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Abstract
001

Referring Expression Comprehension (REC) is a002

crucial cross-modal task that objectively evaluates003

the capabilities of language understanding, image004

comprehension, and language-to-image ground-005

ing. Consequently, it serves as an ideal testing006

ground for Multi-modal Large Language Mod-007

els (MLLMs). In pursuit of this goal, we have008

established a new REC dataset characterized by009

two key features: Firstly, it is designed with con-010

trollable varying levels of difficulty, necessitating011

multi-level fine-grained reasoning across object012

categories, attributes, and multi-hop relationships.013

Secondly, it includes negative text and images cre-014

ated through fine-grained editing and generation015

based on existing data, thereby testing the model’s016

ability to correctly reject scenarios where the tar-017

get object is not visible in the image—an essential018

aspect often overlooked in existing datasets and019

approaches. Utilizing this high-quality dataset, we020

conducted comprehensive evaluations of both state-021

of-the-art specialist models and MLLMs. Our find-022

ings indicate that there remains a significant gap023

in achieving satisfactory grounding performance.024

We anticipate that our dataset will inspire new ap-025

proaches to enhance visual reasoning and develop026

more advanced cross-modal interaction strategies,027

ultimately unlocking the full potential of MLLMs.028

Our code and the datasets 1.029

1 Introduction030

Despite significant advancements in multimodal031

large language models (MLLMs), a critical chal-032

lenge remains in ensuring these models’ responses033

are grounded in visual content rather than solely de-034

rived from linguistic cues (Tong et al., 2024; Zhai035
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et al., 2023; Miyai et al., 2024). Vision-language 036

models often treat language as a bag of words, lack- 037

ing meaningful engagement with word order, at- 038

tributes, or relationships (Ma et al., 2023; Thrush 039

et al., 2022; Tong et al., 2024; Yuksekgonul et al., 040

2022), and exhibit poor grounding and spatial rea- 041

soning abilities (Chen et al., 2024a; Tong et al., 042

2024; Zhang et al., 2024). 043

Current evaluation methods utilize Visual Ques- 044

tion Answering or Image-Text Retrieval to evaluate 045

the compositional reasoning or grounding abilities 046

of MLLMs. However, these methods provide an in- 047

direct assessment of the models’ visual grounding 048

capabilities. In contrast, the Referring Expression 049

Comprehension (REC) task requires the model to 050

directly output the bounding box coordinates based 051

on a given expression, serving as an ideal testing 052

ground for MLLMs. 053

Recent MLLMs, leveraging substantial ground- 054

ing data (Chen et al., 2023; Wang et al., 2023b,a) 055

and specifically designed visual modules (You 056

et al., 2024; Li et al., 2024a), have achieved im- 057

pressive results on common REC benchmarks like 058

RefCOCO/+/g (Yu et al., 2016). However, these 059

benchmarks lack considerations of compositional 060

reasoning, allowing models to perform well with- 061

out understanding linguistic structure or even with- 062

out the expression (Cirik et al., 2018; Akula et al., 063

2020). Additionally, current vision-language mod- 064

els struggle with negative samples, where the target 065

object is absent from the image (Chen et al., 2020; 066

Kurita et al., 2023; You et al., 2024). This limita- 067

tion is further exacerbated by the lack of robust- 068

ness in existing datasets, which fail to provide the 069

necessary complexity and variability to thoroughly 070

evaluate MLLMs. 071

In response, we introduce FineCops-Ref, a 072

benchmark specifically designed to address these 073

limitations. Our dataset introduces controlled 074

difficulty levels, compelling MLLMs to perform 075

fine-grained reasoning across object categories, at- 076
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tributes, and multi-hop relationships. We classify077

