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ABSTRACT

As a powerful framework for a variety of machine learning problems, bilevel
optimization has attracted much attention. While many modern gradient-based al-
gorithms have been devised for optimistic bilevel optimization, pessimistic bilevel
optimization (PBO) is still less-explored and only studied under the linear settings.
To fill this void, we investigate PBO with nonlinear inner- and outer-level objective
functions in this work, by reformulating it into a single-level constrained optimiza-
tion problem. In particular, two gradient-based algorithms are first proposed to
solve the reformulated problem, i.e., the switching gradient method (SG-PBO) and
the primal-dual method (PD-PBO). Through carefully handling the bias errors in
gradient estimations resulted by the nature of bilevel optimization, we show that
both SG-PBO and PD-PBO converge to the global minimum of the reformulated
problem when it is strongly convex, which immediately implies the convergence to
the original PBO. Moreover, we propose the proximal scheme (Prox-PBO) with the
convergence guarantee for the nonconvex reformulated problem. To the best of our
knowledge, this is the first work that investigates gradient-based algorithms and
provides convergence analysis for PBO under non-linear settings. We further con-
duct experiments on an illustrative example and a robust hyperparameter learning
problem, which clearly validate our algorithmic design and theoretical analysis.

1 INTRODUCTION

Originated from the economic and operation research studies (Stackelberg et al., 1952; Bracken &
McGill, 1973), bilevel optimization has attracted extensive attention recently in the machine learning
community. Many machine learning problems can be naturally captured by a bilevel optimization
structure such as meta-learning (Franceschi et al., 2018; Ji et al., 2020), reinforcement learning (Hong
et al., 2020; Konda & Tsitsiklis, 2000), network architecture searching (He et al., 2020), etc. Bilevel
optimization typically takes the following form

min
x∈X

min
y∈S(x)

f(x, y), where S(x) = argmin
y∈Y

g(x, y). (OBO)

Here f(x, y) and g(x, y) are the outer- and inner-level objective functions, respectively, and the
support sets X ⊆ Rp and Y ⊆ Rm are convex. For a fixed x ∈ X , S(x) is the set of all y ∈ Y
that yields the minimal value of g(x, ·). Here, the inner optimization finds a set S(x) that collects
all points y that minimize the inner function g(x, y) for any given x. Then, the outer-level function
f(x, y) is minimized over y in the set S(x) given by the inner optimization, jointly with x ∈ X . The
above problem is also referred to as optimistic bilevel optimization (OBO), because the outer-level
minimizes over y ∈ S(x), which allows the minimization over x to be over a beneficial loss value.
Such OBO problems have been extensively studied in the past, see e.g., Harker & Pang (1988);
Outrata (1993); Lignola & Morgan (2001); Dempe et al. (2007) and Sinha et al. (2017); Liu et al.
(2021). More recently, many studies have developed various fast and scalable algorithms and provided
the convergence rate guarantee for these algorithms (Li et al., 2020; Sow et al., 2022; Liu et al., 2020;
Huang & Huang, 2021; Ji, 2021; Ji et al., 2022; Huang et al., 2022; Yang et al., 2021). Readers can
refer to Section 1.2 for more detailed discussion of the related work.

As an equally important class of bilevel problems, pessimistic bilevel optimization (PBO) takes the
following formulation

min
x∈X

max
y∈S(x)

f(x, y), where S(x) := argmin
y∈Rm

g(x, y). (PBO)
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For each given x, the inner optimization also collects all minima of the inner function g(x, ·) into a
set-value function S(x). Then the outer-level function f(x, y) is first maximized over y ∈ S(x), and
then minimized over the outer variable x. Intuitively, the maximization finds the worst case of the
outer-level function over y ∈ S(x), and is hence called the pessimistic problem.

In contrast to OBO, the more challenging PBO still remains much less studied in the literature, due to
its minimax nature in the outer optimization. Particularly, the previous studies of PBO mainly focused
on the existence of optimal solutions and the characterization of optimality condition (Dempe et al.,
2014; Wiesemann et al., 2013; Lucchetti et al., 1987), which have shown that the optimality condition
of PBO is more strict than that of OBO. Besides, the design of algorithms therein was mainly
restricted to linear bilevel optimization (Wiesemann et al., 2013; Zeng, 2020; Zheng et al., 2016) and
lacked convergence guarantees. To the best of our knowledge, there have not been gradient-based
algorithms developed for PBO. To fill this gap, the main goal of this paper is to develop principled
gradient-based algorithms for PBO that enjoy convergence guarantees and are also scalable for
modern machine learning applications.

1.1 CONTRIBUTIONS

In this paper, we provide a comprehensive study on the pessimistic bilevel optimization. The specific
contributions are summarized as follows.

Algorithmic design. We first propose two scalable and easy-to-implement gradient-based algorithms:
switching gradient pessimistic bilevel optimizer (SG-PBO) and primal-dual pessimistic bilevel
optimizer (PD-PBO). Then, we devise a proximal-point scheme (Prox-PBO) which provides a
stronger theoretical guarantee but with increased complexity. Due to the page limits, we delegate the
details about Prox-PBO into Appendix A. To the best of our knowledge, these are the first gradient-
based algorithms for PBO. In particular, our algorithmic design features a novel reformulation of
PBO to a single-level constrained optimization problem by leveraging the KKT conditions and the
constraint relaxation. It can be shown that the perturbation introduced by the relaxation is bounded
above by some controllable parameters, which consequently builds the equivalence between the
convergence for the reformulated problem and the convergence for the original PBO.

Convergence rate analysis. We provide the first-known convergence rate analysis for PBO. Specif-
ically, for any arbitrary ϵ > 0, we show that both SG-PBO and PD-PBO converge sublinearly to
an ϵ-accurate solution of the reformulated problem when it is strongly convex. Under the general
nonconvex setting, Prox-PBO is proven to converge to an ϵ-KKT point of the reformulated problem
with a sublinear rate in Appendix G, where the KKT condition serves as a necessary condition for
the local optimality. Technically, the constrained (strongly-/non)convex optimization problem here
is more challenging than the standard formulation studied in Boob et al. (2019); Ma et al. (2020)
due to the nature of bilevel optimization, where careful treatments are needed to deal with the bias
errors arising in gradient estimations for the updates of both the primal and dual variables. We further
establish an uniform upper bound on optimal dual variables, which was taken as an assumption in the
standard analysis in Boob et al. (2019); Ma et al. (2020).

Numerical verification. We evaluate SG-PBO and PD-PDO on an illustrative example and a robust
hyper-representation learning problem. The experimental results show that both algorithms can
converge to the global optima of the studied problems, which validates our algorithmic design and
theoretical analysis. Besides, in contrast to PD-PBO, SG-PBO has a better track of the constraint
violation and, as a tradeoff, the convergence of the outer-level objective may be less stable.

1.2 RELATED WORKS

Pessimistic Bilevel Optimization: On the theoretical side, previous studies focused on identifying
the existence of solution (Aiyoshi & Shimizu, 1984; Aardal et al., 1996; Aboussoror & Mansouri,
2005), and characterizing the conditions of optimality (Dempe et al., 2014; 2019; Liu et al., 2014).
Different reformulation schemes have also been proposed to transform PBO into some easier problems
(Aboussoror & Mansouri, 2005; Zheng et al., 2013; Lampariello et al., 2019; Jia & Wan, 2013).
On the numerical perspective, algorithms were only designed under restrictive settings, e.g., linear
PBO (Wiesemann et al., 2013; Zeng, 2020; Zheng et al., 2016), quadratic-linear PBO (Malyshev &
Strekalovskii, 2011). A finite-dimensional approximation method was also proposed to solve the
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general PBO (Wiesemann et al., 2013), which restricted the support of inner-level problems to be
a finite subset of Rn, i.e. Yk ⊆ Rn and |Yk| ≤ ∞, and enlarged the cardinalty of Yk to gradually
approximate the original problem. In this paper, we propose efficient gradient-based algorithms
for PBO with non-linear objective functions by reformulating PBO into a single-level constrained
optimization problem, and provide the first known convergence analysis of PBO.

Recent Advances in OBO: The gradient-based algorithms have become popular for solving the
bilevel optimization problem with unique inner-minimum, due to their simplicity and scalability.
For example, to compute the gradient of the outer-level optimization efficiently, both approximated
implicit differentiation (AID) (Domke, 2012; Lorraine et al., 2020; Ji & Liang, 2021) and iterative
differentiation (ITD) approaches (Domke, 2012; Grazzi et al., 2020b; MacKay et al., 2019) have been
widely studied. Asymptotic convergence analysis was studied in, e.g., Franceschi et al. (2018); Shaban
et al. (2019), and recently Grazzi et al. (2020a); Ji et al. (2020; 2021); Ji & Liang (2021) provided the
non-asymptotic convergence rate analysis. Another line of studies (Sabach & Shtern, 2017; Liu et al.,
2020; Li et al., 2020) utilized the gradient sequential averaging method to solve the optimistic bilevel
optimization with single inner-optimum. A recent work (Sow et al., 2022) proposed gradient-based
and hessian-free algorithms for the bilevel optimization problem with multiple inner-minima, and
provided the first non-asymptotic analysis therein.

Generic Nonconvex Constrained Optimization: Although the convex constrained optimization
problem has been extensively studied in the literature (Lan & Zhou, 2016; Nesterov et al., 2018; Lin
et al., 2018; Aravkin et al., 2019; Nemirovski, 2004), the finite-time convergence analysis for the
case where both objective and constraints are nonconvex is only provided recently by leveraging the
proximal methods (Boob et al., 2019; Ma et al., 2020). For the constrained minmax optimization,
previous studies focused on the fixed convex and closed set constraints (Tseng, 1995; Lin et al.,
2020; Alkousa et al., 2019; Gidel et al., 2019). As we elaborate in Section 2.1, the PBO could
be reformulated as a special case of the nonconvex objective and nonconvex constrained minmax
optimization problem with variable set constraint on the inner-variable y. As a byproduct, this paper
also contributes to the generic nonconvex constrained optimization.

2 PROBLEM FORMULATION

To ground PBO in real-world applications, consider the following robust hyperparameter learning
problem where we seek to learn the best hyperparameters that are robust to the model learning.
Specifically, given a hyperparameter x ∈ X , we find the optimal model on the training datasets with
the training loss function g(x, y)

min
y∈Rm

g(x, y), (1)

where multiple optimal y, i.e., the set S(x), may exist. However, due to the randomness of the training
dataset and the algorithm design, the validation loss of the learnt model on a different validation
dataset could be as large as maxy∈S(x) f(x, y). To guarantee a more robust learning performance,
we aim to learn the hyperparameter x that excels in the worst case:

min
x∈X

max
y∈S(x)

f(x, y). (2)

Clearly, the robust hyperparameter learning in the eq. (2) is a concrete example of PBO. More details
on the choices of the functions f and g in practice could be found in Section 5.2.

For the problem studied in this paper, we make the following geometric assumptions. We assume
that the constraint set X is a convex and closed subset of Rn. Usually X has a simple structure, e.g.,
simplex or closed intervals, and the orthogonal projections to X are easy to compute. We also assume
that functions f and g are smooth enough such that the Lipschitz smooth conditions hold.
Assumption 1. For any given x ∈ X , f(x, y) is a concave function on y, and g(x, y) is a convex
function on y. Let θ = (x, y) and θ′ = (x′, y′). f(x, y) and g(x, y) are twice continuously
differentiable with Lipschitz continuous gradient and Hessian, i.e., there exist constants Lf , Lg, ρf
and ρg , such that for any x, x′ ∈ X , y, y′ ∈ Rm, we have

∥∇f(θ)−∇f(θ′)∥2 ≤ Lf∥θ − θ′∥2, ∥∇g(θ)−∇g(θ′)∥2 ≤ Lg∥θ − θ′∥2,
∥∇2f(θ)−∇2f(θ′)∥F ≤ ρf∥θ − θ′∥2, ∥∇2g(θ)−∇2g(θ′)∥F ≤ ρg∥θ − θ′∥2,

where ∇h and ∇2h denote the gradient and the Hessian matrix of a function h with respect to (w.r.t.)
θ, respectively, and ∥ · ∥F denotes the Frobenius norm of matrices.
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2.1 SINGLE-LEVEL REFORMULATION

In order to solve the PBO problem, let g∗(x) := miny∈Rm g(x, y) and we can first replace the set
S(x) by its equivalent form S(x) = {y ∈ Rm : g(x, y)− g∗(x) ≤ 0}, such that the original PBO
problem can be reformulated as the following problem:

min
x∈X

max
y∈Rm

f(x, y), s.t. g(x, y)− g∗(x) ≤ 0. (3)

For any small positive constants α and ξ, we further consider an (α, ξ)-relaxation of the problem in
eq. (3) defined below:

min
x∈X

max
y∈Rm

f(x, y), s.t. g(x, y)− g∗α(x)− ξ ≤ 0, (4)

where g∗α(x) := miny∈Rm gα(x, y) := g(x, y) + α
2 ∥y∥

2
2. The ℓ2-regularization ensures gα(x, y)

to be strongly convex on y, and hence the solution of miny∈Rm g(x, y) + α
2 ∥y∥

2
2 is unique for

any given x ∈ X . It can be shown that g∗α(x) is differentiable, and its gradient takes the form of
∇xg

∗
α(x) = (∇xgα(x, y))|y=y∗

α(x), where y∗α(x) := argminy∈Rm gα(x, y). Besides, the ξ in the
constraint guarantees that the relaxed problem eq. (4) has at least one strictly feasible point for any
given x ∈ X , which is vital for the problem to be solved efficiently. More importantly, it is worth to
note that the perturbation introduced by α and ξ is indeed controllable as shown below.
Proposition 1. For any fixed x ∈ X , define Φ(x) = maxy∈Rm{f(x, y) : g(x, y)− g∗(x) ≤ 0}, and
Φα,ξ(x) = maxy∈Rm{f(x, y) : g(x, y)− g∗α(x)− ξ ≤ 0}. It can be shown that |Φ(x)−Φα,ξ(x)| ≤
O(

√
α) +O(

√
ξ) for every x ∈ X , under some mild assumptions.

