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Abstract

Existing works on abstractive summarization
mainly focus on boosting summarization’s
quality (informativeness, contextual similar-
ity). To generate summaries of both
high diversity and quality, we proposes the
Transformer+CVAE model, which integrates
the CVAE framework into the Transformer
by introducing the prior/recognition networks
that bridges the Transformer encoder and
decoder.  We utilize the latent variables
generated in the global receptive field of the
transformer by fusing them to the starting-of-
sequence ([SOS]) of the decoder inputs. To
better tune the weights of the latent variables
in the sequence, we designed a gated unit
to blend the latent representation and the
[SOS] token. Evaluated on the Gigaword
dataset, our model outperforms the state-
of-the-art seq-to-seq models and the base
Transformer in diversity and quality metrics.
After scrutinizing the pre-training and the
gating mechanism we apply, we discover that
both schemes help improve the quality of
generated summaries in the CVAE framework.

1 Introduction

Abstractive text summarization aims to generate
a new description of the original article that
covers core information in the source texts
and is linguistically fluent. The approach to
abstractive summarization is a human way of
generating summaries, attempting to understand
the entire context of the data, which requires
generalization, paraphrasing, and integrating real-
world knowledge. With the developments in deep
learning, abstractive summarization is regarded as
a seq-to-seq learning problem, where the encoder-
decoder models with attention mechanisms are
generally used (Rush et al., 2015; Chopra et al.,
2016).

To increase the quality of abstractive sum-
marization, seq-to-seq neural network models

extract the core information of the text using
attention mechanisms, but they fail to utilize the
latent structure information of summaries. Such
conventional encoder-decoder methods calculate
the attention weights and the hidden state param-
eters in an entirely deterministic way (Shi et al.,
2020). Li et al. (2017) proposed a deep recurrent
generative decoder that incorporates variational
autoencoders (VAEs) (Kingma and Welling, 2014)
as a multivariate Gaussian distribution to capture
latent information. However, in practice, this
method suffers from long-term sequential recurrent
dependencies and vanishing gradient problems,
generating unnecessary noise and hampering the
learning of long data sequences. Inspired by the
success of VRNN (Chung et al., 2015), Zhao et al.
(2020) improved the variational decoder by using
the stochastic hidden states of the VRNN layer as
the input of the current RNN layer to extract latent
information in adjacent time steps .

The attempts to take advantage of latent
information using RNN-based VAEs proved to be
beneficial in avoiding generating dull and repetitive
summaries, but the inherently sequential nature
of such models makes large-scale training less
efficient. On top of that, RNN-based VAEs face
the vanishing latent variable problem (Bowman
et al., 2016), where the powerful auto-regressive
RNN structured decoder ignores the latent variables
and generates outputs only dependent on previous
tokens. Unlike RNNs, the vanilla Transformer
(Vaswani et al., 2017) allows parallel training and
has a global receptive field at each stage. Despite
the Transformers’ efficiency and robust fully
attentional mechanisms, they are deterministic and
fail to model one-to-many relations. In addition,
the greedy and beam search in the Transformers
makes it challenging to generate diverse and
informative abstractive summaries.

In this paper, we propose the Transformer-
CVAE, a variational fully attentive feed-forward



seq-to-seq model, to address the lack of diversity
of abstractive summarization while maintaining
high quality. The experimental results based on the
Gigaword Dataset show that our proposed model
improves the diversity as well as the quality of
generated summaries, meaning that our model
absorbs the advantage of the non-deterministic
nature of CVAE and the strong generative modeling
power of the Transformer. The reminder of this
paper is organized as follows: In Section 2 we
intorduce the related work. Then, we propose the
Transformer-CVAE in Section 3. In Section 4 and
5, we conduct the experiments and empirically
analyze the results, respectively. Finally we
conclude this paper.

2 Related Work

2.1 Abstractive Text Summarization

Rush et al. (2015) adopted a neural attention-
based encoder-decoder method for sentence-level
abstractive summarization. Chopra et al. (2016)
improved the encoder-decoder model proposed
by Rush et al. (2015) by utilizing an attentive
convolutional encoder and a conditional RNN
decoder for single-sentence summarization.

