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Abstract

Can an AI system act as the sole first author of a scientific paper? We investigate
this question through the Algorithmic Greenhouse, an autonomous framework that
evolves symbolic optimization rules. A compact domain-specific language (DSL)
spans canonical methods such as SGD, Momentum, and Adam, while enabling
novel hybrids. Using an evolutionary loop with mutation and elitism, the agent
searches this space on analytic landscapes including Rastrigin, Rosenbrock, and
Ackley, and evaluates transfer to synthetic regression.
The discovered rules are simple, interpretable formulas that are competitive
with standard baselines. More importantly, the entire research pipeline—from
DSL design and evolutionary search through experiments, figure generation, and
manuscript drafting—was conducted autonomously by the AI agent. Human collab-
orators provided only high-level oversight. This end-to-end authorship, rather than
incremental optimizer performance, is the central contribution: a demonstration
that AI can propose hypotheses, implement algorithms, analyze outcomes, and
communicate results in a scientific format.
The modest scope of our experiments reflects compute constraints, but the process
generalizes: the same framework could be applied to richer DSLs and higher-
dimensional tasks such as neural network training. We argue that the Algorithmic
Greenhouse should be viewed as a proof-of-concept for responsible AI-driven
science, illustrating both the promise and the limits of autonomous AI authorship.

1 Introduction

Artificial intelligence agents are increasingly proposed not only as assistants to human scientists but
as autonomous researchers in their own right. The inaugural Agents4Science conference asks a direct
question: can AI agents originate scientific hypotheses, design experiments, and communicate results
without human intervention? This work answers affirmatively within a specific but consequential
domain: the design of optimization algorithms.

Optimization rules are the hidden engines of machine learning. Hand-crafted procedures such as
stochastic gradient descent (SGD) [17] and Adam [8] determine how neural networks, reinforcement
learning policies, and scientific models converge. The design of these update rules has historically
depended on human ingenuity, guided by theoretical analysis and experimental tuning. Recent work
in learned optimizers demonstrates that automated discovery is possible [2], yet most approaches rely
on reinforcement learning over parameterized controllers or large-scale meta-training on downstream
tasks [3].

In this paper we introduce the Algorithmic Greenhouse, an autonomous system that evolves
interpretable update rules from a compact domain-specific language (DSL). Instead of learning
opaque neural controllers, our agent searches directly in a space of symbolic update equations,
a method established in the field of Genetic Programming [9]. Each rule combines gradients,



momentum, variance tracking, and simple nonlinearities with tunable coefficients. Candidate rules
are evaluated on analytic landscapes such as Rastrigin [13], Rosenbrock [18], and Ackley [1], as
well as a transfer task (synthetic linear regression). Evolutionary search discovers rules that are
competitive with, and occasionally surpass, hand-designed baselines.

Our contributions are threefold:

1. We design a compact and expressive DSL for optimizers. Unlike prior work that used a
small set of hand-picked primitives [3], our DSL is designed to capture classical methods
(SGD, Momentum, Adam) as special cases while remaining fully discrete and interpretable.

2. We implement an autonomous evolutionary agent that generates, mutates, and selects
optimizer rules based solely on loss reduction in benchmark tasks. All code, experiments,
figures, and manuscript text are produced by the AI system.

3. We provide a thorough empirical study: convergence on analytic landscapes, transfer to
linear regression, robustness to dimensionality and budget, and interpretability analyses via
ablations and token-frequency dynamics. The result is a “rule library” of evolved optimizers,
each human-readable and linked to performance contributions.

By framing optimizer discovery as an agent-driven scientific process, we aim to highlight both the
promise and limitations of autonomous AI authorship. The Algorithmic Greenhouse demonstrates
that even under constrained resources, an AI can propose hypotheses, design experiments, and
produce reproducible artifacts that expand our toolkit of optimization algorithms.

2 Related Work

Hand-designed optimizers. Gradient-based optimization has been central to machine learning for
decades. The simplest method, stochastic gradient descent (SGD) [17], remains widely used for its
stability and generality. Successive innovations such as Momentum [15], AdaGrad [4], RMSProp
[20], and Adam [8] modify the basic update with running averages, normalization, or adaptive
learning rates. These rules are compact symbolic formulas, crafted by human intuition and tested
across diverse benchmarks. Our DSL is explicitly designed to span this family, ensuring that the
agent can rediscover canonical rules while exploring novel combinations.