Proposition 1 indicates that the output of eq. (4) could be set arbitrarily close to that of the original
PBO problem by desire. The proof of Proposition 1 could be found in Appendix C.

Although the problem in eq. (4) enjoys properties like strict feasibility and continuously differentiable
constraints, the min-max structure therein is by nature much harder to solve than the pure minimization
problem. To tackle this challenge, we further convert it to a constrained minimization problem via
KKT conditions as follows.
Proposition 2. Let w ∈ W := [0,

∆f

ξ ] with ∆f := maxx,x′∈X ,y,y′∈Y |f(x, y) − f(x′, y′)|, and
Y := {y ∈ Rm : ∥y∥2 ≤ DY} with DY > 0, such that {y ∈ Rm : g(x, y)− g∗α(x)− ξ ≤ 0} ⊆ Y
for all x ∈ X . The minimax problem eq. (4) is equivalent to the following constrained optimization:

min
x∈X ,y∈Y,w∈W

f(x, y)

s.t. g(x, y)− g∗α(x)− ξ ≤ 0

−∇yf(x, y) + w∇yg(x, y) ≤ 0

∇yf(x, y)− w∇yg(x, y) ≤ 0

w(g(x, y)− g∗α(x)− ξ) ≤ 0

−w(g(x, y)− g∗α(x)− ξ) ≤ 0. (5)

Proposition 2 eliminates the “max” operation on y and simplifies the min-max problem to a min-
imization problem. Compared to eq. (4), we have four additional inequality constraints in eq. (5)
that correspond to −∇yf(x, y) + w∇yg(x, y) = 0 and w(g(x, y)− g∗α(x)− ξ) = 0, i.e., the KKT
conditions for y attaining the maximum of f(x, y) given g(x, y) − g∗α(x) − ξ ≤ 0. The proof of
Proposition 2 could be found in Appendix D.

In the rest of this paper, we solve the reformulated problem in Proposition 2, which indirectly solves
the original PBO in eq. (2). To simplify the notation, let z = (x, y, w), Z = X × Y ×W and h(z)
be the constraints in eq. (5). Then, the reformulated problem can be written as

min
z∈Z

f(z) s.t. h(z) ≤ 0. (6)

3 ALGORITHMS FOR PESSIMISTIC BILEVEL OPTIMIZATION

In this section, we propose two gradient based methods, namely the switching gradient method
(SG-PBO) and the primal-dual method (PD-PBO), to solve the PBO problem.
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Algorithm 1 Switching Gradient Pessimistic Bilevel Optimization (SG-PBO)

1: Input: Number of iterations T and N , stepsizes {γt}T−1
t=0 , violation tolerance ϵ

2: Initialize feasible indices set T = ∅ and z0 ∈ Z
3: for t = 1, ..., T do
4: Conduct projected gradient descent in eq. (7) for N times with any given ŷt

0 as initialization

5: if maxj

{(
ĥ(zt; ŷ

t
N )

)
j

}
≤ ϵ

2
then

6: T = T ∪ {t}
7: zt+1 = ΠZ

(
zt − γ−1

t ∇f(zt)
)

8: else
9: Let it = argmaxj

{(
ĥ(zt; ŷ

t
N )

)
j

}
.

10: zt+1 = ΠZ

(
zt − γ−1

t

(
∇̂h(zt; ŷ

t
N )

)
it

)
11: end if
12: end for
13: Output: z̄ =

∑
t∈T γtzt/

(∑
t∈T γt

)

3.1 SWITCHING GRADIENT BILEVEL OPTIMIZATION ALGORITHM

Motivated by the recent advance in constrained optimization (Ma et al., 2020; Lan & Zhou, 2016),
We first adopt a switching gradient method which features two different updates: either update the
variable z along the gradient descent direction of the objective function if all constraints are satisfied
(in order to minimize the objective), or update the variable z along the gradient descent direction of
the constraint that has the maximum violation (in order to enforce the constraints).

More specifically, suppose that the variable z is updated as zt = (xt, yt, wt) at iteration t. SG-PBO
first runs the following gradient descent over y w.r.t. gα(x, y)

ŷtn+1 = ŷtn − 2
Lg+2α

(
∇yg(xt, ŷ

t
n) + αŷtn

)
, (7)

such that gα(x, ŷtN ) serves as a good approximation for g∗α(xt) := maxy gα(xt, y) in the constraint.
We further denote ĥ(zt; ŷtN ) as the approximation of constraint h(z) with z = zt and g∗α(xt) replaced
by gα(x, ŷtN ).

Next, if the constraint is satisfied, i.e., all components of approximated constraint is small enough
(maxi{ĥ(zt; ŷtN )i} ≤ ϵ

2 for some prescribed ϵ > 0), then zt is updated along the gradient de-
scent direction of the objective function f(zt). Otherwise, zt is updated along the it-th row of
∇̂h(zt; ŷtN ), where it corresponds to the maximum constraint violation component, and ∇̂h(zt; ŷtN )
is the approximation of ∇h(z) where ∇h(z) could be derived from eq. (6) as:

∇h(z) =


(∇xg(θ)−∇xg

∗
α(x))

⊤ (∇yg(θ))
⊤ 0

−∇2
yxf(θ) + w∇2

yxg(θ) −∇2
yyf(θ) + w∇2

yyg(θ) ∇yg(θ)
∇2

yxf(θ)− w∇2
yxg(θ) ∇2

yyf(θ)− w∇2
yyg(θ) −∇yg(θ)

w (∇xg(θ)−∇xg
∗
α(x))

⊤
w (∇yg(θ))

⊤
g(θ)− g∗α(x)− ξ

−w (∇xg(θ)−∇xg
∗
α(x))

⊤ −w (∇yg(θ))
⊤ −g(θ) + g∗α(x) + ξ

 ,

(8)

where θ = (x, y) for short. ∇̂h(zt; ŷtN ) is obtained from ∇h(zt) by replacing g∗α(xt) and ∇g∗α(xt)
with gα(x, ŷtN ) and ∇xgα(xt, ŷ

t
N ), respectively.

More details about SG-PBO can be found in Algorithm 1.Note that although the gradient of ∇h(z)
in eq. (8) involves the calculation of the second-order Jacobian and Hessian terms of f and g, the
computational complexity is not demanding since each update uses only one row of the matrix.

3.2 PRIMAL-DUAL BILEVEL OPTIMIZATION ALGORITHM

The primal-dual method solves the minimax problem over the Lagrangian function defined below:

min
z∈Z

max
λ∈Rp

+

L(z, λ) := f(z) + ⟨h(z), λ⟩, (9)
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where λ ∈ Rp
+ is the dual variable, by alternatively updating the primal variable z and the dual variable

λ through gradient descent and gradient ascent, respectively. Because the gradients ∇zL(z, λ) =
∇zf(z) + (∇zh(z))

⊤λ and ∇λL(z, λ) = h(z), we also need to run a subroutine to estimate h(z)
and ∇zh(z), as what we have done in eq. (7). Then, the estimations of ∇zL(z, λ) and ∇λL(z, λ)
at the iterate (zt, λt+1) immediately follow: ∇̂zL(zt, λt+1; ŷ

t
N ) = ∇zf(zt) + (∇̂zh(zt; ŷ

t
N ))⊤λt+1

and ∇̂λL(zt, λt+1) = ĥ(zt; ŷ
t
N ).

We then conduct the accelerated gradient ascent and gradient descent to the Lagrangian:

λt+1 = ΠΛ

(
λt +

1
ηt

(
(1 + θt)ĥ(zt; ŷ

t
N )− θtĥ(zt−1; ŷ

t−1
N )

))
, (10)

zt+1 = ΠZ
(
zt − 1

τt
∇̂zL(zt, λt+1; ŷ

t
N )
)
, (11)

where τt, ηt are the stepsizes, θt is the momentum weight, and Λ ⊆ R+ is a closed and bounded set.
The entire PD-PBO method is formally described in Algorithm 2.

Algorithm 2 Primal-Dual Pessimistic Bilevel Optimization (PD-PBO)
1: Input: stepsizes ηt, τt, momentum weights θt, output weight γt, initialization z0, λ0, and iteration times T

and N

2: for t = 0, 1, ..., T − 1 do
3: Conduct projected gradient descent in eq. (7) for N times with any given ŷt

0 as initialization
4: Update λt+1 according to eq. (10)
5: Update zt+1 according to eq. (11)
6: end for
7: Output: z̄ = 1

ΓT

∑T−1
t=0 γtzt+1, where ΓT =

∑T−1
t=0 γt

4 THEORETICAL ANALYSIS OF SG-PBO AND PD-PBO

In this section, we provide the convergence analysis of both Algorithms 1 and 2. To this end, we first
make the following assumption on the regularized objective and constrained functions.
Assumption 2. f(z) and each entry of h(z) are strongly convex, Lipschitz continuous and smooth.
Namely, there exist positive constants µ, L and M , such that for all z, z′ ∈ Z ,
L
2 ∥z

′ − z∥22 ≥ J(z′)− J(z)− ⟨∇zJ(z), z
′ − z⟩ ≥ µ

2 ∥z
′ − z∥22, |J(z)− J(z′)| ≤M∥z − z′∥2,

where J(z) represents either f(z) or one of the entry functions of h(z). Further, there exists a strictly
feasible point z̃ ∈ Z .

The assumption on convexity ensures that we could efficiently solve the problem globally. Next, we
introduce the following definition to characterize the criterion of convergence.
Definition 1. Let z∗ be the solution to the constrained optimization in eq. (6) and ϵ ≥ 0 be a constant.
We say z ∈ Z is an ϵ-accurate solution if f(z) ≤ f(z∗) + ϵ and h(z) ≤ ϵ.

We characterize the convergence performance of Algorithms 1 and 2 in the following two theorems.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Let γt =
µ(t+1)

2 , T = O
(
1
ϵ

)
,N ≥ O

(
log
(
1
ϵ

))
,

and z̄ be the output of Algorithm 1. Then we have

f(z̄)− f(z∗) ≤ ϵ, and max
j

{(h(z̄))j} ≤ ϵ,

which indicates that z̄ is an ϵ-accurate solution of the problem in eq. (6).

Theorem 1 shows that SG-PBO could solve the problem in eq. (6) to any arbitrary accuracy level
ϵ with a gradient computation complexity of TN = O

(
1
ϵ log(

1
ϵ )
)
. Furthermore, the computation

complexity of the second order Jacobian matrix is upper-bounded by T/(2m+3) = O( 1
mϵ ), since at

each iteration SG-PBO at most computes one row of the matrix in line 10 of Algorithm 1. The formal
statement of Theorem 1 is provided in Appendix. Compared to the standard analysis for constrained
convex optimization (Boob et al., 2019; Ma et al., 2020), our analysis needs to carefully deal with the
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bias error of the function estimation ĥ(zt; ŷtN ) and the bias error of the Jocobian matrix estimation
∇̂h(zt; ŷtN ), which are resulted by the fact that ŷtN is only an approximation of a minimum point of
the inner function of PBO.
Theorem 2. Suppose that Assumptions 1 and 2 hold. Let γt = O(t), ηt = O(t), τt = O

(
1
t

)
,

θt = γt+1

γt
, and Λ = {λ ∈ Rp : 0 ≤ λ ≤ B} for some positive constant B. Moreover, let

T = O
(

1√
ϵ

)
, N = O

(
log
(
1
ϵ

))
and z̄ be the output of Algorithm 2. Then we have

fϕ(z̄)− f(z∗) ≤ ϵ, and max
j

{(h(z̄))j} ≤ ϵ,

which indicates that z̄ is an ϵ-accurate solution of the problem in eq. (6).

