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ABSTRACT

We introduce a memory- and compute-efficient method for low-communication
distributed training. Existing methods reduce communication by performing mul-
tiple local updates between infrequent global synchronizations. We demonstrate
that their efficiency can be significantly improved by restricting backpropagation:
instead of updating all the parameters, each node updates only a fixed subset while
keeping the remainder frozen during local steps. This constraint substantially
reduces peak memory usage and training FLOPs, while a full forward pass over all
parameters eliminates the need for cross-node activation exchange. Experiments
on a 1.3B-parameter language model trained across 32 nodes show that our method
matches the perplexity of prior low-communication approaches under identical
token and bandwidth budgets while reducing training FLOPs by 15% and peak
memory by up to 47%.

1 INTRODUCTION

Recent research has consistently shown that scaling language models (LLMs) improves their general-
ization and downstream capabilities (Yang et al., 2025; Team et al., 2025; Liu et al., 2024; Grattafiori
et al., 2024).

At scale, training is typically achieved by distributing data across many compute nodes and syn-
chronizing gradients at every optimization step. This synchronization relies on high-bandwidth
interconnects, limiting large-scale training to high-end clusters with large number of well-connected
nodes, a resource still accessible to only a small fraction of the machine learning community.

To reduce this dependence on high-bandwidth interconnects, prior work has explored three main
directions. The first reduces the amount of data exchanged between nodes, for example through
gradient sparsification, compression, or quantization (Alistarh et al., 2017; Lin et al., 2018; Tang
et al., 2021; Shi et al., 2019). The second aims to hide communication latency by overlapping it with
computation (Cohen et al., 2021; Sun et al., 2024; Kale et al., 2025), often by using delayed gradients
combined with correction terms to preserve convergence. The third line of research, which our paper
builds upon, lowers communication overhead by reducing the frequency of gradient synchronization.
This approach, first introduced in the federated learning setting (McMahan et al., 2017), allows each
model replica to perform multiple local updates before a global parameter average. Subsequent works
have proposed more sophisticated methods for global synchronization, such as treating aggregated
local differences as a pseudo-gradient for outer optimizer (Wang et al., 2019; Sun et al., 2022).

More recently, DiLoCo (Douillard et al., 2023) applies this dual-optimization scheme to LLM training,
reducing bandwidth requirements by orders of magnitude compared to standard every-step gradient
reduction. Streaming DiLoCo (Douillard et al., 2025) extends this idea by synchronizing only a
subset of parameters at a time, thereby lowering both peak bandwidth and memory usage.

In low-bandwidth environments, memory-sharding approaches such as FSDP (Zhao et al., 2023)
are impractical, since they require frequent communication across nodes that becomes prohibitively
slow without fast interconnects. As a result, each device must store weights, gradients, and optimizer
states locally, making memory the primary bottleneck (§ 3.1). These communication constraints also
prevent the use of tensor parallelism (Shoeybi et al., 2019), which relies on synchronization at every
step to reduce per-device computation.
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Figure 1: Partial Parameter Updates. Illustration of our low-communication distributed training
procedure in a two-node setup connected by a low-bandwidth interconnect. Each node k starts with
an identical replica of the parameter matrix Wk. During local training, each GPU updates only a
disjoint slice of Wk while keeping the remaining parameters frozen. After H local steps, parameter
updates are synchronized via an all-reduce, and an outer optimizer step is applied to the previously
frozen slices. This process repeats until convergence.

To address these limitations, we propose a simple yet effective alternative that improves both memory
efficiency and training FLOPs without introducing frequent synchronization. Our approach can be
viewed as distributed block coordinate optimization: each node backpropagates through and updates
only a fixed slice of the parameters, treating the remainder as constant. After several local steps,
parameter differences are averaged across nodes followed by an outer optimizer step (Figure 1). By
restricting both backpropagation and optimizer updates to the active slice, our method reduces peak
memory usage and total training FLOPs, while maintaining the low communication requirements and
final performance of prior works.

Our main contributions are as follows:

• We introduce an efficient algorithm for low-communication distributed data-parallel training
that performs local updates on a node-specific subset of parameters, thereby reducing both
memory usage and computational cost (Algorithm 1).

• We empirically validate the effectiveness of our method by training a 1.3B-parameter
language model on 32 nodes, achieving perplexity comparable to prior low-communication
training approaches under the same token and bandwidth budgets, while using 15% fewer
FLOPs and up to 47% less memory (Figure 2).

• We demonstrate that in simulated low-bandwidth settings, our method converges substan-
tially faster than standard distributed data parallel training with every step synchronization
(Figure 3).

2 METHOD

In this section, we formalize our proposed method for low-communication training. We begin in
§ 2.1 with a brief overview of language modeling and distributed data parallelism in both high- and
low-bandwidth settings. In § 2.2, we then present the core idea of our method, followed by its training
procedure and implementation details.

2
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2.1 BACKGROUND

Language Modeling Let D be a dataset of token sequences x = (x1, . . . , xS) with xs ∈ V ,
where V is the vocabulary and S is the sequence length. Language modeling aims to learn the data
distribution p(x), which can be factorized autoregressively as: p(x) =

∏S−1
s=1 p(xs+1 | x1:s; θ) where

θ denotes the model parameters. The parameters are typically estimated by minimizing the expected
negative log-likelihood over the dataset:

θ⋆ = argmin
θ

Ex∼D L(x; θ), (1)

L(x; θ) = −
S−1∑
s=1

log p(xs+1 | x1:s; θ). (2)

In practice, this objective is minimized using a variant of stochastic gradient descent, where at each
step the gradient∇θL(X; θ) is computed on a mini-batch of sequences X.

