appendix A.2.
 434

435 4 RELATED WORK

436 We review prior work in two areas most relevant to our contributions: methods for low-communication
 437 distributed training and approaches for improving memory and computational efficiency during
 438 training. For the latter, we focus on memory-efficient optimizers and tensor parallelism, which are
 439 most directly related to our method.
 440

441 **Low-Communication Training** Communication overhead in distributed data-parallel training has
 442 been tackled in three main ways: reducing the volume of data exchanged between nodes with gradient
 443 compression or quantization (Dettmers, 2015; Alistarh et al., 2017; Lin et al., 2018; Li et al., 2023),
 444 hiding latency by overlapping communication with computation (Cohen et al., 2021; Sun et al., 2024;
 445 Kale et al., 2025), and lowering frequency of communication by performing multiple local updates
 446 between synchronizations (McMahan et al., 2017; Wang et al., 2019; Sun et al., 2022; Douillard et al.,
 447 2023; 2025). We show that the latter can be made substantially more memory- and compute-efficient
 448 by restricting backpropagation to partial parameter subsets. The three strategies are complementary,
 449 and compression or overlap techniques can be applied together with our method to further reduce
 450 communication costs. More recently, Beton et al. (2025) proposed sparse parameter synchronization,
 451 which reduces communication by synchronizing only a random fraction of parameters at each step.
 452 While this lowers divergence across nodes, all parameters are still updated on every device, meaning
 453 each node must store the full optimizer state and perform full backpropagation. In contrast, our
 454 method updates only a fixed subset of parameters per node, which directly reduces both memory and
 455 compute.
 456

457 Another line of work studies pipeline parallelism in slow-network settings (Huang et al., 2019), which
 458 requires inter-stage communication of activations in every step. To mitigate this communication
 459 overhead, recent methods propose compressing or quantizing activations (Wang et al., 2022; Ryabinin
 460 et al., 2023; Yuan et al., 2022; Ramasinghe et al., 2025). Unlike these approaches, which still
 461 depend on activation exchange, our method operates purely in the data-parallel regime and **targets an**
 462 **orthogonal axis of parallelization**, and could in principle be combined with pipeline parallelism and
 463 activation compression in large-scale settings.
 464

465 **Memory and Compute Efficiency** A large fraction of GPU memory during training is occupied by
 466 optimizer states, particularly for adaptive methods such as Adam (Loshchilov & Hutter, 2017), which
 467 maintain first- and second-order moments for every parameter. The main savings of our approach
 468 come from the fact that each node only updates a subset of parameters. As a result, momentum states
 469 for the remaining parameters do not need to be stored locally, yielding substantial memory savings.
 470 This is especially important in low-communication settings, where sharding optimizer states across
 471 devices is impractical due to the communication overhead it introduces. Several methods aim to
 472 reduce optimizer state memory directly. One strategy is to quantize optimizer states to lower precision,
 473 for example 8-bit quantization (Dettmers et al., 2021; Li et al., 2023). Another is to apply low-rank
 474 projections to compress gradients and optimizer states (Zhao et al., 2024). Parameter grouping has
 475 also been explored: Zhang et al. (2024) maintain a single momentum vector per block of parameters,
 476 while Han et al. (2025) combine grouping with quantization. Such efficient optimizers are orthogonal
 477 to our method and could be combined with it for further savings.
 478

479 Another line of work distributes compute and memory through tensor parallelism, where large matrix
 480 multiplications are partitioned across GPUs and results are gathered after each operation (Shoeybi
 481 et al., 2019). Our method is conceptually related, but applies slicing only in the backward pass: each
 482 device updates a portion of the parameter matrix while still executing the full forward computation.
 483 In contrast to tensor parallelism, our approach avoids frequent all-to-all communication and therefore
 484 does not depend on high-bandwidth interconnects.
 485

486 **5 CONCLUSION**

487

488 We proposed an efficient method for low-communication distributed training. The core design of our
 489 approach is partial backpropagation: only a subset of parameters is updated on each node, reducing
 490 per-device memory and compute while maintaining convergence. We have shown that, despite some
 491 parameters receiving fewer gradient updates, our method matches the performance of prior low-
 492 communication approaches under identical bandwidth and token budgets. Future directions include
 493 exploring alternative parameter-partitioning strategies and investigating different backpropagation
 494 sparsity patterns (Appendix D).

495

496 **REFERENCES**

497

498 Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-
 499 efficient sgd via gradient quantization and encoding. *Advances in neural information processing*
 500 *systems*, 2017.

501 Matt Beton, Seth Howes, Alex Cheema, and Mohamed Baioumy. Improving the efficiency of
 502 distributed training using sparse parameter averaging. In *ICLR 2025 Workshop on Modularity for*
 503 *Collaborative, Decentralized, and Continual Deep Learning*, 2025.

504 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 505 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 506 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

507 Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren, and Mariano Schain. Asynchronous stochastic
 508 optimization robust to arbitrary delays. *Advances in Neural Information Processing Systems*, 2021.

509 Tim Dettmers. 8-bit approximations for parallelism in deep learning. *arXiv preprint*
 510 *arXiv:1511.04561*, 2015.

511 Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
 512 quantization. *arXiv preprint arXiv:2110.02861*, 2021.