the difficulty levels based on the number of at-078

tributes and relationships necessary for locating079

the target object. For instance, if there is only one080

possible target in the image, the difficulty level is 1081

regardless the complexity of the expression. If the082

model needs to understand at least two or more re-083

lationships and attribute information, the difficulty084

level is 3.085

Moreover, FineCops-Ref incorporates negative086

samples crafted through meticulous editing, testing087

the models’ resilience against misalignments and088

hallucinations, thereby assessing their true visual089

grounding capabilities.090

Our comprehensive evaluation with state-of-the-091

art models reveals a significant gap in grounding092

performance, highlighting the need for advanced093

visual reasoning strategies.094

We present several core findings in our study.095

Firstly, for simple REC tasks with a difficulty level096

1, traditional vision-language models, despite their097

relatively smaller parameter sizes, maintained a sig-098

nificant advantage. Secondly, all models exhibited099

poorer performance at difficulty levels greater than100

1, while MLLMs demonstrated stronger capabili-101

ties under these conditions. In terms of negative102

data, all models showed weak performance, even103

in the simplest scenarios where the image does104

not contain an object matching the category speci-105

fied in the expression. Additionally, we observed106

a positive correlation between precision on posi-107

tive samples and recall with negative samples, with108

traditional vision-language models and MLLMs109

displaying different tendencies.110

To enhance the fine-grained compositional rea-111

soning capabilities of existing models, we em-112

ployed the same pipeline used to construct our113

benchmark to create a rich training dataset that114

includes both positive and negative samples. Fine-115

tuning on this training dataset significantly im-116

proved model performance, with further improve-117

ments observed on the RefCOCO/+/g dataset. We118

make FineCops-Ref and the code for our data gen-119

eration pipeline publicly available under the CC120

BY 4.0 License.121

2 Related Works122

Referring expression comprehension. The REC123

methods can generally be divided into two cate-124

gories based on whether or not it uses LLMs: spe-125

cialist and MLLMs. Specialists typically extract126

text and image features separately and perform 127

multi-stage fusion (Liu et al., 2023c; Yan et al., 128

2023; Kamath et al., 2021). Their training tasks of- 129

ten include various object location tasks. Recently, 130

Zhao et al. (2024a) achieved excellent results on 131

two visual grounding (VG) benchmarks by lever- 132

aging hard negative samples in training. 133

On the other hand, MLLMs directly input the 134

projected visual features into the LLM. Recent 135

methods aim to enhance grounding capabilities 136

in MLLMs through dataset construction with co- 137

ordinate information and additional visual mod- 138

ules. Common methods for datasets include 139

transforming traditional visual datasets into an 140

instruction-following format using templates (Li 141

et al., 2024b; Pramanick et al., 2023; Wang et al., 142

2023b), correlating object coordinates with exist- 143

ing captions (Peng et al., 2024; Qi et al., 2024), 144

and using GPT to generate question-and-answer 145

pairs based on images, object coordinates, and cap- 146

tions (You et al., 2024). 147

The All-Seeing Project (Wang et al., 2024) has 148

recently introduced a new dataset (AS-1B) using a 149

scalable data engine that incorporates human feed- 150

back and efficient models in the loop. 151

In terms of visual modules, some methods 152

integrate additional visual components, such as 153

GLaMM (Rasheed et al., 2024) and LLaVA- 154

Grounding (Zhang et al., 2023), while others ex- 155

tract regional features to use as additional in- 156

puts (Ma et al., 2024; Shao et al., 2024; You et al., 157

2024; Li et al., 2024a). 158

Evaluation of Compositional Reasoning. Cur- 159

rent multimodal models, including advanced 160

MLLMs like GPT-4V, exhibit poor compositional 161

reasoning, often treating language as a bag of words 162

without considering word order, attributes, or rela- 163

tionships between objects (Suhr et al., 2019; Ma 164

et al., 2023; Diwan et al., 2022; Tong et al., 2024; 165

Yuksekgonul et al., 2022). Common evaluation 166

benchmarks involve constructing hard negative cap- 167

tions to test models’ capabilities, such as distin- 168

guishing between "a mug in some grass" and "some 169

grass in a mug" (Parcalabescu et al., 2022; Thrush 170

et al., 2022; Ma et al., 2023). Hsieh et al. (2023) 171

found that previous benchmarks have language bi- 172

ases and that a simple grammar model can distin- 173

guish negative captions. Some benchmarks focus 174

on negative images (Ray et al., 2023; Yarom et al., 175

2023; Zhang et al., 2024; Le et al., 2023), while oth- 176

ers primarily focus on spatial relationships (Zhang 177

et al., 2024; Liu et al., 2023a; Yang et al., 2019; 178
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Chen et al., 2024a).179

For REC tasks, Akula et al. (2020) critically180

examined RefCOCOg, showing that 83.7% of test181

instances do not require reasoning on linguistic182

structure, and proposed the Ref-Adv dataset, which183

perturbs original expressions to refer to different184

target objects.185

CLEVR-Ref+ (Liu et al., 2019) is a synthetic186

dataset emphasizing relationships, attributes, and187

linguistic logic. Cops-Ref (Chen et al., 2020)188

and Ref-Reasoning (Yang et al., 2020) use GQA189

scene graphs (Hudson and Manning, 2019) and190

rule-based methods to create large-scale composi-191

tional referring expression comprehension datasets192

in real-world scenarios. Cops-Ref additionally193

added distracting images based on attributes, rela-194

tionships, and target names. RefEgo (Kurita et al.,195

2023) and OmniLabel (Schulter et al., 2023) con-196

sider out-of-distribution scenarios where referred197

targets do not exist in the image.198

This paper addresses the limitations of previous199

benchmarks by constructing a REC dataset that200

comprehensively evaluates the compositional un-201

derstanding abilities of existing multimodal mod-202

els.203

3 FineCops-Ref204

FineCops-Ref includes both positive and negative205

data. Figure 1 illustrates the data construction206

pipeline.207

3.1 Creating Positive Data208

Path Generation. We employ image scene graphs209

from GQA (Hudson and Manning, 2019) for path210

generation. The scene graphs contain detailed infor-211

mation about objects, attributes, and relations. To212

ensure accuracy, we first filter the objects based on213

their suitability as target or related objects. We214

leverage annotations from InstInpaint (Yildirim215

et al., 2023) and applying additional filters such216

as keywords and object size.217

Next, we generate several paths for each of the218

filtered objects, as show in Figure 1(a). To elimi-219

nate any ambiguity, we utilize unique attributes or220

relations to identify the target object that share the221

same category as other objects in the image. and222

we make sure that every generated path are unique.223

Data categorization. We categorize positive ex-224

pressions into three difficulty levels, depending on225

the complexity of fine-grained reasoning. Level226

1 indicates that there are no objects in the image227

with the same category as the target object. In this 228

case, model can locate the target without requir- 229

ing contextual understanding. Level 2 signifies the 230

presence of an object with the same name as the 231

target in the image, and the target can be distin- 232

guished through one unique attribute or relation. 233

Level 3 require at least two or more relationships 234

and attribute information. The difficulty level is 235

established based on the intricacy of fine-grained 236

reasoning, rather than the complexity of the textual 237

description. 238

Expression Generation. We first employ a data 239

balancing technique that takes into account the pro- 240

portion of each type, effectively minimizing bias in 241

the scene graph. Subsequently, the generated paths 242

are substituted into predefined templates to gener- 243

ate reference expressions. We detail the predefined 244

templates in Appendix A.1. 245

To further augment the naturalness and diversity 246

of these expressions, we leverage LLM to rewrite 247

the referring expressions. By incorporating well- 248

designed instruction and examples, we are able to 249

achieve a more expansive range of linguistically 250

varied and authentic expressions. Prompts used to 251

rewrite are listd in Appendix A.4. 252

Human Filter. Owing to the inherent constraints 253

of the scene graph annotation information, the data 254

pertaining to levels 2 and 3 may contain inaccura- 255

cies, leading to non-uniqueness in the targets refer- 256

enced. To address this, human annotators filtered 257

this portion of the data manually. Details refer to 258

Appendix A.5. 259

3.2 Generating Negative Data 260

To conduct a thorough and systematic assessment 261

of the REC in existing MLLMs, we generate hard 262

negatives from both textual and visual sources. 263

Like positive data, negative data are categorized 264

into different levels based on the difficulty. Level 265

1 signifies alterations made to the target object in 266

the negative data, which are relatively straightfor- 267

ward for the model to identify. Level 2 involves 268

modifications to the related objects, disrupting the 269

contextual information and posing a greater chal- 270

lenge for existing models to recognize. 271

Generating Negative Expressions. Our ar- 272

ray of negative expressions encompasses a wide 273

range of challenging types. We draw inspira- 274

tion from CREPE (Ma et al., 2023) and SUGAR- 275

CREPE (Hsieh et al., 2023) to consider various 276

forms of hard negatives. In total, FineCops-Ref 277

covers 5 fine-grained types of hard negative ex- 278
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(a) Path Generation

[['table', 'same color’, 'curtains'], 

['curtains', 'to the left of', 'table']]

(b) Expression Generation

Level

L1

L2

L2

(c) Negative Text

Type
Swap

television table

white black

Obj.

Attr.

Replace (LLM)

The sizeable TV, switched on and actively 

displaying content, sits upon the black 

table set to the right of the brown table.

Template LLM Rewrite

television radio

white colorful

left right
Rel.

[[radio', 'on', 'table’], 

['table', 'to the right of', 'table’]]

(d) Negative ImageScene graph

Situated to the right of the brown 

table is a large radio, playing and 

occupying space on the black table.

[['television', 'on', 'table’], 

['table', 'to the right of', 'table’]]

[['table', 'to the right of', 'curtains’], 
['table', 'to the right of', 'chair’]]

Diffusion

Flip

Obj.

Attr.

Obj.

Attr.