Distributed Data Parallelism (DDP) To scale the optimization in Eq. 1, a common approach is to
partition dataset D across K compute nodes, with each node k holding a shard Dk. At each training
step t, every node k computes a gradient on its local mini-batch X

(t)
k ∼ Dk:

g
(t)
k = ∇θL(X(t)

k ; θ(t)).

These local gradients are aggregated via an All-Reduce collective operation (Patarasuk & Yuan,
2009) to form g(t) = 1

K

∑K
k=1 g

(t)
k , which is then used to update the model parameters on all

nodes. The model parameters, optimizer states, and gradients may be fully replicated on each node or
partitioned to reduce memory usage (Zhao et al., 2023; Rajbhandari et al., 2020).

Low-communication Distributed Data Parallelism Standard DDP communicates gradients at
every step, making it impractical on hardware lacking high-bandwidth, low-latency interconnects.
Low-communication methods relax this requirement by reducing the synchronization frequency.

A training round (global step) t begins with all K nodes holding identical global parameters θ(t).
Each node k then performs H local updates independently using an inner optimizer. At each local
step h = 0, . . . ,H − 1, node k computes a gradient g(t,h)k on its local mini-batch and applies the
inner update:

θ
(t,h+1)
k ← INNEROPT

(
θ
(t,h)
k , g

(t,h)
k

)
. (3)

After H local steps, each node computes its parameter delta relative to the starting point and
participates in an all-reduce to compute the average update:

∆(t) =
1

K

K∑
k=1

(
θ
(t,H)
k − θ(t)

)
. (4)

The global parameters are then updated via an outer optimizer:

θ(t+1) ← OUTEROPT
(
θ(t), ∆(t)

)
. (5)

In practice, the outer optimizer may simply apply ∆θ(t) directly (McMahan et al., 2017) or interpret
it as a pseudo-gradient for an optimizer such as SGD (Wang et al., 2019; Sun et al., 2022). For
large-scale language model training, DiLoCo (Douillard et al., 2023) reports that using AdamW as
the inner optimizer and Nesterov SGD (Nesterov, 2013) as the outer optimizer yields lower validation
loss than other combinations.

Memory Usage and Computational Costs Techniques designed to lower peak memory usage by
sharding the optimizer state, gradients, and parameters across devices are impractical on hardware
without high-speed interconnects, as they require all-gather and reduce-scatter at every optimization
step (Zhao et al., 2023; Ren et al., 2021). In addition to model weights and gradients, the state of
the outer optimizer (e.g., momentum) must also remain in device memory. While synchronizing
only a subset of parameters at a time and offloading the remainder to the host can reduce peak
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Algorithm 1
1: Inputs: outer rounds T , local steps H , number of nodes K
2: Notation: Itraink ⊆ {1, . . . , |θ|}; I frozenk = {1, . . . , |θ|} \ Itraink ;
3: count vector m ∈ {0, . . . ,K}|θ| with m[i] :=

∑K
k=1 1{i ∈ Itraink }

4: for t = 0 . . . T − 1 do
5: for k = 0 . . .K − 1 do # Execute in parallel on K nodes
6: θ

(t,0)
k ← θ(t)

7: for h = 0 . . . H − 1 do # Perform H local steps independently on each node
8: X

(t,h)
k ∼ Dk

9: g
(t,h)
k [i] =

{
∇θ[i] L

(
θ
(t,h)
k ; X

(t,h)
k

)
, if i ∈ Itraink

0, otherwise

10: θ
(t,h+1)
k [Itraink ]← INNEROPT

(
θ
(t,h)
k [Itraink ], g

(t,h)
k [Itraink ]

)
11: end for

12: ∆
(t)
k [i] =

{
θ
(t,H)
k [i]− θ(t)[i], i ∈ Itraink

0, otherwise
13: end for
14: ∆(t)[i] = 1

m[i]

∑K
k=1 ∆

(t)
k [i], i = 1, . . . , |θ| # Element-wise average by count vector m

15: θ(t+1) ← OUTEROPT(θ(t),∆(t))
16: end for

usage (Douillard et al., 2025), the overall footprint remains large. As a result, even a relatively modest
1.3B-parameter model with full activation checkpointing consumes roughly 18 GB of GPU memory
when trained without sharding using Adam optimizer (Loshchilov & Hutter, 2017) (Fig. 2a, § 3.1).

Our objective is to reduce memory footprint and per node FLOPs without degrading model quality
or increasing communication compared to existing low-communication methods. In practice, this
enables billion-parameter training on commodity GPUs with limited memory, connected over Wi-Fi
or Ethernet.

2.2 PARTIAL PARAMETER UPDATES

Our method can be viewed as a distributed variant of block coordinate descent: on each node k,
we partition the model parameters θ into a trainable parameters, indexed by a fixed set Itraink ⊆
{1, . . . , |θ|}, and a frozen parameters, indexed by its complement I frozenk . As discussed in § 2.2.1,
the trainable parameter sets assigned to different nodes overlap, i.e., Ii ∩ Ij ̸= ∅, for some i, j ∈
{0, . . . ,K − 1}.
During local training, node k only computes gradients for and applies updates to its designated
trainable slice. The training process for a local step h (within a global step t) on node k proceeds
as follows. The forward pass is standard, using the full local parameters θ(t,h)k . The backward pass,
however, is modified to compute gradients only for the trainable parameters (line 9):

g
(t,h)
k [i] =

{
∇θ[i] L(θ

(t,h)
k ; X

(t,h)
k ), if i ∈ Itraink

0, otherwise.

The inner optimizer then updates only the active parameters corresponding to these non-zero gradients
(line 10):

θ
(t,h+1)
k [Itraink ]← INNEROPT

(
θ
(t,h)
k [Itraink ], g

(t,h)
k

)
.

