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Abstract

Existing works on abstractive summarization001
mainly focus on boosting summarization’s002
quality (informativeness, contextual similar-003
ity). To generate summaries of both004
high diversity and quality, we proposes the005
Transformer+CVAE model, which integrates006
the CVAE framework into the Transformer007
by introducing the prior/recognition networks008
that bridges the Transformer encoder and009
decoder. We utilize the latent variables010
generated in the global receptive field of the011
transformer by fusing them to the starting-of-012
sequence ([SOS]) of the decoder inputs. To013
better tune the weights of the latent variables014
in the sequence, we designed a gated unit015
to blend the latent representation and the016
[SOS] token. Evaluated on the Gigaword017
dataset, our model outperforms the state-018
of-the-art seq-to-seq models and the base019
Transformer in diversity and quality metrics.020
After scrutinizing the pre-training and the021
gating mechanism we apply, we discover that022
both schemes help improve the quality of023
generated summaries in the CVAE framework.024

1 Introduction025

Abstractive text summarization aims to generate026

a new description of the original article that027

covers core information in the source texts028

and is linguistically fluent. The approach to029

abstractive summarization is a human way of030

generating summaries, attempting to understand031

the entire context of the data, which requires032

generalization, paraphrasing, and integrating real-033

world knowledge. With the developments in deep034

learning, abstractive summarization is regarded as035

a seq-to-seq learning problem, where the encoder-036

decoder models with attention mechanisms are037

generally used (Rush et al., 2015; Chopra et al.,038

2016).039

To increase the quality of abstractive sum-040

marization, seq-to-seq neural network models041

extract the core information of the text using 042

attention mechanisms, but they fail to utilize the 043

latent structure information of summaries. Such 044

conventional encoder-decoder methods calculate 045

the attention weights and the hidden state param- 046

eters in an entirely deterministic way (Shi et al., 047

2020). Li et al. (2017) proposed a deep recurrent 048

generative decoder that incorporates variational 049

autoencoders (VAEs) (Kingma and Welling, 2014) 050

as a multivariate Gaussian distribution to capture 051

latent information. However, in practice, this 052

method suffers from long-term sequential recurrent 053

dependencies and vanishing gradient problems, 054

generating unnecessary noise and hampering the 055

learning of long data sequences. Inspired by the 056

success of VRNN (Chung et al., 2015), Zhao et al. 057

(2020) improved the variational decoder by using 058

the stochastic hidden states of the VRNN layer as 059

the input of the current RNN layer to extract latent 060

information in adjacent time steps . 061

The attempts to take advantage of latent 062

information using RNN-based VAEs proved to be 063

beneficial in avoiding generating dull and repetitive 064

summaries, but the inherently sequential nature 065

of such models makes large-scale training less 066

efficient. On top of that, RNN-based VAEs face 067

the vanishing latent variable problem (Bowman 068

et al., 2016), where the powerful auto-regressive 069

RNN structured decoder ignores the latent variables 070

and generates outputs only dependent on previous 071

tokens. Unlike RNNs, the vanilla Transformer 072

(Vaswani et al., 2017) allows parallel training and 073

has a global receptive field at each stage. Despite 074

the Transformers’ efficiency and robust fully 075

attentional mechanisms, they are deterministic and 076

fail to model one-to-many relations. In addition, 077

the greedy and beam search in the Transformers 078

makes it challenging to generate diverse and 079

informative abstractive summaries. 080

In this paper, we propose the Transformer- 081

CVAE, a variational fully attentive feed-forward 082
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seq-to-seq model, to address the lack of diversity083

