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ABSTRACT

Large Language Model (LLM) agents excel in tasks like translation, code gen-
eration, and decision-making, but consecutive tool calls in complex scenarios
lead to excessively long contexts. Despite SOTA LLMs’ 128K+ token context
windows, unstructured data interactions easily exceed limits, harming task focus
and increasing resource costs. Existing solutions have flaws: forced truncation
causes information loss, external memory modules lack end-to-end optimization,
and context summarization wastes KV cache and loses data. To address this, we
propose Compressed Step Information Memory (CSIM), an end-to-end context
management method. It compresses post-step context to minimize information
loss, retells/updates plans to avoid forgetting and correct errors. Trained via SFT
and RL, CSIM achieves strong performance on Gaia and Browsecomp. Our con-
tributions: (1) CSIM boosts performance in multi-tool scenarios; (2) A data syn-
thesis and SFT/RL framework distills SOTA agent capabilities; (3) Experiments
validate the method on multiple benchmarks.

1 INSTRUCTION

Large language model (LLM) agents have demonstrated remarkable capabilities. They bring sub-
stantial convenience to users across diverse tasks, such as translation, text generation for writing,
code generation for programming, providing accurate answers in information-seeking scenarios,
and even assisting in making complex decisions. These agents can interact with the environment,
acquire information by invoking external tools, conduct reasoning, and ultimately solve users’ prob-
lems.

However, when confronted with intricate problems or scenarios, agents often need to call external
tools consecutively, sometimes even dozens of times. This leads to an extremely long context for
LLMs. Although state-of-the-art (SOTA) LLMs can offer a context window of 128K tokens or
more, in practical scenarios, this still falls short due to some critical pain points. For example, after
interacting with multiple web pages or other unstructured data, agents can generate extremely long
observations which easily exceed the context limit. Even if the large model technically supports such
a large context window, when the context is too long, the agent struggles to focus on the problem it
currently needs to solve, resulting in performance degradation. In addition, a long context implies
more tokens, which in turn means higher resource consumption.

Faced with the context-length challenge, a relatively simple and straightforward approach is to trun-
cate the context once it exceeds a predefined threshold. However, cutting off the context forcibly
will inevitably lead to information loss. Once information is lost, the agent may lose the logical
connection with the previous task process, fail to understand the context of the current operation,
and even make wrong decisions or repeat ineffective operations. Therefore, context engineering has
become a crucial factor in enhancing the performance of LLM agents.

To address this issue, researchers have proposed various solutions. For example, some methods
introduce external memory module as an aid, pre-construct a structured knowledge base and re-
trieve relevant information using keywords for making better decisions. However, these are usually
trained separately and cannot be optimized end-to-end. Other methods summarize previous memo-
ries and newly obtained information after each interaction to help the agent understand the context.
Nevertheless, this compression causes partial information loss and fails to effectively utilize the
key-value(KV) cache.
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Figure 1: Overview of the training framework. (I) The SFT stage utilizes reformatted ReAct data
with both short and long chains of thought for cold start. (II) The RL stage performs tool-aware
rollouts on unused QA pairs and optimizes the policy.

In response to these situations, we propose an end-to-end context memory management method
called Compressed Step Information Memory(CSIM) which is based on step information com-
pression. Our method compresses and summarizes the context memory after each step finished,
minimizing information loss to the greatest extent possible. Meanwhile, it retells the plan and up-
dates it within a certain limit. This not only prevents the agent from forgetting the original plan
due to a long context, but also effectively corrects potential errors in the original plan. We train the
model through end-to-end supervised fine-tuning(SFT) and reinforcement learning (RL), achieving
excellent results on benchmarks such as Gaia and Browsecomp.

In summary, our core contributions are as follows:

• We propose an end-to-end context memory management method CSIM based on step in-
formation compression, which effectively improves the model’s performance, especially in
multiple tool-calling scenarios.

• We design a data synthesis workflow and subsequent training framework for SFT and RL,
enabling to distillate the capabilities of SOTA agents into end-to-end agent models.

• We train the model using the proposed method and framework, and achieve excellent results
on multiple benchmarks.