After H local steps, the nodes synchronize. First, each node k computes its local parameter delta,
which is also non-zero only on its trainable slice (line 12):

∆
(t)
k [i] =

{
θ
(t,H)
k [i]− θ(t)[i], if i ∈ Itraink

0, otherwise.

4
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Next, these sparse deltas are aggregated across all nodes using an All-Reduce operation to form:
∆(t) =

∑K
k=1 ∆

(t)
k . Finally, this summed delta is normalized element-wise by a count vector

m ∈ {1, . . . ,K}|θ|, where m[i] is the number of nodes responsible for updating parameter θ[i]
(line 14). The normalized update is then applied by the outer optimizer (line 15). The full training
procedure is detailed in Algorithm 1.

This design offers two benefits: (i) reduced per-node memory usage, as no gradient buffers or
optimizer state are allocated for parameters in I frozenk (Figure 2a), and (ii) lower training FLOPs,
since gradients for θ[i] with i ∈ I frozenk are never computed (Figure 2b, Appendix C). In § 3.2, we
demonstrate that despite fewer updates per parameter than full-model baselines, our method achieves
comparable perplexity.

2.2.1 PARAMETER SLICING

The assignment of trainable parameters Itraink to each node is controlled by a hyperparameter N ,
which specifies the number of distinct parameter slices. We assume that the total number of nodes K
is a multiple of N . Each node k is assigned a slice index n = k mod N . This assignment determines
how many nodes participate in updating each parameter block, which is captured by the count vector
m (line 12):

m[i] =

{
K
N , i ∈ Itrain

K, otherwise
.

We consider two strategies for partitioning the parameters into trainable and frozen subsets.

MLP-Only Slicing We slice only the MLP blocks, while all other parameters (attention, embed-
dings, normalization layers) are trained on all K nodes. The rationale is that MLPs contain the
majority of a Transformer’s parameters, and when sliced, each block can be treated as an independent
feed-forward pathway (similar in spirit to a Mixture-of-Experts layer (Shazeer et al., 2017)). This
makes the partitioning straightforward both conceptually and in implementation.

An MLP block is typically defined as: MLP(x) = V
(
ReLU(Wx)

)
, where W ∈ R4d×d and

V ∈ Rd×4d are the up- and down-projection matrices, respectively. We partition W row-wise into
N blocks {W1, . . . ,WN} and V column-wise into {V1, . . . ,VN}, where Wn ∈ R(4d/N)×d and
Vn ∈ Rd×(4d/N). The MLP computation can then be expressed as a sum over these slices:

MLP(x) =

N∑
n=1

Vn

(
ReLU(Wnx)

)
.

On a given node k with slice index n, the trainable parameters Itraink consist of all non-MLP
parameters plus the specific MLP slices {Wn,Vn} from every layer. The remaining N − 1 MLP
slices are kept frozen.

Slicing MLPs and Attention Heads We further extend the MLP-only slicing strategy by applying
partial updates to the multi-head attention (MHA) block. In a standard MHA block (Vaswani, 2017),
the input is projected by the query, key, and value matrices: WQ,WK ,WV ∈ Rd×(h·dh), where h
is the number of heads and dh the per-head dimension (so that d = h · dh). Then the concatenated
head outputs are projected by a final matrix WO ∈ R(h·dh)×d. We slice the input projections only
since extending it to the entire attention block (including the output projection) led to noticeable
performance degradation (Appendix C).

We divide the h total attention heads into N disjoint groups of size h/N . For node k, the assigned
slice index is n = k mod N , with head group:

Hn = {n · (h/N), . . . , (n+ 1) · (h/N)− 1}.
On this node, the trainable attention parameters are limited to the columns:

W
(n)
Q = WQ[:, Hn],W

(n)
K = WK [:, Hn],W

(n)
V = WV [:, Hn].

All other columns in these three projections are kept frozen.

5
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3 EXPERIMENTS

In this section, we present an empirical evaluation of our method. In § 3.1 we describe the experimen-
tal setup and explain how we measure memory usage and communication overhead. In § 3.2 we first
compare our method to Streaming DiLoCo (Douillard et al., 2025) in terms of memory consumption
and total training FLOPs, showing that our approach achieves comparable test perplexity while using
fewer FLOPs, less memory, and the same bandwidth. We then demonstrate that low-communication
methods (including ours), although requiring more training tokens to reach a target test loss, achieve
shorter wall-clock training time than standard Distributed Data Parallel (DDP) with full gradient
synchronization. Finally, we analyze how varying the size of the parameter subset updated on each
node affects both test perplexity and memory usage.

3.1 EXPERIMENTAL SETUP

We use the RedPajama-V2 dataset (Weber et al., 2024), which consists of data from different sources,
including Arxiv, Common Crawl, GitHub, and Wikipedia. In all experiments we use sequences of
1,024 tokens. n our experiments, we use Transformer models (Vaswani, 2017) with 1.3B and 2.6B
parameters, matching the GPT-3 architectures (Brown et al., 2020): the 1.3B model has 24 layers
with a hidden size of 2048, and the 2.6B model has 32 layers with a hidden size of 2560. We use
rotary positional encodings (Su et al., 2024) and a SentencePiece tokenizer (Kudo & Richardson,
2018) with a vocabulary size of 32,000.

All models are trained using the AdamW optimizer (Loshchilov & Hutter, 2017) with β1 = 0.9,
β2 = 0.99, and a weight decay of 0.1. The learning rate is linearly warmed up to 3× 10−4 over the
first 1,500 steps, followed by cosine decay.

For both our method and Streaming DiLoCo, we adopt the outer optimization setup of Douillard et al.
(2025): SGD with Nesterov momentum (m = 0.9) (Nesterov, 2013), learning rate 4 × 10−1, and
synchronization frequency H = 100. We also follow their streaming synchronization scheme: the 24
layers are divided into 8 groups of 3 layers each synchronized every H local steps (see Appendix A.1).