Figure 1: The data construction pipeline of FineCops-Ref. Given an image, we first generate paths based on its
scene graph. Then, we fill paths into templates and obtain the positive referring expression through LLM rewriting.
Meanwhile, we utilize LLM to generate negative expressions, and based on this, we employ diffusion model to
create fine-grained editing negative images.

pressions. These types can be broadly classified279

into two categories: replace and swap. Replace280

involves generating a negative expression by substi-281

tuting a portion of the original expression, whether282

it is an object, an attribute, or a relation. During283

replacement, we tested the output quality of sev-284

eral approaches. Ultimately, we found that LLM285

Replace performed the best. For more information,286

please refer to Appendix A.3. We utilize LLM287

to determine the most appropriate negative word,288

ensuring that the negative expression is genuinely289

negative while only slightly deviating from the orig-290

inal expression. On the other hand, swap entails291

generating a negative expression by interchanging292

two attributes or objects within the same category.293

We further employ LLM to rewrite the new ex-294

pression. Please refer to Appendix A.2 for more295

details.296

Generating Negative Images. We consider the297

necessity of negative images from the following298

aspects. First, negative images enables a more thor-299

ough assessment of models’ visual parsing capa-300

bilities. Additionally, the evaluation conducted by301

Visualgptscore (Lin et al., 2023) suggests that neg-302

ative expressions may lack plausibility and fluency303

and can be detected by language prior.304

We generate hard negative images that bears305

slight differences from the original, such as alter-306

ations in objects, attributes, or relations. When307

dealing with simple positional relationships, we308

employ horizontal flips. For more intricate mod-309

ifications involving objects and attributes, we uti-310

lize PowerPaint (Zhuang et al., 2023), an excep-311

tional image inpainting model offering versatility, 312

to perform precise edits on the image. To guide 313

PowerPaint in editing the image, we utilize LLM- 314

generated replacements as textual guides and the 315

bounding box as a mask. Overall, FineCops-Ref 316

encompasses 5 distinct types of challenging nega- 317

tive images. Please refer to Appendix A.2 for more 318

details. 319

Negative Data Debiasing. During the genera- 320

tion of negative samples, it is inevitable that certain 321

implausible and incoherent expressions, as well as 322

unreasonable and easily distinguishable negative 323

images, may emerge. To ensure the benchmark’s 324

quality, we employed various techniques to filter 325

out these unsuitable samples and further improve 326

the quality of the benchmark. 327

To address negative expressions, we employ 328

the Adversarial Refinement technique proposed 329

by SUGARCREPE. It helps mitigate biases and 330

unintended artifacts in the dataset. 331

To ensure the exclusion of inappropriate and 332

excessively unreasonable negative images, we em- 333

ploy a multi-step filtering process. First, we use 334

CLIP (Radford et al., 2021) to ensure that the sim- 335

ilarity between the negative text and the positive 336

image is lower than the similarity between the pos- 337

itive text and the positive image. 338

Next, we apply a diffusion-generated inspection 339

model, DIRE (Wang et al., 2023c), to filter out ex- 340

cessively unnatural images, excluding those with 341

scores exceeding 0.2. Subsequently, we use DI- 342

NOv2 (Oquab et al., 2023) to compute the image- 343

image similarity between the positive and negative 344
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Positive Negative

Benchmark Unconstrained Cops. Difficulty level Neg. text Neg. image Expression Expression Image

RefCOCO ✓ 10752 - -
RefCOCO+ ✓ 10615 - -
RefCOCOg ✓ 9,602 - -
Ref-reasoning ✓ ✓ 34,609 - -
Cops-ref ✓ ✓ 12586 - 37758
Ref-adv ✓ ✓ ✓ ✓ 9602 3704 -
Ours ✓ ✓ ✓ ✓ ✓ 9605 9814 8507

Table 1: Comparison between the proposed benchmark and other REC benchmarks. Unconstrained indicates the
final expression is not constrained by the templates. Cops. indicates fine-grained compositional reasoning. On the
right hand side, the test set count of each benchmark is listed.

images, retaining the one with the highest DINOv2345

score from the 10 candidate negative images.346

3.3 Statistics347

FineCops-Ref consists of 9,605 positive expres-348

sions, 9,814 negative expressions, and 8,507 neg-349

ative images. Table 1 provides a comparison be-350

tween FineCops-Ref and other visual grounding351

benchmarks. FineCops-Ref combines the advan-352

tages of unconstrained expression, fine-grained353

compositional reasoning, difficulty level, and hard354

negatives at both textual and visual levels.355

Additionally, we partition the training set and356

validation set simultaneously. For more details,357

please refer to the appendixA.2.358

3.4 Metrics359

To evaluate the performance on positive data, we360

use the common metric Precision@k. For negative361

data, we introduce two metrics:362

Recall@k: We treat the REC task as a bound-363

ing box retrieval problem. For each negative sam-364

ple, paired with its corresponding positive sample,365

Recall@k calculates the proportion of negative-366

positive pairs where at least one of the top k pre-367

dicted bounding boxes has an IoU greater than 0.5368

with the ground truth bounding box. This metric369

specifically assesses the model’s ability to avoid as-370

signing high confidence scores to negative samples.371

Formally, Recall@k is defined as:372

Recall@k =
1

N

N∑
i=1

1

(
max

j∈{1,...,k}
IoUi,j > 0.5

)
(1)373

Where N represents the total number of negative-374

positive pairs. The indicator function 1(·) equals375

1 if the condition inside is true, and 0 otherwise.376

IoUi,j measures the overlap between the j-th pre-377

dicted bounding box and the ground truth bounding378

box for the i-th pair.379

AUROC: While Recall@k focuses on the rank- 380

ing of individual negative samples against their 381

corresponding positive samples, it does not provide 382

an overall confidence assessment. To address this, 383

we use AUROC to evaluate the overall distinction 384

between positive and negative samples. 385

By combining Recall@k and AUROC, we en- 386

sure a comprehensive evaluation of the model’s 387

ability to distinguish between positive and nega- 388

tive samples in REC tasks, addressing both specific 389

ranking and overall confidence. 390

4 Experiment 391

Positive

Model L1 L2 L3 Avg.

Specialist
Mdetr 72.43 52.79 46.92 57.38
MM-GDINO-T 75.11 34.78 35.46 48.45
MM-GDINO-L 85.13 43.54 42.89 57.19
UNINEXT 59.95 43.60 40.98 48.18
MM-GDINO-T† 85.79 51.88 52.65 63.44
MM-GDINO-T‡ 82.22 51.7 51.17 61.70

MLLM
Shikra 64.64 50.29 43.95 52.96
Ferret-13B 68.24 54.88 47.56 56.89
GroundingGPT 71.01 53.35 49.89 58.08
Lenna 73.75 41.92 38.43 51.37
InternVL 51.40 45.07 43.92 46.80
CogVLM 74.59 62.49 57.11 64.73
CogCom 76.23 60.86 60.08 65.72
GPT4-V + SoM 55.94 45.94 49.29 50.39
CogVLM† 89.23 72.74 72.61 78.19

Table 2: Evaluation results (Precision@1) on positive
data. † indicates training with positive samples from
the training set, and ‡ indicates training with the entire
training set. The best results are in bold, and the second-
best results are underlined. The same notation will be
used in subsequent tables.
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4.1 Evaluation settings.392