2 RELATED WORK

2.1 CONTEXT MEMORY MANAGEMENT FOR MULTI-TOOL-CALLING AGENTS

Efficient context memory management is critical for LLM agents to maintain reasoning coherence
in multi-turn, tool-intensive tasks Zhou et al. (2025). Existing methods are categorized by their
structure design and update mechanisms:

Static Structure Design Methods. These methods rely on fixed architectures for memory organi-
zation. MemOS unifies three memory types (plaintext, activation, parameter) into a ”MemCube” to
enable cross-type conversion Li et al. (2025c), but lacks dynamic compression for step-wise tool
interaction history. MemoryOS adopts a three-tier structure (short-term dialogue chains, mid-term
topic segments, long-term personas) with heat-based memory promotion Kang et al. (2025); sim-
ilarly, MemGPT Packer et al. (2023) uses cache-like prioritization and SCM Liang et al. (2023)
uses dual buffers, but all suffer limited generalization in diverse tool-calling scenarios due to fixed
workflows Xu et al. (2025).
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Dynamic Update Mechanisms. These methods optimize memory content via adaptive updates.
MEM1 maintains a single buffer updated with prior context and environment observations Zhou
et al. (2025), but risks information loss in long sequences. A-MEM links new memories to existing
ones via similarity scores and evolves content Xu et al. (2025), but decouples retrieval optimization
from decision-making. Agent KB uses a pre-built structured knowledge base and a teacher-student-
execution pipeline for reasoning Tang et al. (2025), but the KB cannot be updated end-to-end with
real-time interactions. Intrinsic Memory Agents use a unified template with agent-specific memory
maintainers Yuen et al. (2025), but increase system complexity and fail to resolve context bloat in
single-agent multi-tool tasks, a core target of CSIM.

2.2 CONTEXT COMPRESSION FOR EFFICIENT REASONING

To mitigate context window limits, research follows two paths; CSIM belongs to the latter and
addresses gaps in dynamic tool-calling scenarios:

Architecture-Driven Long-Context Methods. These methods modify LLM architectures to han-
dle longer sequences. RoPE extrapolation (NTK Peng & Quesnelle (2023), YaRN Peng et al.
(2023)) adjusts positional embeddings Yu et al. (2025a), while linear attention Child et al. (2019)
and State Space Models Gu & Dao (2023); De et al. (2024) achieve O(N) complexity. However,
they require invasive architectural changes and only adapt to static texts, not dynamic tool interac-
tion histories.

Content-Driven Compression Methods. These methods distill context without architectural mod-
ifications, focusing primarily on fixed scenarios: MemAgent Yu et al. (2025a) compresses static
documents via KV cache retention, and Agent KB Tang et al. (2025) encodes long texts into struc-
tured embeddings—both aiming to preserve output consistency with full contexts. Yet they are
ill-suited for multi-tool-calling agents: they target static documents rather than dynamic interaction
histories (e.g., tool calls, real-time feedback Zhou et al. (2025)) and underutilize KV caches, leading
to redundant computation in multi-step tasks.

In particular, relevant memory management works incorporate partial compression-like mecha-
nisms, but are not tailored for dynamic agent scenarios. MEM1 Zhou et al. (2025) iteratively sum-
marizes context, queries, and observations into a single buffer to maintain continuity, but this design
may lead to gradual information dilution in extended tool-calling chains. A-MEM Xu et al. (2025)
uses similarity-based pruning to structure memory, yet its focus on retrieval optimization means it
does not prioritize retention of task-critical KV patterns. Such limitations highlight the need for
a compression strategy tailored to multi-tool-calling agents, which CSIM addresses: its step-wise
mechanism targets full interaction histories (tool calls, feedback, reasoning logs), selectively pre-
serving KV-relevant details (e.g., tool output validity, plan adjustment logic) to balance information
retention and efficiency—resolving gaps in existing methods.

3 PRELIMINARY

Target scenario and notation: Let T denote a space of texts. We focus on the agentic task scenario,
aiming to predict the output O(t) ∈ T based on the input I(t) ∈ T and the accumulated context
C(t) = [c(1), . . . , c(t)] for reasoning step t ∈ {1, . . . , T}, where T ∈ N represents the maximum
number of reasoning steps. Here, c(t) ∈ T denotes a newly integrated context at reasoning step
t, which comprises the interaction results from the preceding reasoning step t-1, including I(t-1),
O(t-1), and any additional tool feedback. We represent the dataset with multiple identities as D =
{(Ci(t), Ii(t), Oi(t)) | i ∈ I, t ∈ {1, . . . , T}}, where I denotes an index set of identities.

