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Abstract

Generalizing multi-agent reinforcement learning
(MARL) to accommodate variations in problem
configurations remains a critical challenge in real-
world applications, where even subtle differences
in task setups can cause pre-trained policies to
fail. To address this, we propose Context-Aware
Identity Generation (CAID), a novel framework
to enhance MARL performance under the Con-
textual MARL (CMARL) setting. CAID dynam-
ically generates unique agent identities through
the agent identity decoder built on a causal Trans-
former architecture. These identities provide con-
textualized representations that align correspond-
ing agents across similar problem variants, fa-
cilitating policy reuse and improving sample effi-
ciency. Furthermore, the action regulator in CAID
incorporates these agent identities into the action-
value space, enabling seamless adaptation to vary-
ing contexts. Extensive experiments on CMARL
benchmarks demonstrate that CAID significantly
outperforms existing approaches by enhancing
both sample efficiency and generalization across
diverse context variants.

1. Introduction
In recent years, the field of multi-agent reinforcement learn-
ing (MARL) has advanced rapidly, shifting its focus from
theoretical exploration to practical applications. For in-
stance, MARL algorithms have been successfully applied
to energy scheduling in power systems (Yan & Xu, 2020),
coordinated control in drone formations (Ge et al., 2018),
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Figure 1. An example of CMARL. The central part depicts a fun-
damental state from the classic predator-prey task. By introducing
different contexts to this state, the resulting environmental states
on the left and right sides exhibit substantial differences.

and node optimization in communication networks (Mao
et al., 2020), yielding promising results. Nevertheless, a
significant challenge in reinforcement learning, which is
equally prominent in MARL, lies in generalizing across task
variants (Kirk et al., 2023). Many existing approaches strug-
gle to maintain comparable performance when faced with
even minor task modifications, as the policies trained on
original tasks often fail to adapt effectively. Since dynamic
problems are common in real-world scenarios, training dis-
tinct policies for every variation is infeasible, particularly in
multi-agent systems.

Several single-agent studies have focused on generalization
across distinct problem variants within the same domain.
One approach integrates meta-learning with reinforcement
learning to optimize gradient directions that balance
multiple objectives (Finn et al., 2017a; Yu et al., 2019;
Nagabandi et al., 2019), thereby improving the robustness
of reinforcement learning algorithms in multi-task settings.
Another line of research leverages transfer learning to fine-
tune pre-trained policies (Taylor & Stone, 2009), enabling
adaptation to the distributional shifts between original and
target tasks. This approach is particularly prominent in
robotics, where sim-to-real methods (Zhao et al., 2020)
address the discrepancies between simulated environments
and the real world. Additionally, inspired by the success
of large models (OpenAI, 2023) in natural language
processing (NLP), the intelligent decision-making field
has begun scaling up policy networks to improve model
performance (Reed et al., 2022; Lee et al., 2022). However,
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these efforts often face limitations: they either achieve
generalization only in simple tasks, narrowly adapt to
specific problem variants through fine-tuning, or use model
scaling to combine unrelated task strategies. As a result,
achieving robust generalization across problem variants
remains a significant and unresolved challenge in the field.

Recently, Contextual Reinforcement Learning (CRL) (Ben-
jamins et al., 2023; Hallak et al., 2015) is introduced to
formalize the generalization problem across related problem
variants. CRL seeks to find a policy capable of solving a
group of similar Markov Decision Processes (MDPs), where
each MDP presents a variation of the problem, defined by a
context variable that reflects the specific characteristics of
each variation (Cobbe et al., 2020; Rajan et al., 2023). Sim-
ilarly, we introduce Contextual Multi-Agent Reinforce-
ment Learning (CMARL), which focuses on learning poli-
cies for multiple agents across various tasks. These tasks
may vary in aspects such as initial states and agent types.
For example, while the two initial scenarios may seem dis-
tinct, they can be transformed into identical configurations
by applying a specific way, as illustrated in Figure 1. Conse-
quently, in CMARL tasks, some related environment states
can often be unified into a single contextual state, thereby
simplifying the representation of the task. Furthermore, this
transformation disrupts the alignment of agent numbering
schemes in the two contexts, which underscores the inherent
difficulty in ensuring consistent agent identification across
different contexts. Current MARL methods cannot automat-
ically assign the appropriate identity to each agent based
on the context of the task. As a result, agents must learn
separate policies for each situation, significantly reducing
sample efficiency in CMARL tasks.

To improve the performance of existing algorithms in the
CMARL setting, we propose a novel framework called
Context-Aware IDentity Generation (CAID). The main idea
behind CAID is to dynamically assign each agent a unique
identity. This is achieved through a context-aware approach
integrating global state information with individual agent
attributes. By assigning each agent a distinctive identifica-
tion within the system, the framework effectively reduces
the complexity of the contextual decision space. These iden-
tities not only serve as unique labels for agents but also
provide a foundation for interaction and cooperation among
them. Furthermore, the context-aware design ensures that
external information about agents is required only during
the training phase, allowing for compatibility with most
algorithms following the centralized training decentralized
execution (CTDE) paradigm. Extensive experiments on
benchmarks such as the Vectorized Multi-Agent Simula-
tor (VMAS) (Bettini et al., 2022), Traffic Signal Control
(PyTSC) (Bokade & Jin, 2024) and StarCraft Multi-Agent
Challenge (SMACv2) (Ellis et al., 2023) demonstrate the
effectiveness of CAID.