513 Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
 514 Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
 515 communication training of language models. *arXiv preprint arXiv:2311.08105*, 2023.

516 Arthur Douillard, Yanislav Donchev, Keith Rush, Satyen Kale, Zachary Charles, Zachary Garrett,
 517 Gabriel Teston, Dave Lacey, Ross McIlroy, Jiajun Shen, et al. Streaming diloco with overlapping
 518 communication: Towards a distributed free lunch. *arXiv preprint arXiv:2501.18512*, 2025.

519 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 520 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 521 models. *arXiv preprint arXiv:2407.21783*, 2024.

522 Yizhou Han, Chaohao Yang, Congliang Chen, Xingjian Wang, and Ruoyu Sun. Q-adam-mini:
 523 Memory-efficient 8-bit quantized optimizer for large language model training. In *ES-FoMo III: 3rd*
 524 *Workshop on Efficient Systems for Foundation Models*, 2025.

525 Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
 526 Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
 527 networks using pipeline parallelism. *Advances in neural information processing systems*, 32, 2019.

528 Satyen Kale, Arthur Douillard, and Yanislav Donchev. Eager updates for overlapped communication
 529 and computation in diloco. *arXiv preprint arXiv:2502.12996*, 2025.

530 Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
 531 tokenzier and detokenizer for neural text processing. In *Proceedings of the 2018 Conference on*
 532 *Empirical Methods in Natural Language Processing: System Demonstrations*, 2018.

533 Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states. *Advances in*
 534 *Neural Information Processing Systems*, 36, 2023.

540 Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression:
 541 Reducing the communication bandwidth for distributed training. *International Conference on*
 542 *Learning Representations*, 2018.

543 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 544 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 545 *arXiv:2412.19437*, 2024.

546 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference on Learning Representations*, 2017.

547 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 548 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*. PMLR, 2017.

549 Yurii Nesterov. *Introductory lectures on convex optimization: A basic course*. Springer Science &
 550 Business Media, 2013.

551 Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-reduce algorithms for clusters of workstations.
 552 *J. Parallel Distrib. Comput.*, 2009.

553 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
 554 toward training trillion parameter models. In *SC20: International Conference for High Performance*
 555 *Computing, Networking, Storage and Analysis*. IEEE, 2020.

556 Sameera Ramasinghe, Thalaiyasingam Ajanthan, Gil Avraham, Yan Zuo, and Alexander Long.
 557 Protocol models: Scaling decentralized training with communication-efficient model parallelism.
 558 *arXiv preprint arXiv:2506.01260*, 2025.

559 Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
 560 Zhang, Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model training. In
 561 *2021 USENIX Annual Technical Conference (USENIX ATC 21)*, 2021.

562 Max Ryabinin, Tim Dettmers, Michael Diskin, and Alexander Borzunov. Swarm parallelism: Training
 563 large models can be surprisingly communication-efficient. In *International Conference on Machine*
 564 *Learning*. PMLR, 2023.

565 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
 566 Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. *arXiv*
 567 *preprint arXiv:1701.06538*, 2017.

568 Shaohuai Shi, Xiaowen Chu, Ka Chun Cheung, and Simon See. Understanding top-k sparsification
 569 in distributed deep learning. *arXiv preprint arXiv:1911.08772*, 2019.

570 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
 571 zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
 572 *arXiv preprint arXiv:1909.08053*, 2019.

573 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
 574 transformer with rotary position embedding. *Neurocomputing*, 2024.

575 Tao Sun, Dongsheng Li, and Bao Wang. Decentralized federated averaging. *IEEE Transactions on*
 576 *Pattern Analysis and Machine Intelligence*, 2022.

577 Weigao Sun, Zhen Qin, Weixuan Sun, Shidi Li, Dong Li, Xuyang Shen, Yu Qiao, and Yiran Zhong.
 578 Co2: Efficient distributed training with full communication-computation overlap. *arXiv preprint*
 579 *arXiv:2401.16265*, 2024.

580 Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Conglong Li, Xiangru
 581 Lian, Ji Liu, Ce Zhang, and Yuxiong He. 1-bit adam: Communication efficient large-scale training
 582 with adam's convergence speed. In *International Conference on Machine Learning*, 2021.

583 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 584 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 585 report. *arXiv preprint arXiv:2503.19786*, 2025.

594 Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective communication
 595 operations in mpich. *The International Journal of High Performance Computing Applications*,
 596 2005.

597

598 A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.

599 Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. Slowmo: Improving
 600 communication-efficient distributed sgd with slow momentum. *arXiv preprint arXiv:1910.00643*,
 601 2019.

602

603 Jue Wang, Binhang Yuan, Luka Rimanic, Yongjun He, Tri Dao, Beidi Chen, Christopher Re, and
 604 Ce Zhang. Fine-tuning language models over slow networks using activation compression with
 605 guarantees. *arXiv preprint arXiv:2206.01299*, 2022.

606 Maurice Weber, Dan Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov, Xi-
 607 aozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, et al. Redpajama: an open dataset for
 608 training large language models. *Advances in neural information processing systems*, 2024.

609

610 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 611 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 612 2025.

613 Binhang Yuan, Yongjun He, Jared Davis, Tianyi Zhang, Tri Dao, Beidi Chen, Percy S Liang,
 614 Christopher Re, and Ce Zhang. Decentralized training of foundation models in heterogeneous
 615 environments. *Advances in Neural Information Processing Systems*, 2022.