Table 1: Illustrative instances of online inference scenarios.
Application Dataset Context C(t) Input I(t) Output O(t)

Agentic task GAIA Mialon et al. (2023) State history Current action Next action

Context compression: Let us consider a large language model fθ : T → R+, which models the
probability distribution over the text space T . A typical approach for predicting output O(t) involves
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using the full context C(t) as Ô(t) ∼ fθ(· | C(t), I(t)). However, this approach requires increasing
memory and computation costs over time for maintaining and processing the entire context C(t).
One can employ context compression techniques to mitigate this issue, compressing contexts into
a shorter sequence of attention key/value pairs or soft prompts (Mu et al., 2023; Ge et al., 2023).
Given the compression function gcomp, the inference with compressed contexts becomes Ô(t) ∼
fθ(· | gcomp(C(t)), I(t)), where |gcomp(C(t))| ≪ |C(t)|. It is worth noting that existing context
compression methods mainly focus on compressing a fixed context C̄ that is repeatedly used as a
prompt (Mu et al., 2023; Ge et al., 2023). The objective of the compression is to generate outputs
for a given input I that are similar to the outputs generated when using the full context: fθ(· |
gcomp(C̄), I) ≈ fθ(· | C̄, I).

4 METHODS: CSIM

We focus on efficiently understanding long contexts while utilizing short context windows, thereby
avoiding the quadratic complexity associated with attention mechanisms in long sequences. This ap-
proach imposes specific requirements on memory design: it must not only ensure smooth transitions
between windows but also retain critical information from all previous windows.

4.1 SFT FOR COLD START

Compressed Context Agent Knowledge Distillation: Our approach leverages agent-level knowl-
edge distillation to transfer capabilities from state-of-the-art multi-agent systems into chain-of-
agents trajectories. This method extends sequence-level knowl- edge distillation principles [24]
to the multi-agent domain, where we distill the sequential decision-making patterns of expert multi-
agent systems rather than word-level distributions.

Progressive Quality Filtering: filtering high trajectory for SFT.

SFT Training: To avoid interference from external feedback during learning, we mask out loss con-
tributions from tokens representing external feedback. Given the task context tc and the complete
decision-making trajectory x = [x1, x2, . . . , xn], where each xi ∈ {⟨think⟩, ⟨action⟩, ⟨answer⟩}, the
loss function at this stage is computed as follows:

L =
1

|x|

|x|∑
i=1

Ixi ̸=o [log πθ(xi | tc, x<i)]

Here, Ixi ̸=o indicates tokens that do not correspond to external feedback, and we only consider the
numerical terms associated with these tokens in the loss calculation.

4.2 REINFORCEMENT LEARNING FOR COMPRESSED CONTEXT

RL Training Data: Given the heterogeneous quality distribution across our integrated diverse data
sources, we implement a multi-stage filtering protocol to ensure query quality. This curation strategy
addresses data variance through quality filter and strategic sampling.

Quality filter: We employ Qwen-2.5-72B-Instruct Qwen et al. (2025) to evaluate question
solvability without tool assistance. For each query q in the QA dataset:

rq =
1

N

N∑
i=1

I [EM(ai, ygt) = 1] (1)

where N = 32 is the number of model predictions, ai denotes the i-th prediction, ygt represents
the ground truth, and EM(·) computes the exact match score between two inputs. This pass rate
rq quantifies parametric knowledge contamination risk. Queries with rq > 0.3 are excluded as
they either represent: 1) Trivially solvable cases requiring no tool usage, or 2) Highly contaminated
samples vulnerable to parametric recall. This threshold ensures genuine tool engagement.
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Strategic sampling: We adopt a random selection strategy to sample queries from the remaining
challenging ones (with rq ≤ 0.3), which are ultimately used for RL training:

QRL = {qj | rqj ≤ 0.3}j=1. (2)

The sampled subset, which is excluded from the SFT dataset, forms the final RL dataset. This
composition focuses on queries where tool-based reasoning offers substantial value. By design, the
strategic sampling ensures that the RL training emphasizes challenging cases in which effective tool
coordination is critical, while reducing the influence of trivial or potentially useless samples.

Reward Function Design: Reward signals are critical for shaping RL dynamics in open-ended
web agent tasks. Our framework adopts a streamlined design, built on two key considerations:
Format consistency is inherently ensured through high-quality supervised fine-tuning and effective
cold-start, obviating the need for explicit format validation rewards (e.g., prior scoreformat). For
evaluating answer correctness, traditional rule-based metrics (F1, EM) fail to capture the nuance of
diverse valid outputs in open-ended tasks. Instead, we use LLM-as-JudgeZheng et al. (2023), where
judge model Mj provides binary assessments. Our reward function is:

Rweb(τ) = scoreanswer (3)

where scoreanswer ∈ {0, 1} is 1 if Mj judges the final prediction correct. This design prioritizes
core correctness, avoids instability from fragmented rewards, mitigates reward hacking via binary
signals, and enables flexible evaluation of diverse outputs through LLM judgment.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmarks: To assess performance on complex information retrieval tasks, we further evaluate on
three specialized benchmarks: GAIA Mialon et al. (2023) (103 text-only examples for fair compar-
ison with Li et al. (2025b); Wu et al. (2025)), BrowseComp Wei et al. (2025), and HLE Phan et al.
(2025). These benchmarks collectively enable systematic assessment across diverse task typologies
and complexity levels.