Recent studies have argued that the encoder-
decoder model for abstractive summarization is
vulnerable to phrase repetitions, grammatical
mistakes, and inadequate reflection of the highlight
of the original text (Gupta and Gupta, 2019).
Several lines of research attempt to tackle these
problems and improve the quality of abstractive
summaries. By infusing prior knowledge, such as
the linguistic features, into neural networks along
with RNN and probabilistic objectives, Rossiello
et al. (2016) reduced the semantic and grammatical
errors caused by the dependence on statistical co-
occurrences of words. To solve the problem of
repetitions, Lin et al. (2018) used convolutional
gated units on top of the encoder outputs at each
time step. They added the global encoding at
the encoder side and an undirectional LSTM at
the decoder side. Another method focusing on
avoiding repetitions is to use a diversity-driven
attention model, which requires queries relevant
to the highlights in the source article (Nema et al.,
2018).

2.2 Conditional Variational Autoencoders

The variational autoencoder (VAE) (Kingma and
Welling, 2014), a deep generative probabilistic

model, adopts a decoder network to reconstruct
the encoder outputs by Gaussian sampling. The
conditional VAE (CVAE) framework, proposed
by Sohn et al. (2015), is a conditional graphical
model that features both latent variables and
data conditioned on some variables. Although
seq-to-seq models achieve high performance in
text generation tasks, they tend to generate dull
and repetitive results in tasks such as abstractive
summarization and dialogue response generation
(Li et al., 2016). One popular line of research to
address this issue is to integrate stochastic latent
variables into seq-to-seq models based on the
CVAE framework.

Many text generation works are committing
to combining the CVAE with encoder-decoder
models. Li et al. (2017) designed a deep
recurrent generative decoder and connected the
encoder-decoder structure to a variational RNN
(VRNN) (Chung et al., 2015). Zhang et al.
(2016) explored the application of CVAE to Neural
Machine Translation (NMT) that enables better
long-sequence generation. CVAE framework
proved to be helpful in distilling the underlying
semantics of the source-target pairs in supervised
learning. And the non-deterministic nature of
CVAE is increasingly used in capturing variability
of the latent space and generating diverse results.
Du et al. (2018) designed variational autoregressive
decoders that inject variational inference into the
RNN-based decoder to generate various dialogue
responses. And Le et al. (2018) strengthened the
variational autoregressive decoder using external
dynamic memory and improved the quality of the
diverse responses. Even though the aforementioned
RNN-based CVAE models greatly improved the
diversity in text generation tasks, they suffer from
the vanishing latent variable problem (Bowman
et al., 2016), that is the autoregressive RNN-based
decoder is too powerful so that it tends to pay less
attention to the latent representation. Therefore,
we try to explore a different combination of CVAE
and an autoregressive generative model - the
Transformer.

2.3 Combining Transformer with CVAE

With the emergence of the Transformer (Vaswani
et al., 2017), many text generation research
attempted to incorporate CVAE into the Trans-
former. Liu and Liu (2019) proposed a variational
transformer-based model augmented with LSTM
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Figure 1: Our model - Transformer+CVAE. In the training process, the latent variable z is generated by the
posterior network. In the testing process, z is instead sampled from the prior network because the target text is not
allowed during inference. We ignore the details of the Transformer structure and the prior/recognition networks

for simplicity.

layers, and they proved the effectiveness of the
incorporation of the transformer to solve KL van-
ishing problem and achieved better performance
than some baseline models. Some works come
from neural dialog response generation. Lin et al.
(2020) designed a global variational transformer
and a sequential variational transformer, testing on
how the extent of diversity changes when the latent
variable is reachable in the global or local receptive
field.

However, there are few works that focus on
improving text summarization using transformer-
based CVAE. Many state-of-the-art models for
abstractive summarization have achieved high
performance in the accuracy and fluency of the
summaires, boosting ROUGE scores with fine-
tuned and pre-training strategies. The diversity of
summaries is also an essential part of summaries,
so this paper aims at improving the diversity of the
abstractive summaries while keeping the quality
high.