616 Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik P Kingma, Yinyu Ye,
 617 Zhi-Quan Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. *arXiv preprint
 618 arXiv:2406.16793*, 2024.

619

620 Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
 621 Tian. Galore: Memory-efficient llm training by gradient low-rank projection. *arXiv preprint
 622 arXiv:2403.03507*, 2024.

623 Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
 624 Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully sharded data
 625 parallel. *arXiv preprint arXiv:2304.11277*, 2023.

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

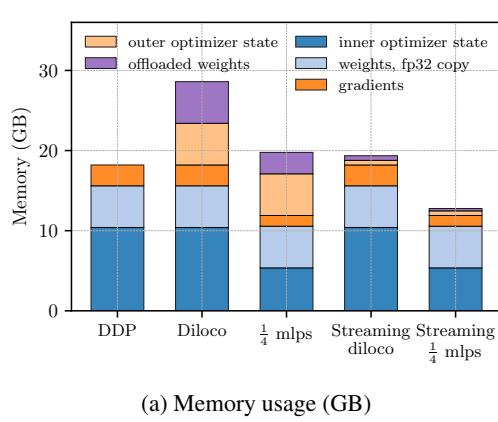
644

645

646

647

648	CONTENTS	
649		
650		
651	1	Introduction
652		
653	2	Method
654	2.1	Background
655		3
656	2.2	Partial Parameter Updates
657		4
658	2.2.1	Parameter Slicing
659		5
660	3	Experiments
661	3.1	Experimental Setup
662		6
663	3.2	Results
664		7
665	4	Related Work
666		
667	5	Conclusion
668		
669	A	Ablations
670	A.1	Streaming Synchronization
671		13
672	A.2	Parameter Slicing
673		14
674	B	Communication Overhead
675		
676	C	Computational Overhead
677	C.1	Partial Backward
678		15
679	C.2	FLOPs calculation
680		17
681	C.2.1	Forward
682		17
683	C.2.2	Backward
684		18
685	D	Additional Results
686		
687	A	ABLATIONS
688	A.1	STREAMING SYNCHRONIZATION
689		
690	One way to reduce peak memory usage in low-communication distributed training is to lower the	
691	memory consumed by the outer optimizer state and offloaded parameters. When parameters are	
692	synchronized in groups with multiple local steps in between, it is unnecessary to keep the full	
693	optimizer state in memory at every step. Instead, only the states and parameters of the currently active	
694	group need to be loaded. Douillard et al. (2025) explored this idea by grouping parameters at the	
695	granularity of transformer layers.	
696	We experimented with alternative grouping strategies. In particular, rather than grouping by layers,	
697	we grouped by parameter slices. Under the slicing strategy described in § 2.2.1, at step t we all-reduce	
698	gradients and update all MLP slices \mathbf{W}_0^l and \mathbf{V}_0^l for $l \in \{0, \dots, L\}$. At step $t + \tau$, we update \mathbf{W}_1^l	
699	and \mathbf{V}_1^l ; at step $t + 2\tau$, \mathbf{W}_2^l and \mathbf{V}_2^l ; and so on, until all slices are synchronized. We found that	
700	this strategy degraded performance (Table 5b): while grouping by layers had little to no impact on	
701	final accuracy, grouping by slices did. A likely explanation is that only part of each weight matrix is	
	updated by the outer optimizer, and these updates are much larger than the small local changes made	



(a) Memory usage (GB)

Method	Test perplexity
DiLoCo	12.78
Streaming DiLoCo	12.75
Ours ($\frac{1}{4}$ MLPs)	12.73
Ours (by slices, $\frac{1}{4}$ MLPs)	13.47
Ours (by layers, $\frac{1}{4}$ MLPs)	12.72

(b) Test perplexity

Figure 5: **Streaming synchronization.** Comparison of memory usage and test perplexity with and without streaming synchronization for DiLoCo and our method on a 1.3B-parameter language model trained across 32 nodes. “By layers” means the 24 transformer layers are grouped sequentially into 8 groups of 3, plus a ninth group for embeddings and outer normalization. “By slices” means synchronization is performed by grouping MLP slices in each layer—4 groups, plus a 5th for embeddings and a 6th for attention and normalization layers. **(a)** Estimated memory usage per GPU (§ 3.1). **(b)** Final test perplexity after training on 26B tokens.

by the inner optimizer and probably such sudden change in only a part of matrix make the overall optimization problem more difficult.

In all our experiments, we adopt the streaming synchronization strategy of [Douillard et al. \(2025\)](#). Our method is orthogonal to this idea: our main contribution is reducing the memory footprint of the inner optimizer state and gradients. Streaming synchronization can be combined with our approach to further reduce memory usage (Figure 5a). Consistent with prior observations ([Douillard et al., 2025](#)), synchronization in groups does not affect final performance, either for our method or for DiLoCo (Table 5b).

A.2 PARAMETER SLICING

In our main experiments, we considered two strategies for assigning trainable parameters to each node (§ 2.2.1): freezing parts of the MLPs, and freezing MLPs together with a part of attention heads. We also experimented with alternative slicing strategies. For instance, we attempted to slice the outer attention projection \mathbf{W}_o , but as shown in Figure 4, this led to some performance degradation.