of abstractive summarization while maintaining084

high quality. The experimental results based on the085

Gigaword Dataset show that our proposed model086

improves the diversity as well as the quality of087

generated summaries, meaning that our model088

absorbs the advantage of the non-deterministic089

nature of CVAE and the strong generative modeling090

power of the Transformer. The reminder of this091

paper is organized as follows: In Section 2 we092

intorduce the related work. Then, we propose the093

Transformer-CVAE in Section 3. In Section 4 and094

5, we conduct the experiments and empirically095

analyze the results, respectively. Finally we096

conclude this paper.097

2 Related Work098

2.1 Abstractive Text Summarization099

Rush et al. (2015) adopted a neural attention-100

based encoder-decoder method for sentence-level101

abstractive summarization. Chopra et al. (2016)102

improved the encoder-decoder model proposed103

by Rush et al. (2015) by utilizing an attentive104

convolutional encoder and a conditional RNN105

decoder for single-sentence summarization.106

Recent studies have argued that the encoder-107

decoder model for abstractive summarization is108

vulnerable to phrase repetitions, grammatical109

mistakes, and inadequate reflection of the highlight110

of the original text (Gupta and Gupta, 2019).111

Several lines of research attempt to tackle these112

problems and improve the quality of abstractive113

summaries. By infusing prior knowledge, such as114

the linguistic features, into neural networks along115

with RNN and probabilistic objectives, Rossiello116

et al. (2016) reduced the semantic and grammatical117

errors caused by the dependence on statistical co-118

occurrences of words. To solve the problem of119

repetitions, Lin et al. (2018) used convolutional120

gated units on top of the encoder outputs at each121

time step. They added the global encoding at122

the encoder side and an undirectional LSTM at123

the decoder side. Another method focusing on124

avoiding repetitions is to use a diversity-driven125

attention model, which requires queries relevant126

to the highlights in the source article (Nema et al.,127

2018).128

2.2 Conditional Variational Autoencoders129

The variational autoencoder (VAE) (Kingma and130

Welling, 2014), a deep generative probabilistic131

model, adopts a decoder network to reconstruct 132

the encoder outputs by Gaussian sampling. The 133

conditional VAE (CVAE) framework, proposed 134

by Sohn et al. (2015), is a conditional graphical 135

model that features both latent variables and 136

data conditioned on some variables. Although 137

seq-to-seq models achieve high performance in 138

text generation tasks, they tend to generate dull 139

and repetitive results in tasks such as abstractive 140

summarization and dialogue response generation 141

(Li et al., 2016). One popular line of research to 142

address this issue is to integrate stochastic latent 143

variables into seq-to-seq models based on the 144

CVAE framework. 145

Many text generation works are committing 146

to combining the CVAE with encoder-decoder 147

models. Li et al. (2017) designed a deep 148

recurrent generative decoder and connected the 149

encoder-decoder structure to a variational RNN 150

(VRNN) (Chung et al., 2015). Zhang et al. 151

(2016) explored the application of CVAE to Neural 152

Machine Translation (NMT) that enables better 153

long-sequence generation. CVAE framework 154

proved to be helpful in distilling the underlying 155

semantics of the source-target pairs in supervised 156

learning. And the non-deterministic nature of 157

CVAE is increasingly used in capturing variability 158

of the latent space and generating diverse results. 159

Du et al. (2018) designed variational autoregressive 160

decoders that inject variational inference into the 161

RNN-based decoder to generate various dialogue 162

responses. And Le et al. (2018) strengthened the 163

variational autoregressive decoder using external 164

dynamic memory and improved the quality of the 165

diverse responses. Even though the aforementioned 166

RNN-based CVAE models greatly improved the 167

diversity in text generation tasks, they suffer from 168

the vanishing latent variable problem (Bowman 169

et al., 2016), that is the autoregressive RNN-based 170

decoder is too powerful so that it tends to pay less 171

attention to the latent representation. Therefore, 172

we try to explore a different combination of CVAE 173

and an autoregressive generative model - the 174

Transformer. 175

2.3 Combining Transformer with CVAE 176

With the emergence of the Transformer (Vaswani 177

et al., 2017), many text generation research 178

attempted to incorporate CVAE into the Trans- 179

former. Liu and Liu (2019) proposed a variational 180

transformer-based model augmented with LSTM 181
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Figure 1: Our model - Transformer+CVAE. In the training process, the latent variable z is generated by the
posterior network. In the testing process, z is instead sampled from the prior network because the target text is not
allowed during inference. We ignore the details of the Transformer structure and the prior/recognition networks
for simplicity.