We train with a batch size of 512, distributed across 32 NVIDIA H100 GPUs (80GB each) for 1.3B
model and 64 H100 for 2.6B, resulting in a per-GPU batch size of 16. Each GPU is treated as an
independent compute node; we do not assume faster communication within an 8-GPU server.

Memory Usage We assume training in bfloat16 with full activation recomputation during
the backward pass. In mixed-precision training, a master copy of model parameters is typically
maintained in float32 for updates, with parameters cast to bfloat16 on the fly for forward
and backward computation. Gradients are stored in bfloat16, while optimizer states remain in
float32. For low-bandwidth training with an outer optimizer, additional memory must be reserved
for offloaded weights and momentum buffers. When synchronization is performed in a streaming
fashion (grouped communication, as in Douillard et al. (2025)), this additional overhead is relatively
small (see Figure 2a).

With activation recomputation, peak memory is dominated by: (i) optimizer states, (ii) weights, (iii)
gradients, (iv) outer-optimizer states (if used), and (v) offloaded parameters (if any), as illustrated in
Figure 2a.

Communication Overhead Let M denote the total gradient size (in bytes), K the number of
nodes, and B the peak per-link bandwidth. We assume that gradient synchronization is performed
using a bandwidth-optimal ring all-reduce, implemented as a reduce–scatter followed by an all–
gather (Thakur et al., 2005). Under bandwidth-optimality assumption, each node transmits a total
of 2K−1

K M bytes per synchronization, leading to the following estimate of communication time:
Tcomm ≈ 2(K−1)

K
M
B .

This estimate is a lower bound since it assumes that each link achieves its peak bandwidth with
perfect overlap of send and receive operations, and it neglects non communication overhead such as
kernel launch latency, stream synchronizations.

6
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Figure 2: Less memory, fewer FLOPs, same performance. Comparison of memory usage and
total training FLOPs between our approach and Streaming DiLoCo. In each Transformer layer we
either slice only the MLPs ( 1

N MLPs) or slice both MLPs and attention heads ( 1
N MLPs, 1

N heads).
In both cases, only 1/N of the parameters in the corresponding projections are trained on each node
(§ 2.2.1). (a) Estimated memory usage for DDP, Streaming DiLoCo, and our four variants (§ 3.1). (b)
Test perplexity as a function of total training FLOPs for our method and to Streaming DiLoCo (§ 3.2,
Appendix C)

3.2 RESULTS

Peak Memory Footprint Figure 2a demonstrates that our method requires significantly less
memory than Streaming DiLoCo and DDP. This reduction comes from the fact that we do not train a
large portion of parameters (detailed in Table 3.2), which means we neither maintain optimizer state
nor store gradients for these parameters. For instance, 1/4 mlps + 1/4 heads configuration of our
method uses 47% less memory compared to full model training, while achieving similar test loss.
This allows us to fit training with activation checkpointing of a 1.3B model using devices with less
than 16GB of RAM.

Compute Efficiency We compare our method to Streaming DiLoCo in terms of training FLOPs.
Figure 2b shows test loss as a function of total training FLOPs. For this comparison, we trained the
1/4-MLP, 1/2-MLP, and Streaming DiLoCo configurations with the Chinchilla-optimal token budget
(26B). To match the performance of the 1/2-MLP configuration, we slightly increased the token
budget for Streaming DiLoCo to 28B. We also trained the 1/N -MLP+1/N -heads configurations
on 28B tokens to match the performance of their corresponding 1/N -MLP runs. Across these
performance-matched comparisons, our method consistently required 15% fewer total FLOPs.

Convergence Speed Under Bandwidth Constraints We compare our method with Streaming
DiLoCo and standard DDP by simulating total training time under bandwidth-constrained conditions
(Figure 3). While low-communication methods require more training tokens to achieve the same
performance as Distributed Data Parallel (DDP), they are significantly faster in terms of wall-clock
time on slow networks.

Our simulation model deliberately favors DDP by assuming perfect overlap between computation
and communication, giving a per-step runtime of T = max

(
Tcomm, Tcomp

)
. In contrast, for low-

communication methods we assume no overlap: T = Tcomm + Tcomp.

We intentionally model a best-case scenario for DDP to demonstrate that even when its step time is
minimized, low-communication methods converge faster under bandwidth constraints settings (see
Appendix B for details). Our method as Streaming DiLoCo uses identical bandwwidth budget (more
details in Appendix B).

Parameter Slicing Table 3.2 reports the relation between the number of slices, memory usage,
number of trainable parameters, and final loss. As expected, reducing memory by freezing more
parameters per node leads to drops in performance. To better understand this trade-off, we overtrained

7
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Figure 3: Faster convergence without fast interconnects. Simulated training time
for our method, Streaming DiLoCo, and standard DDP under varying bandwidth limits.
Blue, orange, and purple denote our method, Streaming DiLoCo, and DDP, respectively;
transparency levels indicate different peak bandwidths (in GB/s). For DDP, step time is
estimated as the maximum of single-GPU compute and gradient communication (perfect
overlap), whereas for low-communication methods it is the sum (no overlap) (§ 3.2).
Although low-communication methods require 1.7× more tokens to reach a validation
loss of 2.41, they complete training in significantly less wall-clock time when network
bandwidth is limited.