Another variant we explored was training only a subset of layers on each node. Instead of slicing parameters vertically (by splitting weight matrices into slices), we partitioned the model horizontally, such that each node updates MLP layers parameters within a smaller set of layers. However, this proved to be a significantly harder optimization problem. We were unable to find a hyperparameter configuration that avoided gradient explosion, and training quickly diverged. An example training curve is shown in Figure 4. It is possible that with more extensive hyperparameter exploration or alternative stabilization techniques, this variant could be made to work, but we leave this for future investigation.

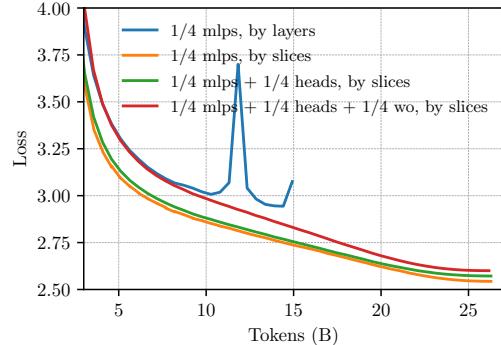


Figure 4: Test loss as a function of training tokens for different variants of trainable parameter assignment. “By layers” corresponds to training only a subset of layers on each node – slicing model horizontally, whereas “by slices” refers to slicing parameters vertically as described in § 2.2.1.

Figure 4: Test loss as a function of training tokens for different variants of trainable parameter assignment. “By layers” corresponds to training only a subset of layers on each node – slicing model horizontally, whereas “by slices” refers to slicing parameters vertically as described in § 2.2.1.

756 **B COMMUNICATION OVERHEAD**
 757

758 We consider training a 1.3B-parameter model in `bf16`, corresponding to $M = 2.6$ GB of gradients,
 759 on $K = 32$ nodes. Assume the nodes are connected via a high-speed Wi-Fi 7/8 network with a peak
 760 bandwidth of $B = 2.875$ GB/s. The per-step communication time can be approximated by
 761

$$762 T_{\text{comm}} \approx \frac{2(K-1)}{K} \frac{M}{B}$$

$$763$$

764 Then for DDP:
 765

$$766 T_{\text{comm}} \approx \frac{2(K-1)}{K} \frac{M}{B} \approx 1.75 \text{ s.}$$

$$767$$

768 This is nearly $4\times$ longer than the measured per-step compute time on a single H100 GPU (≈ 0.44 s),
 769 indicating that communication dominates overall step time even under optimistic peak-bandwidth
 770 assumptions.
 771

772 In contrast, our method and Streaming DiLoCo synchronize only once every $S = 100$ steps, reducing
 773 the amortized communication cost to
 774

$$775 T_{\text{low-comm}} = \frac{T_{\text{comm}}}{S} \approx \frac{1.75}{100} = 0.0175 \text{ s.}$$

$$776$$

777 As shown in Figure 3, this substantial reduction in communication time allows our method and
 778 Streaming DiLoCo to achieve roughly $2\times$ faster simulated wall-clock convergence than DDP at
 779 Wi-Fi 7 bandwidth, despite requiring more training tokens to reach comparable test loss (44B vs.
 26B).

780 Our method requires the same bandwidth budget as Streaming DiLoCo. Although the outer gradients
 781 are sparse, ring all-reduce communicates full-sized tensors in multiple hops across devices, so the
 782 total amount of data exchanged, and thus the communication cost, remains unchanged.
 783

784 **C COMPUTATIONAL OVERHEAD**
 785

786 **C.1 PARTIAL BACKWARD**
 787

788 **MLP with frozen slices** Consider a single MLP block with up-/down-projection matrices $\mathbf{W} \in \mathbb{R}^{4d \times d}$ and $\mathbf{V} \in \mathbb{R}^{d \times 4d}$, with an elementwise ReLU in between. Let the input activations for a
 789 batch/sequence be $\mathbf{X} \in \mathbb{R}^{d \times m}$ (feature dimension d , m tokens).
 790

791 We slice the hidden dimension into N parts as described in § 2.2.1:
 792

$$793 \mathbf{W} = \begin{bmatrix} \mathbf{W}_1 \\ \vdots \\ \mathbf{W}_N \end{bmatrix}, \quad \mathbf{W}_n \in \mathbb{R}^{\frac{4d}{N} \times d}, \quad \mathbf{V} = [\mathbf{V}_1 \quad \cdots \quad \mathbf{V}_N], \quad \mathbf{V}_n \in \mathbb{R}^{d \times \frac{4d}{N}}.$$

$$794$$

$$795$$

$$796$$

797 Define the per-slice pre-activations and activations:
 798

$$799 \mathbf{H}_n = \mathbf{W}_n \mathbf{X} \in \mathbb{R}^{\frac{4d}{N} \times m}, \quad \mathbf{A}_n = \text{ReLU}(\mathbf{H}_n) \in \mathbb{R}^{\frac{4d}{N} \times m}.$$

$$800$$

801 Stacking along the hidden dimension gives $\mathbf{H} = \begin{bmatrix} \mathbf{H}_1 \\ \vdots \\ \mathbf{H}_N \end{bmatrix} \in \mathbb{R}^{4d \times m}$ and $\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_N \end{bmatrix} \in \mathbb{R}^{4d \times m}$.
 802
 803