layers, and they proved the effectiveness of the182

incorporation of the transformer to solve KL van-183

ishing problem and achieved better performance184

than some baseline models. Some works come185

from neural dialog response generation. Lin et al.186

(2020) designed a global variational transformer187

and a sequential variational transformer, testing on188

how the extent of diversity changes when the latent189

variable is reachable in the global or local receptive190

field.191

However, there are few works that focus on192

improving text summarization using transformer-193

based CVAE. Many state-of-the-art models for194

abstractive summarization have achieved high195

performance in the accuracy and fluency of the196

summaires, boosting ROUGE scores with fine-197

tuned and pre-training strategies. The diversity of198

summaries is also an essential part of summaries,199

so this paper aims at improving the diversity of the200

abstractive summaries while keeping the quality201

high.202

3 Proposed Model 203

3.1 The CVAE framework 204

Inspired by the CVAE framework proposed by
Sohn et al. (2015), we model the underlying
semantics of the article-summary pairs explicitly.
The model represents the dyadic conversation
among the following three variables: the input
source article x, the generated summary y, and
a continuous latent variable z we assume to follow
multivariate Gaussian distribution with diagonal
covariance matrix from the semantic space. Our
goal is to maximize the conditional likelihood that
can evolve to:

p(y|x) =
∫
z
p(y, z|x)dz =

∫
z
p(y|z,x)p(z|x)dz

We denote the prior network as pθ(z|x) that 205

approximates the prior distribution p(z|x) and the 206

recognition network qφ(z|x,y) that approximates 207

the true posterior distribution q(z|x,y). The 208

decoder pθ(y|z,x) that shares parameters with the 209
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encoder approximates the generative distribution210