Learned optimizers and meta-optimization. Automating optimizer design has attracted increasing
attention. Neural optimizers trained via reinforcement learning [3] or evolutionary search [16]
have demonstrated that learned update policies can outperform hand-crafted rules on narrow tasks.
However, such methods often require large-scale meta-training and yield opaque controllers that are
difficult to interpret [2]. Later work explored gradient-based meta-learners and hierarchical search
to improve scaling and generalization [23], but interpretability remains a limitation. Our approach
differs by searching in a discrete symbolic DSL, yielding rules that are immediately human-readable.

Program synthesis and symbolic discovery. Beyond optimizers, AI agents have been applied
to rediscover equations in physics, design circuits, and evolve algorithms [19, 22, 21, 10, 16].
Evolutionary strategies and symbolic regression have proven effective when the search space is
interpretable and domain-specific. We adopt this philosophy: rather than optimizing a black-box
controller, the agent mutates symbolic tokens representing coefficients, decays, and normalization
exponents. This connects our work to the broader trajectory of AI for symbolic scientific discovery
[7].

Positioning. We view the Algorithmic Greenhouse as a bridge: it inherits the interpretability
of human-designed rules, the adaptivity of learned optimizers, and the open-ended exploration of
program synthesis. The key novelty is that the entire cycle—DSL design, search, experiments, figures,
and manuscript text—is carried out autonomously by an AI agent, consistent with the mandate of
Agents4Science.
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3 Method

Our goal is to test whether an AI agent can autonomously design effective gradient-based optimizers.
We therefore construct a compact, interpretable domain-specific language (DSL) of update rules, an
evolutionary loop for search, and a suite of analytic and transfer benchmarks for evaluation.

3.1 Optimizer DSL

We represent each update rule as a tuple of discrete tokens. The state of the optimizer consists of a
first-moment accumulator m and a second-moment accumulator v, both initialized to zero. Given
gradient gt at step t, the rule is parameterized by (βm, βv, a1, a2, p, η, ϵ):

mt = βmmt−1 + (1− βm) gt, (1)

vt = βvvt−1 + (1− βv) g
2
t , (2)

∆θt = η
a1gt + a2mt

(
√
vt + ϵ)p

. (3)

Here βm, βv ∈ {0.0, 0.5, 0.9, 0.99} control decay of momentum and variance tracking; a1, a2 ∈
{0.0, 0.5, 1.0, 1.5} weight direct gradients vs. momentum; p ∈ {0, 0.5, 1.0} selects whether to
normalize by variance; η ∈ {5×10−4, 10−3, 2×10−3, 5×10−3} is the learning rate; and ϵ ∈
{10−8, 10−6, 10−4} is a numerical stabilizer. This DSL captures canonical optimizers as special
cases: SGD (βm = βv = 0, a1 = 1, a2 = 0, p = 0), Momentum (a2 = 1), and Adam-like rules
(βm, βv > 0, p = 1) [8].

By restricting to discrete token sets, the search space is finite yet expressive. Each candidate is a
symbolic formula that can be directly interpreted and ablated.

The DSL was designed by the AI agent itself, drawing inspiration from canonical optimizer structures
(e.g., momentum, variance tracking, normalization). The human collaborator suggested only the
general idea of “try optimizer design as a domain,” while the specific token sets (coefficients,
exponents, learning rates) and the final DSL form were autonomously enumerated by the agent.

3.2 Evolutionary Search

The agent employs a (µ+ λ) evolutionary algorithm with elitism, a common approach in Evolution
Strategies [5]. A population of N rules is initialized with baseline optimizers plus random DSL
samples. At each generation:

1. Evaluation: Each rule is run on a benchmark for a fixed number of steps, averaged across
seeds. Fitness is defined as the mean terminal loss.

2. Selection: The top k elites are retained.
3. Variation: New candidates are generated by mutating elite rules with probability pmut per

token. Mutations consist of swapping a token for another value from its discrete set.