804 The MLP forward then decomposes additively over slices:
 805

$$806 \mathbf{Y} = \mathbf{V} \mathbf{A} = \sum_{n=1}^N \mathbf{V}_n \mathbf{A}_n \in \mathbb{R}^{d \times m}.$$

$$807$$

$$808$$

809 Given the upstream gradient $\mathbf{G} = \frac{\partial \mathcal{L}}{\partial \mathbf{Y}} \in \mathbb{R}^{d \times m}$, the backward pass:

810 1. **Output projection** \mathbf{V}_n :

811
$$\frac{\partial \mathcal{L}}{\partial \mathbf{V}_n} = \mathbf{G} \mathbf{A}_n^\top, \quad \mathbf{A}_n = \text{ReLU}(\mathbf{W}_n \mathbf{X}).$$

812 2. **Activations** \mathbf{A}_n :

813
$$\frac{\partial \mathcal{L}}{\partial \mathbf{A}_n} = \mathbf{V}_n^\top \mathbf{G}.$$

814 3. **Through ReLU**:

815
$$\frac{\partial \mathcal{L}}{\partial \mathbf{H}_n} = \left(\frac{\partial \mathcal{L}}{\partial \mathbf{A}_n} \right) \odot \mathbb{I}(\mathbf{H}_n > 0), \quad \mathbf{H}_n = \mathbf{W}_n \mathbf{X}.$$

816 4. **Up-projection** \mathbf{W}_n :

817
$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}_n} = \left(\frac{\partial \mathcal{L}}{\partial \mathbf{H}_n} \right) \mathbf{X}^\top.$$

818 5. **Input** \mathbf{X} :

819
$$\frac{\partial \mathcal{L}}{\partial \mathbf{X}} = \sum_{n=1}^N \mathbf{W}_n^\top \left(\frac{\partial \mathcal{L}}{\partial \mathbf{H}_n} \right).$$

820 As a result, since we do not update all the slices except k , we do not compute gradients with respect
821 to the frozen weights. This yields FLOP savings, because we skip the multiplications needed to form

822
$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}_n}, \quad \frac{\partial \mathcal{L}}{\partial \mathbf{V}_n}, \quad \forall n \in \{1, \dots, k-1, k+1, \dots, N\}.$$

823 Note that we still need to compute the full Jacobian with respect to the input \mathbf{X} .

824
$$\frac{\partial \mathcal{L}}{\partial \mathbf{X}} = \sum_{n=1}^N \mathbf{W}_n^\top \left((\mathbf{V}_n^\top \mathbf{G}) \odot \mathbb{I}(\mathbf{H}_n > 0) \right),$$

825 where $\mathbf{H}_n = \mathbf{W}_n \mathbf{X}$ and $\mathbf{G} = \frac{\partial \mathcal{L}}{\partial \mathbf{Y}}$.

826 Even if the weights of slice n are frozen, its contribution $\mathbf{W}_n^\top \left((\mathbf{V}_n^\top \mathbf{G}) \odot \mathbb{I}(\mathbf{H}_n > 0) \right)$ is still required
827 to correctly propagate gradients to earlier layers (see Appendix D).

828 **MHA with Frozen Heads** Recall the forward pass of multi-head attention:

829
$$\mathbf{Q} = \mathbf{W}_Q^\top \mathbf{X}, \quad \mathbf{K} = \mathbf{W}_K^\top \mathbf{X}, \quad \mathbf{V} = \mathbf{W}_V^\top \mathbf{X},$$

830 with $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{hd_h \times m}$. We split them into h heads:

831
$$\mathbf{Q} = \begin{bmatrix} \mathbf{Q}^{(1)} \\ \vdots \\ \mathbf{Q}^{(h)} \end{bmatrix}, \quad \mathbf{Q}^{(j)} \in \mathbb{R}^{d_h \times m},$$

832 and similarly for $\mathbf{K}^{(j)}$ and $\mathbf{V}^{(j)}$. Each head computes

833
$$\mathbf{S}^{(j)} = \frac{1}{\sqrt{d_h}} \mathbf{Q}^{(j)\top} \mathbf{K}^{(j)}, \quad \mathbf{A}^{(j)} = \text{softmax}_{\text{row}}(\mathbf{S}^{(j)}), \quad \mathbf{U}^{(j)} = \mathbf{V}^{(j)} \mathbf{A}^{(j)\top}.$$

834 Concatenate $\mathbf{U} = [\mathbf{U}^{(1)}; \dots; \mathbf{U}^{(h)}] \in \mathbb{R}^{hd_h \times m}$, then project

835
$$\mathbf{Y} = \mathbf{W}_O^\top \mathbf{U} \in \mathbb{R}^{d \times m}.$$

836 Given upstream gradient $\mathbf{G} = \partial \mathcal{L} / \partial \mathbf{Y}$:

837 1. **Output projection**.