We evaluates several representative models, in-393

cluding both traditional vision-language models394

(Specialist) and MLLMs. The models examined395

in this study include MDETR (Kamath et al.,396

2021), MM-GDINO (Zhao et al., 2024b; Liu et al.,397

2023c), UNINEXT (Yan et al., 2023), Shikra (Chen398

et al., 2023), Ferret (You et al., 2023), Grounding-399

GPT (Li et al., 2024b), Lenna (Wei et al., 2023),400

InternVL (Chen et al., 2024b), CogVLM (Wang401

et al., 2023a) and CogCom (Qi et al., 2024). We402

use there open-source checkpoints to evaluate.403

We additionaly evaluate the GPT4-V(Achiam404

et al., 2023). Since GPT4-V’s ability to di-405

rectly output bounding boxes is relatively limited,406

we use GPT4-V combined with the Set-of-Mark407

(SoM) (Yang et al., 2023) to evaluate its perfor-408

mance. The Model source and implementation409

details are in Appendix B.410

We also test the effectiveness of training with411

the training dataset constructed using our data gen-412

eration pipeline. We fine-tuned MM-GDINO-T413

and CogVLM using the positive data from the con-414

structed training set. In addition, we fine-tuned415

MM-GDINO-T using the entire training set. The416

training settings are in Appendix B.417

We evaluate the models using Precision@1 for418

positive data; Recall@1 and AUROC for negative419

data. Specifically, models like MDETR and Lenna420

that have dedicated object detection modules can421

generate multiple detection boxes with associated422

confidence scores, allowing for direct computation423

of Recall@1 and AUROC. For models that gener-424

ate coordinates as the text using an autoregressive425

approach, we use the probability of the coordinates426

tokens to calculate confidence (Kurita et al., 2023;427

Mitchell et al., 2023).428

4.2 Evaluation on Positive data429

The results shown in Table 2 indicate that catego-430

rizing the dataset by difficulty level is crucial, as431

the performance of the most of the models declines432

with increasing difficulty. Notably, for level 3, most433

models achieve a precision below 50%.434

Specialist perform better on simple REC task.435

At level 1, models merely need to detect objects436

based on their names, aligning with the require-437

ments of open-vocabulary object detection. It was438

observed that Grounding DINO, based on SWIN-439

L, achieved an accuracy of 85.13% under zero-440

shot settings. This leads to two conclusions. First,441

vision-language models focused on object detec- 442

tion exhibit strong capabilities in basic visual local- 443

ization and object detection tasks, even in zero-shot 444

scenarios, which is also supported by their supe- 445

rior performance on RefCOCO benchmark which 446

mainly require the model to detect the obejct with- 447

out consider the attribute and relation. Second, al- 448

though multimodal large models excel in dialogue 449

and language understanding, their basic object de- 450

tection abilities still fall short of the standards re- 451

quired for truly general-purpose models. 452

MLLMs exhibit superior reasoning abilities. 453

For levels 2 and 3, models need robust language 454

comprehension due to the presence of many easily 455

confusable objects in the images. However, most 456

models do not demonstrate sufficient capability in 457

this aspect. 458

Multimodal models based on large language 459

models (LLMs) achieved better results in this re- 460

gard, demonstrating that MLLMs possess stronger 461

compositional reasoning abilities. 462

4.3 Evaluation on Negative data 463

The evaluation results for negative expressions and 464

negative images are shown in Table 3 and Table 4, 465

respectively. We can draw the following conclu- 466

sions: 467

The models are highly sensitive to the spe- 468

cific locations of negative data. L1 and L2 rep- 469

resent the replacement of the target directly and 470

the replacement of other parts of the expression, 471

respectively. For most types of negative data, the 472

recall for L1 is significantly higher than for L2. 473

This indicates that most models can identify simple 474

anomalies, such as changes in the main target or 475

inconsistencies in relationships. However, for L2 476

negative data, all models perform poorly, further 477

demonstrating that the models lack compositional 478

reasoning abilities and do not pay attention to the 479

complete structure of the sentences. 480

The models have poor understanding of re- 481

lationships. Overall, the models show relatively 482

good recognition capabilities for direct object re- 483

placements, where the target mentioned in the ex- 484

pression is entirely absent in the image. Their abil- 485

ity to recognize attributes is slightly weaker. The 486

models struggle significantly with understanding 487

relationships, including recognizing replaced rela- 488

tionships and altered word order, which aligns with 489

findings from previous studies. An additional find- 490

ing is that the models perform worse in recognizing 491

negative data of the "swap attribute" type compared 492
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REPLACE SWAP

Object Attribute Relation Object Attribute

Model L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 Avg.

Specialist
MDETR 52.89 36.09 50.47 35.92 42.48 40.77 45.89 37.35 44.42 37.70 42.40
MM-GDINO-T 58.84 33.77 50.47 29.96 34.69 31.92 43.89 27.71 43.67 31.97 38.69
MM-GDINO-L 64.23 40.26 55.76 41.52 45.74 43.73 53.02 48.19 49.38 37.70 47.95
UNINEXT 47.83 33.70 44.66 34.30 39.51 35.61 45.31 37.35 41.69 31.97 39.19
MM-GDINO-T† 67.60 44.29 52.60 42.06 48.26 46.86 59.38 42.77 54.34 42.62 50.08
MM-GDINO-T‡ 72.63 64.87 68.23 58.84 62.79 61.07 65.94 63.25 68.24 68.03 65.39

MLLM
Shikra 44.99 33.11 41.25 33.03 35.78 39.85 42.27 39.16 39.70 32.79 38.19
Ferret-13B 38.38 33.01 37.57 34.48 35.58 34.69 38.69 34.94 35.73 35.25 35.83
GroundingGPT 42.24 35.13 40.14 33.75 37.51 36.72 41.77 39.76 35.24 39.34 38.16
Lenna 65.88 50.38 58.75 42.96 47.00 43.91 49.94 38.55 49.38 43.44 49.02
CogVLM 53.34 44.02 51.24 48.74 41.22 44.46 47.69 49.40 46.40 40.16 46.67
CogCom 57.96 44.91 54.65 44.04 45.81 41.70 51.03 43.98 47.39 36.89 46.84
CogVLM† 67.08 50.31 59.78 53.07 52.78 52.4 53.73 49.4 52.85 50.82 54.22

Table 3: Evaluation results (Recall@1) on negative expressions.

REPLACE SWAP

Object Attribute Object Attribute Flip

Model L1 L2 L1 L2 L1 L1 L2 L1 L2 Avg.