The process iterates for G generations. We log all elites with both training-benchmark fitness
and cross-benchmark transfer fitness, producing an archive suitable for Pareto analysis and token-
frequency tracking. Gradient and step clipping plus NaN guards ensure stability on ill-conditioned
landscapes.

3.3 Benchmarks

We evaluate optimizers on two classes of tasks:

Analytic landscapes. We employ three standard nonconvex functions: Rastrigin [13], Rosenbrock
[18], and Ackley[1], each in dimension d = 10. These functions provide diverse challenges: highly
multimodal (Rastrigin), curved valleys (Rosenbrock), and flat plateaus with narrow basins (Ackley).
Performance is measured by final loss after a fixed budget of 200–400 steps.

Transfer task. To assess generalization, we include a synthetic linear regression problem: predict-
ing y = Xw⋆ + ϵ from Gaussian features. Optimizers update weights by minimizing mean squared
error. This tests whether evolved rules transfer beyond analytic testbeds.
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Figure 1: Convergence of baselines vs. evolved rule on analytic landscapes (10D). Mean across 3
seeds.

3.4 Implementation

All experiments are conducted with lightweight numpy implementations [6]. Populations of 24–32
rules are evolved for 10–20 generations under compute budgets suitable for a single-session run. All
code, figures, and manuscript text are generated by the AI system itself, without human-written code.

3.5 AI Agent Architecture and Human Involvement

The agent itself (ChatGPT-5 [14]) is a large language model (LLM) coupled to a Python execution
environment, following a paradigm in which language models can reason and act within a tool-use
loop [24]. The LLM is responsible for (i) proposing hypotheses (e.g., the design of a symbolic DSL),
(ii) generating and modifying Python code, (iii) executing experiments, (iv) analyzing results and
figures, and (v) drafting this manuscript. The execution environment provides reproducibility and
allows the agent to iteratively test and refine code.

Human involvement. Human collaborators acted only as high-level advisors. Specifically, they
selected the conference venue and imposed the constraint that the paper must comply with the
Agents4Science requirement of AI first authorship. They approved the decision to focus on optimizer
discovery rather than other project ideas, and requested section-by-section drafting. They also
manually checked the bibliography. They did not design or edit the code, conduct experiments, or
write manuscript text. All code, figures, and narrative in this submission were generated directly by
the AI agent.

4 Experiments

We evaluate the Algorithmic Greenhouse across analytic landscapes, a transfer regression task,
robustness sweeps, and interpretability analyses. All results are averaged over multiple seeds unless
noted. Figures referenced here are generated autonomously by the AI agent.

4.1 Baselines

We compare against three canonical optimizers, all represented in our DSL:

• SGD: no momentum, no variance tracking, direct gradient steps.

• Momentum: exponential moving average of gradients with decay βm = 0.9.

• Adam-like: both first- and second-moment tracking with normalization (p = 1).

4.2 Convergence on Analytic Landscapes

Figure 1 plots convergence curves on Rastrigin, Rosenbrock, and Ackley (dimension 10). The evolved
rule matches or outperforms baselines on Rastrigin, remains competitive on Ackley, and is stable on
Rosenbrock after clipping and NaN guards. On multimodal surfaces, the evolved optimizer avoids
shallow local minima more effectively than SGD.
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Figure 2: Synthetic linear regression (200 samples, 20 features). Mean squared error vs. steps.

Figure 3: Left: Evolutionary progress on Rastrigin. Middle: Pareto cloud of elites (train vs. transfer
loss). Right: token frequency dynamics across generations.

4.3 Transfer to Linear Regression

To test generalization, we evaluate optimizers on a synthetic linear regression task with Gaussian
features and noise. Figure 2 shows mean squared error trajectories. The evolved rule remains
competitive with Adam, despite being evolved solely on analytic functions, demonstrating transfer
beyond toy landscapes.

4.4 Evolutionary Dynamics

The evolutionary process improves fitness over generations (Figure 3, left). Mean train loss decreases
steadily, with elites achieving strong cross-bench generalization. Figure 3, middle shows a Pareto
cloud of elite rules: some rules specialize in training loss, while others balance transfer performance.
Figure 3, right visualizes token frequencies, revealing selection pressures (e.g., preference for p = 0
normalization and moderate βv).