• GAIA Mialon et al. (2023) is a benchmark for General AI Assistants that evaluates multi-
step reasoning and tool-use proficiency through real-world questions. While conceptually
simple for humans (92% solve rate), these questions are challenging for AI systems. We use
its text-only subset (103 validation samples) to ensure fair comparison with prior work Li
et al. (2025b); Wu et al. (2025), requiring fundamental abilities including web browsing
and tool orchestration.

• BrowseComp Wei et al. (2025) assesses advanced web navigation capabilities through de-
liberately obscure yet verifiable questions. It requires persistent, creative search strategies
to locate hard-to-find information that cannot be discovered via simple queries or brute-
force methods, with verification through short, factual answers. We evaluate on the full
benchmark (1,266 examples).

• HLE Phan et al. (2025) is a frontier academic benchmark at the limits of human knowl-
edge, featuring 2,500 multi-modal questions across mathematics, humanities, and natural
sciences. These questions require expert-level reasoning and cannot be resolved through
simple internet retrieval. For methodological consistency, we evaluate exclusively on its
text-only subset (500 samples), which exposes significant capability gaps in state-of-the-
art systems.

Metrics: Model performance is evaluated using the LLM-as-Judge method, with Qwen-2.5-72B
serving as the judge Zheng et al. (2023); Sun et al. (2025); Wu et al. (2025). The judge provides
binary correctness assessments for each prediction, yielding accuracy scores per dataset. The stan-
dardized judging prompt is detailed in xxx.

Implementation Details: Our experimental framework is implemented using the Qwen-2.5
model family as the backbone architecture. Specifically, we evaluate the 32B-Instruct vari-
ants Qwen et al. (2025) to analyze performance across different model scales. All models are con-
figured with a maximum sequence length of 32768 tokens to support complex reasoning chains and

5
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the integration of lengthy retrieved content. During inference, we set the generation temperature to
1.0, the top-p sampling threshold to 0.9, and the top-k sampling parameter to 20.

For SFT, we use a batch size of 256 for 2.5 epochs with a learning rate of 1.4e-5 and AdamW
optimizer with cosine decay. The fine-tuning procedure is implemented using the LLaMA-Factory
framework Zheng et al. (2024). Following established practice in prior work Jin et al. (2025); Sun
et al. (2025), we mask external tool call outputs during fine-tuning to preserve the integrity of the
learning process by excluding extraneous external knowledge. RL stage employs Decoupled Clip
and Dynamic Sampling Policy Optimization (DAPO) Yu et al. (2025b) with the following protocol:
Each training iteration processes 64 prompts, generating 8 rollouts per prompt through environment
interaction. Each rollout permits up to 24 steps and 32k tokens followed by final answer generation.
We use the VeRL framework Sheng et al. (2024) for DAPO training.

Baselines: For GAIA, WebWalker, BrowseComp, and HLE benchmarks, we compare against:

• Direct Inference: For complex web tasks, we evaluate against more advanced baseline
LLMs, including Qwen2.5-32B-Instruct Qwen et al. (2025), QwQ-32B Team (2024), and
Deepseek-R1-671B Guo et al. (2025).

• Agent Framework: We additionally compare against two SOTA agent frameworks: OA-
gents Zhu et al. (2025) and OWL Hu et al. (2025), which are widely recognized for their
strong performance in web agent tasks.

• Tool-integrated Frameworks: We compare against specialized web agents including:
Search-o1 Jin et al. (2025), R1-Searcher Song et al. (2025), WebThinker Li et al. (2025b),
SimpleDeepSearcher Sun et al. (2025), WebDancer Wu et al. (2025), WebSailor Li et al.
(2025a), and WebShaper Tao et al. (2025).

All baselines utilize publicly available implementations with performance reported for their optimal
configurations. To ensure fair comparison while isolating architectural contributions, we use the
same backbone models (Qwen-2.5-7B/32B-Instruct or QwQ-32B) across all methods where appli-
cable.

5.2 EXPERIMENTAL RESULTS

Our result is as 2.

5.3 ABLATIONS

Complementary roles of step summary and update plan: xxx

Impact of update plan agent: Impact of update plan agent.

Impact of step summary prompt: Impact of step summary prompt.

Different compression methods: The impact of different compression methods.

6 CONCLUSION
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