Specialist
MDETR 58.15 42.85 51.70 37.95 48.86 49.49 44.76 44.29 42.22 46.70
MM-GDINO-T 58.46 40.73 44.75 37.61 46.25 51.33 28.67 39.50 40.94 43.14
MM-GDINO-L 66.35 49.45 54.93 49.05 55.05 62.63 46.85 45.21 46.48 52.89
UNINEXT 48.85 31.62 40.96 30.33 46.91 40.25 37.06 30.66 29.42 37.34
MM-GDINO-T† 70.37 55.68 56.83 53.73 57.98 62.83 55.24 48.71 52.03 57.04
MM-GDINO-T‡ 74.46 64.59 65.35 63.43 55.70 67.97 72.73 45.86 47.55 61.96

MLLM
Shikra 42.57 33.61 36.54 34.26 35.18 38.60 36.36 34.25 37.10 36.50
Ferret-13B 41.54 37.46 38.04 36.22 43.00 37.78 39.16 35.27 36.25 38.30
GroundingGPT 43.91 36.88 36.31 35.88 39.09 37.17 40.56 37.02 33.05 37.76
Lenna 66.88 51.19 54.38 39.34 47.56 49.08 43.36 33.98 30.92 46.30
CogVLM 51.11 49.01 43.49 46.10 50.49 53.80 49.65 43.74 37.74 47.24
CogCom 32.24 21.55 22.57 20.10 39.74 25.46 18.88 24.13 23.03 25.30
CogVLM† 62.02 55.81 46.41 55.98 56.35 55.03 57.34 49.08 48.83 54.09

Table 4: Evaluation results (Recall@1) on negative images.

Model Rewrite Percision@1 Recall@1

MM-GDINO-T ✗ 50.23 44.42
MM-GDINO-T ✓ 48.45 38.69

CogVLM ✗ 71.18 52.34
CogVLM ✓ 64.73 46.67

Grammar ✗ - 54.63
Grammar ✓ - 50.21

Table 5: Ablation study on the effect of rewriting the
benchmark dataset. The reported metrics are the average
Precision@1 and Recall@1 scores.

to direct attribute replacements, indicating limita-493

tions in the models’ ability to bind attributes accu-494

rately.495

5 In depth analysis496

5.1 Is rewrite useful?497

To verify the significance of rewriting benchmark498

data, we conducted comparative experiments where499

models were evaluated using both the original data 500

and the rewritten data. As shown in Table 5, models 501

achieved significantly better performance on the 502

evaluation benchmark without rewriting. 503

For positive data, using template-generated data 504

always places the subject at the beginning of the 505

sentence and has a very clear linguistic structure, 506

which does not adequately assess the model’s lan- 507

guage understanding abilities. For negative data, 508

without rewriting, there are issues with non-fluency 509

and nonsensicality(Hsieh et al., 2023), which can 510

be easily detected by text-only models such as 511

Grammar (Morris et al., 2020) and Vera (Liu et al., 512

2023b). 513

5.2 What’s the relationship between Precision 514

and Recall? 515

In Figure 2, we explored the relationship between 516

Precision@1 and Recall@1 among models. It is 517

clearly evident that Precision and Recall are posi- 518

7



Specialist MLLM

Figure 2: A figure with a caption that runs for more than one line. Example image is usually available through the
mwe package without even mentioning it in the preamble.

tively correlated. This is consistent with the find-519

ings of Ma et al. (2023); Vaze et al. (2022), where520

the accuracy of models on positive samples typi-521

cally correlates positively with their ability to iden-522

tify or reject out-of-distribution (OOD) samples.523

Additionally, we further analyzed the correlation524

of different model types with different levels of525

negatives. We discovered a particularly interesting526

phenomenon: the precision of Specialist models527

has a Pearson Correlation Coefficient (PCC) of528

0.923 with Negative level 1, whereas the precision529

of MLLMs has a PCC of 0.917 with Negative level530

2. This further confirms the differing tendencies of531

MLLM and Specialist models. Specifically, Spe-532

cialist tend to learn the existence and attributes533

of targets, while MLLMs models focus more on534

compositional reasoning.535

RefCOCO RefCOCO+ RefCOCOg

Model val test-A test-B val test-A test-B val test

CogVLM 92.76 94.75 88.99 88.68 92.91 83.39 89.75 90.79
CogVLM† 93.11 95.02 89.95 88.72 92.94 83.50 90.75 91.19

Table 6: Evaluation results (Precision@1) on Ref-
COCO/+/g. The results of CogVLM come from the
original paper.

5.3 Evaluation on RefCOCO 536

We additionally validated the performance of the 537

CogVLM fine-tuned on our training set with Ref- 538

COCO/+/g benchmarks. As shown in Table 6, our 539

model outperformed the original CogVLM in all 540

validation and test sets. This result demonstrates 541

the high quality and generalization capabilities of 542

our dataset. 543

6 Conclusion 544

In this work, we introduced FineCops-Ref, a novel 545

dataset for fine-grained compositional referring ex- 546

pression comprehension with varying difficulty lev- 547

els and negative samples. Our evaluations reveal 548

that while current MLLMs perform well on tra- 549

ditional REC benchmarks, they struggle with ad- 550

vanced compositional reasoning and accurate rejec- 551

tion of negative samples. We hope FineCops-Ref 552

can inspire further research into enhancing compo- 553

sitional visual grounding. 554

7 Limitations 555

We employ LLMs and diffusion models for data 556

generation, which inevitably introduce some hal- 557

8



lucinations. Despite manual filtering of the bench-558

mark dataset, hallucinations still persist in the train-559

ing set.560

Additionally, while the models fine-tuned on the561

proposed training set exhibit good performance, we562

still lack effective methods for effectively recogniz-563

ing hallucinations and handling negative samples.564

Furthermore, although REC can evaluate the565

grounding ability of the model, the relationship566

between performance on REC tasks and other tasks567

such as VQA still needs to be explored. We also568

lack a complete evaluation of the model’s conver-569

sational abilities, like grounded image captions.570
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A Dataset details918