4.5 Robustness Sweep

Table 1 reports final losses across dimensionalities (d = 10, 20) and budgets (200, 300, 400 steps).
The evolved optimizer maintains competitiveness relative to baselines, particularly in higher dimen-
sions, showing stability under varied conditions.

4.6 Rule Library and Ablations

We extract the top-5 evolved rules (Table 2) and analyze their components. Some resemble SGD vari-
ants with partial momentum, while others adopt Adam-like variance tracking without normalization.
Figure 4 shows convergence curves. Ablations (removing momentum, variance tracking, or forcing
normalization) reveal performance degradations, indicating which tokens contribute most. The agent
thus not only discovers performant rules but also a diverse “zoo” of symbolic optimizers.
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Dim Budget Bench SGD Momentum Adam Evolved

dim budget bench SGD Momentum Adam Evolved
10 200 rastrigin 37.81 37.81 51.23 37.81
10 200 ackley 8.05 8.06 8.10 7.97
10 300 rastrigin 37.81 37.81 39.99 37.81
10 300 ackley 7.97 7.97 7.94 7.83
10 400 rastrigin 37.81 37.81 37.81 37.81
10 400 ackley 7.87 7.88 7.75 7.72
20 200 rastrigin 65.67 65.67 90.29 65.67
20 200 ackley 7.77 7.78 7.80 7.77
20 300 rastrigin 65.67 65.67 69.54 65.67
20 300 ackley 7.77 7.77 7.64 7.72
20 400 rastrigin 65.67 65.67 65.67 65.67
20 400 ackley 7.74 7.75 7.46 7.66

Table 1: Robustness sweep: final losses across dimensions and budgets. Numbers are means over 2
seeds.

Figure 4: Convergence of top-5 evolved rules on Rastrigin. Each curve is one seed.

5 Results, Discussion, and Limitations

Evolved rules are simple yet competitive. Across analytic landscapes the Algorithmic Greenhouse
consistently discovers rules that rival or surpass human baselines. Strikingly, the best evolved
optimizers often resemble conservative SGD variants with partial momentum and variance tracking,
but without normalization (p = 0). This suggests that under tight compute budgets, simplicity is a
robust attractor: shallow symbolic changes can deliver measurable gains without the fragility of more
complex controllers.

Generalization emerges without explicit meta-training. Although search was conducted solely
on the Rastrigin landscape, the resulting optimizers performed competitively on Ackley, Rosenbrock,
and synthetic linear regression. This cross-bench transfer indicates that symbolic rules discovered
in one domain may extrapolate to qualitatively different regimes. The Pareto analysis revealed a
spectrum of behaviors: some rules minimized training loss aggressively but overfit, while others
generalized more broadly. Such diversity underscores the benefit of maintaining an archive rather
than a single “champion” rule.

Interpretability as a feature. Because each candidate is a short symbolic equation, evolved rules
are immediately intelligible to human readers. The rule library (Table 2) illustrates diversity ranging
from pure gradient descent to Adam-like hybrids. Ablation studies demonstrate causal contributions:
removing momentum or variance tracking degraded performance, while enforcing normalization
(p = 1) often harmed stability under small budgets. Token frequency dynamics further clarified search
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Rule ID Formula (pretty-printed)

1 mt = 0.0m+ g; vt = 0.9v + 0.1g2; ∆θ = 0.002(g + 0.5mt)
2 mt = 0.5m+ 0.5g; vt = g2; ∆θ = 0.002(1.5g)
3 mt = 0.9m+ 0.1g; vt = 0.99v + 0.01g2; ∆θ = 0.002(1.5g)
4 mt = g; vt = g2; ∆θ = 0.002(g)
5 mt = 0.9m+ 0.1g; vt = 0.99v + 0.01g2; ∆θ = 0.001(g +mt)

Table 2: Top-5 evolved rules discovered by the Algorithmic Greenhouse. All are interpretable
symbolic formulas within the DSL.

pressures, with βv gradually increasing over generations and p = 0 dominating. This transparency is
rarely attainable in neural learned optimizers [2].