p(y|z,x). As is presented by Sohn et al. (2015),211

the evidence lower bound ELBO is formulated as:212

log p(y|x) ≥ LELBO = −LKL + LREC213

= −KL (qφ(z|x,y)‖pθ(z|x))214

+Eqφ(z|x,y) [log pθ(y|x, z)]215

where LKL represents the Kullback-Leibler (KL)216

divergence between the recognition network and217

the prior network, and LREC represents the218

reconstruction error of sampling z from recognition219

network (Kingma and Welling, 2014).220

Since we assume that z follows a multivariate221

Gaussian distribution with diagonal covariance222

structure, the recognition network qφ(z|x,y) ∼223

N
(
µ, σ2I

)
and the prior network pθ(z|x) ∼224

N
(
µ′, σ′2I

)
. Then we use the reparametrization225

trick (Kingma and Welling, 2014) to get sample226

z either from the recognition network or the prior227

network. In the training process, we obtain z from228

N
(
z;µ, σ2I

)
; in the testing process, we obtain229

z from N
(
z;µ′, σ′2I

)
. Given z and the source230

input x, the decoder then generates target output y231

sequentially. As is proposed by Sohn et al. (2015),232

by maximizing the ELBO of the conditional log233

likelihood, the CVAE can be efficiently trained with234

the Stochastic Gradient Variational Bayes (SGVB)235

framework (Kingma and Welling, 2014).236

3.2 Transformer+CVAE237

Inspired by the Global Variational Transformer238

proposed in Lin et al. (2020), we design239

a transformer-based CVAE model with latent240

variable z serving as a global semantic signal in a241

similar fashion. The architecture of our model is242

demonstrated in Figure 1. The source encoder and243

target encoder are both Transformer encoder, and244

the Transformer decoder shares parameters with245

the source encoder via cross-attention mechanism.246

We introduce the prior network and the recognition247

network, which are multilayer perceptrons (MLPs),248

to get mean and log variance of the Gaussian249

distribution of z (Zhou and Wang, 2018). To250

guarantee that the prior network and recognition251

network receive embeddings of fixed dimensions,252

we apply the special classification tokens [CLS]253

as their inputs. We hypothesize that the self-254

attentive representation of [CLS] token helps255

obtain long-range contextual information because256

it contains BERT’s understanding of the sentence-257

level meaning (Devlin et al., 2019).258

RNN-based CVAE framework generally incor- 259

porates the latent variable to the initial state of the 260

recurrent decoder. Our transformer-based CVAE 261

model can easily fuse latent representations into the 262

starting-of-sequence ([SOS]) as the starting point 263

of text generation. Instead of directly adding z 264

to the [SOS] token as is proposed by Lin et al. 265

(2020), we incorporate z into the [SOS] token of 266

the decoder inputs via the Gating mechanism. With 267

the gated unit, we can tune the weights of the 268

latent variable z in the [SOS] token. We denote 269

the embedding vector of the [SOS] token as s. Ws 270

is defined as the parameter matrix of the linear layer 271

taking s as the input. The formula of the gated unit 272

we designed is as follows: 273

h = σs(Wss) 274

s = h� s+ (1− h)� z 275

where σs is a sigmoid function and � represents 276

the Hadamard product. Then the resulting s token 277

is attached to the target sequence, which is passed 278

to the decoder along with the outputs of the source 279

encoder. 280

3.3 Learning 281

Vanishing latent variable problem is a common 282

issue in RNN-based CVAE (Bowman et al., 2016), 283

but there are also chances that the decoder in 284

our model pays less attention to the integrated 285

[SOS] token. Following the suggestions from 286

Bowman et al., we apply KL annealing method and 287

early-stopping strategy to alleviate such problem 288

following Zhou and Wang (2018). We also adopt 289

the bag-of-word loss proposed by Zhao et al. 290

(2017), which proved to be complementary to 291

the KL annealing method and very effective in 292

mitigating vanishing latent variables. 293

Therefore, our regularized ELBO learning
objective along with the auxiliary loss is formulated
as follows:

L = LELBO + Lbow
where,

Lbow = Eqφ(z|x,y) [log pε (ybow|z,x)]

Suppose f = MLPbow(z,y) ∈ R|V | where |V | is
the vocabulary size. Then

log p (ybow|z,x) = log

|y|∏
t=1

efyt∑|V |
j efj

where |y| is the length of y and yt is the word 294

index of the tth word in y (Zhao et al., 2017). 295
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Model Dist-1 Dist-2 Dist-3 sBL-2∗ sBL-3∗

Transformer 0.2383 0.6919 0.8633 0.5380 0.3185
CVAE (ours) 0.2049 0.7036 0.9042 0.5597 0.3035

Transformer+CVAE (ours) 0.2718 0.7601 0.8954 0.4519 0.2507
reference summaries 0.2971 0.8305 0.9552 0.4265 0.2372

Table 1: Abstractive summarization results in diversity metrics. The metric with ∗ means that the lower score, the
better performance. This notation applies to the following tables. sBL represents self-BLEU.

Model RG-1 RG-2 RG-L BERTSc tBL-2 tBL-3
ABS+ (Rush et al., 2015) 29.76 11.88 26.96 - - -

RAS-LSTM (Chopra et al., 2016) 31.71 13.63 29.31 - - -
Transformer 28.82 11.54 26.57 87.63 0.5069 0.2971
CVAE (ours) 18.06 5.69 17.18 85.94 0.4912 0.2561

Transformer+CVAE (ours) 31.36 14.16 29.35 89.23 0.5272 0.3120

Table 2: Abstractive summarization results in quality metrics. tBL represents test-BLEU.