Theorem 2 shows that PD-PBO could solve the problem in eq. (6) to any prescribed ϵ with a gradient
computation complexity of TN = O

(
1√
ϵ
log
(
1
ϵ

))
. Moreover, because in line 5 of Algorithm 2 (i.e.,

eq. (43)) PD-PBO needs the information of the entire Jacobian matrix, the computation complexity
of second order oracle equals to T = O

(
1√
ϵ

)
. The formal statement of Theorem 2 is given in

Appendix. Due to the nature of pessimistic bilevel optimization, we also have to treat the bias error
of the function estimation ĥ(zt; ŷtN ) and the bias error of the Jacobian matrix estimation ∇̂h(zt; ŷtN ),
which makes our analysis more challenging than that in generic optimization (Boob et al., 2019).

Remark. We provide the comparison of SG-PBO and PD-PBO in Table 1. It can be seen that
PD-PBO has a lower complexity on the first-order orcale compared to SG-PBO. The complexity on
second-order computation depends on the dimension m and the accuracy level ϵ, i.e., if m

√
ϵ > 1,

SG-PBO has a better rate; otherwise, PD-PBO would be a better choice.

first-order orcale second-order orcale

SG-PBO O
(
1
ϵ log

(
1
ϵ

))
O
(

1
mϵ

)
PD-PBO O

(
1√
ϵ
log
(
1
ϵ

))
O
(

1√
ϵ

)
Table 1: Comparison between SG-PBO and PD-PBO on the first- and second-order oracle computation

5 EXPERIMENTS

In this section, we conduct experimental studies on two specific problems to verify that the proposed
SG-PBO and PD-PBO indeed solve the PBO.

5.1 ILLUSTRATIVE EXAMPLE

Consider the following example:

min
x∈R

max
y∈S(x)

−xy s.t. x2 + y2 − 1 ≤ 0, (12)

where S(x) is the set of solutions to the following inner-level optimization with a fixed x ∈ R,

min
y∈R

g(x, y) :=

{
|y − |x||3, |y| ≥ |x|
0, −|x| ≤ y ≤ |x|

.

It is clear that S(x) = {y ∈ R : |y| ≤ |x|} and g∗(x) = 0. For any fixed α, g∗α(x) = 0. More details
like the KKT reformulation and the exact forms of gradients could be find in Appendix H.

Figure 1 shows the performance of both SG-PBO (Algorithm 1) and PD-PBO (Algorithm 2) in
solving the problem eq. (12), where the x-axis denotes the iteration number. It is clear that both
algorithms could solve the objective function to its global minimum efficiently. Besides, as illustrated
in the left figure in Figure 1, SG-PBO converges at a faster rate than PD-PBO. This is because
SG-PBO enforces the constraints only when the threshold ϵ is violated and will focus solely in
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Figure 1: Comparison of PD-PBO and SG-PBO for the illustrative example in eq. (12)

minimizing the outer objective f when all the constraints are less than ϵ. Whereas PD-PBO will
always minimize the Lagrangian, which may result in unnecessary delays in minimizing f when
all the constraints are satisfied. Moreover, the left figure of Figure 1 indicates that the constraint
violation in SG-PBO decreases much faster than that in PD-PBO. Recall that the update direction of
PD-PBO is ∇f(zt) + ⟨∇h(zt), λt+1⟩, where the i-th constraint gets penalized when the i-th entry of
λ is large enough. Since PD-PBO updates the primal variables based on the constraints’ value after
observing the updates of λ, it is not hard to tell that the decrease of constraint violation would be
slow if the stepsize for updating λ is small.

5.2 LEARNING ROBUST HYPER-REPRESENTATION

In the hyper-representation (HR) (Grazzi et al., 2020a; Franceschi et al., 2017) problem, the goal
is to find good representations of the data that can be used for subsequent regression/classification
problem by following a two-phase optimization process. The PBO framework can be used to robustly
learn such representations. More specifically, we consider the following formulation:

min
Λ∈Rd×m

max
w∗∈SΛ

L (hΛ(X1)w
∗, Y1) (13)

with SΛ = argmin
w∈Rm

L(hΛ(X2)w, Y2)

where hΛ(·) is the embedding model (linear transformation in this case) parameterized by the
matrix Λ, and the vector w corresponds to the parameters of a linear regression/classification model.
X1 ∈ Rn1×d and X2 ∈ Rn2×d are the matrices of outer (validation) and inner (training) data.
Y1 ∈ Rn1 and Y2 ∈ Rn2 are the corresponding label vectors, respectively.
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Figure 2: Comparison of PD-PBO and SG-PBO for the robust HR problem in eq. (13) with m = 512

Intuitively, the inner problem in eq. (13) finds the set SΛ of best model parameters w∗, and the
upper problem optimizes Λ so that the worst performing w∗ in SΛ yields minimal validation error.
Representations learned this way are robust as they allow all minimizers in SΛ to achieve low
validation error. Note that this problem is intrinsically hard because one needs to compute the set SΛ,
which can be untractable. Fortunately, our proposed algorithms SG-PBO and PD-PBO provide a way
to solve problem eq. (13) without having to explicitely find the set SΛ.

In our experiments, we consider regression problems where the loss function L(·, ·) corresponds
to the squared ℓ2-norm. We conduct the experiments on synthetic random data as in Grazzi et al.
(2020a). The input matrices X1 and X2 are well conditioned and Gaussian with zero mean and unit
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Figure 3: Comparison of PD-PBO and SG-PBO for the robust HR problem in eq. (13) withm = 1024

Algo m = 512 m = 1024

SG-PBO 0.29 0.57

PD-PBO 0.32 0.65

Table 2: Iteration time (s). The running time of each iteration of SG-PBO and PD-PBO scale similarly
w.r.t. the dimension m but with SG-PBO slightly faster.

variance. We generate the outputs Y1 and Y2 by applying a linear model on a subset of the features
(20% of the features) and adding a random Gaussian noise term.

Figures 2 and 3 show the performance comparisons between SG-PBO and PD-PBO w.r.t. the running
time for solving the HR problem, when the representation dimension is set tom = 512 andm = 1024,
respectively. As depicted, both algorithms solve the problem within a comparable time frame, while
SG-PBO is slightly faster. We note the following remarks about the plots in Figures 2 and 3, which are
intuitively expected. (a) SG-PBO by design tries to minimize the maximum constraint violation and
hence is more stable at achieving this goal compared to PD-PBO (middle plots in Figures 2 and 3), but
this can come with a less stable minimization of the outer objective (left plot in Figure 2). (b) Because
SG-PBO enforces the constraints more effectively, it also achieves a better optimization of the inner
problem, which is just one of the constraints in our reformulation. The fact that SG-PBO algorithm
is more sensitive to the constraint violations is intuitively expected. Indeed, during the algorithm
running, whenever some certain constraints are not satisfied, then SG-PBO directly penalizes the
maximum violation with no delay in line 10 of Algorithm 1. However, the PD-PBO algorithm
penalizes the violated constraints through increasing the corresponding Lagrangian terms in λ, i.e.
push the updating direction of z closer to the directions alleviating the violation. We provide the
iteration time comparison of SG-PBO and PD-PBO in Table 2, where SG-PBO and PD-PBO scale
similarly with the problem dimension m and SG-PBO is slightly faster.

6 CONCLUSIONS

In this paper, we provide the first gradient-based algorithms, namely SG-PBO, PD-PDO and Prox-
PBO (in Appendix A), for pessimistic bilevel optimization. Our algorithmic design features a novel
single-level reformulation which has controllable gap from the original PBO. Later, we provide the
convergence rate analysis of the SG-PBO and PD-PBO and show that they both could converge
sublinearly to the ϵ-accurate solution of the reformulated problem when it is strongly convex. For
the general nonconvex reformulated problem, we further show the convergence of Prox-PBO to
the an ϵ-KKT point in Appendix G. Since the reformulated problem can be arbitrarily close to the
original PBO given suitable parameters, all the convergence guarantees for the reformulated problem
immediately apply to the original PBO. Our experiments on an illustrative example and the robust
hyper-representation learning problem clearly validate our algorithmic design and theoretical analysis.
More importantly, beyond the novel contribution in PBO, the techniques proposed in this paper
could also be applied in other areas including optimistic bilevel optimization, constrained minimax
problems, and constrained bilevel optimization. We refer the reader to Appendix B for elaborated
discussions.
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A PROXIMAL METHOD FOR PESSIMISTIC BILEVEL OPTIMIZATION

Building on the foundation of Sections 3 and 4 where we study the pessimistic bilevel optimization
in eq. (6) when it is strongly convex (Assumption 2), we next propose a proximal point method (Ma
et al., 2020; Boob et al., 2019), so as to solve the constrained optimization problem eq. (5) (which is
nonconvex optimization with a nonconvex constraint) with stronger convergence guarantee. More
specifically, at each iteration k, we add regularizers centered at the current solution (z̃k) to both the
objective and constrained functions, resulting in a subproblem Pk which satisfies Assumption 2 when
regularization parameter σ is large enough. Next, we call a solver to solve Pk to a β

4K -accurate
solution, denoted by z̃k+1, which will serve as the regularizers for the next subproblem Pk+1. After
K iterations, the algorithm picks uniformly at random one of the z̃k as the output. More details are
provided in Algorithm 3.

Algorithm 3 Proximal Pessimistic Bilevel Optimization (Prox-PBO)
1: Input: Number of iterations K, T , relaxation level β, regularization parameter σ, and initial point z̃1.
2: for k = 1, ...,K do
3: Set the kth subproblem (Pk) as

min
z∈Z

f(z) + σ
2
∥z − z̃k∥22

s.t. h(z) + σ
2
∥z − z̃k∥22 − kβ

K
≤ 0. (14)

4: Call solver to solve Pk to a β
4K

-accurate solution
5: end for
6: Pick k̂ from {1, . . . ,K} uniformly at random
7: Output: z̃k̂

Remark. (1) As shown in Section 4, both SG-PBO and PD-PBO could solve Pk to any prescribed
accuracy efficiently with suitable hyperparameters. By setting the accurate-level being β

4K , z̃k+1

will violates the constraints of Pk by no more than β
4K . (2) To ensure that the next subproblem

is solvable, previous studies (Ma et al., 2020; Boob et al., 2019) made strong assumptions on the
original nonconvex problem, such as uniformly Slater condition and strong feasibility. However, the
fact that the constraints in PBO are related to the derivative of g makes these assumptions impossible
to be satisfied in general. To address this challenge, we devise a gradually enlarged relaxation scheme
on the constraints in Algorithm 3, i.e., the −kβ

K term in the constraints in eq. (14). Through gradually
increasing the relaxation by β

K in each iteration, z̃k+1 is still β
2K strictly feasible for constraints in

next subproblem, even if it may violate the current constraints by β
2K . The analysis of Algorithm 3 is

postponed to Appendix G, after the proofs of convergences of SG-PBO and PD-PBO.

B DISCUSSIONS AND EXTENSIONS

In this section, we discuss a few other problems, for which our proposed approach can serve as either
a new or the first-known algorithm with the convergence rate characterization.

B.1 PESSIMISTIC VS OPTIMISTIC BILEVEL OPTIMIZATION PROBLEMS

We compare the two main classes of bilevel problems, i.e., optimistic bilevel optimization (OBO) and
pessimistic bilevel optimization (PBO). Recall that the optimistic bilevel optimization is given by the
following form:

min
x∈X ,y∈S(x)

f(x, y), with S(x) = argmin
y∈Rm

g(x, y).

One approach to solve such a problem is to reformulate it as in eq. (3) as follows:

min
x∈X ,y∈Rm

f(x, y) s.t. g(x, y)− g∗(x) ≤ 0.
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It is clear that the above form is already a single-level constrained optimization, because the outer-
level is taken as miny∈Y , which is the same as minx∈X , so that (x, y) can be viewed as a joint vector
to be minimized.

However, the pessimistic bilevel optimization studied in this paper is very different. Even in the
reformulation in eq. (3), the outer-level is a minimax form over minx∈X and maxy∈Y , and hence
(x, y) cannot be treated as one joint vector yet. Instead, KKT-condition is applied to reformulate
the constrained maximization over y, so as to change the problem to a single-level constrained
optimization. Thus, the final structure of such a reformulated problem is very different from that
resulted from the OBO problem.

The Prox-PBO algorithm we provide here can be applied to solve the reformulated problem in OBO,
and the convergence rate can be developed in a similar way. This serves as an alternative approach to
the primal-dual approach recently developed in Sow et al. (2022) for OBO.