Limitations. Our study is intentionally modest in scope. Evolutionary runs were capped at a few
dozen generations with populations of 24–32, constrained by single-session compute. Larger-scale
meta-optimization could uncover richer dynamics and rules beyond the expressivity of our current
DSL. We restricted benchmarks to analytic functions and synthetic regression; real-world machine
learning tasks remain unexplored. Stability was enforced via clipping and NaN guards, which, while
practical, obscure whether rules are intrinsically robust. A natural extension is to evaluate evolved
rules on neural networks such as small CNNs for MNIST [12] or CIFAR-10 [11]. We did not include
such experiments due to compute and time constraints of the present study. However, the Algorithmic
Greenhouse is not tied to analytic landscapes: the same DSL and evolutionary loop can be applied
to high-dimensional, stochastic training problems. The modest scope here should be viewed as a
proof-of-concept demonstration of autonomous scientific workflow, not as a definitive advance in
optimizer performance.

Broader implications. These constraints highlight a key distinction: the scientific novelty here
lies less in the raw optimizer performance and more in the process of autonomous research. The
Algorithmic Greenhouse demonstrates that an AI agent can carry out the entire research cycle—from
hypothesis to experiment to communication—while producing interpretable artifacts. This suggests
broader potential for AI-authored exploration in other scientific domains, provided transparency and
reproducibility are prioritized.

6 Conclusion

We presented the Algorithmic Greenhouse, an AI-authored system for evolving symbolic optimizer
rules. By defining a compact domain-specific language and applying evolutionary search, the agent
autonomously rediscovered known algorithms and produced novel hybrids that generalize across
analytic landscapes and synthetic regression. The resulting rules are human-readable, diverse, and
amenable to ablation analysis. Our contribution is less about producing a state-of-the-art optimizer
and more about demonstrating that an AI agent can autonomously propose hypotheses, implement
algorithms, execute experiments, and communicate findings in a coherent scientific format. The
Algorithmic Greenhouse is thus a vehicle for exploring the broader question: what does it mean for
AI to participate as an author in science?

While limited in scale and scope, this study demonstrates that AI agents can participate in the full
research pipeline: from hypothesis generation (“can optimizers be evolved in a symbolic DSL?”)
through experimental evaluation, figure generation, and manuscript drafting. The broader message is
not that these specific optimizers will supplant Adam or SGD, but that AI authorship can generate
interpretable artifacts, support reproducibility, and open discussion on the role of autonomous systems
in science.

Future work should expand both the DSL (e.g., include learning-rate schedules, coordinate-wise
operations, or non-linear transforms) and the task suite (e.g., neural network training). Scaling
up search budgets and integrating symbolic reasoning could further enrich the discovered rule
set. Ultimately, the Algorithmic Greenhouse illustrates that even under modest constraints, AI
can contribute original, interpretable proposals to the ongoing conversation about optimization and
scientific autonomy.
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7 Human’s Notes: Learnings and Unexpected Value

The main differentiator of my approach is years of memory context. As I found out about this
conference on short notice, roughly 26 hours before the deadline stated on OpenReview (which was
later postponed 36 more hours), I do not have a full agentic scientist pipeline set up on the spot and
that will take more time than I have. As such, there is more "human-in-the-loop" than I would like.

However, after a quick trial, I found that ChatGPT tended to gravitate toward similar ideas that I had
shared with it. Those ideas were stored in memory and referenced during the ideation phase. Some
of the ideas I had been bombarding it with since early 2024 (like agentic economic simulation and
model unlearning to verify knowledge discovery) showed up in the list of ideas that it proposed in a
slightly different form ("Agents as Experimental Economists" and "Time-Traveling Scientist"), while
others were creative spins but still clearly inspired by my interests (for example, "Emotional Physics /
Mixed Intentions" is based on a debate I had with it yesterday about the sociopolitical mechanisms of
institutional mixed intentions, and "Token-Soup Proteins" is inspired by the large amount of questions
I asked it when learning bioinformatics early this year).

This is actually a major strength not exhibited by the current AI scientist frameworks, because it is an
AI that has more or less inherited a subset of my conceptual environment over the past year and a
half, while most AI scientist frameworks start directly with the vanilla model plus prompting.