Dataset Gigaword
Training pairs 3803957

Validation pairs 189651
Testing pairs 1951

Vocabulary size 124413

Table 3: Dataset statistics

4 Experiments296

4.1 Data Settings297

To evaluate the effectiveness of our proposed298

methods, we experimented on the Annotated299

English Gigaword dataset (Napoles et al., 2012).300

It consists of article-summary pairs which are301

the first sentence of the original articles paired302

with corresponding the titles. We follow the pre-303

processing steps in Rush et al. (2015). All digits in304

the pre-processed dataset are replaced with “#” and305

all word tokens appearing in less than 5 times are306

marked as “UNK”. The details of the data is shown307

in Table 3.308

4.2 Baselines309

We compare the our proposed models with the310

following state-of-the-art models.311

Transformer. The transformer we implemented312

is trained on the default model parameters proposed313

in (Vaswani et al., 2017).314

ABS+. ABS+ (Rush et al., 2015) is an improved315

version of Attention-based Summarization which316

utilizes an attention-based encoder and a feed- 317

forward neural network language model (NNLM). 318

RAS-LSTM. RAS-LSTM (Recurrent Attentive 319

Summarizer) is proposed by Chopra et al., 320

utilizing a conditional RNN for single-sentence 321

summarization (Chopra et al., 2016). It adopts 322

the attentive recurrent architecture, combining 323

a convolutional attention-based encoder and an 324

LSTM recurrent decoder. The model is easily 325

trained on large datasets in an end-to-end fashion. 326

CVAE. The structure of our CVAE model is an 327

RNN-based conditional variational autoencoder 328

initially intended for dialogue response generation. 329

It is proposed by Zhou and Wang (2018), who used 330

several tricks to prevent the CVAE model from 331

deteriorating to a plain Seq2Seq model by applying 332

KL annealing, early stopping and bag-of-words 333

loss. 334

4.3 Training Details 335

We implement the experiment with the Pytorch 336

framework on an NIVIDIA 1080Ti GPU. We 337

set the maximum number of words in an article 338

or summary to 1000. To initialize the input 339

embeddings of the source encoder, target encoder, 340

and decoder, we apply the 300-dimensional pre- 341

trained GloVe embeddings (Pennington et al., 342

2014). The encoder and decoder are both 343

composed of a stack of 4 sub-layers of transformer 344

heads with hidden dimension h = 300. The 345

dimension of the latent variable is fixed to 300. The 346

prior network and recognition network comprise 347
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Model Dist-1 Dist-2 Dist-3 sBL-2∗ sBL-3∗

Transformer+CVAE (w/ pre-train) 0.2718 0.7601 0.8954 0.4519 0.2507
Transformer+CVAE (w/o pre-train) 0.2607 0.7877 0.9606 0.7886 0.5526

Transformer+CVAE (w/ pre-train & w/o Gate) 0.2484 0.8103 0.9714 0.4756 0.2405
reference summaries 0.2971 0.8305 0.9552 0.4265 0.2372

Table 4: Selected abstractive summarization results for ablation study in diversity metrics.

Model RG-1 RG-2 RG-L BERTSc tBL-2 tBL-3
Transformer+CVAE (w/ pre-train) 31.36 14.16 29.35 89.23 0.5272 0.3120
Transformer+CVAE (w/o pre-train) 27.2 10.70 25.34 82.06 0.4271 0.2864

Transformer+CVAE (w/ pre-train & w/o Gate) 24.21 8.75 22.54 86.76 0.4840 0.2568

Table 5: Selected abstractive summarization results for ablation study in quality metrics.