A.1 Predefined templates919

We have meticulously crafted a variety of templates920

tailored to suit different sentence structures, encom-921

passing a range of 1-3 templates per structure. Ex-922

amples of templates and corresponding expressions923

are shown in Table 7.924

A.2 Examples of dataset925

Difficulty levels. We categorize positive expres-926

sions into three levels, depending on the complexity927

of fine-grained reasoning. The difficulty criterion928

is established based on the intricacy of fine-grained929

reasoning, rather than the complexity of the textual930

description. Figure 3 showcases exemplary data931

ranging in difficulty levels.932

Syntactic structure types. Meanwhile, follow-933

ing the syntactic structure, we categorize regular934

expressions into six types. obj0 represents the tar-935

get object, while obj1 and obj2 represent the related936

objects. "0_hop" indicates that the expression only937

involves obj0, "1_hop" indicates that the expression 938

mentions both obj0 and obj1. "And" and "2_hop" 939

encompass obj0,1,2. In "and," obj1 and obj2 are in a 940

coordinated relationship, whereas in "2_hop," they 941

are in a progressive relationship. "Same_attr" and 942

"same_attr_2hop" restrict the relationship between 943

obj0 and obj1 to the same attribute. Figure 4 show- 944

cases exemplary data ranging in syntactic structure 945

types. 946

Negative images. Figure 5 illustrates negative 947

images generated by different methods. 948

Dataset statistics. For positive expressions and 949

negative expressions, we split the dataset into train, 950

test, and val sets. Specifically, positive expressions 951

are classified based on levels, as detailed in table 8. 952

Negative expressions are classified based on types, 953

as detailed in table 9. While for negative images, 954

we only generated them in the test set, categorized 955

by type. Refer to Table 10 for more details. 956

A.3 Method to generate negative expressions 957

During our exploration into generating negative 958

expressions, we delved into various methods to en- 959

hance the process. These methods encompassed 960

the following approaches:(1) Predefined replace 961

list: This method involves utilizing a predefined list 962

of replacement words to substitute specific words. 963

Although simple, it suffers from limited diversity 964

and substantial bias. (2) Bert fill-mask: Employing 965

this technique involves masking the original word 966

and employing Bert to fill in the replacement. How- 967

ever, this method proves to be unstable and does not 968

guarantee that the original word and its replacement 969

belong to the same category. (3) LLM replace: This 970

approach prompts the Language Model to generate 971

the replacement word. It offers a high degree of 972

richness and delivers reasonable outputs. Nonethe- 973

less, it requires a significant amount of time. In 974

Table 11, we compare the outputs of these three 975

methods using the vera and grammar score. The 976

results indicate that LLM replace emerges as the 977

optimal choice, both grammatically and logically. 978

A.4 Examples of prompt 979

Prompt to rewrite expressions. We encourage the 980

LLM to rephrase the given statement, aiming for 981

rich and organic expressions while ensuring consis- 982

tency throughout. Context learning was employed 983

to integrate manually rewritten examples into the 984

prompt. Additionally, to address any potential hal- 985

lucinations, the LLM was instructed to include the 986

original expression once in the output. Further- 987
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The girl, that is standing, holding the blue phone.

Above the sofa and nearby the painting, there is a sitting girl. The girl situated to the right of the dog adorned with the blue collar.

(a) Level 1

(b) Level 2 (c) Level 3

Figure 3: Positive expressions of different difficulty levels.

(a) 0-hop

A bike painted black.

(b) 1-hop

Situated to the right of the white building lies this tree.

(c) and

Next to the red, brick building and before the little tree resides the white truck.

(d) 2-hop

The automobile placed to the right of the male pedestrian traversing the runway.

Figure 4: Positive expressions of different syntactic structure types.
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Type Exemplar templates Expression examples

0_hop The <att0> <obj0>. The white plate.
1_hop The <att0> <obj0> is <rel0> the <att1> <obj1>. The giraffe is to the right of the trees.
and The <att0> <obj0> <rel0> the <att1> <obj1> and <rel1> the <att2> <obj2>. The balding man wearing the green shirt and to the left of the green trees.
2_hop The <att0> <obj0> is <rel0> the <att1> <obj1> that is <rel1> <att2> <obj2>. The blue, colorful and running train is on the bridge that is behind the green tree.
same_attr The <obj0> sharing the <rel0> as the <obj1>. The plate that has the same color as the rice.
same_attr_2hop The <obj0> that has the <rel0> as the <obj1> that <rel1> the <att0> <obj2>. The table sharing the same color as the towels that to the right of the robe.

Table 7: Examples of expression type. obj0 denotes the target object, while obj1,2 denote the related objects.
att0,1,2 and rel0,1 denote the corresponding attributes and relations, respectively.

(a) Flip

(c) Replace Object

(b) Replace Attribute

(d) Swap attribute

Figure 5: Negative images generated by different methods.

Set L1 L2 L3 Sum.

Train 134466 25282 4044 163792
Test 5730 3404 471 9605
Val 15126 2884 445 18455

Table 8: Positive expressions Statistics. FineCops-Ref
covers 3 difficult levels of positive expressions, split
into train/test/val.

REPLACE SWAP

Set Object Attribute Relation Object Attribute Sum.

Train 29287 20678 14825 10062 5599 80451
Test 3951 1725 1891 1722 525 9814
Val 3308 2344 1676 1070 631 9029

Table 9: Hard negative expressions Statistics. FineCops-
Ref covers 5 fine-grained types of hard negative expres-
sions, split into train/test/val.

REPLACE SWAP

Set Object Attribute Object Attribute Flip Sum.

Test 4171 1844 307 630 1555 8507

Table 10: Hard negative images Statistics. FineCops-
Ref covers 5 fine-grained types of hard negative images.

Method Vera Grammar

Predefined replace list 70 55
Bert fill-mask 57 40
LLM replace 61 50

Table 11: Vera and Grammar score of different
method’s output. The closer the score is to 50, the
higher the quality of the data.

more, two additional expressions were generated 988

to enhance the diversity of the results. Figure 6 989

illustrates the prompt provided to the LLM for the 990

rewriting task. 991

Prompt to generate negative expressions. We 992

prompt LLM to replace the specified word in the 993

expression. LLM is required to find a mislead- 994

ing word that falls within the same category as the 995

original word, yet contradicts its meaning. To en- 996

sure consistent and precise results, we have imple- 997

mented stringent guidelines within the prompt. Fur- 998

thermore, we have employed context-based learn- 999

ing by incorporating manually replaced instances 1000

in the prompt. Figure 7 illustrates the prompt pro- 1001
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<s> [INST] <<SYS>>

Your task is to generate two diverse, accurate, and semantically rich referring 

expressions for each given description. Ensure that the original meaning of each 

sentence is preserved, while also maintaining consistency in describing the 

subject within each sentence.

Output Format:

[{"Description": "xxxxx", "Values": {"1": "xxxxx", "2": "xxxxx"}},

 {"Description": "xxxxx", "Values": {"1": "xxxxx", "2": "xxxxx"}}]

<</SYS>>

The gray and wrinkled elephant.

The woman holding the flag and above the words.

The white and round plate is near the fork, which is on the table.

[/INST] 

[{"Description": "The white and round plate is near the fork, which is on the 

table.", "Values": {"1": "The round white plate is next to the fork that lies on the 

table.", "2": "Near the fork resting on the table, is the white circular plate."}}, 

{"Description": "The gray and wrinkled elephant.", "Values": { "1": "The 

elephant with a gray hue and many wrinkles.", "2": "An elephant, wrinkled and 

gray."}},

{"Description": "The woman holding the flag and above the words.", "Values": 

{ "1": "Above the words, the woman is holding a flag.", "2": "The woman, 

holding a flag, is positioned above the words."}},

[{"Description": "The white and round plate is near the fork, which is on the 

table.", "Values": {"1": "The round white plate is next to the fork that lies on the 

table.", "2": "Near the fork resting on the table, is the white circular plate."}}

</s><s>[INST] 

The man that is to the right of the car that is to the left of the woman.