838
$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}_O} = \mathbf{U} \mathbf{G}^\top, \quad \frac{\partial \mathcal{L}}{\partial \mathbf{U}} = \mathbf{W}_O \mathbf{G}.$$

864 2. **Per head j :**

865
$$\frac{\partial \mathcal{L}}{\partial \mathbf{V}^{(j)}} = \mathbf{G}_U^{(j)} \mathbf{A}^{(j)}, \quad \frac{\partial \mathcal{L}}{\partial \mathbf{A}^{(j)}} = \mathbf{G}_U^{(j)\top} \mathbf{V}^{(j)}.$$
 866

867 3. **Through softmax:**

868
$$\frac{\partial \mathcal{L}}{\partial \mathbf{S}^{(j)}} = \text{softmax}(\mathbf{A}^{(j)}, \frac{\partial \mathcal{L}}{\partial \mathbf{A}^{(j)}}).$$
 869

870 4. **Back to $\mathbf{Q}^{(j)}$ and $\mathbf{K}^{(j)}$:**

871
$$\frac{\partial \mathcal{L}}{\partial \mathbf{Q}^{(j)}} = \frac{1}{\sqrt{d_h}} \mathbf{K}^{(j)} \left(\frac{\partial \mathcal{L}}{\partial \mathbf{S}^{(j)}} \right)^\top, \quad \frac{\partial \mathcal{L}}{\partial \mathbf{K}^{(j)}} = \frac{1}{\sqrt{d_h}} \mathbf{Q}^{(j)} \left(\frac{\partial \mathcal{L}}{\partial \mathbf{S}^{(j)}} \right).$$
 872

873 5. **Back to projection matrices.** Since $\mathbf{Q}^{(j)} = \mathbf{W}_Q^{(j)\top} \mathbf{X}$:

874
$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}_Q^{(j)}} = \mathbf{X} \left(\frac{\partial \mathcal{L}}{\partial \mathbf{Q}^{(j)}} \right)^\top, \quad \frac{\partial \mathcal{L}}{\partial \mathbf{W}_K^{(j)}} = \mathbf{X} \left(\frac{\partial \mathcal{L}}{\partial \mathbf{K}^{(j)}} \right)^\top, \quad \frac{\partial \mathcal{L}}{\partial \mathbf{W}_V^{(j)}} = \mathbf{X} \left(\frac{\partial \mathcal{L}}{\partial \mathbf{V}^{(j)}} \right)^\top.$$
 875

876 6. **Input gradient.**

877
$$\frac{\partial \mathcal{L}}{\partial \mathbf{X}} = \sum_{j=1}^h \left(\mathbf{W}_Q^{(j)} \frac{\partial \mathcal{L}}{\partial \mathbf{Q}^{(j)}} + \mathbf{W}_K^{(j)} \frac{\partial \mathcal{L}}{\partial \mathbf{K}^{(j)}} + \mathbf{W}_V^{(j)} \frac{\partial \mathcal{L}}{\partial \mathbf{V}^{(j)}} \right).$$
 878

879 Let $\mathcal{H}_{\text{train}} \subseteq \{1, \dots, h\}$ be the set of trainable heads on this node (see § 2.2.1). Then for all $j \notin \mathcal{H}_{\text{train}}$,

880
$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}_Q^{(j)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{W}_K^{(j)}} = \frac{\partial \mathcal{L}}{\partial \mathbf{W}_V^{(j)}} = 0.$$
 881

882 Gradients for $j \in \mathcal{H}_{\text{train}}$ are computed as above. Note that the input gradient $\partial \mathcal{L} / \partial \mathbf{X}$ still aggregates 883 contributions from all heads, so freezing heads saves FLOPs only on parameter gradients computation.

884 C.2 FLOPS CALCULATION

885 For a Transformer with batch size B , sequence length S , hidden dimension H , number of layers L , 886 feedforward dimension D_{ff} , vocabulary size V .

887 C.2.1 FORWARD

888 The forward FLOPs can be decomposed as:

889 • **Embedding Layer:** Although embeddings are typically implemented as lookups with 890 negligible computational cost, for completeness, we estimate the FLOPs as:

891
$$\text{FLOPs}_{\text{emb}} = B \times S \times H$$
 892

893 • **Multi-Head Attention (MHA):**894 1. Linear Projections (Queries, Keys, Values):

895
$$\text{FLOPs}_{\text{proj}} = 3 \times 2 \times B \times S \times H \times H = 6 \times B \times S \times H^2$$
 896

897 2. Scaled Dot-Product Attention:

898
$$\text{FLOPs}_{\text{attn}} = \text{FLOPs}_{\text{QK}} + \text{FLOPs}_{\text{V}} = 2 \times B \times S^2 \times H + 2 \times B \times S^2 \times H = 4 \times B \times S^2 \times H$$
 899

900 3. Output Projection:

901
$$\text{FLOPs}_{\text{out_proj}} = 2 \times B \times S \times H \times H$$
 902

903 Total Multi-Head Attention (MHA):

904
$$\begin{aligned} \text{FLOPs}_{\text{MHA}} &= \text{FLOPs}_{\text{proj}} + \text{FLOPs}_{\text{attn}} + \text{FLOPs}_{\text{out_proj}} \\ &= 6 \times B \times S \times H^2 + 4 \times B \times S^2 \times H + 2 \times B \times S \times H^2 \\ &= 8 \times B \times S \times H^2 + 4 \times B \times S^2 \times H \end{aligned}$$
 905