of 3-layer MLPs with hidden dimension 512 (Lin348

et al., 2020). As we only use the first sentence of349

the source and the target, the vocabulary size is350

124413. We set the batch size to 128 for the base351

transformer, CVAE, and Transformer+CVAE, and352

we shuffle the training data randomly at each epoch.353

KL annealing, early stopping methods (Bowman354

et al., 2016), and auxiliary loss (Zhao et al., 2017)355

are applied in the training process. We use the356

Adam optimizer (Kingma and Ba, 2014) with initial357

learning rate 2 × 10−4. In order to avoid over-358

fitting, we set the dropout rate for each encoder and359

decoder layer to be 0.1. We adopt greedy decoding360

for testing (K = 1) and the beam size is set to 5.361

4.4 Evaluation Metrics362

4.4.1 Diversity Metrics363

Distinct-N. Distinct-N, proposed by Li et al.364

(2016), is calculated by the number of distinct n-365

grams divided by the total number of n-grams in366

all the generated summaries. We apply this metric367

for unigrams, bigrams, and trigrams (denoted Dist-368

1, Dist-2, Dist-3) to measure the diversity of369

generation.370

self-BLEU. self-BLEU (Zhu et al., 2018a)371

measures the variety of the generated text. It372

measures the diversity of a generated sentence373

based on other generated sentences. Then by taking374

the average of the BLEU scores of all generated375

sentences, we get the self-BLEU metric. Note that376

in contrast to test-BLEU, lower self-BLEU score377

shows higher diversity. We employ self-BLEU-2378

(bigram), self-BLEU-3 (trigram) as our metrics.379

4.4.2 Quality Metrics 380

We evaluate the quality of our generated summaries 381

based on informativeness, fluency and the 382

contextual similarity to the reference (Aralikatte 383

et al., 2021). 384

ROUGE score. ROUGE score (Lin, 2004) 385

calculates the amount of overlapping content as n- 386

grams between the generated text and the reference. 387

To evaluate the lexical overlap between our test 388

results and the reference, we report ROUGE-1 389

and ROUGE-2 for informativeness evaluation and 390

ROUGE-L for fluency evaluation. 391

BERTScore. BERTScore (Devlin et al., 2019) 392

computes the the sum of cosine similarities 393

between the hypothesis and reference text in token- 394

level. We use BERTScore as the metric to evaluate 395

semantic similarity between our test results and the 396

reference. 397

test-BLEU. We use test-BLEU (Zhu et al., 398

2018b) to calculate the similarity between the 399

generated summaries and the reference. The 400

score is within the range [0, 1], and the higher 401

score means better alignment with the real data. 402

We employ test-BLEU-2 (bigram), test-BLEU-3 403

(trigram) as our metrics. 404

5 Results 405

5.1 Diversity Evaluation 406

The result of diversity evaluation is shown 407

in Table 1. Our proposed model, the 408

Transformer+CVAE with pre-training, ranks the 409

highest in Dist-1 and Dist-2 metrics, exhibiting a 410

greater number of distinct unigrams and bigrams 411
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in the generated summaries. The CVAE seq-412