Method Perplexity Memory, GB Trainable parameters, B Tokens, B
Streaming DiLoCo 12.75 19.36 1.3 26
1/2 mlps 12.24 14.87 0.87 26
1/4 mlps 12.72 12.77 0.67 26
1/8 mlps 13.59 11.72 0.57 26
1/16 mlps 14.21 11.19 0.52 26

1/8 mlps, overtrained 12.68 11.72 0.57 37

1/2 mlps + 1/2 heads 12.22 13.29 0.72 28
1/4 mlps + 1/4 heads 12.79 10.41 0.44 28

1/4 heads 12.83 16.95 1.07 26

Streaming DiLoCo 10.47 38.7 2.59 52
1/4 mlps 10.49 25.55 1.34 52

Table 1: Comparison of perplexity, memory usage, number of trainable parameters, and training
tokens across different methods for 1.3B and 2.6B parameter models trained on 32 and 64 GPUs on
RedPajama-V2 dataset. Different background colors correspond to different model sizes.

the configuration with 8 slices (each slice is updated on 4 nodes out of 32) and found that it required
almost 50% more tokens to match the performance of smaller-slice configurations. As shown in
Table 3.2, freezing only MLPs is less effective for memory savings than freezing a combination of
MLPs and attention heads. Moreover, when freezing only 1/4 of attention heads, the performance is
similar to the 1/4 MLP slicing configuration, but the number of active parameters, and therefore the
memory usage, is higher.

In our setup, the set of trainable parameters is fixed throughout training. While dynamically reassign-
ing parameters could, in principle, improve convergence, it would require either replicating the full
optimizer state on every node or transferring optimizer state whenever a parameter’s owner changes,
both of which eliminate the memory and communication benefits we target. Exploring lightweight
forms of adaptive parameter assignment during training that preserve these benefits remains an open

8
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direction for future work. We also evaluated alternative parameter assignment strategies; details are
provided in Appendix A.2.

4 RELATED WORK

We review prior work in two areas most relevant to our contributions: methods for low-communication
distributed training and approaches for improving memory and computational efficiency during
training. For the latter, we focus on memory-efficient optimizers and tensor parallelism, which are
most directly related to our method.

Low-Communication Training Communication overhead in distributed data-parallel training has
been tackled in three main ways: reducing the volume of data exchanged between nodes with gradient
compression or quantization (Dettmers, 2015; Alistarh et al., 2017; Lin et al., 2018; Li et al., 2023),
hiding latency by overlapping communication with computation (Cohen et al., 2021; Sun et al., 2024;
Kale et al., 2025), and lowering frequency of communication by performing multiple local updates
between synchronizations (McMahan et al., 2017; Wang et al., 2019; Sun et al., 2022; Douillard et al.,
2023; 2025). We show that the latter can be made substantially more memory- and compute-efficient
by restricting backpropagation to partial parameter subsets. The three strategies are complementary,
and compression or overlap techniques can be applied together with our method to further reduce
communication costs. More recently, Beton et al. (2025) proposed sparse parameter synchronization,
which reduces communication by synchronizing only a random fraction of parameters at each step.
While this lowers divergence across nodes, all parameters are still updated on every device, meaning
each node must store the full optimizer state and perform full backpropagation. In contrast, our
method updates only a fixed subset of parameters per node, which directly reduces both memory and
compute.

Another line of work studies pipeline parallelism in slow-network settings (Huang et al., 2019), which
requires inter-stage communication of activations in every step. To mitigate this communication
overhead, recent methods propose compressing or quantizing activations (Wang et al., 2022; Ryabinin
et al., 2023; Yuan et al., 2022; Ramasinghe et al., 2025). Unlike these approaches, which still
depend on activation exchange, our method operates purely in the data-parallel regime and targets an
orthogonal axis of parallelization, and could in principle be combined with pipeline parallelism and
activation compression in large-scale settings.

Memory and Compute Efficiency A large fraction of GPU memory during training is occupied by
optimizer states, particularly for adaptive methods such as Adam (Loshchilov & Hutter, 2017), which
maintain first- and second-order moments for every parameter. The main savings of our approach
come from the fact that each node only updates a subset of parameters. As a result, momentum states
for the remaining parameters do not need to be stored locally, yielding substantial memory savings.
This is especially important in low-communication settings, where sharding optimizer states across
devices is impractical due to the communication overhead it introduces. Several methods aim to
reduce optimizer state memory directly. One strategy is to quantize optimizer states to lower precision,
for example 8-bit quantization (Dettmers et al., 2021; Li et al., 2023). Another is to apply low-rank
projections to compress gradients and optimizer states (Zhao et al., 2024). Parameter grouping has
also been explored: Zhang et al. (2024) maintain a single momentum vector per block of parameters,
while Han et al. (2025) combine grouping with quantization. Such efficient optimizers are orthogonal
to our method and could be combined with it for further savings.

Another line of work distributes compute and memory through tensor parallelism, where large matrix
multiplications are partitioned across GPUs and results are gathered after each operation (Shoeybi
et al., 2019). Our method is conceptually related, but applies slicing only in the backward pass: each
device updates a portion of the parameter matrix while still executing the full forward computation.
In contrast to tensor parallelism, our approach avoids frequent all-to-all communication and therefore
does not depend on high-bandwidth interconnects.

9
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5 CONCLUSION

We proposed an efficient method for low-communication distributed training. The core design of our
approach is partial backpropagation: only a subset of parameters is updated on each node, reducing
per-device memory and compute while maintaining convergence. We have shown that, despite some
parameters receiving fewer gradient updates, our method matches the performance of prior low-
communication approaches under identical bandwidth and token budgets. Future directions include
exploring alternative parameter-partitioning strategies and investigating different backpropagation
sparsity patterns (Appendix D).
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A ABLATIONS

A.1 STREAMING SYNCHRONIZATION

One way to reduce peak memory usage in low-communication distributed training is to lower the
memory consumed by the outer optimizer state and offloaded parameters. When parameters are
synchronized in groups with multiple local steps in between, it is unnecessary to keep the full
optimizer state in memory at every step. Instead, only the states and parameters of the currently active
group need to be loaded. Douillard et al. (2025) explored this idea by grouping parameters at the
granularity of transformer layers.