B.2 CONNECTION TO CONSTRAINED MINIMAX PROBLEMS

As we stated in Section 2.1, the original bilevel optimization is equivalent to the constrained minimax
problem defined in eq. (3). We write such a constrained minimax optimization in a generic form as
follows:

min
x∈X

max
y∈Y

f(x, y) s.t. h(x, y) ≤ 0. (15)

Suppose for any given x, f(x, y) is concave on y, and h(x, y) is convex on y. The problem in eq. (15)
is an open problem, and no algorithm has been proposed with theoretical guarantee. Interestingly,
it is clear that our approach in this paper solves the above problem by first reformulating it into a
single-level optimization problem as in Proposition 2 and then applying our Prox-PBO algorithm.
This also serves as the first-known approach with provable convergence rate guarantee for solving
the problem.

We next briefly comment that it appears challenging to solve the above constrained minimax optimiza-
tion directly (without the reformulation) in eq. (15) by applying the conventional primal-dual method
for constrained optimization, even if f(x, y) is convex-concave, and h(x, y) is convex on y for any
given x. Namely, define the Lagrangian function as L(x, y, λ) = f(x, y) − λh(x, y), and define
the dual function as ψ(x, λ) := maxy∈Y f(x, y)− λh(x, y). Based on the convexity of h(x, y) and
concavity of f(x, y) on y, the strong duality still holds here, and hence minx,λ ψ(x, λ) will provide
the solution of the original problem. However, it is easy to show that L(x, y, λ) is not convex jointly
on (x, λ) for each fixed y, and hence ψ(x, y) is in general nonconvex. It appears challenging here to
design an efficient algorithm with certain convergence guarantee for solving such a dual problem.

B.3 CONSTRAINED BILEVEL OPTIMIZATION

Our approach can also be applied to the constrained bilevel problem, where the outer-level problem
has additional constraint, as described below:

min
x∈X

max
y∈S(x)

f(x, y), s.t. F (x, y) ≤ 0, where S(x) := argmin
y∈Rm

g(x, y).

For such a more general problem, we can still reformulate the problem as in eq. (3), and then simply
treat the constraint on F (x, y) as an additional constraint and further reformulate the problem as in
Proposition 2. We can finally apply our Prox-PBO algorithm to solve the reformulated problem. The
convergence guarantee can be similarly derived.

C PROOF OF PROPOSITION 1

To prove the proposition, we may further assume that, for every x ∈ X and y ∈ Rm such that
∇yg(x, y) ̸= 0, λmin(∇2

yyg(x, y)) > κ, where λmin(·) denotes the minimum eigenvalue of a
matrix, and κ > 0 is a constant. This assumption requires that the function g(x, y) is discriminative
enough. Such an assumption is standard in the literature (Li et al., 2020).

Given an x ∈ X , it is clear that
{y ∈ Rm : g(x, y)− g∗(x) ≤ 0} ⊆ {y ∈ Rm : g(x, y)− g∗α(x)− ξ ≤ 0}.
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Thus, we have

Φ(x) = max
y∈Rm

{f(x, y) : g(x, y)−g∗(x) ≤ 0} ≤ max
y∈Rm

{f(x, y) : g(x, y)−g∗α(x)−ξ ≤ 0} = Φα,ξ(x).

(16)
Moreover, suppose y∗(x) ∈ {y ∈ Rm : g(x, y)− g∗(x) ≤ 0} and y∗α,ξ(x) ∈ {y ∈ Rm : g(x, y)−
g∗α(x)− ξ ≤ 0} satisfying f(x, y∗(x)) = Φ(x) and f(x, y∗α,ξ(x)) = Φα,ξ(x). Then, there exist two
conditions:

(a). Suppose y∗α,ξ(x) ∈ {y ∈ Rm : g(x, y)− g∗(x) ≤ 0}. Then, by the definition of Φ(x), we have

Φα,ξ(x) = f(x, y∗α,ξ(x)) ≤ max
y∈Rm

{f(x, y) : g(x, y)− g∗(x) ≤ 0} = Φ(x). (17)

(b). Suppose y∗α,ξ(x) ̸∈ {y ∈ Rm : g(x, y) − g∗(x) ≤ 0}. Because g(x, y) is convex on y,
S(x) = {y ∈ Rm : g(x, y) − g∗(x) ≤ 0} is a convex set. Let ỹ be the orthogonal projection of
y∗α,ξ(x) on S(x). Since ỹ ∈ S(x), we have

g(x, y∗α,ξ(x))− g∗(x) = g(x, y∗α,ξ(x))− g(x, ỹ)

=

∫ 1

t=0

⟨∇yg(x, ỹ + t(y∗α,ξ(x)− ỹ)), y∗α,ξ(x)− ỹ)⟩dt

=

∫ 1

t=0

〈∫ t

s=0

∇2
yyg(x, ỹ + s(y∗α,ξ(x)− ỹ))ds, y∗α,ξ(x)− ỹ)

〉
dt

=

∫ 1

t=0

∫ t

s=0

(y∗α,ξ(x)− ỹ)⊤∇2
yyg(x, ỹ + s(y∗α,ξ(x)− ỹ))(y∗α,ξ(x)− ỹ))dsdt

(i)

≥ κ
2 ∥y

∗
α,ξ(x)− ỹ∥22, (18)

where (i) follows from the facts that, for any s ∈ [0, t] ⊆ [0, 1], ∇yg(x, y(s)) ̸= 0, where we denote
y(s) := ỹ + s(y∗α,ξ(x)− ỹ) for short, and thus

(y∗α,ξ(x)−ỹ)⊤∇2
yyg(x, y(s))(y

∗
α,ξ(x)−ỹ) ≥ λmin(∇2

yyg(x, y(s))∥y∗α,ξ(x)−ỹ∥22 > κ∥y∗α,ξ(x)−ỹ∥22.

Moreover, it is clear that

g(x, y∗α,ξ(x))
(i)

≤ g∗α(x) + ξ
(ii)

≤ g∗(x) + α
2D

2
Y + ξ, (19)

where (i) follows from the fact that y∗α,ξ(x) ∈ {y ∈ Rm : g(x, y)−g∗α(x)− ξ ≤ 0}, and (ii) follows
from g∗α(x) ≤ gα(x, y

∗(x)) = g(x, y∗(x)) + α
2 ∥y

∗(x)∥22 ≤ g∗(x) + α
2D

2
Y .

Combining eqs. (18) and (19), we obtain

∥y∗α,ξ(x)− ỹ∥2 ≤
√

2
κ (

D2
Y
2 α+ ξ). (20)

By the Lipschitz continuity of f(x, y), there exists M > 0 such that

f(x, y∗α,ξ(x)) ≤ f(x, ỹ) +M∥y∗α,ξ(x)− ỹ∥2
(i)
= f(x, y∗(x)) +M∥y∗α,ξ(x)− ỹ∥2
(ii)

≤ f(x, y∗(x)) +M

√
2
κ (

D2
Y
2 α+ ξ), (21)

where (i) follows from ỹ ∈ {y ∈ Rn : g(x, y)− g∗(x) ≤ 0}, and (ii) follows from eq. (20).

Equation (21) implies that Φα,ξ(x) ≤ Φ(x) +O(
√
ξ) +O(

√
α). Together with eqs. (16) and (17),

we complete the proof.

D PROOF OF PROPOSITION 2

Lemma 1. For any given x ∈ X , consider the following constrained optimization problem.

min
y∈Rm

− f(x, y)

16
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s.t. g(x, y)− g∗α(x)− ξ ≤ 0. (22)

There exists y∗(x) ∈ Y that attains the solution of the above problem. Moreover, there exists
w∗(x) ≥ 0, such that the following KKT condition holds.

−∇yf(x, y
∗(x)) + w∗(x)∇yg(x, y) = 0

w∗(x)g(x, y∗(x))− g∗α(x)− ξ) = 0. (23)

For all w∗(x) satisfying the above KKT condition, we have w∗(x) ≤ ∆f

ξ with

∆f := max
x,x′∈X ,y,y′∈Y

|f(x, y)− f(x′, y′)|.

Proof. Given x ∈ X , let ỹ ∈ S(x). We have g(x, ỹ)− g∗α(x)− ξ ≤ −ξ. Thus, ỹ is a strictly feasible
point with margin ξ for the problem in eq. (22).

Define the dual function d(w) = miny∈Rm −f(x, y) + w(g(x, y) − g∗α(x) − ξ). By its definition,
we have, for any w ∈ R+ and y ∈ Rm,

d(w) ≤ −f(x, ỹ) + w(g(x, y)− g∗α(x)− ξ) = −f(x, ỹ)− wξ, (24)

Moreover, it is known that convex constrained optimization has no duality gap Lan (2020). And the
existence of ỹ ensures the Slater’s condition holds. Therefore, the existence of y∗(x) and w∗(x) is
ensured. And, eq. (23) is the necessary and sufficient condition for the optimality of eq. (22). In the
other words, d(w∗(x)) = d∗ = p∗ = −f(x, y∗(x)). Taking w = w∗(x) in eq. (24), we obtain

−f(x, y∗(x)) = d(w∗(x)) ≤ −f(x, ỹ)− w∗(x)ξ.

Rearranging terms in the above inequality, we have

w∗(x) ≤ f(x, y∗(x))− f(x, ỹ)

ξ

(i)

≤ ∆f

ξ
.

where (i) follows from the definition of ∆f .

Proposition 3 (Restatement of Proposition 2). The minimax problem eq. (4) is equivalent to the
following constrained optimization:

min
z∈Z

f(z)

s.t. h(z) :=


g(x, y)− g∗α(x)− ξ

−∇yf(x, y) + w∇yg(x, y)
∇yf(x, y)− w∇yg(x, y)
w(g(x, y)− g∗α(x)− ξ)
−w(g(x, y)− g∗α(x)− ξ)

 ≤ 0, (25)

where z = (x, y, z), W := [0,
∆f

ξ ], with ∆f := maxx,x′∈X ,y,y′∈Y |f(x, y) − f(x′, y′)|, and Y :=

{y ∈ Rm : ∥y∥2 ≤ DY} with DY > 0, such that, for all x ∈ X , {y ∈ Rm : g(x, y)− g∗α(x)− ξ ≤
0} ⊆ Y , Z = X × Y ×W , and f(z) = f(x, y).

Proof. Let p∗ = minx∈X {ψ(x) := maxy∈Rm {f(x, y) : g(x, y)− g∗α(x)− ξ ≤ 0}} be the solution
of eq. (4). And let p∗r = minx∈X ψr(x) be the solution of eq. (25), with

ψr(x) := min
y∈Y,w∈W

f(x, y)

s.t. g(x, y)− g∗α(x)− ξ ≤ 0

−∇yf(x, y) + w∇yg(x, y) = 0

w(g(x, y)− g∗α(x)− ξ) = 0. (26)

By Lemma 1, the feasible set for a given x ∈ X of eq. (26) is non-empty, i.e., there exist at least
(y∗(x), w∗(x)) ∈ Y ×W satisfying all three constraints, which implies ψr(x) ≤ +∞. Moreover,
for all (y, w) in the feasible set of eq. (26), we have it satisfies the KKT condition and g(x, y) −
g∗α(x)− ξ ≤ 0, which the sufficient condition for y to be the solution of eq. (4), i.e., f(x, y) = ψ(x).
Therefore, we have ψ(x) = ψr(x) for all x ∈ X , which complete the proof.
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E PROOF OF THEOREM 1

Lemma 2 (Theorem 2.2.14 Nesterov et al. (2018)). Suppose Assumption 1 holds Consider the
gradient descent in eq. (7). We have

∥ŷtN − y∗α(xt)∥2 ≤
(
1− α

Lg+2α

)N
∥ŷ0 − ỹ∗(xt)∥2.

Lemma 3. (Three-point lemma, (Lan, 2020, Lemma 3.5)). Given Z ⊆ Rq is a convex an closed set,
let zt+1 = ΠZ (zt −G), where G ∈ Rq . Then, for any point z ∈ Z , we have

⟨G, z − zt+1⟩ ≥ 1
2∥z − zt+1∥22 + 1

2∥zt+1 − zt∥22 − 1
2∥z − zt∥22.

Lemma 4. Suppose Assumptions 1 and 2 hold. LetH(z) := maxj

{
(h(z))j

}
. Consider it, ĥ(zt; ŷtN )

and ∇̂h(zt; ŷtN ) specified in Algorithm 1. We have∣∣∣(ĥ(zt; ŷtN ))it −H(zt)
∣∣∣ ≤ (Lg + α)D2

YDZ

(
1− α

Lg+2α

)N
.

Moreover, let ∂̂H(zt) = (∇̂h(zt; ŷtN ))it , we have for all z ∈ Z ,

H(z) ≥ H(zt) + ⟨∂̂H(zt), z − zt⟩+ µ
2 ∥z − zt∥22 − 4(Lg + α)DYD

2
Z

(
1− α

Lg+2α

)N
.