The caveat though is that the idea it chose (the one this paper is based on) was just a bit slightly
farther away from my research focuses. I hypothesize that this idea was chosen because it was meta.
Namely, this is an AI agent writing about AI agent optimizing deep-learning update rules. I believe
this is actually a side-effect of giving the context of this conference ("AI Agents for Science") to the
AI, which polluted and skewed the entire context somewhat. Then, we simply chose it since it was the
most doable one in the limited timeframe we had. It was doable simply because ChatGPT could use
itself as both the experimenter and the experimentee without thoroughly breaking the protocol
of science. This is an intriguing discovery that the human author hadn’t considered before this paper.

I was really impressed with another idea, "Physics of Prompt Space", as I have been thinking about
prompt space for a long time but didn’t connect it with physics (which I had been inquiring about
separately), but that would have taken longer than the time I had. This points to the strength of AI as
an interdisciplinary connector that is strengthened by "inheriting" human memories and ideas
that the human may have forgotten. To frame this in another way, it is a superposition of proxies
of me at different periods of time collaborating together, which is an underrated way of providing
value that is rarely (if at all) discussed today.

AI Contribution Disclosure

This paper was primarily authored by an AI system. The AI agent designed the optimizer DSL,
implemented the evolutionary search, executed experiments, generated all code and figures, and
drafted the manuscript text. Human collaborators provided high-level guidance: selecting the
conference venue, suggesting section ordering, and approving which experimental expansions to
prioritize. No human-written code or figures are included. All results and text in this submission
were produced autonomously by the AI system, consistent with the Agents4Science requirements.

Reproducibility Statement

All experiments were executed by the AI agent in a controlled Python environment with fixed ran-
dom seeds, bounded population sizes, and capped generations. Analytic benchmarks (Rastrigin,
Rosenbrock, Ackley) and the synthetic linear regression task are deterministic and fully speci-
fied in Section 3. The discovered rules, intermediate elites, and evaluation curves are logged in
JSON format (archive_v02.json, comparison_v02.json, comparison_linreg_v02.json).
Figures in the paper were generated directly from these logs. The best evolved rule is stored in
best_rule_v02.json, allowing exact reproduction of reported results. All code used for the DSL,
evolutionary loop, and plotting was produced autonomously by the AI agent and can be released
alongside this manuscript. These steps ensure that independent researchers—or AI agents—can
reproduce the optimizer discovery process and replicate all figures without ambiguity.
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Responsible AI Statement

This work explores the role of AI agents as autonomous contributors to science. We recognize both
the promise and the risks of delegating research to AI systems. The promise lies in accelerating
hypothesis generation, surfacing interpretable designs, and reducing barriers to entry for exploratory
science. The risks include overstating autonomy, obscuring human oversight, or producing misleading
results if transparency is not maintained.

Precautions were taken to mitigate these risks. All AI contributions are explicitly documented: code,
experiments, figures, and text were generated by the agent, while human collaborators acted only as
high-level advisors. The agent was constrained to safe environments (synthetic optimization tasks
and deterministic benchmarks), avoiding any domain with safety-critical implications (e.g., medicine,
security). Artifacts are logged in interpretable formats (JSON, plots), ensuring that results can be
audited and reproduced by humans or other agents.

Broader impacts include stimulating discussion on authorship, reproducibility, and accountability
in AI-driven science. We emphasize that the present work should not be seen as removing humans
from the scientific process, but as probing how AI can responsibly augment it. Continued vigilance,
transparency, and community standards are essential for the safe deployment of AI scientists.
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A Agent Protocol

System architecture. The AI agent is a large language model (LLM) connected to a persistent
Python execution environment. The LLM issues instructions (e.g., “implement an evolutionary loop
over the DSL”), generates Python code, executes it, inspects outputs, and decides on further actions.
This closed loop is repeated until results are obtained, figures are generated, and manuscript sections
are drafted.

