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Abstract

A popular approach to neurosymbolic AI involves mapping
logic formulas to arithmetic circuits (computation graphs
consisting of sums and products) and passing the outputs of a
neural network through these circuits. This approach enforces
symbolic constraints onto a neural network in a principled
and end-to-end differentiable way. Unfortunately, arithmetic
circuits are challenging to run on modern AI accelerators as
they exhibit a high degree of irregular sparsity. To address this
limitation, we introduce knowledge layers (KLAY), a new
data structure to represent arithmetic circuits that can be ef-
ficiently parallelized on GPUs. Moreover, we contribute two
algorithms used in the translation of traditional circuit repre-
sentations to KLAY and a further algorithm that exploits par-
allelization opportunities during circuit evaluations. We em-
pirically show that KLAY achieves speedups of multiple or-
ders of magnitude over the state of the art, thereby paving the
way towards scaling neurosymbolic AI to larger real-world
applications.

1 Introduction
Probabilistic neurosymbolic models combine neural net-
works with arithmetic circuits. This approach, pioneered by
Xu et al. (2018) and Manhaeve et al. (2018), performs prob-
abilistic inference on the outputs of neural networks in order
to enforce logical guarantees and exploit background knowl-
edge during learning.

While arithmetic circuits are end-to-end differentiable,
they also pose certain challenges. In particular, arithmetic
circuits encoding logical knowledge are challenging to for-
mulate in terms of dense tensor operations as they exhibit
a high degree of unstructured sparsity. This means that in
contrast to neural networks, existing neurosymbolic mod-
els using circuits have struggled to leverage modern GPU or
TPU hardware. In this work, we address this challenge using
KLAY: a new data structure representing arithmetic circuits
as knowledge layers which can exploit parallel compute.

The main advantage of KLAY is that it reduces arithmetic
circuit evaluations to a sequence of index and scatter opera-
tions – operations already present in popular tensor libraries.
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This makes KLAY completely agnostic towards the under-
lying hardware. By leveraging the compiler stacks of open-
source tensor libraries, KLAY can furthermore considerably
outperform existing hand-written CUDA kernels.

2 Arithmetic Circuits & Neurosymbolic AI
The symbolic knowledge in neurosymbolic AI is commonly
specified as Boolean logic. Boolean circuits are a com-
pact representation of Boolean logic using directed acyclic
graphs (Darwiche 2021). More specifically, the leaves in
Boolean circuits correspond to Boolean variables (or their
negation), while inner nodes are either ∧-gates or ∨-gates.
We make the usual assumption that Boolean circuits do not
contain negation, known as negation normal form (NNF).
Figure 1 (left) contains an example of a Boolean circuit. A
circuit can be evaluated for a set of inputs by a simple post-
order traversal of the graph, meaning children get evaluated
before their parents. More formally, the evaluation of a cir-
cuit is a Boolean function BN → B which maps the Boolean
input values to the value of the root node.

In the context of neurosymbolic AI, we commonly per-
form a so-called knowledge compilation step (Darwiche and
Marquis 2002) prior to evaluation. This compilation step
transforms an NNF circuit into deterministic decomposable
negation normal form (d-DNNF), which guarantees that cer-
tain computations can be performed tractably. We refer to
Vergari et al. (2021) for an in-depth discussion on tractable
computations on circuits.

Importantly, d-DNNF circuits allow linear time proba-
bilistic inference. Assume first that the Boolean variables are
no longer deterministic but instead constitute Bernoulli ran-
dom variables. We can then compute the probability of the
d-DNNF circuit evaluating to true under the input distribu-
tion by labeling the leaves of the circuit with the probabil-
ities of the Boolean variables and replacing ∧- and ∨-gates
with × and + operations, respectively. The resulting circuit
is also called an arithmetic circuit (Darwiche 2003).

While probabilistic inference on d-DNNF circuits has lin-
ear time complexity, transforming an NNF circuit into d-
DNNF is #P-hard (Valiant 1979). However, once the d-
DNNF structure is obtained we can re-evaluate the circuit
with different probabilities for the Boolean variables in the
leaves. This compile once and evaluate often paradigm has
gained traction in neurosymbolic systems (Manhaeve et al.
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Figure 1: Example of (left) a Boolean d-DNNF circuit, and (right) the corresponding layerized circuit.

2018; Ahmed et al. 2022b; De Smet et al. 2023). The high-
level idea behind these neurosymbolic models is to compile
the symbolic knowledge once into an arithmetic circuit and
let a neural network predict the probabilities to be fed into
the arithmetic circuit. Given that the arithmetic circuit con-
sists only of sum and product operations, the resulting com-
putation graph (neural network + arithmetic circuit) is end-
to-end differentiable and the parameters can be optimized
using standard gradient descent methods.