2. Related Work
The generalization of RL algorithms to task variations has
garnered significant attention, particularly in the single-
agent RL domain. The MAML framework (Finn et al.,
2017b), for instance, optimizes initialization parameters to
enable models to achieve strong performance on new tasks
with minimal gradient updates. First-order optimization
algorithms (Nichol et al., 2018), such as Reptile (Nichol
& Schulman, 2018), further reduce the computational
complexity of MAML, making it more feasible in real-
world scenarios. Many meta RL approaches also focus
on training history-dependent policies, often implemented
as recurrent neural networks (RNNs) (Chung et al., 2014)
like RL2 (Duan et al., 2016), which dynamically adapt
to interaction histories. MetaGenRL (Kirsch et al., 2020)
introduces a meta-learned, low-complexity neural objective
function based on diverse agent experiences, leveraging
off-policy second-order gradients for improved sample
efficiency. Beyond meta RL, transfer RL represents another
critical avenue for addressing generalization. For example,
a component-based transfer learning framework (Sodhani
et al., 2021) leveraging abstract representations has been pro-
posed to facilitate the mastery of complex tasks using prior
models. REPAINT (Tao et al., 2021) further enhances deep
RL efficiency by combining representation learning and
instance transfer techniques. Recent research on in-context
learning (Laskin et al., 2023) has explored training models
across episodes with task-agnostic processes, enabling
generalization to diverse tasks without explicit task-specific
adjustments. However, many of these approaches still
require fine-tuning to adapt to new tasks, and their
applicability is sometimes limited to very simple situations.

Some MARL algorithms enable agents to adaptively define
roles or form dynamic groups, allowing them to learn opti-
mal strategies under varying task conditions. REFIL (Iqbal
et al., 2021), for example, improves agent robustness to vari-
ations in initial states by randomly partitioning environmen-
tal entities. ROMA (Wang et al., 2020) and RODE (Wang
et al., 2021b) dynamically assign roles to each agent, where
each role corresponds to a specific sub-action space, thereby
effectively reducing the complexity of the action space.
COPA (Liu et al., 2021) employs a global “coach” agent
to coordinate partially observable “player” agents through
limited information exchange. This design enables COPA to
demonstrate zero-shot policy generalization even in teams
with dynamic compositions. COLA (Xu et al., 2023) ap-
plies the principle of viewpoint invariance from computer
vision to map the state space into a discrete representation
via contrastive learning. E2GN2 (McClellan et al., 2024) is
a framework that improves sample efficiency and generaliza-
tion through equivariant graph neural networks (GNNs) (Wu
et al., 2021). By integrating equivariant and invariant fea-
tures, E2GN2 overcomes scalability challenges common
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in traditional methods. However, these approaches are not
specifically tailored for Contextual MARL tasks. In contrast,
our proposed CAID assigns an identity to each agent, focus-
ing on maintaining consistent identifiers for corresponding
agents across different states. This design minimizes the
need for retraining when tasks undergo minor changes.

3. Preliminaries
3.1. Decentralized Partially Observable Markov

Decision Process

In this paper, we investigate a fully cooperative multi-
agent task, which can be modeled as a Decentralized
Partially Observable Markov Decision Process (Dec-
POMDP) (Oliehoek & Amato, 2016). A Dec-POMDP
is a framework commonly used to formalize cooperative
decision-making problems in partially observable and decen-
tralized environments. Formally, it is defined by the tuple
G = ⟨S,U,A, P, r, Z,O, n, γ⟩, where S represents the set
of possible states of the environment, and A = {1, . . . , n}
denotes the set of n agents involved. At each time step, each
agent a ∈ A selects an action ua ∈ U based on its local ob-
servation za ∈ Z, obtained through the observation function
O(s, a) : S×A→ Z. Here, s ∈ S denotes the true state of
the environment. The joint action of all agents is denoted as
u ∈ U . The state transition dynamics are determined by the
function P (st+1|st,ut) : S ×U × S → [0, 1]. All agents
share a common reward function r(s,u) : S×U → R, and
γ ∈ [0, 1) is the discount factor. The primary objective in
the Dec-POMDP framework is to maximize the discounted
return

∑∞
j=0 γ

jrt+j .

3.2. Value Decomposition Methods

Value decomposition methods (Sunehag et al., 2018; Rashid
et al., 2018; Son et al., 2019; Yang et al., 2020) are among
the most widely adopted techniques in MARL, particularly
for addressing challenges related to coordination. A fun-
damental concept in value decomposition methods is de-
composability, which ensures alignment between global
and individual agent objectives. This is formalized through
the Individual-Global-Max (IGM) assumption (Son et al.,
2019), which stipulates that the optimal action for each agent
argmaxua Q∗

a(τ
a, ua), must be consistent with the optimal

joint action of all agents argmaxu Q∗
tot(τ ,u). Mathemati-

cally, this condition is expressed as:

argmax
u

Q∗
tot(τ ,u) = argmax

ua
Q∗

a(τ
a, ua), ∀a ∈ A,

(1)
where τ ∈ Tn represents the joint action-observation histo-
ries of all agents, Qtot is the global action-value function,
and Qa denotes the individual action-value function for
agent a. Several value decomposition methods have been
developed based on this principle, and our proposed CAID

framework can be integrated into these methods to enhance
their overall performance.