We experimented with alternative grouping strategies. In particular, rather than grouping by layers,
we grouped by parameter slices. Under the slicing strategy described in § 2.2.1, at step t we all-reduce
gradients and update all MLP slices Wl

0 and Vl
0 for l ∈ {0, . . . , L}. At step t+ τ , we update Wl

1
and Vl

1; at step t + 2τ , Wl
2 and Vl

2; and so on, until all slices are synchronized. We found that
this strategy degraded performance (Table 5b): while grouping by layers had little to no impact on
final accuracy, grouping by slices did. A likely explanation is that only part of each weight matrix is
updated by the outer optimizer, and these updates are much larger than the small local changes made
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Method Test perplexity
DiLoCo 12.78
Streaming DiLoCo 12.75
Ours ( 14 MLPs) 12.73
Ours (by slices, 1

4 MLPs) 13.47
Ours (by layers, 1

4 MLPs) 12.72

(b) Test perplexity

Figure 5: Streaming synchronization. Comparison of memory usage and test perplexity with and
without streaming synchronization for DiLoCo and our method on a 1.3B-parameter language model
trained across 32 nodes. “By layers” means the 24 transformer layers are grouped sequentially
into 8 groups of 3, plus a ninth group for embeddings and outer normalization. “By slices” means
synchronization is performed by grouping MLP slices in each layer—4 groups, plus a 5th for
embeddings and a 6th for attention and normalization layers. (a) Estimated memory usage per GPU
(§ 3.1). (b) Final test perplexity after training on 26B tokens.

by the inner optimizer and probably such sudden change in only a part of matrix make the overall
optimization problem more difficult.

5 10 15 20 25

Tokens (B)
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L
o
ss

1/4 mlps, by layers

1/4 mlps, by slices

1/4 mlps + 1/4 heads, by slices

1/4 mlps + 1/4 heads + 1/4 wo, by slices

Figure 4: Test loss as a function of training to-
kens for different variants of trainable parameter
assignment. “By layers” corresponds to training
only a subset of layers on each node – slicing
model horizontally, whereas “by slices” refers
to slicing parameters vertically as described in
§ 2.2.1.

In all our experiments, we adopt the stream-
ing synchronization strategy of Douillard et al.
(2025). Our method is orthogonal to this idea:
our main contribution is reducing the memory
footprint of the inner optimizer state and gra-
dients. Streaming synchronization can be com-
bined with our approach to further reduce mem-
ory usage (Figure 5a). Consistent with prior ob-
servations (Douillard et al., 2025), synchroniza-
tion in groups does not affect final performance,
either for our method or for DiLoCo (Table 5b).

A.2 PARAMETER SLICING

In our main experiments, we considered two
strategies for assigning trainable parameters to
each node (§ 2.2.1): freezing parts of the MLPs,
and freezing MLPs together with a part of atten-
tion heads. We also experimented with alternative
slicing strategies. For instance, we attempted to
slice the outer attention projection Wo, but as shown in Figure 4, this led to some performance
degradation.

Another variant we explored was training only a subset of layers on each node. Instead of slicing
parameters vertically (by splitting weight matrices into slices), we partitioned the model horizontally,
such that each node updates MLP layers parameters within a smaller set of layers. However, this
proved to be a significantly harder optimization problem. We were unable to find a hyperparameter
configuration that avoided gradient explosion, and training quickly diverged. An example training
curve is shown in Figure 4. It is possible that with more extensive hyperparameter exploration or
alternative stabilization techniques, this variant could be made to work, but we leave this for future
investigation.
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B COMMUNICATION OVERHEAD

We consider training a 1.3B-parameter model in bf16, corresponding to M = 2.6 GB of gradients,
on K = 32 nodes. Assume the nodes are connected via a high-speed Wi-Fi 7/8 network with a peak
bandwidth of B = 2.875 GB/s. The per-step communication time can be approximated by

Tcomm ≈
2(K − 1)

K

M

B

Then for DDP:

Tcomm ≈
2(K − 1)

K

M

B
≈ 1.75 s.

This is nearly 4× longer than the measured per-step compute time on a single H100 GPU (≈ 0.44 s),
indicating that communication dominates overall step time even under optimistic peak-bandwidth
assumptions.

In contrast, our method and Streaming DiLoCo synchronize only once every S = 100 steps, reducing
the amortized communication cost to

Tlow-comm =
Tcomm

S
≈ 1.75

100
= 0.0175 s.

As shown in Figure 3, this substantial reduction in communication time allows our method and
Streaming DiLoCo to achieve roughly 2× faster simulated wall-clock convergence than DDP at
Wi-Fi 7 bandwidth, despite requiring more training tokens to reach comparable test loss (44B vs.
26B).

Our method requires the same bandwidth budget as Streaming DiLoCo. Although the outer gradients
are sparse, ring all-reduce communicates full-sized tensors in multiple hops across devices, so the
total amount of data exchanged, and thus the communication cost, remains unchanged.

C COMPUTATIONAL OVERHEAD

C.1 PARTIAL BACKWARD

MLP with frozen slices Consider a single MLP block with up-/down-projection matrices W ∈
R4d×d and V ∈ Rd×4d, with an elementwise ReLU in between. Let the input activations for a
batch/sequence be X ∈ Rd×m (feature dimension d, m tokens).

We slice the hidden dimension into N parts as described in § 2.2.1:

W =

W1

...
WN

 , Wn ∈ R
4d
N ×d, V = [V1 · · · VN ] , Vn ∈ Rd× 4d

N .

Define the per-slice pre-activations and activations:

Hn = WnX ∈ R
4d
N ×m, An = ReLU(Hn) ∈ R

4d
N ×m.