As discussed in the introduction, arithmetic circuits cur-
rently hinder the efficient application of neurosymbolic
methods as these circuits are not well-suited to modern AI
accelerators. As a matter of fact, the standard way to eval-
uate an arithmetic circuit in a neurosymbolic context is to
naively evaluate every node one by one (Manhaeve et al.
2018; Ahmed et al. 2022a,b) using a naive traversal of the
arithmetic circuit. Although such a traversal of the circuit al-
lows for a certain degree of data parallelism, it fails to fully
utilize the capacity of modern GPUs.

3 Layerizing Circuits
In this section, we show how to map an arithmetic circuit
to our layerized KLAY representation. Afterwards, in Sec-
tion 4, we discuss how the resulting KLAY representation
can be run efficiently on GPUs.

In order to parallelize a circuit, we group the nodes into
sets of nodes that can be evaluated in parallel. We dub these
groups layers – reminiscent of layers in neural networks.
Concretely, for each node n in a circuit C we compute its
height in the circuit hn, and nodes with the same height are
assigned to the same layer.

Li = {n ∈ C | hn = i}

where hn =

{
0, if n is a leaf,
maxc∈Cn hc + 1 otherwise.

Here, we use Cn to denote the set of children of a node n.
Note that the height of all nodes can be efficiently evaluated
in a single post-order circuit traversal. The initial layer, L0,
comprises all leaf nodes, while the last layer comprises the
root node.

Without loss of generality, we can assume that ∨-gates
only have ∧-gates as children and that ∧-gates have either ∨-

gates or leaf nodes as children (Choi, Vergari, and Van den
Broeck 2020). This implies that ∧- and ∨-gates appear in an
alternating fashion throughout the circuit and that all nodes
in the same layer have the same type.

If nodes are assigned to layers based on their height hn,
the child of a node can be in any of the previous layers. How-
ever, to transform the circuit evaluation into a sequence of
parallel operations, it is more convenient if all children are
in the immediately preceding layer. In such a structure, the
next layer can be computed solely using the current layer.

We obtain this layer-by-layer structure by introducing ad-
ditional unary nodes. Whenever a node n ∈ Lhn

has a child
c in a non-immediately preceding layer Lhc

, i.e. hc + 1 <
hn, we introduce a chain of unary nodes, one per layer be-
tween Lhc and Lhn , to connect n to c via these unary nodes.
This is illustrated in Figure 1 (right), where the newly intro-
duced nodes are indicated by dashed circles. Note that the
type of a unary node (∨ or ∧) is irrelevant and chosen to sat-
isfy the assumption of alternating node types. Algorithm 2
in Appendix B summarizes this layerization in pseudo-code.

4 Tensorizing Layered Circuits
In the previous section, we organized circuits into layers by
assigning each node n in the circuit a height hn. We pro-
ceed in this section with mapping the layered linked nodes
to a layered computation graph where layers are evaluated
sequentially and computations within a layer can be paral-
lelized.

To this end, we make a simple, yet powerful, observation:
the current layer can be computed from the output of the pre-
vious layer by only using indexing and aggregation. To see
this, we first impose an arbitrary order on the nodes within
each layer. This means we can write the values of all nodes
in a layer Li as a vector Ni. Now, to specify the computation
in a layer we use two vectors of indices: Si and Ri. For each
edge between Ni−1 and Ni, Si contains the index of the in-
put node, while Ri contains the index of the output node. We
exemplify this for a single layer in Figure 2.

To compute Ni, we first select relevant values from Ni−1

using as index Si, giving us Ei = Ni−1[Si]. The vector
Ei essentially contains the values of all the edges between
Ni and Ni−1. Next, we need to correctly segment the edges
Ei and aggregate the individual segments – either by using
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Figure 2: The evaluation of the first layer in Figure 1 (right), as an indexing and aggregation operation. The symbols N0 and N1

denote the node values at layer L0 and L1 respectively. First, we index in N0 using the edge indices S1, effectively creating a
vector with the values of all edges in between N0 and N1. Next, the aggregation indices R1 determine what edges are reduced
together. As a result we obtain the node values N1 = scatter(N0[S1],R1, reduce = ‘product’).

sums or products, depending on the layer. This is done using
Ri: all elements with the same index in Ri are reduced to-
gether. Fortunately, such segment-reduce operations are im-
plemented as primitives in various tensor libraries such as
Jax, TensorFlow, or PyTorch (Abadi et al. 2015; Paszke et al.
2019; Bradbury et al. 2018). In Figure 2, these segments are
indicated with alternating colors.

Algorithm 1: KLay Forward Evaluation
Input: N0, selection indices S1,S2, . . . ,SL,

reduction indices R1,R2, . . . ,RL

for i← 1 to L do
Ei ← Ni−1[Si];
if i mod 2 = 0 then

Ni ← scatter(Ei,Ri, reduce=‘sum’);
else

Ni ← scatter(Ei,Ri, reduce=‘product’);
end

end
return NL;

Algorithm 1 contains pseudo-code for the layerwise cir-
cuit evaluations, where we use the common scatter func-
tion to segment and aggregate the Ei vectors.