3.3. Contextual Multi-Agent Reinforcement Learning

Contextual Reinforcement Learning (CRL) (Benjamins
et al., 2023) extends traditional reinforcement learning by
addressing scenarios where a collection of related tasks
needs to be solved, with each task influenced by a specific
context. The context provides additional information that
may not be directly observable but can significantly affect
decision-making. CRL formalizes such problems using Con-
textual Markov Decision Processes (CMDPs) (Hallak et al.,
2015), where the state space is augmented to include the en-
vironment state and a context variable that captures the con-
ditions under which the agent operates. Formally, the state
is represented as s̄ = (s, c), where s is the environment state
and c denotes the contextual information relevant to the task.

In CMDPs, the context is assumed to remain fixed through-
out an episode, ensuring consistency during the agent’s
interaction with the environment. However, the context can
vary across episodes, leading to a distribution of possible
contexts ρ(c). Consequently, the initial state distribution
in a CMDP is given by ρ(s̄) = ρ(c)ρ(s|c), where ρ(s|c)
represents the distribution of the environment state s condi-
tioned on the context c. For a fixed context c, the CMDP
behaves as a traditional Markov Decision Process (MDP).
CRL aims to determine an optimal policy π∗ that maximizes
the expected return across all CMDPs. The expected return
for a policy π within a specific CMDPMc is denoted as
R(π,Mc). The overall objective is to maximize this return
across the distribution of contexts:

π∗ = max
π

[
Ec∼ρ(c) [R (π,Mc)]

]
.

In multi-agent settings, CRL introduces additional complex-
ity, as each CMDP now represents a multi-agent control
problem where multiple agents interact both with the en-
vironment and with one another. In this paper, we extend
CRL to Contextual Multi-Agent Reinforcement Learning
(CMARL) by modeling each CMDP as a Dec-POMDP, a
framework well-suited for real-world scenarios. The objec-
tive of CMARL is to find an optimal joint policy:

π∗ = max
π

[
Ec∼ρ(c) [R (π,Mc)]

]
, Mc ∼ G,

whereMc represents the Dec-POMDP induced by the given
context c. Our motivation stems from real-world CMARL
tasks where the semantics of an environment can shift sig-
nificantly even within a single episode. For instance, in a
traffic control task, the agent behavior required during morn-
ing rush hours may differ substantially from that during the
evening, despite both being within one episode. We allow
the context vector to evolve over time, effectively treating
the episode as a sequence of sub-episodes, each governed
by a different latent context.
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Figure 2. The overall architecture of the contextual state encoder
and the agent identity decoder. The input includes the global state
and observations from all agents, while the output comprises the
inferred context and the identity assigned to each agent.

4. Methodology
This section presents a detailed overview of the CAID frame-
work, which comprises three core modules. The first two
modules are the Contextual State Encoder and the Agent
Identity Decoder, both built upon a Transformer network
architecture (Vaswani et al., 2017). These modules work
collaboratively to infer contextual information from the en-
vironment and generate unique identities for each agent.
The third module, the Action Regulator, transforms the
actions selected by each agent based on its assigned iden-
tity, ensuring context-aware decision-making. A key feature
of CAID is its ability to map the environment state space
into a compact, low-dimensional space. This mapping fa-
cilitates the identification of similar contextual scenarios,
allowing agents to infer analogous contexts and assign iden-
tical identities even when operating in significantly different
environment states. By leveraging these identities, agents
can effectively reuse previously learned policies, improv-
ing adaptability and efficiency in complicated multi-agent
environments.

4.1. Contextual State Encoder

In practical CMARL tasks, the context c and its distri-
bution ρ(c) are frequently inaccessible, rendering the
context-augmented state s̄ unavailable during training. As
a result, agents must learn their policies based solely on
the environment state s, which lacks explicit contextual
information. When changes in c cause variations in s,
agents must relearn their policies, which dramatically
increases training difficulty.

Inspired by the capabilities of large language models
(LLMs) (Touvron et al., 2023), we observe that these mod-
els often produce consistent responses even when the or-
der of input words changes. Research indicates that this
robustness is attributed to the underlying Transformer archi-
tecture, particularly its multi-head attention (MHA) mecha-

nism (Vaswani et al., 2017). This mechanism captures the
relationships between input tokens while modeling the data
comprehensively from multiple perspectives.

Building on this insight, we propose the Contextual State
Encoder. It produces a context variable ĉ by integrating
the environment state s with the local observations z of all
agents. This context serves as a substitute for the unavailable
ground truth c and concurrently assigns unique identities to
each agent.

The structure of the contextual state encoder is illustrated in
Figure 2. Inspired by the Seq2Seq architecture (Sutskever
et al., 2014), which is widely used in NLP, we employ
the encoder component as the contextual state encoder. In
CMARL scenarios, the environment state s is highly dy-
namic, making it challenging to capture contextual informa-
tion or assign consistent identities based merely on s. To
address this, we represent the input as a sequence of length
n + 1, comprising the environment state s and the local
observations of all agents z = {z1, z2, . . . , zn}. Formally,
the encoder fEncoder generates the contextual information
as follows:

ĉ = fEncoder(s,z). (2)

While the contextual state encoder does not directly recon-
struct the ground truth c, it achieves two key objectives:
(1) mapping the complex state space into a compact, low-
dimensional representation, and (2) extracting relationships
between the environment state and agents’ local observa-
tions. These relationships capture a critical subset of the
contextual information, allowing for more efficient policy
learning and identity assignment in multi-agent systems.