918 • **Feedforward Network (FFN):**

919
920
$$\text{FLOPs}_{\text{FFN}} = 2 \times 2 \times B \times S \times H \times D_{\text{ff}} = 4 \times B \times S \times H \times D_{\text{ff}}$$

921 • **Output projection:**

922
923
$$\text{FLOPs}_{\text{out}} = \text{FLOPs}_{\text{out}_{\text{proj}}} + \text{FLOPs}_{\text{softmax}} = 2 \times B \times S \times H \times V + 3 \times B \times S \times V$$

924
925 **Total Forward FLOPs per Layer:**

926
927
$$\text{FLOPs}_{\text{layer}} = (\text{FLOPs}_{\text{MHA}} + \text{FLOPs}_{\text{FFN}}) \times L$$

928 **Total Forward FLOPs per Step:**

929
930
$$\text{FLOPs}_{\text{forward}} = \text{FLOPs}_{\text{emb}} + \text{FLOPs}_{\text{layer}} + \text{FLOPs}_{\text{out}}$$

931
932 **C.2.2 BACKWARD**933
934 As discussed in Appendix C.1, for the backward computation all slices contribute to the gradients
935 with respect to the input.936 **MHA backward** Let $\rho_{\text{attn}} = \frac{1}{N}$ be the trained fraction of heads. Using the forward costs:

937
938
$$\text{FLOPs}_{\text{proj}} = 6 \times B \times S \times H^2, \quad \text{FLOPs}_{\text{attn}} = 4 \times B \times S^2 \times H, \quad \text{FLOPs}_{\text{out_proj}} = 2 \times B \times S \times H^2,$$

939
940 the backward splits as follows:

941
942 (i) Output projection \mathbf{W}_O : input Jacobian: $2 \times B \times S \times H^2$,
943 parameter gradient: $2 \times B \times S \times H^2$,
944
945 (ii) Attention matmuls ($\mathbf{Q}\mathbf{K}^\top$ and \mathbf{AV}): backward $\approx 2 \times \text{FLOPs}_{\text{attn}} = 8 \times B \times S^2 \times H$,
946
947 (iii) Q/K/V projections ($\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V$) : input Jacobian: $2 \times \text{FLOPs}_{\text{proj}}^{(\text{half})} = 6 \times B \times S \times H^2$,
948 parameter gradients: $2 \times \text{FLOPs}_{\text{proj}}^{(\text{half})} \times \rho_{\text{attn}}$.

949
950
$$\text{FLOPs}_{\text{MHA}}^{\text{bwd}} = \underbrace{8 \times B \times S^2 \times H}_{\text{attn matmuls}} + \underbrace{(10 + 6 \times \rho_{\text{attn}}) \times B \times S \times H^2}_{\substack{\text{Q/K/V input Jacobian (6)} \\ + \text{Q/K/V param grads (6}\rho_{\text{attn}}\text{)} \\ + \mathbf{W}_O \text{ input Jacobian (2)} \\ + \mathbf{W}_O \text{ param grad (2)}}}.$$

951
952
953
954

955 When $\rho_{\text{attn}} = 1$ (no freezing), this reduces to the usual “backward $\approx 2 \times$ forward” for MHA:

956
957
$$\text{FLOPs}_{\text{MHA}}^{\text{bwd}} (\rho_{\text{attn}}=1) = 8 \times B \times S^2 \times H + 16 \times B \times S \times H^2 = 2 \times (4 \times B \times S^2 \times H + 8 \times B \times S \times H^2).$$

958

959 **FFN backward** Similarly as for MHA for FFN let $\rho_{\text{mlp}} = \frac{1}{N}$. Then:

960
961
$$\text{FLOPs}_{\text{FFN}}^{\text{bwd}} = \underbrace{4 \times B \times S \times H \times D_{\text{ff}}}_{\text{full input Jacobian}} + \underbrace{4 \times \rho_{\text{mlp}} \times B \times S \times H \times D_{\text{ff}}}_{\text{parameter gradients}}$$

962
963

964 This results in total backward per step:

965
966
$$\text{FLOPs}_{\text{step}}^{\text{bwd}} = 2 \times \text{FLOPs}_{\text{emb}} + L \times (\text{FLOPs}_{\text{MHA}}^{\text{bwd}} + \text{FLOPs}_{\text{FFN}}^{\text{bwd}}) + 2 \times \text{FLOPs}_{\text{out}}.$$

967

968
969
970
971

972 **D ADDITIONAL RESULTS**
 973

974 As discussed in Appendix C.1, the only gradients we omit are those with respect to frozen
 975 parameters. While this reduces FLOPs during
 976 the backward pass, it does not decrease activation
 977 memory. A natural question is whether one could
 978 go further — not only skipping parameter gradients
 979 but also fully detaching their contributions
 980 from the gradient flow. We therefore investigated
 981 how such a complete detachment of frozen MLP
 982 slices affects convergence.
 983

984 **Backward detach-all-but- k** In this setting, the
 985 forward pass still uses all parameters, but during
 986 backpropagation we compute only the Jacobian
 987 components corresponding to the active slice.
 988

989 Backward with zeroed slices (only slice k active):
 990

$$\tilde{\mathbf{A}}_n = \begin{cases} \mathbf{A}_k, & n = k, \\ \mathbf{0}, & n \neq k, \end{cases}$$

$$\tilde{\mathbf{M}}_n = \begin{cases} \mathbb{I}(\mathbf{H}_k > 0), & n = k, \\ \mathbf{0}, & n \neq k, \end{cases}$$

996 where $\mathbf{M}_n = \mathbb{I}(\mathbf{H}_n > 0)$ is the elementwise
 997 activation mask (e.g., ReLU).