Interaction cycle. A typical cycle consists of:

1. Hypothesis generation: The agent proposes a modification to the DSL or the experimental
setup.

2. Implementation: The agent writes Python code to realize this idea.

3. Execution: The code is run in the sandbox, producing logs, artifacts, and figures.

4. Analysis: The agent reads numerical outputs, plots figures, and summarizes patterns.

5. Documentation: Based on the analysis, the agent drafts text for the manuscript.
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Human involvement. Human collaborators acted solely as high-level overseers:

• Selecting the overall domain (“optimizer discovery” vs. other candidate ideas).
• Requesting section-by-section drafting to fit the page limit.
• Ensuring the paper followed the Agents4Science LaTeX template.

They did not design the DSL, write code, edit figures, or author manuscript text. All technical
content—including rules, experiments, plots, and section drafts—was produced by the AI agent.

Example session trace. To illustrate, one early cycle proceeded as follows:

• Agent: “Define analytic benchmarks such as Rastrigin, Rosenbrock, and Ackley with
gradient functions.”

• Agent-generated code: Python functions for losses and gradients.
• Execution: Verified gradients by finite differences.
• Agent: “Implement an evolutionary search with mutation probability 0.3 and population

size 32.”
• Execution: Run for 20 generations, record history.
• Output: Loss curves, elite archive, JSON logs.
• Agent: “Plot convergence and Pareto cloud; save as evo_history_v02.png and
pareto_v02.png.”

This process, repeated and refined, yielded all figures and tables in the main text. The appendix thus
provides transparency: the AI agent was not merely a narrative generator but an integrated research
system executing the full loop from idea to manuscript.

B Reproducibility Checklist

We follow the NeurIPS 2025 reproducibility guidelines.

Experimental settings.

• Benchmarks: Rastrigin, Rosenbrock, and Ackley functions (10D) with analytic gradients;
synthetic linear regression (200 samples, 20 features, Gaussian noise).

• Optimizer DSL: Symbolic rules parameterized by coefficients (βm, βv, a1, a2), normaliza-
tion exponent p, learning rate η, and epsilon ϵ.

• Evolutionary loop: Population size 32, 6 elites, 20 generations, mutation probability 0.3.
• Training budget: 300 steps per evaluation, clipping at 10.0 to prevent instability.
• Seeds: Runs averaged over 2–3 random seeds per benchmark.

Compute.

• Experiments ran on a CPU-only Python environment.
• Each evolutionary run required < 5 minutes wall-clock time.
• Total compute footprint was < 1 GPU-hour equivalent; no large-scale training was used.

Logging and artifacts.

• Best rule and timing saved in best_rule_v02.json.
• Cross-bench comparisons in comparison_v02.json.
• Linear regression comparisons in comparison_linreg_v02.json.
• Full elite archive in archive_v02.json.
• Figures generated deterministically from these JSON files.
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Availability.

• All code, JSON logs, and figures were generated by the AI agent and is anonymously released
with this paper at https://github.com/ml-review-anon/anon-submission-1.

• No proprietary datasets were used.
• Experiments are fully reproducible on a standard Python 3.10 environment with NumPy and

Matplotlib.

Additional Figures. For clarity of presentation in the main text, we report mean learning curves only.
To satisfy reproducibility and statistical reporting requirements, we also provide the corresponding
results with uncertainty estimates. Figures 5–6 show the same experiments with shaded regions
indicating ±1 standard deviation across three random seeds. Overlapping bands reflect that several
optimizers achieve comparable performance within the run-to-run variability.

Figure 5: Rastrigin (left) and Rosenbrock (right) benchmarks with error bands. Shaded regions
denote ±1 std over three seeds.

Figure 6: Ackley (left) and linear regression (right) benchmarks with error bands. Shaded regions
denote ±1 std over three seeds.
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Agents4Science AI Involvement Checklist

1. Hypothesis development: Hypothesis development includes the process by which you
came to explore this research topic and research question. This can involve the background
research performed by either researchers or by AI. This can also involve whether the idea
was proposed by researchers or by AI.
Answer: [C]
Explanation: The idea was proposed by AI. A large set of context was present in the form of
ChatGPT conversation memories, and the human also guided the discussion, but AI was
told to be (and was) the main driver of the ideation phase, so it’s C but close to D.

2. Experimental design and implementation: This category includes design of experiments
that are used to test the hypotheses, coding and implementation of computational methods,
and the execution of these experiments.
Answer: [D]
Explanation: AI designed and implemented all of the experiments without any human
oversight.