4.2. Agent Identity Decoder

After generating the contextual information, the next step
focuses on assigning unique identities to agents. In most ex-
isting MARL frameworks (Lowe et al., 2017; Kurach et al.,
2020), agent identities are determined using heuristic rules.
However, in scenarios with similar contextual settings, such
methods often fail to ensure consistent alignment of agent
identities across different environments. To overcome this
limitation, we propose a context-aware identity assignment
module capable of automatically assigning each agent a
a unique identity ida based on the generated contextual
information.

As shown in Figure 2, the Agent Identity Decoder is
designed using a causal Transformer decoder. Inspired
by natural language generation tasks and the Pointer Net-
work (Vinyals et al., 2015), the identities are determined in
an autoregressive manner. The process begins with a special
token ⟨BOS⟩, commonly employed in NLP tasks to indi-
cate the start of decoding. Representing the agent identity
decoder as fDecoder, the probability of identity assignment

4



Reidentify: Context-Aware Identity Generation for Contextual MARL

Mixing Network

Regulator 1 Regulator n

Agent 1 Agent n

MLP MLP

Figure 3. Illustration of value decomposition methods with the
action regulators.

for each agent a can be expressed as:

P(a) = Softmax
(
fDecoder(s, z, id1, . . . , ida−1)

)
. (3)

Each identity ida ∈ {1, 2, . . . , n} is discrete and must be
unique to distinguish agents. Enforcing identity uniqueness
is a critical constraint, formally expressed as follows:

∀i ̸= j, idi ̸= idj .

To satisfy this constraint, the agent identity decoder em-
ploys a dynamic masking mechanism M , which ensures
that newly generated identities do not duplicate previously
assigned ones. The mask M is defined as:

M [id] =

{
0 if identity id has already been assigned,
1 otherwise.

During each decoding step, the probability distribution is
dynamically adjusted based on Equation (3) through the
application of the specified mask, resulting in:

P(a) = Softmax(fDecoder(s, z, id1, . . . , ida−1) ·M).
(4)

To prevent premature convergence to suboptimal identity
assignments, identities are sampled rather than greedily
selected. Then the identity assignment for each agent a can
be formulated as:

ida = Draw (P(a)) , ∀a ∈ A. (5)

This stochastic approach reduces the likelihood of a partic-
ular agent consistently dominating a specific identity, pro-
moting more balanced identity assignments among agents.

4.3. Action Regulator

After assigning unique identities to agents, the next step
is to incorporate this identity information into decision-
making processes. In multi-agent systems, agents with the

same identity may have identical absolute semantics in their
action spaces, but the relative semantics of their actions can
vary significantly across different states. It is necessary to
transform their action spaces accordingly.

During the centralized training phase, the contextual state
encoder and agent identity decoder generate ĉ and ida. How-
ever, these identities cannot be used as inputs to the agent
networks during the decentralized execution phase. We
draw inspiration from hypernetworks (Ha et al., 2017) to
overcome this limitation and propose an Action Regulator
to align agents’ action spaces based on their identities. The
action regulator operates on the Q-values output by each
agent and consists of two linear layers. Both layers take the
agent’s identity ida as input, generating the weights w and
bias b for a hypernetwork. The transformed Q-value output
of the agent network is then expressed as:

Q̂a(τ
a
t , u

a
t , id

a
t ) = w(idat )Qa(τ

a
t , u

a
t ) + b(idat ). (6)

By introducing an additional hypernetwork layer to perform
an affine transformation on the raw Q-values, the action
regulator effectively aligns the action spaces of agents,
ensuring that their decisions are consistent with their
assigned identities.

To enable seamless integration of the action regulator into
existing value decomposition methods for MARL, it must
satisfy the Individual-Global-Max (IGM) paradigm, as de-
scribed in Equation (1). Precisely, the global optimal ac-
tion should align with the individual optimal actions of the
agents. We adopt a simple yet effective approach to meet
this requirement: ensuring that w remains positive by tak-
ing its absolute value. This guarantees the transformation
preserves the consistency between global and individual
optimal actions.

In summary, the action regulator serves as a critical com-
ponent of the CAID framework, enabling identity-based
decision-making and ensuring compatibility with existing
multi-agent reinforcement learning methods while maintain-
ing theoretical guarantees of the IGM condition.