998 Given upstream $\mathbf{G} = \frac{\partial \mathcal{L}}{\partial \mathbf{Y}} \in \mathbb{R}^{d \times m}$:

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial \mathbf{V}_n} &= \mathbf{G} \tilde{\mathbf{A}}_n^\top = \begin{cases} \mathbf{G} \mathbf{A}_k^\top, & n = k, \\ \mathbf{0}, & n \neq k, \end{cases} \\ \frac{\partial \mathcal{L}}{\partial \mathbf{A}_n} &= \mathbf{V}_n^\top \mathbf{G}, \quad \frac{\partial \mathcal{L}}{\partial \mathbf{H}_n} = \left(\frac{\partial \mathcal{L}}{\partial \mathbf{A}_n} \right) \odot \tilde{\mathbf{M}}_n = \begin{cases} (\mathbf{V}_k^\top \mathbf{G}) \odot \mathbb{I}(\mathbf{H}_k > 0), & n = k, \\ \mathbf{0}, & n \neq k, \end{cases} \end{aligned}$$

1005 The full-Jacobian input gradient is
 1006

$$\frac{\partial \mathcal{L}}{\partial \mathbf{X}} = \sum_{n=1}^N \mathbf{W}_n^\top \left(\frac{\partial \mathcal{L}}{\partial \mathbf{H}_n} \right) = \sum_{n=1}^N \mathbf{W}_n^\top \left((\mathbf{V}_n^\top \mathbf{G}) \odot \mathbf{M}_n \right). \quad (6)$$

1010 Under the detach-all-but- k rule, this can be written as single-slice contribution:
 1011

$$\boxed{\frac{\partial \mathcal{L}}{\partial \mathbf{X}} = \mathbf{W}_k^\top \left((\mathbf{V}_k^\top \mathbf{G}) \odot \mathbb{I}(\mathbf{H}_k > 0) \right)}$$

1014 since $\frac{\partial \mathcal{L}}{\partial \mathbf{H}_n} = \mathbf{0}$ for all $n \neq k$.
 1015

1016 As expected, since the full backward pass is disrupted, naively detaching all but one slice resulted in
 1017 gradient explosion in the middle of training (Figure 6).
 1018

1019 **Backward detach-all-but- k + random** To study this further, we considered a variant where, instead
 1020 of keeping only the k -th slice, we retain the k -th slice *plus* one additional slice chosen at random.
 1021 Concretely, during the forward pass we randomly sample an index $g \sim \text{Unif}(\{1, \dots, N\} \setminus \{k\})$ and
 1022 keep the corresponding contributions in the backward Jacobian.
 1023

Given the full Jacobian in Eq. 6,

$$\frac{\partial \mathcal{L}}{\partial \mathbf{X}} = \sum_{n=1}^N \mathbf{W}_n^\top \left((\mathbf{V}_n^\top \mathbf{G}) \odot \mathbb{I}(\mathbf{H}_n > 0) \right),$$

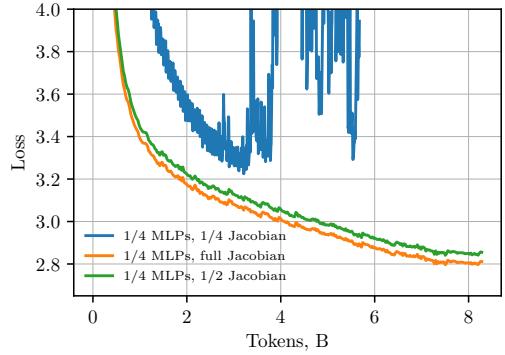


Figure 6: Training loss as a function of training tokens for a 335M-parameter model trained with the 1/4 MLP slicing strategy described in § 2.2.1. *Full Jacobian* denotes our standard approach where all slices contribute to the Jacobian. 1/4 *Jacobian* corresponds to the detach-all-but- k variant, where only the k -th slice contributes. 1/2 *Jacobian* refers to the k +random variant, where the k -th slice and one additional randomly selected slice are retained.

1026 the detach-all-but- k +random variant reduces this to
 1027

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial \mathbf{X}} &= \mathbf{W}_k^\top \left((\mathbf{V}_k^\top \mathbf{G}) \odot \mathbb{I}(\mathbf{H}_k > 0) \right) \\ &\quad + \mathbf{W}_g^\top \left((\mathbf{V}_g^\top \mathbf{G}) \odot \mathbb{I}(\mathbf{H}_g > 0) \right), \end{aligned}$$

1032 where g is resampled independently at each step.
 1033

1034 Despite this modification, performance still degraded (perplexity 17.38 vs. 16.44). Further investiga-
 1035 tion of how much of the Jacobian can be dropped could be an interesting direction for future work.
 1036 Adjusting hyperparameters, or scaling the activations might improve the performance. Also better
 1037 strategies than picking uniformly at random can be explored.

1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079