5 Experimental Evaluation
We implement KLAY as a Python library supporting two
popular tensor libraries: PyTorch and Jax. We evaluate the
runtime performance of KLAY on several synthetic bench-
marks and neurosymbolic experiments. All experiments
were conducted on the same machine, with an NVIDIA
GeForce RTX 4090 as GPU and an Intel i9-13900K as CPU.

Benchmarks We consider the performance of KLAY on
a set of synthetic circuits, by randomly generating logical
formulas in 3-CNF. We compile the 3-CNF formulas into
d-DNNF circuits, more specifically SDD circuits, using the
PySDD library (Meert and Choi 2017). By changing the
number of variables and clauses in the CNF, we vary the size
of the compiled circuits over 5 orders of magnitude. Figure 3

compares the performance of KLAY with the native post-
order traversal from PySDD implemented in C. We report
results for both the real and logarithmic semiring. As JUICE
does not support the logarithmic semiring and Jax does not
support backpropagation on scatter multiplication, these are
excluded from the respective comparisons.

In Appendix A, we repeat the same experiment using the
D4 knowledge compiler (Lagniez and Marquis 2017) in-
stead of PySDD.

Results Our results in Figure 3 indicate that on large cir-
cuits, KLAY on GPU outperforms all baselines with over
one order of magnitude. Due to SIMD and multi-core par-
allelization, KLAY on CPU is also considerably faster than
the baselines. JUICE does not include results for the largest
instances due to a timeout after 30 minutes. KLAY attains
best results with Jax, due to its superior JIT compilation and
kernel fusion.

6 Related Work
The closest related work is the arithmetic circuit layeriza-
tion present in JUICE (Dang et al. 2021). Similar to our cir-
cuit layerization scheme, JUICE takes a Boolean circuit and
maps it to a set of layers that can be evaluated sequentially,
although not layer per layer. To this end, Dang et al. (2021)
implemented a custom SIMD implementation for the CPU
and custom CUDA kernels for the GPU. This is in contrast
to KLAY where we reduce circuit evaluations to a sequence
of index and scatter-reduce operations, which are already ef-
ficiently implemented in the modern deep learning stack. In
our experiments, we show that KLAY dramatically outper-
forms JUICE in terms of run time on CPU and more impor-
tantly on GPU as well. Noteworthy here is that our experi-
mental evaluation also shows that JUICE’s GPU implemen-
tation is slower than their CPU implementation – hinting at
missed parallelization opportunities.

The difficulty of running arithmetic circuits on GPUs was
also pointed out by Shah et al. (2020, 2021). While they
focused on developing hardware accelerators for arithmetic
circuits, they also implemented custom circuit evaluations
exploiting to a certain degree SIMD instructions and GPU
parallelization. They found that CPU circuit evaluations out-
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Figure 3: Cumulative runtime in milliseconds for the forward and backward pass on a circuit. That is, we plot the combined
run time of the n fastest circuit evaluations against the number of n circuits. Timings are averaged over 10 runs per SDD. The
SDDs are randomly generated from 3-CNF, where the difficulty is varied by the number of variables and clauses. The left and
right figure show cumulative evaluation times for the logarithmic and real semiring, respectively.

performed the GPU implementations. Shah et al. (2020)
concluded that arithmetic circuits were simply too sparse to
be run efficiently on GPUs. By layerizing arithmetic circuits
and interpreting the product and sum layers as indexing and
scatter-reduce operations, we are able to refute this claim.
We provide experimental evidence for this in Section 5.

Notable is also the work of Vasimuddin, Chockalingam,
and Aluru (2018), who proposed an efficient CPU imple-
mentation for evaluating arithmetic circuits deployed on
multiple CPU cores. They deemed an efficient GPU im-
plementation to be impractical due to the high demands on
memory bandwidth. We can again refute this claim.

Arithmetic circuits are closely related to the model class
of probabilistic circuits (Vergari et al. 2021). The main dif-
ference is that the sum units for the latter are parameter-
ized using mixture weights, while the former does not con-
tain such weights. In order to run probabilistic circuits effi-
ciently on the GPU, implementations usually rely on cast-
ing circuit evaluations as dense matrix-vector product (Pe-
harz et al. 2020b,a; Galindez Olascoaga et al. 2019; Mari,
Vessio, and Vergari 2023; Sommer et al. 2021). This idea
has recently been generalized by Liu, Ahmed, and Van den
Broeck (2024), who allow for the presence of block-sparsity
in the matrix that encodes a layer. By exploiting this sparsity
via custom kernels, they widened the class of probabilistic
circuits that can be run efficiently on GPUs. Nevertheless,
probabilistic circuits are usually far more dense than arith-
metic circuits that are compiled from a logical theory. Un-
fortunately, this prevents the techniques developed for prob-
abilistic circuits to be effective in the context of arithmetic
circuits. Similarly, having densely parameterized sum nodes
also limits the relevance of techniques developed for arith-
metic circuits for probabilistic circuits, e.g. the indexing and
segmenting scheme of KLAY circuit evaluations.