4.4. End-to-End Training

The three main components of CAID, along with their in-
puts and outputs, have been detailed earlier. The causal
Transformer architecture includes a contextual state encoder
and an agent identity decoder. The encoder generates a
contextual state ĉ based on the environment state s and the
local observations of all agents z. This contextual state
ŝ = (s, ĉ) replaces the ground truth s̄ and serves as input to
the mixing network in value decomposition methods, pro-
viding a more comprehensive representation of CMARL
tasks compared to the original environment state s. The
agent identity decoder sequentially predicts each agent’s
identity in an autoregressive manner. These identities are

5



Reidentify: Context-Aware Identity Generation for Contextual MARL

subsequently used as inputs to the action regulator, align-
ing agents’ action spaces. The entire CAID framework is
trained end-to-end, where the three modules are optimized
jointly with the reinforcement learning module. The loss
function for this process is as follows:

L = (ytot −Qtot(τ ,u, ŝ))
2
, (7)

where ytot is the target joint value function, computed as
ytot = r + γmaxu′ Qtot(τ

′,u′, ŝ′). All parameters within
CAID are optimized by minimizing the temporal-difference
(TD) error. A significant challenge arises because each
agent’s identity is sampled, preventing direct gradient back-
propagation to the agent identity decoder. To address this,
we utilize Straight-Through Gradients (Bengio et al.,
2013), a technique easily implemented using automatic dif-
ferentiation. The agent identity in Equation (5) is modified
as follows:

ida = Draw (P(a))+P(a)−StopGrad (P(a)) ,∀a ∈ A,
(8)

where the StopGrad function prevents gradient flow
through its input during backpropagation. This approach
ensures that agent identities are sampled to avoid premature
convergence to suboptimal solutions while still allowing
gradients to propagate back to optimize the agent identity
decoder.

The overall CAID framework is illustrated in Figure 3. By
integrating the contextual state ŝ and agent identities into
value decomposition methods, CAID provides a more ex-
pressive representation of CMARL tasks. This design en-
ables CAID to be incorporated into existing value decompo-
sition methods, improving its capability to handle complex
multi-agent scenarios.

5. Experiments
In this section, we evaluate CAID in three well-known
CMARL environments: StarCraft Multi-Agent Challenge
(SMACv2) (Ellis et al., 2023), Vectorized Multi-Agent Sim-
ulator (VMAS) (Bettini et al., 2022) and Traffic Signal Con-
trol (PyTSC) (Bokade & Jin, 2024). The tasks in these
domains exhibit considerable variability across episodes,
primarily in the agents’ positions, agent types, and target lo-
cations. First, the performance of CAID is evaluated through
a comparison with several classical algorithms, including
Weighted QMIX (Rashid et al., 2020), QPLEX (Wang et al.,
2021a), and the baseline QMIX (Rashid et al., 2018), along
with recently proposed methods such as RIIT (Hu et al.,
2021), COLA (Xu et al., 2023), and VMIX (Su et al., 2021).
Then the contributions of individual modules within the
framework are discussed. To ensure the reliability of the
results, each experiment is repeated five times with different
random seeds. For a fair comparison, all hyperparameters,

except those introduced specifically by CAID, are kept con-
sistent with the original methods. Unless explicitly stated,
CAID refers to the variant implemented on QMIX. Details
on algorithm hyperparameters are provided in Appendix A.

5.1. StarCraft Multi-Agent Challenge

Based on the renowned real-time strategy game StarCraft II,
SMAC (Samvelyan et al., 2019) is among the most widely
used platforms for multi-agent micro-management exper-
iments. It contains a variety of mini-scenarios, including
homogeneous, heterogeneous, symmetric, and asymmet-
ric problem types. Each task requires controlling a team of
agents to defeat an AI team controlled by heuristic strategies.
Agents can only access information within their local obser-
vation range and share a global reward function. However,
recent studies (Ellis et al., 2023) have shown that agents in
SMAC can achieve near-optimal policies by relying solely
on the current timestep and fixed agent IDs, completely
disregarding their local observations. This finding high-
lights a critical limitation of SMAC: a lack of stochasticity,
which is essential in real-world problems. To address this
limitation, SMACv2 was introduced, where agents’ posi-
tions and types can change dynamically in each episode,
posing new challenges for existing MARL algorithms. We
conducted extensive experiments in this classic CMARL
environment to evaluate various algorithms, and scenario
details are provided in Appendix B.1.

The experimental results in SMACv2 are presented in Fig-
ure 4. Across 12 tested scenarios, the inherent stochastic-
ity of the environment occasionally led to scenarios where
achieving victory was entirely infeasible, preventing conver-
gence to near-perfect win rates. Our primary observation
is that CAID outperforms the baseline QMIX algorithm
across all tasks. Furthermore, CAID outperforms other al-
gorithms in most scenarios, particularly in the Terrain and
Protoss series scenarios. In the Zerg series scenarios, the
results derived from integrating CAID into QMIX were
constrained by QMIX’s suboptimal credit assignment capa-
bilities. Nonetheless, CAID consistently demonstrates the
fastest initial convergence rate among all tested algorithms.

5.2. Vectorized Multi-Agent Simulator

In addition to the StarCraft II game environment, we seek
additional effective CMARL environments. The Vector-
ized Multi-Agent Simulator (VMAS) is a vectorized and
fully differentiable simulator designed for efficient MARL
benchmarking. It features a high-performance, vectorized
2D physics engine and a diverse suite of challenging multi-
robot scenarios. The modular and user-friendly design of
the simulator facilitates the creation of custom scenarios,
encouraging contributions from the research community.
Some scenarios in VMAS represent tasks such as intelligent
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Figure 4. Performance comparison with baselines in different SMACv2 scenarios.

formations and obstacle avoidance for drones or uncrewed
vehicles, which are of significant practical relevance. Most
notably, nearly all tasks can be configured to follow the
CMARL setting, where both the initial and goal positions
of agents are randomly assigned in each episode. Detailed
descriptions of the scenarios employed in VMAS can be
found in Appendix B.2.