Stacking along the hidden dimension gives H =

[
H1

· · ·
HN

]
∈ R4d×m and A =

[
A1

· · ·
AN

]
∈ R4d×m.

The MLP forward then decomposes additively over slices:

Y = VA =

N∑
n=1

VnAn ∈ Rd×m.

Given the upstream gradient G = ∂L
∂Y ∈ Rd×m, the backward pass:
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1. Output projection Vn:

∂L
∂Vn

= GA⊤
n , An = ReLU(WnX).

2. Activations An:
∂L
∂An

= V⊤
nG.

3. Through ReLU:

∂L
∂Hn

=
(

∂L
∂An

)
⊙ I(Hn > 0), Hn = WnX.

4. Up-projection Wn:
∂L

∂Wn
=

(
∂L
∂Hn

)
X⊤.

5. Input X:
∂L
∂X

=

N∑
n=1

W⊤
n

(
∂L
∂Hn

)
.

As a result, since we do not update all the slices except k, we do not compute gradients with respect
to the frozen weights. This yields FLOP savings, because we skip the multiplications needed to form

∂L
∂Wn

,
∂L
∂Vn

, ∀n ∈ {1, . . . , k − 1, k + 1, . . . , N}.

Note that we still need to compute the full Jacobian with respect to the input X.

∂L
∂X

=

N∑
n=1

W⊤
n

(
(V⊤

nG)⊙ I(Hn > 0)
)
,

where Hn = WnX and G = ∂L
∂Y .

Even if the weights of slice n are frozen, its contribution W⊤
n

(
(V⊤

nG)⊙ I(Hn > 0)
)

is still required
to correctly propagate gradients to earlier layers (see Appendix D).

MHA with Frozen Heads Recall the forward pass of multi-head attention:

Q = W⊤
QX, K = W⊤

KX, V = W⊤
V X,

with Q,K,V ∈ Rhdh×m. We split them into h heads:

Q =

Q
(1)

...
Q(h)

 , Q(j) ∈ Rdh×m,

and similarly for K(j) and V(j). Each head computes

S(j) = 1√
dh

Q(j)⊤K(j), A(j) = softmaxrow(S
(j)), U(j) = V(j)A(j)⊤.

Concatenate U = [U(1); . . . ;U(h)] ∈ Rhdh×m, then project

Y = W⊤
OU ∈ Rd×m.

Given upstream gradient G = ∂L/∂Y:

1. Output projection.
∂L

∂WO
= UG⊤,

∂L
∂U

= WOG.
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2. Per head j:
∂L

∂V(j)
= G

(j)
U A(j),

∂L
∂A(j)

= G
(j)⊤
U V(j).

3. Through softmax:
∂L
∂S(j)

= softmax
(
A(j), ∂L

∂A(j)

)
.

4. Back to Q(j) and K(j):

∂L
∂Q(j)

= 1√
dh

K(j)
(

∂L
∂S(j)

)⊤
,

∂L
∂K(j)

= 1√
dh

Q(j)
(

∂L
∂S(j)

)
.

5. Back to projection matrices. Since Q(j) = W
(j)⊤
Q X:

∂L
∂W

(j)
Q

= X
(

∂L
∂Q(j)

)⊤
,

∂L
∂W

(j)
K

= X
(

∂L
∂K(j)

)⊤
,

∂L
∂W

(j)
V

= X
(

∂L
∂V(j)

)⊤
.

6. Input gradient.

∂L
∂X

=

h∑
j=1

(
W

(j)
Q

∂L
∂Q(j) +W

(j)
K

∂L
∂K(j) +W

(j)
V

∂L
∂V(j)

)
.

LetHtrain ⊆ {1, . . . , h} be the set of trainable heads on this node (see § 2.2.1). Then for all j /∈ Htrain,

∂L
∂W

(j)
Q

=
∂L

∂W
(j)
K

=
∂L

∂W
(j)
V

= 0.

Gradients for j ∈ Htrain are computed as above. Note that the input gradient ∂L/∂X still aggregates
contributions from all heads, so freezing heads saves FLOPs only on parameter gradients computation.

C.2 FLOPS CALCULATION

For a Transformer with batch size B, sequence length S, hidden dimension H , number of layers L,
feedforward dimension Dff, vocabulary size V .

C.2.1 FORWARD

The forward FLOPs can be decomposed as:

• Embedding Layer: Although embeddings are typically implemented as lookups with
negligible computational cost, for completeness, we estimate the FLOPs as:

FLOPsemb = B × S ×H

• Multi-Head Attention (MHA):
1. Linear Projections (Queries, Keys, Values):

FLOPsproj = 3× 2×B × S ×H ×H = 6×B × S ×H2

2. Scaled Dot-Product Attention:

FLOPsattn = FLOPsQK+FLOPsV = 2×B×S2×H+2×B×S2×H = 4×B×S2×H

3. Output Projection:
FLOPsout_proj = 2×B × S ×H ×H

Total Multi-Head Attention (MHA):

FLOPsMHA = FLOPsproj + FLOPsattn + FLOPsout_proj

= 6×B × S ×H2 + 4×B × S2 ×H + 2×B × S ×H2

= 8×B × S ×H2 + 4×B × S2 ×H

17
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• Feedforward Network (FFN):

FLOPsFFN = 2× 2×B × S ×H ×Dff = 4×B × S ×H ×Dff

• Output projection:

FLOPsout = FLOPsoutproj + FLOPssoftmax = 2×B × S ×H × V + 3×B × S × V

Total Forward FLOPs per Layer:

FLOPslayer = (FLOPsMHA + FLOPsFFN)× L

Total Forward FLOPs per Step:

FLOPsforward = FLOPsemb + FLOPslayer + FLOPsout

C.2.2 BACKWARD

As discussed in Appendix C.1, for the backward computation all slices contribute to the gradients
with respect to the input.