to-seq model implemented by us achieves the413

highest score in Dist-3, reflecting that the CVAE414

framework efficiently captures semantic variations415

in the latent space. The Transformer+CVAE model416

scores the lowest in both self-BLEU-2 and self-417

BLEU-3, and is close to the reference summaries,418

which shows stronger diversity in sentence level.419

One of the reasons why the base Transformer420

obtains low diversity score is its deterministic421

nature; and the CVAE RNN-based model is less422

robust when facing the vanishing latent variable423

problem, scoring relatively poorer in most diversity424

metrics. Overall, our proposed model performs the425

best in boosting diversity in summaries.426

5.2 Quality Evaluation427

The quality evaluation result is shown in Table 2.428

Our goal is to maintain good summarization429

quality when adding diversity to the sentences,430

and our Transformer+CVAE model achieves great431

performance in the quality metrics. Comparing to432

the seq-to-seq state-of-the-art generation models433

such as ABS+ and RAS-LSTM, our model434

outperforms both of them in ROUGE-2 and435

ROUGE-L, presenting higher informativeness436

and fluency. Our model also defeats the437

base Transformer model in all ROUGE metrics,438

showing the ability of CVAE framework to extract439

core information apart from collecting semantic440

variations. Our model obtains the highest score441

in BERTScore and test-BLEUs, exibiting greater442

similarities to the reference summaries. So443

our model combines the advantage of attention444

mechanism and the latent distribution. The CVAE445

seq-to-seq model ranks the lowest in quality tests,446

indicating that RNN-based CVAE is less effective447

in aligning article-summary pairs than transformer-448

based CVAE. In addition, our model is more449

efficient in training compared to RNN-based CVAE450

models.451

5.3 Ablation Study452

We examines the effect of pre-training and gating453

mechanism on the diversity and quality of our454

Transformer+CVAE model. The comparisons are455

shown in Table 4 and Table 5,respectively.456

5.3.1 The Effect of Pre-training457

We pre-trained our Transformer+CVAE model458

with the base Transformer to make it more459

robust. Compared with the model without pre-460

training, our model scores higher in Dist-1 and 461

self-BLEUs, but scores lower in Dist-2 and Dist- 462

3. Except for the self-BLEUs, both models 463

show similar performance in diversity metrics. In 464

terms of quality, it is manifest that our model 465

is more powerful than the counterpart without 466

pre-training, ranking the highest in all quality 467

metrics. Therefore, we conclude that pre-training 468

substantially enhances the quality of our generated 469

summaries, but it is not certain whether pre-training 470

affects the extraction of latent meanings to a 471

notable degree. 472

5.3.2 The Effect of Gating Mechanism 473

To investigate whether the gated unit we designed 474

is beneficial to achieving our goal, we built 475

another model (with pre-training) where the latent 476

variable z is directly added to the [SOS] token 477

instead of entering the gated unit. The counterpart 478

without gated unit outperforms our model in 479

Dist-2, Dist-3 and self-BLEU-3, while the latter 480

defeats the former in the remaining diversity 481

metrics. Therefore, there is no substantive evidence 482

that the gating mechanism improves diversity. 483

However, the counterpart without gated unit 484

performs the poorest in ROUGE scores, exposing 485

no enhancement in quality. In conclusion, though 486

exhibiting similar diversity level, our model with 487

gated unit steadily maintains the quality of the 488

generated summaries. 489

5.4 Case Study 490

In Table 6, we show some cases of abstractive 491

summaries. First, we observe that the Transformer 492

tends to generate relevant but plain summaries. For 493

example, in Summary 1, the Transformer extracts 494

the core information of the article, but the generated 495

words only come from the article. It is a common 496

problem with the abstractive summaries produced 497

by the Transformer. Second, we discover that 498

the RNN-based CVAE might fail to capture the 499

essential imformation in the article. For example, 500

in Summary 2, obviously the summary focuses on 501

US stocks, but the highlight is the slight recovery 502

of Wall Street. Similar problem with the RNN- 503

based CVAE can be found in Summary 4, where 504

the important subject in the summary is marked 505

“UNK”. Last but not least, our Transformer+CVAE 506

model not only captures the core meaning of the 507

article, but it also generates diversified summaries. 508

For example, in Summary 2, our model generates a 509

new phrase “eke out”, which does not appear in the 510
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Article 1
japan ’s toyota team europe were banned from the world rally championship for one year
here on friday in a crushing ruling by the world council of the international automobile
federation -lrb- fia -rrb- .

Summary 1

Transformer: toyota banned from world rally for year
CVAE: top seed banned from world cup
Transformer+CVAE: toyota banned from world championship for a crushing defeat
Reference: toyota are banned for a year

Article 2
us shares managed modest gains in morning trade thursday as investors looked for bargains
after a punishing three-day market selloff and shook off more bleak economic and corporate
news .

Summary 2

Transformer: wall street gains on bargain-hunting
CVAE: us stocks rally against dow gains #.## percent
Transformer+CVAE: wall street ekes out gains after selloff weak economy
Reference: wall street struggles higher after three-day rout

Article 3
russian president vladimir putin returned sunday a long-lost icon of our lady of vladimir to
russia ’s orthodox patriarch alexy ii ahead of the easter service in moscow , vowing to bring
back other relics lost in the soviet times .

Summary 3

Transformer: putin returns to russia ’s orthodox patriarch
CVAE: russian president returns from moscow to orthodox church
Transformer+CVAE: putin returns to ex-soviet republics lay hold soviet monument to mark
start
Reference: putin hands long-lost icon to orthodox patriarch pledges to return more

Article 4
led by a lone ivory coast army pickup truck , french and west african military convoys set
off in jeeps and armored vehicles friday on a mission to secure the lawless west after civil war .

Summary 4

Transformer: ivory coast army sets off for west african military convoy
CVAE: UNK military convoy sent to west coast
Transformer+CVAE: ivory coast army peacekeepers head for west african convoy
Reference: french-led troops set off to secure ivory coast ’s law

Table 6: Case study of the abstractive summarization.

article but means the same thing as “win something511

with efforts”. Similar examples are in Summary512

1, where “defeat” substitutes “ruling by”, and in513

Summary 4, the word “peacekeepers” modify the514

“african military army”.515

6 Conclusion516

This paper proposes the Transformer+CVAE517

model, which integrates the CVAE frame-518

work into the Transformer by introducing519

the prior/recognition networks that bridges the520

Transformer encoder and decoder. We utilize the521

latent variables generated in the global receptive522

field of the transformer by fusing them to the523

starting-of-sequence ([SOS]) of the decoder inputs.524

To better tune the weights of the latent variables in525

the sequence, we designed a gated unit to blend the526

latent representation and the [SOS] token. Our527

goal is to generate abstractive summaries with528

greater diversity and keep high quality. To evaluate 529

the effectiveness of the Transformer+CVAE we 530

proposed, we conduct evaluation in diversity 531

and quality. The results show that our model 532

outperforms the base Transformer and RNN-based 533

CVAE in diversity metrics. In the meantime, 534

our model achieves high quality scores compared 535

to state-of-the-art seq-to-seq models, the base 536

Transformer and the RNN-based CVAE. To make 537

our result more robust, we examined the effect 538

of pre-training and gating mechanism on our 539

model and concluded that both pre-training the 540

gating mechanism enhances the quality, while 541

giving support to generating diverse results. In 542

the future, we will try to incorporate the latent 543

variables sequentially into the internal structure 544

of the Transformer decoder, and compare the 545

effectiveness of the sequential model and the global 546

model. 547
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