We used VMAS to compare the performance of three clas-
sic value decomposition MARL algorithms, VDN (Sunehag
et al., 2018), QMIX, and QPLEX, along with their CAID
variants. The learning curves for the CAID variants and
their original counterparts are illustrated in Figure 5. It is
evident that, in most cases, the CAID variants outperform
the original baseline algorithms. This comparison among
the three distinct value decomposition methods and their
respective variants demonstrates that CAID is applicable to
existing value decomposition approaches and can improve
their performance. Furthermore, as a distinct value decom-
position method, VDN lacks a mixing network module,
implying that the contextual state ŝ inferred within CAID-
VDN is not used. Consequently, the performance improve-
ments observed in CAID-VDN are entirely attributable to
the reidentification of agents. This finding underscores the
contribution of the agent identity decoder. In the following
sections, we systematically evaluate the role and importance
of each component in the CAID framework.

5.3. Ablation Study

An ablation study was carried out on CAID to evaluate
its performance in Traffic Signal Control (TSC) scenar-
ios. PyTSC (Bokade & Jin, 2024) is a development en-
vironment tailored for research in traffic signal control, de-
signed to facilitate the rapid development of reinforcement
learning-based solutions. In PyTSC, the tasks emulate ur-
ban traffic management by controlling traffic lights to opti-
mize vehicle movement through intersections. The project
currently integrates with SUMO (López et al., 2018) and
CityFlow (Zhang et al., 2019) as simulation backends, offer-
ing researchers practical tools to utilize open-source traffic
signal control datasets. Notably, it supports the CMARL
setting, where the contexts (e.g., traffic flow) in each episode
are dynamically randomized. Details regarding the environ-
ment are provided in Appendix B.3.

Three variants of CAID were designed, each modifying a
single component of the original algorithm. To investigate
the importance of the contextual state encoder, we proposed
CAID w/o CS, where the contextual state ŝ is excluded from
the mixing network in the base algorithm. For the agent
identity decoder, we introduced CAID w/o AI, in which the
agent network does not utilize the newly assigned identity
information. Lastly, in CAID w/o ST, new identities for
agents are generated using a greedy algorithm instead of
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Figure 5. Comparison of our approach against baseline algorithms on Vectorized Multi-Agent Simulator.

Table 1. Mean of metrics for various algorithms across scenarios in PyTSC.

Algos Jinan Hangzhou New York
Queue Delay Travel Time Queue Delay Travel Time Queue Delay Travel Time

CAID 463.39 0.471 329.28 146.50 0.651 336.52 479.48 0.901 369.05
w/o CS 476.52 0.473 326.86 155.79 0.653 340.00 488.39 0.908 372.13
w/o AI 663.59 0.498 364.05 171.37 0.659 346.77 480.41 0.902 368.38
w/o ST 490.70 0.482 332.34 150.11 0.662 330.65 487.28 0.903 371.38

QMIX 563.13 0.507 338.15 170.58 0.660 349.25 496.08 0.902 381.57

sampling, potentially leading to suboptimal solutions. The
ablation experiment results are illustrated in Table 1. The
best performances of the above algorithms are bold.

We selected three key performance metrics that provide
a more direct assessment of performance: queue length,
delay, and travel time. The results demonstrate that all three
ablated variants degrade the performance of CAID. Among
them, CAID w/o CS shows the least performance drop,
followed by CAID w/o ST. These findings highlight the
importance of the identities produced by the agent identity
decoder in enabling agents to adapt effectively to dynamic
environments. In summary, the designs of the contextual
state encoder and agent identity decoder are critical to the
effectiveness of CAID.

5.4. Visualization

We use a dataset consisting of 20,000 timesteps. The left
side of the figure shows the 2D t-SNE embedding of the
contextual states produced by the Contextual State Encoder,
while the right side presents the 2D t-SNE embedding
of the raw states. Each point corresponds to a state, and
the color of each point encodes a specific permutation of
agent identities in that state. Specifically, we enumerate all
permutations of the agent indices {0, 1, 2, 3, 4}, resulting
in 5! = 120 possible arrangements. Each permutation is
mapped to a unique integer in [0, 119] using a bijective func-
tion based on Cantor expansion (Lehmer code), enabling
us to assign a distinct color to each identity configuration.
For comparison, traditional methods typically assign agent
identities using heuristic rules, leading to only a single
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fixed permutation—represented by a single color in the
figure. Notably, the middle of the figure highlights a pair
of mirror-symmetric and semantically similar states. In
the raw state embedding (right), these states appear distant
from each other, whereas in the contextual state embedding
(left), they are close together and share similar identity
patterns across agents.

1

2

2

1

Contextual State Original StateSMACv2 Snapshots

1

2

Figure 6. The analysis and visualization of the agent identities in
the terrain 5 vs 5 scenario.