MHA backward Let ρattn = 1
N be the trained fraction of heads. Using the forward costs:

FLOPsproj = 6×B×S×H2, FLOPsattn = 4×B×S2×H, FLOPsout_proj = 2×B×S×H2,

the backward splits as follows:

(i) Output projection WO : input Jacobian: 2×B × S ×H2,

parameter gradient: 2×B × S ×H2,

(ii) Attention matmuls (QK⊤ and AV): backward ≈ 2× FLOPsattn = 8×B × S2 ×H,

(iii) Q/K/V projections (WQ,WK ,WV ) : input Jacobian: 2× FLOPs(half)
proj = 6×B × S ×H2,

parameter gradients: 2× FLOPs(half)
proj × ρattn.

FLOPsbwd
MHA = 8×B × S2 ×H︸ ︷︷ ︸

attn matmuls

+
(
10 + 6× ρattn

)
×B × S ×H2︸ ︷︷ ︸

Q/K/V input Jacobian (6)
+ Q/K/V param grads (6ρattn)

+ WO input Jacobian (2)
+ WO param grad (2)

.

When ρattn = 1 (no freezing), this reduces to the usual “backward ≈ 2× forward” for MHA:

FLOPsbwd
MHA(ρattn=1) = 8×B×S2×H + 16×B×S×H2 = 2×

(
4×B×S2×H + 8×B×S×H2

)
.

FFN backward Similarly as for MHA for FFN let ρmlp = 1
N . Then:

FLOPsbwd
FFN = 4×B × S ×H ×Dff︸ ︷︷ ︸

full input Jacobian

+ 4× ρmlp ×B × S ×H ×Dff︸ ︷︷ ︸
parameter gradients

This results in total backward per step:

FLOPsbwd
step = 2× FLOPsemb + L×

(
FLOPsbwd

MHA + FLOPsbwd
FFN

)
+ 2× FLOPsout.

18
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D ADDITIONAL RESULTS
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Figure 6: Training loss as a function of train-
ing tokens for a 335M-parameter model trained
with the 1/4 MLP slicing strategy described in
§ 2.2.1. Full Jacobian denotes our standard ap-
proach where all slices contribute to the Jacobian.
1/4 Jacobian corresponds to the detach-all-but-k
variant, where only the k-th slice contributes. 1/2
Jacobian refers to the k+random variant, where
the k-th slice and one additional randomly se-
lected slice are retained.

As discussed in Appendix C.1, the only gradi-
ents we omit are those with respect to frozen
parameters. While this reduces FLOPs during
the backward pass, it does not decrease activation
memory. A natural question is whether one could
go further — not only skipping parameter gradi-
ents but also fully detaching their contributions
from the gradient flow. We therefore investigated
how such a complete detachment of frozen MLP
slices affects convergence.

Backward detach-all-but-k In this setting, the
forward pass still uses all parameters, but during
backpropagation we compute only the Jacobian
components corresponding to the active slice.

Backward with zeroed slices (only slice k active):

Ãn =

{
Ak, n = k,

0, n ̸= k,

M̃n =

{
I(Hk > 0), n = k,

0, n ̸= k,

where Mn = I(Hn > 0) is the elementwise
activation mask (e.g., ReLU).

Given upstream G = ∂L
∂Y ∈ Rd×m:

∂L
∂Vn

= GÃ⊤
n =

{
GA⊤

k , n = k,

0, n ̸= k,

∂L
∂An

= V⊤
nG,

∂L
∂Hn

=
(

∂L
∂An

)
⊙ M̃n =

{
(V⊤

k G)⊙ I(Hk > 0), n = k,

0, n ̸= k,

The full-Jacobian input gradient is

∂L
∂X

=

N∑
n=1

W⊤
n

(
∂L
∂Hn

)
=

N∑
n=1

W⊤
n

((
V⊤

nG
)
⊙Mn

)
. (6)

Under the detach-all-but-k rule, this can be written as single-slice contribution:

∂L
∂X

= W⊤
k

((
V⊤

k G
)
⊙ I(Hk > 0)

)
since ∂L

∂Hn
= 0 for all n ̸= k.

As expected, since the full backward pass is disrupted, naively detaching all but one slice resulted in
gradient explosion in the middle of training (Figure 6).

Backward detach-all-but-k + random To study this further, we considered a variant where, instead
of keeping only the k-th slice, we retain the k-th slice plus one additional slice chosen at random.
Concretely, during the forward pass we randomly sample an index g ∼ Unif

(
{1, . . . , N} \ {k}

)
and

keep the corresponding contributions in the backward Jacobian.

Given the full Jacobian in Eq. 6,

∂L
∂X

=

N∑
n=1

W⊤
n

(
(V⊤

nG)⊙ I(Hn > 0)
)
,
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the detach-all-but-k+random variant reduces this to
∂L
∂X

= W⊤
k

(
(V⊤

k G)⊙ I(Hk > 0)
)

+W⊤
g

(
(V⊤

g G)⊙ I(Hg > 0)
)
,

where g is resampled independently at each step.

Despite this modification, performance still degraded (perplexity 17.38 vs. 16.44). Further investiga-
tion of how much of the Jacobian can be dropped could be an interesting direction for future work.
Adjusting hyperparameters, or scaling the activations might improve the performance. Also better
strategies than picking uniformly at random can be explored.

20


	Introduction
	Method
	Background
	Partial Parameter Updates
	Parameter Slicing


	Experiments
	Experimental Setup
	Results

	Related Work
	Conclusion
	Ablations
	Streaming Synchronization
	Parameter Slicing

	Communication Overhead
	Computational Overhead
	Partial Backward
	FLOPs calculation
	Forward
	Backward


	Additional Results