Besides algorithmic advances, specialized hardware solu-
tions have also been proposed to deal with the irregularity of
the computational graph of an arithmetic circuit (Dadu et al.
2019; Shah et al. 2020, 2021). However, these approaches

have the drawback that they would require the purchase of
non-commoditized hardware. While this could partially be
remedied by the use of FPGAs, as done by Sommer et al.
(2018); Weber et al. (2022); Choi et al. (2023), any custom
hardware retains a communication overhead. Specifically, in
the context of neurosymbolic AI, one needs to pass the out-
put of a neural network to an arithmetic circuit. If the neural
net and the circuit are on two different devices, e.g. a GPU
and an FPGA, the latency of data transfer can counteract
gains in evaluation speed.

7 Conclusions

The success of neural networks has been largely attributed
to their scale (Kaplan et al. 2020), which is realized by their
effective use of hardware accelerators. To compete, novel
methods must run efficiently on the available hardware or
risk losing out due to what Hooker (2021) coined the hard-
ware lottery. We tackled this issue for probabilistic neu-
rosymbolic AI by introducing KLAY– a new data structure
to represent arithmetic circuits that is amenable to efficient
evaluations on modern AI accelerators. Along with this rep-
resentation, we contributed three algorithms for KLAY. The
first two algorithms map the traditional linked node repre-
sentation of arithmetic circuits to the corresponding KLAY
representation (Algorithm 2 and 3). This representation is ef-
ficiently evaluated using the third algorithm, which exploits
the parallelization opportunities (Algorithm 1).

Our experiments demonstrated that arithmetic circuits can
be run efficiently on GPUs, despite their high degree of un-
structured sparsity. To this end, a key aspect is the reduc-
tion of circuit evaluations to a sequence of indexing and
scatter-reduce operations, as these can be implemented us-
ing highly optimized primitives available in modern tensor
libraries. Resolving circuit evaluations as one of the major
bottlenecks present in current neurosymbolic architectures
allows to further scale neurosymbolic models.
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A Additional Experiments
In Figure 4, we repeat the same synthetic experiment as in
Figure 3 but using a top-down d-DNNF knowledge compiler
instead of a bottom-up SDD compiler. As a baseline, we
use an optimized Rust implementation of the node-by-node
post-order evaluation algorithm. These circuits do not con-
tain duplicate nodes and are somewhat less balanced, lead-
ing to a larger overhead in terms of extra nodes, as is visible
on the right of Figure 4. Nonetheless, KLAY still outper-
forms the baseline by a large margin.

B Pseudo-code
Algorithm 2 and 3 contain pseudo-code of the previously
discussed layerization and tensorization procedures.

Algorithm 2: KLay Layerization
Input: Boolean Circuit C as linked nodes.
layers← [ ];
height← [ ];
hashes← [ ];
for node n in the nodes of C, children before parents

do
if n is a leaf node then

height[n]← 0 ;
hashes[n]← hash(n);

else
height[n]← 1 + maxc∈children(n) height[c];
/* Bring children to the prior layer */
for child node c in children(n) do

while height[c]+1 ̸= height[n] do
c← new unary node with child c;
height[c]← height[child(c)] + 1;
hashes[c]← hash(hashes[child(c)]);
layers[height[c]][hashes[c]]← c;

end
end
hashes[n]←

⊕
c∈children(n) hash(hashes[c])

end
/* Add node to its layer */
layers[height[n]][hashes[n]]← n;

end
return layers;

Algorithm 3: KLay Tensorization
Input: layers.
/* We assume the nodes in each layer are ordered,
such that index(n) is the index of node n in its layer.
*/

for layer i in layers do
Si ← [ ];
Ri ← [ ];
for node n in layer i do

for child c of node n do
Ri.push(index(n));
Si.push(index(c));

end
end

end
return {S1, . . . ,SL}, {R1, . . . ,RL};
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Figure 4: (Left) Number of nodes in the original d-DNNF, compared to KLAY’s layerized circuit. (Right) Cumulative runtime
in milliseconds for the forward and backward pass on a d-DNNF circuit in the log semiring. Timings for each individual circuit
are averaged over 10 runs. Each instance is a randomly generated logical formula in 3-CNF, compiled into a d-DNNF circuit
using D4. The number of variables and clauses in the CNF was varied to achieve different levels of difficulty.