6. Conclusion
In this paper, we introduce the Context-Aware Identity Gen-
eration (CAID) framework, which leverages the global state
and local observations from all agents to construct contex-
tual states and dynamically assign agent identities. This de-
sign enables agents to adapt effectively to different task vari-
ations. The CAID framework can be fully trained in an end-
to-end manner using the reinforcement learning paradigm. It
is compatible with existing MARL value decomposition al-
gorithms, significantly improving sample efficiency. The ex-
tensive experiments in diverse contextual MARL scenarios
demonstrate compelling performance, providing strong evi-
dence for the practicality of the proposed framework. We be-
lieve this work represents a meaningful step toward bridging
the gap between multi-agent reinforcement learning and real-
world applications. Promising directions for future research
include enhancing the robustness of CAID in contextual
MARL tasks with dynamic agent populations and extending
its applicability to zero-shot generalization scenarios. Fur-
thermore, identifying a more informative representation of
contextual MARL, similar to the agent identities generated
by CAID, would be an intriguing avenue for exploration.
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A. Implementation Details
A.1. Algorithmic Description

The pseudo-code of CAID is shown in Algorithm 1.

Algorithm 1 Context-Aware Identity Generation (CAID)
1: for each episode do
2: Get the global state s1 and the local observations z1 = {z11 , z21 , . . . , zn1 } of all agents
3: for t← 1 to T − 1 do
4: for a← 1 to n do
5: Select action ua

t according to the agent network
6: end for
7: Carry out the joint action ut = {u1

t , . . . , u
n
t }

8: Get the global reward rt+1, the next local observations zt+1, and the next state st+1

9: end for
10: Store the trajectory in the replay buffer D.
11: Sample a batch of episodes B ∼ Uniform(D).
12: Compute the context variable ĉ using Equation (2).
13: Generate agent identities based on Equation (8).
14: Evaluate the transformed Q-values for all agents using Equation (6).
15: Update the parameters of the CAID model using Equation (7).
16: Periodically update the parameters of the target network.
17: end for

A.2. Hyperparameters

Unless specified otherwise, the hyperparameter configurations across different environments are presented in Table 2. These
settings are identical to those provided in PyMARL2 (Hu et al., 2021). All experiments in this study were conducted using
NVIDIA GeForce RTX 2080 Ti graphics cards and Intel(R) Xeon(R) Silver 4114 CPUs. For all methods, exploration
during training is achieved via independent ϵ-greedy action selection, with ϵ linearly annealed from 1.0 to 0.05 over 50,000
steps. In SMACv2, training ends after 5 million timesteps, whereas it concludes after 1 million timesteps in VMAS and
2 million timesteps in PyTSC.

Table 2. Hyperparameter settings.

Description Value
Learning rate 0.001
Type of optimizer Adam
How many episodes to update target networks 200
Reduce global norm of gradients 10
Batch size 128
Capacity of replay buffer 5000
Batch size for parallel execution 8
Discount factor 0.99

B. Introduction for Environments
In this paper, we employed three experimental environments: SMACv2, VMAS, and PyTSC. Given the limited research on
Contextual MARL and the recent introduction of some new environments, it is essential to provide a detailed overview of
these environments tailored to the CMARL setting. The following sections aim to familiarize readers with the objectives of
these tasks and the corresponding evaluation metrics, offering a foundation for understanding this emerging field.
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(a) SMACv2 (b) VMAS (c) PyTSC

Figure 7. Screenshots of the two experimental platforms used in this paper.

B.1. SMACv2

SMACv2 (StarCraft Multi-Agent Challenge version 2) is an enhanced benchmark environment designed to assess the
effectiveness of cooperative MARL algorithms. Compared to its predecessor, SMACv2 incorporates procedurally generated
scenarios, requiring agents to adapt their collaborative strategies to dynamically changing environments, including diverse
enemy configurations and map layouts. This design intensifies the challenges posed by partial observability, compelling
agents to base their decisions on real-time sensory input rather than relying on scripted behaviors. In each episode, the
positions and types of both ally and enemy agents are subject to change.

The primary focus of SMACv2 is on evaluating the agents’ generalization capabilities in previously unseen scenarios.
This is achieved through metrics such as win rates, collaboration efficiency, and adaptability in novel environments. By
introducing more demanding scenarios and imposing stricter evaluation standards, SMACv2 establishes a rigorous platform
for advancing research on multi-agent reinforcement learning algorithms. It fosters algorithmic development in complex,
dynamic contexts and ensures robustness and reliability in real-world applications. Descriptions of the scenarios are provided
in Table 3.

Table 3. Maps in different scenarios.
Race Unit Types Probability of Generation Scenarios

Terran
Marine

Marauder
Medivac

0.45
0.45
0.1

terran 5 vs 5
terran 5 vs 6

terran 10 vs 10
terran 10 vs 11

Protoss
Stalker
Zealot

Colossus

0.45
0.45
0.1

protoss 5 vs 5
protoss 5 vs 6

protoss 10 vs 10
protoss 10 vs 11

Zerg
Zergling
Baneling
Hydralisk

0.45
0.1
0.45

zerg 5 vs 5
zerg 5 vs 6

zerg 10 vs 10
zerg 10 vs 11

B.2. VMAS

VMAS (Vectorized Multi-Agent Simulator) is an efficient and scalable simulation framework for MARL, featuring a
differentiable and vectorized 2D physics engine. VMAS includes a comprehensive suite of complex scenarios that
encompass both cooperative and competitive tasks. It supports highly customizable features, including sensors, elastic
collisions, rotations, joints, and communication mechanisms. Each scenario integrates tailored reward mechanisms and
termination conditions to rigorously evaluate the agents’ collaborative strategies and division of labor under diverse task
objectives.