{Referring expression to rewrite}

[/INST]

Figure 6: Prompt used for rewriting expressions.

vided to LLM for finding misleading words.1002

A.5 Human filter1003

We use the following prompt to guide human anno-1004

tators to filter data. Program used for human filter1005

see Figure 8.1006

Please determine whether the natural language1007

description can accurately and unambiguously refer1008

to the subject target contained within the red box1009

in the image. In the image, the red box marks1010

the subject target, while the green and blue boxes1011

represent other objects mentioned in the language1012

description. Please follow the guidelines below:1013

1. Carefully consider the attributes and relation-1014

ships in the natural language description to ensure1015

they accurately correspond to the image; otherwise,1016

select “Wrong expression,”1017

2. Confirm whether the natural language de-1018

scription can uniquely refer to the target contained1019

within the red box. If there are multiple possible1020

targets, select “Ambiguous,”1021

3. If the natural language description is diffi-1022

cult to understand or cannot correctly refer to the1023

subject target, please select "Wrong expression.”1024

B Implementation details1025

B.1 Hardware information1026

All experiments are run on a machine with an In-1027

tel(R) Xeon(R) Gold 6348 CPU with a 512G mem-1028

ory and four 80G NVIDIA RTX A800 GPUs.1029

B.2 Dataset sources 1030

We obtain all existing datasets from their original 1031

sources released by the authors. We refer readers 1032

to these sources for the dataset licenses. To the best 1033

of our knowledge, the data we use does not con- 1034

tain personally identifiable information or offensive 1035

content. 1036

• GQA (Hudson and Manning, 2019): We ob- 1037

tain GQA dataset from its official repository 2. 1038

• RefCOCO (Yu et al., 2016): We obtain Ref- 1039

COCO dataset from its official repository 3. 1040

B.3 Model configuration 1041

Model sources. We detail the sources of the pre- 1042

trained models we use in the paper. 1043

• MDETR (Kamath et al., 2021): We obtain 1044

MDETR from its official repository 4. We use 1045

the refcocog_EB3_checkpoint. 1046

• MM-GDINO (Liu et al., 2023c): We obtain 1047

MM-GDINO from its official repository 5. 1048

• UNINEXT-H (Yan et al., 2023): We obtain 1049

UNINEXT from its official repository 6. 1050

• Shikra-7B (Chen et al., 2023): We obtain 1051

Shikra from its official repository 7. 1052

• Ferret-13B (You et al., 2023): We obtain Fer- 1053

ret from its official repository 8. 1054

• GroundingGPT-7B (Li et al., 2024b): We ob- 1055

tain GroundingGPT from its official reposi- 1056

tory 9. 1057

• Lenna-7B (Wei et al., 2023): We obtain Lenna 1058

from its official repository 10. 1059

• CogVLM-grounding-generalist-17b (Wang 1060

et al., 2023a): We obtain CogVLM from its 1061

official repository 11. 1062

• CogCoM-grounding-17b (Qi et al., 2024): We 1063

obtain CogCom from its official repository 12. 1064

2https://cs.stanford.edu/people/dorarad/gqa/
3https://cocodataset.org/
4https://github.com/ashkamath/mdetr
5https://github.com/open-mmlab/mmdetection
6https://github.com/MasterBin-IIAU/UNINEXT
7https://github.com/shikras/shikra
8https://github.com/apple/ml-ferret
9https://github.com/lzw-lzw/GroundingGPT

10https://github.com/Meituan-AutoML/Lenna
11https://github.com/THUDM/CogVLM
12https://github.com/THUDM/CogCoM
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(a) REPLACE-Object (b) REPLACE-Attribute

(c) REPLACE-Relation

<s> [INST] <<SYS>>
Given an input sentence describing a scene and a noun in the sentence, your task is to:
Replace the selected noun with a misleading word. This misleading word may belong to the same 
category as the original word but must be contradictory and misleading.
Adhere to the following instructions:
1. Do not explain the reasons.
2. Avoid introducing abstract concepts (e.g., aliens).
3. Do not replace inclusive words with specific subsets. For instance, if the word is 'people,' do 
not substitute it with genders like 'man' or 'woman.' Instead, modify them to different categories 
like 'people' → 'animals.'
4. Avoiding synonyms or visual similarities. For instance, 'desk' should not be replaced with 
'table,' and 'red' should not be substituted with 'maroon.' 
5. Ensure the modified word does not encompass the original (e.g., avoid changing 'man' to 
'student' or 'child,' as 'child' can also refer to a 'man', consider 'woman' or 'animals' instead).
The desired output format is a python list of type dict, where the key of dict is the original word 
and the value is the misleading word.
<</SYS>>
{'sentence': 'The raised and overhead pole.', 'noun': 'pole'}
{'sentence': 'The pillow to the left of the blanket is white.', 'noun': 'blanket'}
{'sentence': 'The full bowl that is next to the white and full plate that is of the meal.', 'noun': 
'bowl’}
[/INST]
[{'pole': 'tree'},
{'blanket': 'lamp'},
{'bowl': 'cup’}]
</s><s>[INST] 
{'sentence': 'The food that is to the left of the flowers that is on the pink plate.', 'noun’: food’}}
{Referring expression and a word to replace}
[/INST]

<s> [INST] <<SYS>>
Given an input sentence describing a scene and an adjective in the sentence, your task is to:
Replace the selected adjective with a misleading word. This misleading word may belong to the same 
category as the original word but must be contradictory and misleading.
Adhere to the following instructions:
1. Do not explain the reasons.
2. Do not replace inclusive words with specific subsets. For instance, if the word is 'metal,' do not 
substitute it like 'silver' or 'gold.' Instead, modify them to different categories like 'metal' → 'wooden.'
3. Avoiding synonyms or visual similarities. For instance, 'big' should not be replaced with 'large,' and 
'red' should not be substituted with 'maroon.' 
The desired output format is a python list of type dict, where the key of dict is the original word and 
the value is the misleading word.
<</SYS>>
{'sentence': 'The wing that is of the white aircraft that is on the runway.', 'adj': 'white'}
{'sentence': 'The yellow bus to the right of the metal fence and to the left of the green trees.', 'adj': 
'metal'}
{'sentence': 'The phone, that is wireless, to the left of the large and blue symbol.', 'adj': 'large'}
[/INST]
[{'white': 'black'}
{'metal': 'wooden'}
{'large': 'small’}]
</s><s>[INST] 
{'sentence': 'The food that is to the left of the flowers that is on the pink plate.', 'adj': pink’}
{Referring expression and a word to replace}
[/INST]

<s> [INST] <<SYS>>
Given an input sentence describing a scene and a phrase describing the relation in the sentence, 
your task is to:
Replace the selected phrase with a misleading phrase. This misleading phrase may belong to the 
same category as the original phrase but must be contradictory and misleading.
Adhere to the following instructions:
1. Do not explain the reasons.
2. The part of speech between selected phrase and misleading phrase must be the same, do not 
output an adjective or noun. For instance, 'filled with' should not be replaced with 'empty', but with 
"devoid of".
3. Avoiding synonyms or visual similarities. For instance, 'near' should not be replaced with 'next to'. 
The desired output format is a python list of type dict, where the key of dict is the original word and 
the value is the misleading word.
<</SYS>>
{'sentence': 'The boy, that is posing, near the door.', 'phrase': 'near'}
{'sentence': 'The metal and gray train in front of the building and near the fence.', 'phrase': 'in front 
of'}
{'sentence': 'The person that is near the skillet that is filled with the food.', 'phrase': 'filled with'}
[/INST]
[{'near': 'far from'}
{'in front of': 'behind'}
{'filled with': 'devoid of’}]
</s><s>[INST] 
{'sentence': 'The food that is to the left of the flowers that is on the pink plate.', 'phrase': to the left 
of ’}
{Referring expression and a phrase to replace}
[/INST]

Figure 7: Prompt used for generating REPLACE negative expressions.