Proof. Because each entry of h(z) is a strongly convex function, we have H(z) is also a strongly
convex function. Moreover, for any given z ∈ Z , let I(z) := argmaxj

{
(h(z))j

}
, we have

∇(h(z))I(z) ∈ ∂H(z).

(a). Suppose I(zt) = it.

Observing the form of ĥ(zt; ŷtN ), only its first and last two entries do not equal to h(zt). Thus, we
have ∣∣∣∣(ĥ(zt; ŷtN )

)
it
−H(zt)

∣∣∣∣ ≤ max
{
|gα(xt, ŷtN )− g∗α(xt)|, |wt(gα(xt, ŷ

t
N )− g∗α(xt))|

}
(i)

≤ DZ |gα(xt, ŷtN )− g∗α(xt)|
(ii)

≤ (Lg + α)DYDZ∥ŷtN − y∗α(xt)∥2
(iii)

≤ (Lg + α)D2
YDZ

(
1− α

Lg+2α

)N
, (27)

where (i) follows from wt ≤ DZ , (ii) follows from that gα(z) is (Lg + α)DY Lipschitz continuous,
and (iii) follows from Lemma 2.

It is clear that ∂̂H(zt)− ∂H(zt) ̸= 0 if and only if it selects the first or the last two constraints, i.e.,
∥∂̂H(zt)− ∂H(zt)∥2 equals one of the following three: 0, ∥((∇xgα(xt, ŷ

t
N )−∇xg

∗
α(x))

⊤, 0, 0)∥2,
or ∥(wt(∇xgα(xt, ŷ

t
N )−∇xg

∗
α(xt))

⊤, 0, gα(xt, ŷ
t
N )− g∗α(xt))∥2. Thus, we have

∥∂̂H(zt)− ∂H(zt)∥2 ≤
√
w2

t ∥∇xgα(xt, ŷtN )−∇xg∗α(xt)∥22 + ∥gα(xt, ŷtN )− g∗α(xt)∥22
(i)

≤ wt∥∇xgα(xt, ŷ
t
N )−∇xg

∗
α(xt)∥2 + ∥gα(xt, ŷtN )− g∗α(xt)∥2

(ii)

≤ DZ(Lg + α)∥y∗α(xt)− ŷtN∥2 + (Lg + α)DZ∥y∗α(xt)− ŷtN∥2
(iii)

≤ 2(Lg + α)DZDY

(
1− α

Lg+2α

)N
, (28)

where (i) follows from the
√
x+ y ≤

√
x +

√
y for x, y ≥ 0, (ii) follows from ∇xg(x, y) is

Lg + α gradient Lipschitz, wt ≤ DZ , and gα(x, y) is (Lg + α)DZ Lipschitz continuous, and (iii)
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follows from Lemma 2. Following the definition of ∂H(zt), strong convexity, and Cauchy Schwartz
inequality, we obtain

H(z) ≥ H(zt) + ⟨∂̂H(zt), z − zt⟩+ µ
2 ∥z − zt∥22 − 2(Lg + α)D2

ZDY

(
1− α

Lg+2α

)N
. (29)

(b). Suppose I(zt) ̸= it.

Similar to eq. (27), we have
∣∣∣(ĥ(zt; ŷtN ))it − (h(zt))it

∣∣∣ ≤ (Lg + α)D2
YDZ

(
1− α

Lg+2α

)N
and∣∣∣(ĥ(zt; ŷtN ))I(zt) −H(zt)

∣∣∣ ≤ (Lg + α)D2
YDZ

(
1− α

Lg+2α

)N
.

Together with the facts that (ĥ(zt; ŷtN ))I(z) ≤ (ĥ(zt; ŷ
t
N ))it and H(zt) ≥ (h(zt))it , we have∣∣∣(ĥ(zt; ŷtN ))it −H(zt)

∣∣∣ ≤ (Lg + α)D2
YDZ

(
1− α

Lg+2α

)N
(30)

H(zt)− 2(Lg + α)D2
YDZ

(
1− α

Lg+2α

)N
≤ (h(zt))it ≤ H(zt). (31)

Given z ∈ Z , following the strong convexity of (h(z))it , we have

H(z) ≥ (h(z))i ≥ (h(zt))it + ⟨∇(h(zt))it , z − zt⟩+ µ
2 ∥z − zt∥22

(i)

≥ H(zt)− 2(Lg + α)D2
YDZ

(
1− α

Lg+2α

)N
+ ⟨∂̂H(zt), z − zt⟩+ µ

2 ∥z − zt∥22

+ ⟨∇(h(zt))it − ∂̂H(zt), z − zt⟩
(ii)

≥ H(zt) + ⟨∂̂H(zt), z − zt⟩+ µ
2 ∥z − zt∥22 − 4(Lg + α)DYD

2
Z

(
1− α

Lg+2α

)N
, (32)

where (i) follows from eq. (31) and (ii) follow from eq. (28), Cauchy-Schwartz inequality and
DY ≤ DZ .

Thus, from eqs. (27) and (30), we conclude∣∣∣(ĥ(zt; ŷtN ))it −H(zt)
∣∣∣ ≤ (Lg + α)D2

YDZ

(
1− α

Lg+2α

)N
.

From eqs. (29) and (32), we conclude

H(z) ≥ H(zt) + ⟨∂̂H(zt), z − zt⟩+ µ
2 ∥z − zt∥22 − 4(Lg + α)DYD

2
Z

(
1− α

Lg+2α

)N
.

Theorem 3 (Formal Statement of Theorem 1). Suppose Assumptions 1 and 2 holds. Consider
Algorithm 1. Let γt =

µ(t+1)
2 , T ≥ 4M2

µϵ , and N ≥ log
(

ϵ
4(T+2)2(Lg+α)DYD2

Z

)
/ log(1− α

Lg+2α ).
Then, we have

f(z̄)− f(z∗) ≤ ϵ, and max
j

{
(h(z̄))j

}
≤ ϵ.

In the other words, we have z̄ is an ϵ-accurate solution of eq. (6).

Proof. We let H(z) = maxj {(h(z))j} for short.

(a). Suppose t ∈ T , we have ĥ(zt; ŷtN ) ≤ ϵ
2 . Applying Lemma 3 the update with respect to the

∇f(z) ensures that, for any given z ∈ Z ,

γ−1
t ⟨∇f(zt), z − zt+1⟩ ≥ 1

2∥z − zt+1∥22 + 1
2∥zt+1 − zt∥2 − 1

2∥z − zt∥22. (33)

Moreover, using the strongly convexity of f(z) (Assumption 2), we obtain

f(z∗) ≥ f(zt) + ⟨∇f(zt), z∗ − zt⟩+ µ
2 ∥z

∗ − zt∥22. (34)

19



Under review as a conference paper at ICLR 2023

Taking z = z∗ in eq. (33) and using eq. (34), we have

f(zt)− f(z∗) ≤ ⟨∇f(zt), zt − zt+1⟩ − γt

2 ∥zt+1 − zt∥22 +
γt−µ

2 ∥z∗ − zt∥22 −
γt

2 ∥z
∗ − zt+1∥22

(i)

≤ ∥∇f(zt)∥2
2

2γt
+ γt−µ

2 ∥z∗ − zt∥22 −
γt

2 ∥z
∗ − zt+1∥22. (35)

where (i) follows from the Young’s inequality, ⟨∇f(zt), zt − zt+1⟩ ≤ ∥∇f(zt)∥2
2

2γt
+ γt

2 ∥zt − zt+1∥22.

(b). Suppose t ̸∈ T , we have ĥ(zt; ŷtN ) > ϵ
2 , Applying Lemma 3 the update with respect to the

∇̂(h(zt; ŷ
t
N ))it (we denote as ∂̂H(zt) for short) ensures that, for any given z ∈ Z ,

γ−1
t ⟨∂̂H(z), z − zt+1⟩ ≥ 1

2∥z − zt+1∥22 + 1
2∥zt+1 − zt∥2 − 1

2∥z − zt∥22. (36)

Moreover, applying Lemma 4 with z = z∗, we obtain

H(z∗) ≥ H(zt) + ⟨∂̂H(zt), z
∗ − zt⟩+ µ

2 ∥z
∗ − zt∥22 − 4(Lg + α)DYD

2
Z

(
1− α

Lg+2α

)N
. (37)

Take z = z∗ in eq. (36) and recall eq. (37). We have

H(zt)−H(z∗)

≤ ⟨∂̂H(zt), zt − zt+1⟩+ γt−µ
2 ∥z∗ − zt∥22 −

γt

2 ∥z
∗ − zt+1∥22 −

γt

2 ∥zt+1 − zt∥22

+ 4(Lg + α)DYD
2
Z

(
1− α

Lg+2α

)N
(i)

≤ ∥∂̂H(zt)∥2
2

2γt
+ γt−µ

2 ∥z∗ − zt∥22 −
γt

2 ∥z
∗ − zt+1∥22 + 4(Lg + α)DYD

2
Z

(
1− α

Lg+2α

)N
,

(38)

where (i) follows from applying Young’s inequality.

Proceeding with the following inductions.∑
t∈T

γt(f(zt)− f(z∗)) +
∑

t∈[T ],t̸∈T

γtH(zt)

(i)

≤
∑
t∈T

γt(f(zt)− f(z∗)) +
∑

t∈[T ],t̸∈T

γt(H(zt)−H(z∗))

(ii)

≤
∑
t∈T

1
2∥∇f(zt)∥

2
2 +

∑
t∈[T ],t̸=T

(
1
2∥∂̂H(zt)∥22 + 4γt(Lg + α)DYD

2
Z

(
1− α

Lg+2α

)N)

+

T∑
t=1

(
µ2(t−1)t

8 ∥z∗ − zt∥22 −
µ2t(t+1)

8 ∥z∗ − zt+1∥22
)

=
∑
t∈T

1
2∥∇f(zt)∥

2
2 +

∑
t∈[T ],t̸=T

(
1
2∥∂̂H(zt)∥22 + 2µ(t+ 1)(Lg + α)DYD

2
Z

(
1− α

Lg+2α

)N)

≤ M2T

2
+ µ(T + 2)2(Lg + α)DYD

2
Z

(
1− α

Lg+2α

)N
, (39)

where (i) follows from H(z∗) ≤ 0, (ii) follows from eqs. (35) and (38), and (iii) follows from
γt =

µ(t+1)
2 , (t− 1)(t+ 1) ≤ t(t− 1) and t(t+ 1) ≤ (t+ 1)2.

Recall that, for all t ∈ T , we have ĥ(zt; ŷtN ) ≤ ϵ
2 . Applying Lemma 4, we have, for all t ∈ T ,

H(zt) ≤
ϵ

2
+ (Lg + α)DYD

2
Z

(
1− α

Lg+2α

)N
. (40)

Applying Lemma 4, we have, for all t ̸∈ T ,

H(zt) ≥
ϵ

2
− (Lg + α)DYD

2
Z

(
1− α

Lg+2α

)N
.

20



Under review as a conference paper at ICLR 2023

Multiplying γt on both sides of the above inequality and telescoping, we obtain∑
t∈[T ],t̸=T

γtH(zt) ≥
∑

t∈[T ],t̸∈T

γt

(
ϵ− (Lg + α)D2

YDZ

(
1− α

Lg+2α

)N)

≥ ϵ

2

∑
t∈[T ],t̸∈T

γt − µ(T + 2)2(Lg + α)DYD
2
Z

(
1− α

Lg+2α

)N
.

Substituting the above inequality into eq. (39), we obtain∑
t∈T

γt(f(zt)− f(z∗)) ≤ − ϵ

2

∑
t∈[T ],t̸∈T

γt +
M2T

2 + 2µ(T + 2)2(Lg + α)DYD
2
Z

(
1− α

Lg+2α

)N
(i)

≤ ϵ

2

∑
t∈T

γt −
ϵµT 2

8
+
M2T

2
+ 2µ(T + 2)2(Lg + α)DYD

2
Z

(
1− α

Lg+2α

)N
,

where (i) follows from −
∑

t∈[T ],t̸∈T γt =
∑

t∈T γt −
∑

t∈[T ] γt and
∑

t∈[T ] γt ≥
µT 2

4 .

Dividing
∑

t∈T γt on both side of the above inequality and using the fact
∑

t∈T γt ≥ µ, we obtain∑
t∈T γt(f(zt)− f(z∗))∑

t∈T γt
≤ ϵ

2
+

M2T
2 −µϵT 2

8∑
t∈T γt

+ 2(T + 2)2(Lg + α)DYD
2
Z

(
1− α

Lg+2α

)N
.

(41)

By the convexity of f(z) and eq. (41), we have

f(z̄)− f(z∗) ≤ ϵ

2
+

M2T
2 −µϵT 2

8∑
t∈T γt

+ 2(T + 2)2(Lg + α)DYD
2
Z

(
1− α

Lg+2α

)N
.