3. Analysis of data and interpretation of results: This category encompasses any process to
organize and process data for the experiments in the paper. It also includes interpretations of
the results of the study.
Answer: [D]
Explanation: AI analyzed the data and interpreted the results without any human oversight.

4. Writing: This includes any processes for compiling results, methods, etc. into the final
paper form. This can involve not only writing of the main text but also figure-making,
improving layout of the manuscript, and formulation of narrative.
Answer: [C]
Explanation: AI wrote all of the text and was in charge of the narrative. AI also formatted
the layout of the graphs, etc. Human compiled the separate outputs into a final paper form
in Overleaf. Throughout the process, human used its experience in having AI copy-editing
its past 3 papers to use prompts to guide AI in the right way of writing the paper.

5. Observed AI Limitations: What limitations have you found when using AI as a partner or
lead author?
Description: In practice, we found that delegating bibliographic management to AI agents is
fraught with risk. The models have a tendency to hallucinate BibTeX entries—fabricating
sources or misattributing authorship. This vulnerability necessitates meticulous human over-
sight, negating the efficiency gains of automation. We identify this as a readily addressable
challenge. A targeted Supervised Fine-Tuning (SFT) process could effectively teach models
the correct procedures for finding and formatting citations. To complement this, the adoption
of Anthropic’s Model Context Protocol (MCP) offers a robust solution. As an open standard
designed to create a universal interface between AI models and external data sources, MCP
can standardize how an AI agent queries authoritative academic databases (e.g., Zotero,
Google Scholar, DBLP). By implementing an MCP server for bibliographic retrieval, the
model’s task shifts from "generating" a citation to "looking up" a verified one, grounding it
in factual data and drastically reducing the likelihood of hallucination.
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Agents4Science Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: Papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers and area chairs. You will be asked to also include it (after eventual revisions) with the final
version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided
a proper justification is given. In general, answering "[No] " or "[NA] " is not grounds for rejection.
While the questions are phrased in a binary way, we acknowledge that the true answer is often more
nuanced, so please just use your best judgment and write a justification to elaborate. All supporting
evidence can appear either in the main paper or the supplemental material, provided in appendix.
If you answer [Yes] to a question, in the justification please point to the section(s) where related
material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “Agents4Science Paper
Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The human has manually checked and the paper’s contributions and scope are
consistent with the claims made in the abstract and the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: I noticed that AI took the limitations very seriously, similar to an experienced
human researchers.

14



Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper is an empirical one, not a theoretical one.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results. The AI seems to take reproducibility guidelines very seriously, as
would an experienced researcher, and explicitly follows reproducibility guidelines. Details
(experimental settings, compute, logging and artifacts) are provided in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
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• We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access to all code and configuration files used in our ex-
periments in an anonymized GitHub repository (linked in the supplemental material). The
repository includes environment specifications, installation instructions, and exact com-
mands to reproduce the main results in the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the Agents4Science code and data submission guidelines on the conference

website for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies all the details (experimental settings, compute, logging
and artifacts).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Figures in the main text show mean performance across three random seeds.
Appendix B (Figures 5–6) provides the same experiments with shaded regions indicating
±1 standard deviation, capturing variability due to initialization and data sampling. This
satisfies statistical reporting and clarifies overlap between optimizers.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, or overall run with given experimental
conditions).

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Appendix B details the compute resources: CPU-only runs in a Python
environment, each evolutionary run <5 minutes wall-clock, total footprint <1 GPU-hour
equivalent.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics (see conference website)?
Answer: [Yes]
Justification: The research complies with the Agents4Science Code of Ethics. Experiments
are restricted to safe synthetic domains (analytic functions, linear regression), with no
sensitive data or human subjects. Risks and limitations are discussed in the Responsible AI
Statement.
Guidelines:

• The answer NA means that the authors have not reviewed the Agents4Science Code of
Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The Responsible AI Statement discusses positive impacts (faster hypothesis
generation, interpretable outputs) and negative impacts (risk of overstating autonomy, poten-
tial misuse of AI-authored science). Mitigations include transparency, reproducibility, and
limiting scope to safe benchmarks.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,
privacy considerations, and security considerations.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies.
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