Figure 8: Program used for human filter.
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• GPT-4 Turbo 13: We ues GPT-4 via API. The1065

version is gpt-4-turbo-2024-04-09.1066

B.4 Experiments details1067

Evaluation details. We obtain the bounding box1068

coordinates and confidence scores predicted by the1069

model on our benchmark, and then calculate the1070

metrics.1071

• Specialist: We use the official inference code1072

to perform inference and record the bounding1073

box coordinates and confidence scores of the1074

output.1075

• MLLMs: We use the official inference code1076

for inference and record the bounding box co-1077

ordinates. The confidence score is calculated1078

using the sum of the log probabilities of the co-1079

ordinate tokens (Kurita et al., 2023; Mitchell1080

et al., 2023).1081

• GPT-4V+SoM: Following the SoM (Yang1082

et al., 2023), we first use MM-GDINO to ob-1083

tain candidate bounding boxes. Then, we draw1084

these bounding boxes and corresponding la-1085

bels on the image and ask GPT-4v to choose1086

the label. To save costs, testing was conducted1087

on a sample of 5k instances.1088

Training detials. We detail the dataset and1089

hyper-parameters used in training our own mod-1090

els.1091

• MM-GDINO-T: We trained the model with1092

a batch size of 32. The AdamW optimizer1093

was used with a learning rate of 0.0002 and1094

a weight decay of 0.0001. The learning rate1095

was adjusted using a MultiStepLR scheduler.1096

The training ran for 5 epochs. For negative1097

samples, the ground truth bounding box was1098

set as empty.1099

• CogVLM: We followed the provided tem-1100

plate and performed instruction tuning with1101

the joined training set of ours and Ref-1102

COCO/+/g. The training was done with1103

lora (Hu et al., 2022) and a batch size of 32,1104

using the AdamW optimizer with a learning1105

rate of 0.0002 and a weight decay of 0.0001.1106

The training ran for 1 epoch, with a cosine1107

learning rate schedule.1108

13https://platform.openai.com/docs/models

C Detailed evaluation results 1109

AUROC results. The experimental results of AU- 1110

ROC exhibit a similar trend to Recall, further con- 1111

firming the following observations: (1) The models 1112

are highly sensitive to the specific locations of neg- 1113

ative data. (2) The models have a poor understand- 1114

ing of relationships. Specifically, Lenna performs 1115

averagely on positive data but shows good perfor- 1116

mance on negative data. This suggests that Lenna 1117

possesses good discrimination ability but lacks vi- 1118

sual localization capability. 1119
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REPLACE SWAP

Object Attribute Relation Object Attribute

Model L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 Avg.

Specialist
MDETR 63.58 51.89 58.75 52.64 54.92 54.26 59.60 54.11 56.33 51.38 55.75
MM-GDINO-T 66.02 49.66 57.50 48.85 49.88 49.78 56.80 49.50 55.87 55.93 53.98
MM-GDINO-L 66.73 49.93 58.35 50.21 51.93 53.57 60.51 55.47 54.88 54.72 55.63
UNINEXT 61.24 51.39 57.59 51.62 54.35 52.22 58.57 52.05 57.07 49.58 54.57
MM-GDINO-T† 71.00 51.80 57.68 49.33 53.23 50.42 63.57 53.75 56.89 49.26 55.69
MM-GDINO-T‡ 80.84 70.86 73.43 65.31 70.85 67.22 72.36 65.93 71.70 75.75 71.43

MLLM
Shikra 58.57 51.14 55.37 52.96 52.67 52.88 57.07 51.44 55.04 48.42 53.56
Ferret-13B 52.44 49.34 49.39 48.80 50.17 48.24 51.07 48.80 49.93 50.04 49.82
GroundingGPT 55.14 50.90 50.76 49.45 50.04 48.15 53.11 49.44 49.83 50.51 50.73
Lenna 76.46 63.93 64.29 52.66 56.92 53.56 59.98 51.22 56.96 48.87 58.49
CogVLM 60.60 51.40 55.66 52.96 51.95 53.77 55.14 55.04 53.09 55.47 54.51
CogCom 63.47 52.51 56.83 52.60 53.28 51.83 58.60 54.08 54.87 49.79 54.79
CogVLM† 62.79 50.7 54.52 51.53 51.72 51.16 55.22 53.97 50.79 50.55 53.30

Table 12: Evaluation results (AUROC) on negative expressions.

REPLACE SWAP

Object Attribute Object Attribute Flip

Model L1 L2 L1 L2 L1 L1 L2 L1 L2 Avg.

Specialist
MDETR 64.00 56.20 58.02 53.69 60.89 58.72 55.63 55.01 53.42 57.29
MM-GDINO-T 64.32 57.51 53.27 55.81 58.74 58.76 55.09 51.72 53.43 56.52
MM-GDINO-L 68.00 58.05 55.90 56.08 59.96 62.81 58.08 51.87 53.04 58.20
UNINEXT 62.13 53.92 54.80 52.44 63.20 57.49 50.76 51.14 49.57 55.05
MM-GDINO-T† 70.03 58.22 57.71 55.71 59.79 60.78 54.27 51.25 51.48 57.69
MM-GDINO-T‡ 75.07 63.05 65.20 61.35 57.48 63.93 64.96 51.65 51.59 61.59

MLLM
Shikra 55.94 50.40 50.92 51.36 52.47 56.64 47.08 51.57 51.45 51.98
Ferret-13B 56.09 52.61 51.01 51.20 55.78 53.80 49.49 51.24 50.99 52.47
GroundingGPT 56.75 50.86 48.52 49.37 54.09 51.76 50.67 52.84 47.46 51.37
Lenna 74.71 65.17 60.27 55.85 59.24 59.08 52.47 50.25 49.42 58.50
CogVLM 58.62 55.88 51.03 55.24 56.71 56.29 55.81 52.04 51.47 54.79
CogCom 37.91 33.34 31.45 29.67 47.38 34.57 31.32 33.44 31.56 34.52
CogVLM† 63.24 56.15 50.5 56.86 58.96 57.25 59.49 53.09 51.54 56.34

Table 13: Evaluation results (AUROC) on negative images.
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