Finally using the convexity of H(z), and eq. (40), we obtain

max
j

{
(h(z̄))j

}
= H(z̄) ≤ ϵ

2
+ (Lg + α)DYD

2
Z

(
1− α

Lg+2α

)N
.

Recall N ≥ log
(

ϵ
4(T+2)2(Lg+α)DYD2

Z

)
/ log(1− α

Lg+2α ) and T ≥ 4M2

µϵ , we have f(z̄)− f(z∗) ≤

ϵ, and maxj

{
(h(z̄))j

}
≤ ϵ.

F PROOF OF THEOREM 2

Before the proof of Theorem 2, we first prove that the optimal dual variable is upper-bounded.

Lemma 5. Suppose Assumption 2 holds. We have the optimal dual λ∗ exists and ∥λ∗∥1 satisfies
∥λ∗∥1 ≤ f(z̃)−f(z∗)

−maxi{(h(z̃))i}
:= B0.

Proof. Recall that convex constrained optimization has no duality gap Lan (2020). Then the existence
of z̃ ensures that the Slater’s condition holds. Therefore, the existence of λ∗ is ensured, and the
following inequality holds

f(z∗) = f(z∗) + ⟨h(z∗), λ∗⟩ ≤ f(z̃) + ⟨h(z̃), λ∗⟩ ≤ f(z̃) + ∥λ∗∥1 max
i

{(h(z̃))i}.

Rearranging terms in the above inequality, we have

∥λ∗∥1 ≤ f(z̃)− f(z∗)

−maxi{(h(z̃))i}
.

We first provide the formal statement of the theorem and then provide the convergence.
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Theorem 4 (Formal Statement of Theorem 2). Suppose Assumptions 1 and 2 hold. Consider
Algorithm 2. Let γt = t + t0 + 3, ηt =

ρf (t+t0+1)
2 , τt =

4(Lg+2ρhDZ)2

ρf (t+1) , θt = t+t0+2
t+t0+3 , where

t0 =
ρf+Bρh

ρf
+ 1, B = B0 + 1 and B0 defined in Lemma 5. We have

f(z̄)− f(z∗) ≤ 2LgBDZ

ΓT

(
1− α

Lg+2α

)N
+

(Lg + 2ρhDZ)BDZ

ΓT

+ (LgDZ + 3Lg)BDZ

(
1− α

Lg+2α

)N
+
γ0(η0 − ρf )∥z∗ − z0∥22

2ΓT
,

max
j

{(h(z̄))j} ≤
(
(LgDZ + 3Lg)BDZ +

2LgBDZ

ΓT

)(
1− α

Lg+2α

)N
+

(Lg + 2ρhDZ)BDZ

ΓT
+

+
γ0τ0
2ΓT

(λ∗ − λ0)
2 +

γ0(η0 − ρf )

2ΓT
∥z∗k − z0∥22,

and

∥z̃ − z∗∥22 ≤ 1

γT−1(ηT−1 − 3(ρf +Bρh))

(
4LgBDZ

(
1− α

Lg+2α

)N
+ 2(Lg + 2ρhDZ)BDZ

)
+

1

γT−1(ηT−1 − 3(ρf +Bρh))

(
γ0τ0(λ

∗ − λ0)
2 + γ0(η0 − ρf )∥z∗ − z0∥22

)
+

ΓT

γT−1(ηT−1 − 3(ρf +Bρh))
(LgDZ + 3Lg)BDZ

(
1− α

Lg+2α

)N
.

The proof is as follow.

We first define some notations that will be used later. Let d̂t = (1 + θt)ĥ(zt; ŷ
t
N )− θtĥ(zt−1; ŷ

t−1
N ),

dt = (1 + θt)h(zt) − θth(zt−1), and ξt = ĥ(zt; ŷ
t
N ) − ĥ(zt−1; ŷ

t−1
N ). Moreover, we specify

L(zt, λt+1; ŷ
t
N ) = f(zt)+ ⟨λt+1, ĥ(zt; ŷ

t
N ) and the gradient of Laguragian as ∇̂zL(zt, λt+1; ŷ

t
N ) =

∇f(zt) + ⟨λt+1, ∇̂h(zt; ŷtN )⟩. Further define the primal-dual gap function as

Q(w, w̃) := f(z) + λ̃h(z)− (f(z̃) + λh(z̃)) ,

where w = (z, λ), w = (z̃, λ̃) ∈ Z × Λ are primal-dual pairs.

Consider the update of λ in eq. (10). Applying Lemma 3 with G = −d̂t/τt, Z = Λ, z̄ = λt+1,
z = λt and letting z̃ = λ be an arbitrary point inside Λ, we have

−(λt+1 − λ)d̂t ≤
τt
2

(
(λ− λt)

2 − (λt+1 − λt)
2 − (λ− λt+1)

2
)
. (42)

Similarly, consider the update of z in eq. (11). Applying Lemma 3 with G = ∇̂zL(zt, λt+1; ŷ
t
N )/ηt,

we obtain

⟨∇̂zL(zt, λt+1; ŷ
t
N ), zt+1 − z⟩ ≤ ηt

2

(
(z − zt)

2 − (zt+1 − zt)
2 − (z − zt+1)

2
)
. (43)

Recall that f(z) and h(z) are L-gradient Lipschitz. This implies

⟨∇f(zt), zt+1 − zt⟩ ≥ f(zt+1)− f(zt)−
L∥zt − zt+1∥22

2
, (44)

⟨∇h(zt), zt+1 − zt⟩ ≥ h(zt+1)− h(zt)−
L∥zt − zt+1∥22

2
. (45)

Moreover, recall that f(z) and h(z) are µ-strongly convex functions. These two properties yield

⟨∇f(zt), zt − z⟩ ≥ f(zt)− f(z) +
µ∥z − zt∥22

2
, (46)

⟨∇h(zt), zt − z⟩ ≥ h(zt)− h(z) +
µ∥z − zt∥22

2
. (47)
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Consider the exact gradient of Lagrangian with respect to the primal variable, we have

⟨∇zL(zt, λt+1), zt+1 − z⟩
= ⟨∇f(zt) + λt+1∇h(zt), zt+1 − zt⟩
= ⟨∇f(zt), zt+1 − z⟩+ ⟨∇f(zt), z − zt⟩+ λt+1⟨∇h(zt), zt+1 − z⟩+ λt+1⟨∇h(zt), z − zt⟩
(i)

≥ f(zt+1)− f(z) + λt+1(h(zt+1)− h(z))− L(1 + λt+1)∥zt+1 − zt∥22
2

+
µ(1 + λt+1)∥z − zt∥22

2
,

(48)

where (i) follows from combining eqs. (44) to (47).

Combining eqs. (43) and (48) yields

f(zt+1)− f(z) ≤ ⟨∇zL(zt, λt+1)− ∇̂zL(zt, λt+1; ŷ
t
N ), zt+1 − z⟩+ λt+1(h(z)− h(zt+1))

+
ηt − µ(1 + λt+1)

2
∥z − zt∥22 −

ηt − L(1 + λt+1)

2
∥zt+1 − zt∥22

− ηt
2
∥z − zt+1∥22. (49)

Recall the definition of ξt = ĥ(zt; ŷ
t
N )− ĥ(zt−1; ŷ

t−1
N ). Substituting it into eq. (42) yields

0 ≤ −(λ− λt+1)ĥ(zt; ŷ
t
N )− (λt+1 − λ)ξt+1 + θt(λt+1 − λ)ξt

+
τt
2

(
(λ− λt)

2 − (λt+1 − λt)
2 − (λ− λt+1)

2
)
. (50)

Let w = (z, λ) and wt+1 = (zt+1, λt+1). By the definition of the primal-dual gap function, we have

Q(wt+1, w)

= f(zt+1) + λh(zt+1)− f(z)− λt+1h(z)

(i)

≤ ⟨∇zL(zt, λt+1)− ∇̂zL(zt, λt+1; ŷ
t
N ), zt+1 − z⟩+ (λ− λt+1)h(zt+1)

+
ηt − µ(1 + λt+1)

2
∥z − zt∥22 −

ηt − L(1 + λt+1)

2
∥zt+1 − zt∥22 −

ηt
2
∥z − zt+1∥22

(ii)

≤ ⟨∇zL(zt, λt+1)− ∇̂zL(zt, λt+1; ŷ
t
N ), zt+1 − z⟩+ (λ− λt+1)(h(zt+1)− ĥ(zt+1; ŷ

t+1
N )

− (λt+1 − λ)ξt+1 + θt(λt+1 − λ)ξt +
τt
2

(
(λ− λt)

2 − (λt+1 − λt)
2 − (λ− λt+1)

2
)

+
ηt − µ

2
∥z − zt∥22 −

ηt − L(B + 1)

2
∥zt+1 − zt∥22 −

ηt
2
∥z − zt+1∥22, (51)

where (i) follows from eq. (49) and (ii) follows from eq. (50) and 0 ≤ λt+1 ≤ B.

Now we proceed with |h(zt)− ĥ(zt; ŷ
t
N )|.

|h(zt)− ĥ(zt; ŷ
t
N )| = |g(xt, y∗α)− g(xt, ŷ

t
N )|

(i)

≤ 2Lg∥y∗α − ŷtN∥2
(ii)

≤ LgDZ

(
1− α

Lg+2α

)N
,

(52)

where (i) follows from Assumption 1 and (ii) follows from the following Lemma 2 and ∥ŷt0 −
y∗α(xt)∥2 ≤ DZ .

The following inequality follows immediately from the above eq. (52).

(λ− λt+1)(h(zt)− ĥ(zt; ŷ
t
N )) ≤ |λ− λt+1||h(zt)− ĥ(zt; ŷ

t
N )| ≤ LgBDZ

(
1− α

Lg+2α

)N
.

(53)

By the definitions of ∇zL(zt, λt+1) and ∇̂zL(zt, λt+1; ŷ
t
N ), we have

∥∇zL(zt, λt+1)− ∇̂zL(zt, λt+1; ŷ
t
N )∥2
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=
∥∥∥∇f(zt) + λt+1∇h(zt)−

(
∇f(zt) + λt+1∇̂h(zt; ŷtN )

)∥∥∥
2

= λt+1

∥∥∇g(xt, y∗α(xt))− g(xt, ŷ
t
N )
∥∥
2

(i)

≤ λt+1Lg∥y∗α(xt)− ŷtN∥2
(ii)

≤ BLgDZ

(
1− α

Lg+2α

)N
, (54)

where (i) follows from Assumption 1 and (ii) follows from Lemma 2, and because λt+1 ≤ B and
∥ŷ0 − ỹ∗(xt)∥2 ≤ DZ .

By Cauchy-Schwartz inequality and eq. (54), we have

⟨∇zL(zt, λt+1)− ∇̂zL(zt, λt+1; ŷ
t
N ), zt+1 − z⟩

≤ ∥∇̂zL(zt, λt+1)− ∇̂zL(zt, λt+1; ŷ
t
N )∥2∥zt+1 − z∥2 ≤ BLgD

2
Z

(
1− α

Lg+2α

)N
. (55)

By the definition of ξt, we have

θt(λt+1 − λt)ξt = θt(λt+1 − λt)(ĥ(zt; ŷ
t
N )− ĥ(zt−1; ŷ

t−1
N ))

= θt(λt+1 − λt)(ĥ(zt; ŷ
t
N )− h(zt)− ĥ(zt−1; ŷ

t−1
N ) + h(zt−1) + h(zt)− h(zt−1))

≤ θt|λt+1 − λt|
(
|ĥ(zt; ŷtN )− h(zt)|+ |ĥ(zt−1; ŷ

t−1
N )− h(zt−1)|+ |h(zt)− h(zt−1)|

)
(i)

≤ |λt+1 − λt|
(
2LgDZ

(
1− α

Lg+2α

)N
+M∥zt − zt−1∥2

)
(ii)

≤ 2BLgDZ

(
1− α

Lg+2α

)N
+M |λt+1 − λt|∥zt − zt−1∥2

(iii)

≤ 2BLgDZ

(
1− α

Lg+2α

)N
+
τt
2
(λt+1 − λt)

2 +
M2

2τt
∥zt − zt−1∥22, (56)

where (i) follows from eq. (52), θt ≤ 1, and h(z) is M Lipschitz continuous, (ii) follows from
0 ≤ λt, λt+1 ≤ B, and (iii) follows from Young’s inequality.

Substituting eqs. (53), (55) and (56) into eq. (51) yields

Q(wt+1, w) ≤ −(λt+1 − λ)ξt+1 + θt(λt − λ)ξt + 4LBD2
Z

(
1− α

Lg+2α

)N
+
τt
2

(
(λ− λt)

2 − (λ− λt+1)
2
)
+
ηt − µ

2
∥z − zt∥22 −

ηt
2
∥z − zt+1∥22

+
M2

2τt
∥zt − zt−1∥22 −

ηt − L(1 +B)

2
∥zt+1 − zt∥22. (57)

Recall that γt, θt, ηt and τt are set to satisfy γt+1θt+1 = γt, γtτt ≥ γt+1τt+1 and

γt(L(1 +B)− ηt) +
γt+1M

2

τt+1
≤ 0.