VMAS offers a range of pre-built multi-agent reinforcement learning scenarios, addressing both cooperative and adversarial
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(a) Balance (b) Dispersion (c) Passage

(d) Reverse Transport (e) Wheel

Figure 8. Illustration of benchmark tasks in VMAS.

tasks. Descriptions of representative scenarios are as follows:

Balance. Agents collaborate to balance a spherical object on a linear platform while transporting it to a designated target.
Any fall of the object or platform results in a substantial penalty. Successful completion requires coordinated task allocation
to maintain equilibrium while steadily advancing toward the goal.

Dispersion. Starting from a common origin, agents must efficiently disperse to distinct target points. This scenario
highlights the importance of decentralized coordination, minimizing clustering, and optimizing task completion.

Passage. A group of robots must traverse a wall with a narrow passage to reach their assigned destinations. The challenge
involves avoiding collisions and orchestrating the use of the passage in a sequential and cooperative manner, testing
path-planning capabilities and localized teamwork.

Reverse Transport. Agents cooperate to transport a high-mass package to a target location. Given the package’s significant
weight, individual agents cannot accomplish the task alone. Success demands precise synchronization of force direction and
magnitude among all agents.

Wheel. Agents encircle a rotating beam anchored at the origin, coordinating their efforts to achieve a target angular
velocity. The task requires an optimal distribution of forces to precisely control the beam’s speed without overexertion,
which could cause deviations from the target.

These scenarios are designed to rigorously evaluate agents’ collaborative efficiency, adaptability, and task performance
across diverse objectives and constraints. Notably, all scenarios can be configured to the CMARL settings.

B.3. PyTSC

PyTSC is a simulation environment tailored to multi-agent reinforcement learning (MARL) in the domain of traffic signal
control (TSC). Its primary goal is to reduce global congestion across the traffic network, quantified by metrics such as total
delay, average waiting time, or vehicle queue length, through the coordinated control of multiple traffic signal agents. In a
fully cooperative MARL framework, agents adapt to dynamic traffic patterns and develop efficient control strategies by
interacting with both the environment and other agents, ultimately achieving global optimization.

The evaluation of PyTSC focuses on two key dimensions: traffic efficiency and algorithmic performance. Traffic efficiency is
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assessed using metrics such as average vehicle waiting time, average travel time, and total network delay, while algorithmic
performance is measured by factors like convergence speed and policy stability. Additionally, PyTSC allows for testing the
adaptability of algorithms under dynamic traffic flow scenarios, such as morning and evening peak periods, providing a
comprehensive assessment of MARL approaches in TSC applications.

Table 4. Scenarios in PyTSC environments.
Scenarios Simulators Network Types Agent Types Total Agents

Jinan CityFlow Real-world Homogeneous 12
Hangzhou CityFlow Real-world Homogeneous 16
New York CityFlow Real-world Homogeneous 16

C. Additional Results
C.1. Results of Dynamic Role Assignment Methods
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Figure 9. Performance comparison with dynamic role assignment methods in different SMACv2 scenarios. We selected ROMA and RODE
as two representative methods for role assignment. All methods were configured with identical hyperparameters, including the optimizer
and techniques such as eligibility traces, to ensure consistency with other algorithms implemented in PyMARL2. It is worth noting that
RODE fails to perform properly in the SMACv2 environment. This limitation arises because the original RODE implementation modifies
the SMAC environment by sorting enemy units in the environment file. Such changes simplify the original SMAC environment, which
undermines its complexity and makes the implementation incompatible with the more challenging and standardized SMACv2. As a result,
RODE is not applicable to the Contextual MARL setting. CAID achieves superior performance and faster convergence.
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C.2. Additional Ablation Study

0 1 2 3 4 5
0

20

40

60

80

M
ed

ia
n 

Te
st

 W
in

 (%
) protoss_5_vs_5

0 1 2 3 4 5
T (1e6)

0

5

10

15

M
ed

ia
n 

Te
st

 W
in

 (%
) protoss_5_vs_6

CAID w/o CS w/o ST w/o AI

0 1 2 3 4 5
0

20

40

60

80

M
ed

ia
n 

Te
st

 W
in

 (%
) protoss_5_vs_5

0 1 2 3 4 5
T (1e6)

0

5

10

15

M
ed

ia
n 

Te
st

 W
in

 (%
) protoss_5_vs_6

CAID w/o AI w/ Fixed ID w/ Random ID

Figure 10. Left: The learning curves of the three variants discussed in Section 5.3 on the SMACv2 benchmark. CAID w/o AI refers to the
variant where only the Action Regulator component of CAID is removed, while all other components remain unchanged. The results
demonstrate that all three variants underperform compared to the full CAID model, highlighting the essential role each module plays
in the overall performance of CAID. Right: The learning curves of different variants for identity modeling, including ablation and
alternative strategies. CAID with Fixed ID denotes a configuration where each agent is assigned a static identity based on its index in the
agent list. CAID with Random ID refers to a setting where agents are assigned randomly generated but episode-consistent identities.
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