Multiplying γt on both sides of eq. (57) and telescoping from t = 0, 1, . . . T − 1 yield

T−1∑
t=0

γtQ(wt+1, w) ≤ −γT−1(λT − λ)ξT + 4LBD2
Z

(
1− α

Lg+2α

)N T−1∑
t=0

γt

+
γ0τ0
2

(λ− λ0)
2 +

γ0(η0 − µ)

2
∥z − z0∥22

− γT−1(ηT−1 − L(B + 1))

2
∥z − zT ∥22.

Divide both sides of the above inequality by ΓT =
∑T−1

t=0 γt. We obtain

1

ΓT

T−1∑
t=0

γtQ(wt+1, w) ≤ −γT−1(λT−λ)ξT
ΓT

+ 4LBD2
Z

(
1− α

Lg+2α

)N
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+
γ0τ0
2ΓT

(λ− λ0)
2 +

γ0(η0 − ρf )

2ΓT
∥z − z0∥22

− γT−1(ηT−1 − 3(ρf +Bρh))

2ΓT
∥z − zT ∥22. (58)

Similarly to the steps in eq. (56), we have

|(λT − λ)ξT | ≤ |λT − λ|
(
2LgDZ

(
1− α

Lg+2α

)N
+M∥zT − zT−1∥2

)
≤ 2LgBDZ

(
1− α

Lg+2α

)N
+MBDZ .

Define w̄ := 1
ΓT

∑T−1
t=0 γtwt+1. Noting that Q(·, w) is a convex function and substituting the above

inequality into eq. (58) yield

Q(w̄, w) ≤ 1

ΓT

T−1∑
t=0

γtQ(wt+1, w)

≤ 2LgBDZ

ΓT

(
1− α

Lg+2α

)N
+

(Lg + 2ρhDZ)BDZ

ΓT

+ (LgDZ + 3Lg)BDZ

(
1− α

Lg+2α

)N
+
γ0(η0 − ρf )

2ΓT
∥z − z0∥22

+
γ0τ0
2ΓT

(λ− λ0)
2 − γT−1(ηT−1 − 3(ρf +Bρh))

2ΓT
∥z − zT ∥22. (59)

Let w = (z∗k, 0). Then, we have

Q(w̃k, w) = fk(z̃k)− fk(z
∗
k)− λ̄Thk(z

∗
T )

(i)

≥ fk(z̃k)− fk(z
∗
k),

where (i) follows from the fact hk(z∗T ) ≤ 0 and λ̄T = 1
ΓT

∑T−1
t=0 γtλt+1 ≥ 0.

Substituting the above inequality into eq. (59) yields

fk(z̃k)− fk(z
∗
k) ≤

2LgBDZ

ΓT

(
1− α

Lg+2α

)N
+

(Lg + 2ρhDZ)BDZ

ΓT

+ (LgDZ + 3Lg)BDZ

(
1− α

Lg+2α

)N
+
γ0(η0 − ρf )∥z∗k − z0∥22

2ΓT
.

Recall that (z∗k, λ
∗
k) is a Nash equilibrium of Lk(z, λ), we have

Lk(z̃k, λ
∗
k) ≥ Lk(z

∗
k, λ

∗
k)

by def.
⇐⇒ fk(z̃k) + λ∗khk(z̃k)− fk(z

∗
k) ≥ 0 (60)

Let w = (z∗k, (λ
∗
k + 1)I(hk(z̃k)), where I(x) = 0 if x ≤ 0 and I(x) = 1 otherwise. If hk(z̃k) ≤ 0,

the constraint is satisfied. If hk(z̃k) > 0, we have

Q(w̃k, w) = fk(z̃k) + (λ∗k + 1)hk(z̃k)− fk(z
∗
k)− λ∗khk(z̃k). (61)

Recall that (z∗k, λ
∗
k) satisfies the KKT condition of (Pk), i.e. λ∗khk(z

∗
k) = 0. Equations (59) to (61)

together yield,

hk(z̃k) = Q(w̃k, w)− (fk(z̃k) + λ∗khk(z̃k)− fk(z
∗
k)) ≤ Q(w̃k, w)

≤
(
2LgBDZ

ΓT
+ (LgDZ + 3Lg)BDZ

)(
1− α

Lg+2α

)N
+

(Lg + 2ρhDZ)BDZ

ΓT

+
γ0τ0
2ΓT

(λ∗k + 1)2 +
γ0(η0 − ρf )

2ΓT
∥z∗k∥22.

G ANALYSIS OF PROX-PBO

Since the problem in eq. (5) generally has a nonconvex objective function and nonconvex constraints,
we aim to provide the convergence guarantee to an ϵ-KKT point (Ma et al., 2020; Boob et al., 2019)
as defined below.
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Definition 2. Consider the constrained optimization problem in eq. (5). Let q be the dimension of
h(z) and N (z;Z) be the normal cone to Z at z. Denote dist(z,N ) := minz′∈N {∥z − z′∥2}. A
point ẑ ∈ Z is an ϵ-KKT point if and only if there exist z ∈ Z and λ ∈ Rq

+, such that h(z) ≤ ϵ,
∥z − ẑ∥22 ≤ ϵ,

∑q
i=1 |λihi(z)| ≤ ϵ, and dist (∇f(z) + ⟨∇h(z), λ⟩,−N (z;Z))

2 ≤ ϵ. Further, a
random ẑ ∈ Z is a stochastic ϵ-KKT point if there exist z ∈ Z and λ ≥ 0 such that the same
requirements of ϵ-KKT hold in expectation.

The KKT condition is the necessary condition for local optimality (Bertsekas, 1997; Mangasarian
& Fromovitz, 1967) for constrained optimization. Here, we will show that Algorithm 3 converges
to an ϵ-KKT point in expectation taken over the randomness of the algorithm (the randomness of
generation index k̂) for constrained nonconvex optimization problems. Before the analysis, we make
the following boundedness assumption on the optimal dual variable, which is standard in the literature
(Boob et al., 2020; 2019).
Assumption 3. For each subproblem Pk, the optimal dual variable λ∗k is uniformly bounded, i.e.,
there exists a constant B ≥ 0 such that ∥λ∗k∥1 ≤ B holds for all k = 1, . . . ,K.

Theorem 5. Suppose Assumption 1 holds. Given z̃1 that is β
2K strictly feasible of (P1). Let

σ = 2max{Lf , Lc}, where Lc is defined in Lemma 6. Let µ = σ
2 , DZ = maxz,z′∈Z ∥z −

z′∥2, and M = max{Mf ,Mh} + σDZ , where Mf = maxz∈Z{∥∇f(z)∥2} and Mh =

maxz∈Z,i∈[q]{∥∇(h(z))i∥2}. Set K = 3Bσ
µϵ , β = min{ ϵ

4B ,
∆f

µ }, T = 8KM2

µϵ , γt = µ(t+1)
2 ,

and N = log
(

ϵ
4(T+2)2(Lg+α)DYD2

Z

)
/ log(1− α

Lg+2α ). Then we have z̃k̂ is an ϵ-KKT point of

eq. (5) in expectation that takes the randomness over k̂.

Theorem 5 shows that Algorithm 3 is capable to solve the problem in eq. (5) to arbitrarily prescribed
accuracy ϵ with O( 1ϵ ) times call of the subproblem solver. Since Assumption 2 holds for each sub-
problem, the first- and second-order oracle consumption immediately follows by applying Theorems 1
and 2. Compared with results in standard constrained optimization (Ma et al., 2020; Boob et al.,
2019), the problem here in eq. (5) is more challenging and our proof features the following three
ingredients: (a) dealing with the bias error of the Jacobian matrix estimation, (b) proving that the
objective and constrained functions are weakly convex functions, and (c) designing the gradually
relaxed scheme so as to ensure the strict feasibility of each subproblem.

G.1 SUPPORTING LEMMAS

Lemma 6. Given a function J : Rn → R, which is twice differentiable and is a LJ -gradient Lipschitz
function on the bounded support X ⊆ Rn, and for all x ∈ X , ∥∇J(x)∥2 ≤ MJ . Then, define a
new function I : X × [0, B] → R as I(x, y) = yJ(x). We have I(x, y) is a (BLJ +MJ)- gradient
Lipschitz function.

Proof. By the definition of I(x, y), we have its gradient ∇I(x, y) = [∇xI(x, y);
∂I(x,y)

∂y ] equals
[y∇xJ(x); J(x)]. And its Hessian equals

∇2I(x, y) =

(
y∇2

xxJ(x) ∇xJ(x)

(∇xJ(x))
⊤ 0

)
,

where we let ∇2 = ∇2
(x,y),(x,y).

Let z = (a, b)⊤ ∈ Rn, with a ∈ Rn and b ∈ R, for any x ∈ X and 0 ≤ y ≤ B, we have

z⊤∇2I(x, y)z = ya⊤∇2
xxJ(x)a+ 2b · a⊤∇xJ(x)

(i)

≤ yLJ∥a∥22 + 2b∥a∥2∥∇xJ(x)∥2
(ii)

≤ yL∥z∥22 + (∥a∥22 + b2)∥∇xJ(x)∥2
≤ (BLJ +MJ)∥z∥22,

where (i) follows from the LJ gradient Lipschitz condition of J(x) and Cauchy-Schwartz inequality
and (ii) follows from the Young’s inequality.
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Lemma 7. Suppose Assumption 1 holds. Consider the constrained function h(z) in eq. (5). Each
entry of h(z) is a Lc gradient Lipschitz function with

Lc = max
{
2µf +

4µg∆f

ξ + 4MHg + Lg,
∆f

ξ (2Lg +
L2

g

α ) +Mg

}
,

where Mg = supz∈Z ∥∇z(g(x, y)− g∗α(x))∥2 and MHg = supz∈Z ∥∇2
zzg(z)∥F .

Proof. In the following proof, we consider each component of the h(z) and prove that they are Lc

gradient Lipschitz.

For the first component g(x, y) − g∗α(x) − ξ, it has been shown to be (2Lg + L2
g/α)-gradient

Lipschitz (Sow et al., 2022, Lemma 1). The next m components of h(z) is the entries of
−∇yf(x, y) + w∇yg(x, y). Consider the ith entry. For any given z and z′ ∈ Z , let e+i (z) =
(−∇yf(x, y) + w∇yg(x, y))i, we have

∥∇e+i (z)−∇e+i (z
′)∥22

=
∥∥∇ (−∇yf(x, y) + w∇yg(x, y))i −∇ (−∇yf(x

′, y′) + w′∇yg(x
′, y′))i

∥∥2
2

(i)
=
∥∥ (−∇2

yxf(x, y) + w∇2
yxg(x, y)

)
(i,·) −

(
−∇2

yxf(x
′, y′) + w′∇2

yxg(x
′, y′)

)
(i,·)

∥∥2
2

+
∥∥ (−∇2

yyf(x, y) + w∇2
yyg(x, y)

)
(i,·) −

(
−∇2

yyf(x
′, y′) + w′∇2

yyg(x
′, y′)

)
(i,·)

∥∥2
2

+ ((∇yg(x, y))i − (∇yg(x
′, y′))i)

2

(ii)

≤ 2
∥∥∥(∇2

yxf(x, y)−∇2
yxf(x

′, y′)
)
(i,·)

∥∥∥2
2

+ 2
∥∥∥(∇2

yxg(x, y)−∇2
yxg(x

′, y′)
)
(i,·) + (w − w′)

(
∇2

yxg(x
′, y′)

)
(i,·)

∥∥∥2
2

+ 2
∥∥∥(∇2

yyf(x, y)−∇2
yyf(x

′, y′)
)
(i,·)

∥∥∥2
2

+ 2
∥∥∥(∇2

yyg(x, y)−∇2
yyg(x

′, y′)
)
(i,·) + (w − w′)

(
∇2

yyg(x
′, y′)

)
(i,·)

∥∥∥2
2

+ ((∇yg(x, y))i − (∇yg(x
′, y′))i)

2 (62)

where (i) follows from ∥∇zh∥22 = ∥∇xh∥22 + ∥∇yh∥22 + ( ∂h
∂w )2 and (M)(i,·) denotes the ith row of

the matrix M , and (ii) follows from the fact ∥a+ b∥22 ≤ 2∥a∥22 + 2∥b∥22.

Using the fact that
√
a+ b ≤

√
a+

√
b for all a, b ≥ 0, eq. (62) induces

∥∇e+i (z)−∇e+i (z
′)∥2

≤ 2
∥∥∥(∇2

yxf(x, y)−∇2
yxf(x

′, y′)
)
(i,·)

∥∥∥
2

+ 4
∥∥∥v (∇2

yxg(x, y)−∇2
yxg(x

′, y′)
)
(i,·)

∥∥∥
2
+ 4

∥∥∥(w − w′)
(
∇2

yxg(x
′, y′)

)
(i,·)

∥∥∥
2

+ 2
∥∥∥(∇2

yyf(x, y)−∇2
yyf(x

′, y′)
)
(i,·)

∥∥∥
2

+ 4
∥∥∥w (∇2

yyg(x, y)−∇2
yyg(x

′, y′)
)
(i,·)

∥∥∥
2
+ 4

∥∥∥(w − w′)
(
∇2

yyg(x
′, y′)

)
(i,·)

∥∥∥
2

+ |(∇yg(x, y))i − (∇yg(x
′, y′))i|

≤
(
2µf +

4µg∆f

ξ + 4MHg + Lg

)
∥z − z′∥2, (63)

where MHg = supz∈Z ∥∇2g∥F .

Next, let e−i (z) = (∇yf(x, y)− w∇yg(x, y))i. Following the same steps in eqs. (62) and (63), we
also obtain

∥∇e−i (z)−∇e−i (z
′)∥2 ≤

(
2µf +

4µg∆f

ξ + 4MHg + Lg

)
∥z − z′∥2 (64)
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For the last two components, w(g(x, y) − g∗α(x) − ξ) and −w(g(x, y) − g∗α(x) − ξ), because

g(x, y)− g∗α(x) is (2Lg +
L2

g

α )-gradient Lipschitz. Moreover, since the support Z is bounded, there
existMg , such that ∥∇(g(x, y)−g∗α(x)−ξ)∥2 ≤Mg , andw is bounded in interval [0, ∆f

ξ ]. Applying

Lemma 6, we have w(g(x, y)− g∗α(x)− ξ) and −w(g(x, y)− g∗α(x)− ξ) are ∆f

ξ (2Lg +
L2

g

α ) +Mg

gradient Lipschitz.

Lemma 8. Suppose Assumptions 1 and 3 hold. And suppose the input z̃1 is strictly feasible with
respect to Pk with margin β

2K . Moreover, suppose z̃k+1 is β
2K -accurate solution of Pk. Then, we

have

1

K

K∑
k=1

∥z̃k − z∗k∥22 ≤ 2∆f

µK
+
β

K
,

with ∆f = maxz,z′∈Z |f(z)− f(z′)|.

Proof. For z̃k+1 with k ≥ 1, the β
2K -accuracy implies that

fk(z̃k+1)− fk(z
∗
k) ≤

β
2K , (65)

hk(z̃k+1) ≤ β
2K . (66)

Then, we have h(z̃k+1) = hk(z̃k+1) +
kβ
K − σ

2 ∥z̃k+1 − z̃k∥22 ≤ (2k+1)β
2K , which immediately implies

that hk+1(z̃k+1) = h(z̃k+1)− (k+1)β
K ≤ − β

2K . Thus, given that z̃1 is β
2K strictly feasible of problem

P1, we conclude that z̃k is β
2K strictly feasible of problem Pk through induction.

Let Lk(z) = fk(z)+(λ∗k)
⊤hk(z)+1Z(z), where 1Z(z) is the indicator function. We have Lk(z) is

a strongly convex function over Rn+m+2. Given any ζ ∈ NZ(z), we have ∇fk(z)+ ⟨∇hk(z), λ∗k⟩+
ζ ∈ ∂L(z) for all z ∈ Z . Clearly z∗k ∈ argminz∈Z Lk(z). The optimality gives us that 0 ∈ ∂Lk(z

∗
k).

And, due to the strong convexity of fk(z) and hk(z) and λ∗k ≥ 0, Lk(z) is µ strongly convex function.
Thus, we have

µ

2
∥z̃k − z∗k∥22

(i)

≤ Lk(z̃k)− Lk(z
∗
k)

= fk(z̃k) + (λ∗k)
⊤hk(z̃k)−

(
fk(z

∗
k) + (λ∗k)

⊤hk(z
∗
k)
)

(ii)

≤ fk(z̃k)− fk(z
∗
k), (67)

where (i) follows from the strong convexity of Lk and 0 ∈ ∂Lk(z
∗
k), and (ii) follows from the

complementary slackness (λ∗k)
⊤hk(z̃k) = 0 and z̃k is feasible for hk(z).

Combining eqs. (65) and (67), we have

µ

2
∥z̃k − z∗k∥22 ≤ fk(z̃k)− fk(z̃k+1) +

β
2K

(i)

≤ fk(z̃k)− fk+1(z̃k+1) +
β
2K

(ii)
= f(z̃k)− f(z̃k+1) +

β
2K , (68)

where (i) follows from the fact that fk(z̃k+1) = fk+1(z̃k+1) +
σ
2 ∥z̃k+1 − z̃k∥22, and (ii) follows

from fk(z̃k) = f(z̃k), k ∈ N.

Telescoping eq. (68) and utilizing the definition of k̂, we obtain

E

[
∥z̃k̂ − z∗

k̂
∥22
]
=

1

K

K∑
k=1

∥z̃k − z∗k∥22 ≤ 2

µK

(
f1(z1)− fK+1(z̃K+1) +

β
2

) (i)

≤ 2∆f

µK
+
β

K
(69)

where (i) follows from the definition ∆f = maxz,z′ |f(z)− f(z′)|.
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G.2 PROOF OF THEOREM 5

Since σ = 2max{Lf , Lc}, by Assumption 1 and lemma 7, we have both f(z) and each entry of h(z)
are µ strongly convex function with µ ≥ σ

2 . Moreover, Assumption 1 ensures that there existsMf and
Mh, such that ∥∇f(z)∥2 ≤Mf and ∥∇(h(z))i∥2 ≤Mh, thus we have ∥∇fk(z)∥2 ≤Mf + σDZ
and ∥∇(hk(z))i∥2 ≤Mh + σDZ . Thus, Assumption 2 holds with f(z) = fk(z) and h(z) = hk(z).
Applying Theorem 3 with the ϵ replaced by ϵ

2K there, we have, for each k = 1, . . . ,K,

fk(z̃k)− fk(z
∗
k) ≤ ϵ

2K ,

max {(hk(z̃k))i} ≤ ϵ
2K .

Applying Lemma 8, we have

1

K

K∑
k=1

∥z̃k − z∗k∥22 ≤ 2∆f

µK
+
β

K
, (70)

Moreover, the optimality of (z∗k, λ
∗
k) for subproblem Pk shows that, there exists ζk ∈ NZ(z

∗
k) such

that

∇fk(z∗k) + ⟨∇hk(z), λ∗k⟩+ ζk = 0. (71)

Using the facts, ∇fk(z∗k) = ∇f(z∗k) + σ(z∗k − z̃k) and ∇h(z∗k) + σ1(z∗k − z̃k)
⊤, eq. (71) implies

∇f(z∗k) + ⟨∇h(z∗k), λ∗k⟩+ ζk = −(∥λ∗k∥1 + 1)σ(z̃k − z∗k).

Taking ℓ2-norm on both sides of the above equality, and using the upper bound of ∥λ∗k∥2 in Assump-
tion 3, we have

∥∇f(z∗k) + ⟨λ∗k∇h(z∗k)⟩+ ζk∥2 ≤ (B + 1)σ∥z̃k − z∗k∥2. (72)

Telescoping eq. (72) and applying eq. (70), we have

E

[∥∥∥∇f(z∗
k̂
) + ⟨λ∗

k̂
∇h(z∗

k̂
)⟩+ ζk̂

∥∥∥
2

]
≤ (B + 1)σ(2∆f + µβ)

µK
,

Using the fact that ζk ∈ NZ(z
∗
k), we have

E

[
dist

(
∇f(z∗

k̂
) + ⟨λ∗

k̂
∇h(z∗

k̂
)⟩,−NZ(z

∗
k̂
)
)]

≤ (B + 1)σ(2∆f + µβ)

µK
. (73)

Moreover we have,

q∑
i=1

|(λ∗k)i(h(z∗k))i| =
q∑

i=1

∣∣∣(λ∗k)i((hk(z∗k))i − σ
2 ∥z̃k − z∗k∥22 +

kβ
K )
∣∣∣ (i)≤ Bσ

2 ∥z̃k − z∗k∥22 +
kBβ
K ,

where (i) follows from the complementary slackness of z∗k . Telescoping the above inequality, we
obtain

E

[
q∑

i=1

∣∣∣(λ∗
k̂

)
i

(
h(z∗

k̂
)
)
i

∣∣∣] =
1

K

K∑
k=1

q∑
i=1

|(λ∗k)i(h(z∗k))i| ≤
Bσ(2∆f + µβ)

2µK
+
K(K + 1)B

K2
· β

(74)

And E[h(z∗
k̂
)] = 1

K

∑K
k=1 h(z

∗
k) ≤ (K+1)β

K ≤ 2β. Using the facts, K ≥ 3(B+1)∆fσ
µϵ , β =

min{ ϵ
4B ,

∆f

µ }, eq. (58) induces E
[
∥z̃k̂ − z∗

k̂
∥22
]
≤ ϵ, eqs. (73) and (74) imply that

E

[
dist

(
∇f(z∗

k̂
) + ⟨λ∗

k̂
∇h(z∗

k̂
)⟩,−NZ(zk̂)

)]
≤ ϵ,E

[
q∑

i=1

∣∣∣(λ∗
k̂
)i(h(z

∗
k̂
))i

∣∣∣] ≤ ϵ.
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H GRADIENTS OF THE RELAXED PROBLEM IN ILLUSTRATIVE EXAMPLE

The KKT reformulation of the problem in eq. (12) is

min
x,y,w,v∈R

− xy

s.t. x2 + y2 − 1− ξ ≤ 0

g(x, y)− ξ ≤ 0

x+ 2wy + vG(x, y) = 0

w(x2 + y2 − 1− ξ) = 0

v(g(x, y)− ξ) = 0,

where G(x, y) := ∇yg(x, y) and it equals

G(x, y) =


3(y − |x|)2 y ≥ |x|
0 −|x| ≤ y ≤ |x|
− 3(y + |x|)2 y ≤ −|x|

.

The final relaxed problem is

min
x,y,w,v∈R

− xy

s.t. x2 + y2 − 1− ξ ≤ 0

g(x, y)− ξ ≤ 0

x+ 2wy + vG(x, y)− β ≤ 0

− x− 2wy − vG(x, y)− β ≤ 0

w(x2 + y2 − 1− ξ)− β ≤ 0

− w(x2 + y2 − 1− ξ)− β ≤ 0

v(g(x, y)− ξ)− β ≤ 0

− v(g(x, y)− ξ)− β ≤ 0.

Denote h(z) as

h(z) =



x2 + y2 − 1− ξ

g(x, y)− ξ

x+ 2wy + vG(x, y)− β

−x− 2wy − vG(x, y)− β

w(x2 + y2 − 1− ξ)− β

−w(x2 + y2 − 1− ξ)− β

v(g(x, y)− ξ)− β

−v(g(x, y)− ξ)− β


.

∇f(z) = [−y;−x; 0; 0], and for the constrained function h(z), we have

∇h(z) =



2x 2y 0 0

∂g(x,y)
∂x

∂g(x,y)
∂y 0 0

1 + v ∂G(x,y)
∂x 2w + v ∂G(x,y)

∂y 2y G(x, y)

− 1− v ∂G(x,y)
∂x − 2w − v ∂G(x,y)

∂y − 2y −G(x, y)

2wx 2wy x2 + y2 − 1− ξ 0

− 2wx − 2wy − (x2 + y2 − 1− ξ) 0

v ∂g(x,y)
∂x v ∂g(x,y)

∂y 0 g(x, y)− ξ

− v ∂g(x,y)
∂x − v ∂g(x,y)

∂y 0 − g(x, y) + ξ



,

(75)
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where the gradient of the ith entry equals to the ith row of the above matrix and we have

g(x, y) :=


(y − |x|)3, y ≥ |x|
0, −|x| ≤ y ≤ |x|
− (y + |x|)3, y ≤ −|x|

.

∂g(x,y)
∂x =


− 3sgn(x)(|x| − y)2 y ≥ |x|
0 |y| ≤ |x|
− 3sgn(x)(|x|+ y)2 y ≤ −|x|

,

with sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 otherwise.

∂g(x,y)
∂y = G(x, y) =


3(y − |x|)2 y ≥ |x|
0 |y| ≤ |x|
− 3(y + |x|)2 y ≤ −|x|

,

∂G(x,y)
∂x =


6sgn(x)(|x| − y) y ≥ |x|
0 |y| ≤ |x|
− 6sgn(x)(y + |x|) y ≤ −|x|

,

∂G(x,y)
∂y =


6(y − |x|) y ≥ |x|
0 |y| ≤ |x|
− 6(y + |x|) y ≤ −|x|

.
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