3 Proposed Model

3.1 The CVAE framework

Inspired by the CVAE framework proposed by
Sohn et al. (2015), we model the underlying
semantics of the article-summary pairs explicitly.
The model represents the dyadic conversation
among the following three variables: the input
source article x, the generated summary y, and
a continuous latent variable z we assume to follow
multivariate Gaussian distribution with diagonal
covariance matrix from the semantic space. Our
goal is to maximize the conditional likelihood that
can evolve to:

p(51x) = [ ply,zixda = [ plyla. x)plaix)dz
z z

We denote the prior network as pg(z|x) that

approximates the prior distribution p(z|x) and the

recognition network ¢4 (z|x,y) that approximates

the true posterior distribution ¢(z|x,y). The

decoder py(y|z, x) that shares parameters with the



encoder approximates the generative distribution
p(y|z,x). As is presented by Sohn et al. (2015),
the evidence lower bound ELBO is formulated as:

log p(y|x) > Lo = —LK1 + LREC
= —KL (q4(z|x,y)llpo(2[x))
+ Eq¢(z|x,y) []ngg(}"X, Z)]

where L, represents the Kullback-Leibler (KL)
divergence between the recognition network and
the prior network, and Lrgc represents the
reconstruction error of sampling z from recognition
network (Kingma and Welling, 2014).

Since we assume that z follows a multivariate
Gaussian distribution with diagonal covariance
structure, the recognition network ¢4(z|x,y) ~
N (u,0%I) and the prior network py(z|x) ~
N (&, 0"T). Then we use the reparametrization
trick (Kingma and Welling, 2014) to get sample
z either from the recognition network or the prior
network. In the training process, we obtain z from
N (z;u,021); in the testing process, we obtain
z from N (z; 4/, 0"*I). Given z and the source
input x, the decoder then generates target output y
sequentially. As is proposed by Sohn et al. (2015),
by maximizing the ELBO of the conditional log
likelihood, the CVAE can be efficiently trained with
the Stochastic Gradient Variational Bayes (SGVB)
framework (Kingma and Welling, 2014).

3.2 Transformer+CVAE

Inspired by the Global Variational Transformer
proposed in Lin et al. (2020), we design
a transformer-based CVAE model with latent
variable z serving as a global semantic signal in a
similar fashion. The architecture of our model is
demonstrated in Figure 1. The source encoder and
target encoder are both Transformer encoder, and
the Transformer decoder shares parameters with
the source encoder via cross-attention mechanism.
We introduce the prior network and the recognition
network, which are multilayer perceptrons (MLPs),
to get mean and log variance of the Gaussian
distribution of z (Zhou and Wang, 2018). To
guarantee that the prior network and recognition
network receive embeddings of fixed dimensions,
we apply the special classification tokens [CLS]
as their inputs. We hypothesize that the self-
attentive representation of [CLS] token helps
obtain long-range contextual information because
it contains BERT’s understanding of the sentence-
level meaning (Devlin et al., 2019).

RNN-based CVAE framework generally incor-
porates the latent variable to the initial state of the
recurrent decoder. Our transformer-based CVAE
model can easily fuse latent representations into the
starting-of-sequence ([SOS]) as the starting point
of text generation. Instead of directly adding z
to the [SOS] token as is proposed by Lin et al.
(2020), we incorporate z into the [SOS] token of
the decoder inputs via the Gating mechanism. With
the gated unit, we can tune the weights of the
latent variable z in the [SOS] token. We denote
the embedding vector of the [SOS] token as s. W
is defined as the parameter matrix of the linear layer
taking s as the input. The formula of the gated unit
we designed is as follows:

h = os(Wss)
s=h®s+(1—h)Oz

where o is a sigmoid function and © represents
the Hadamard product. Then the resulting s token
is attached to the target sequence, which is passed
to the decoder along with the outputs of the source
encoder.

3.3 Learning

Vanishing latent variable problem is a common
issue in RNN-based CVAE (Bowman et al., 2016),
but there are also chances that the decoder in
our model pays less attention to the integrated
[SOS] token. Following the suggestions from
Bowman et al., we apply KL annealing method and
early-stopping strategy to alleviate such problem
following Zhou and Wang (2018). We also adopt
the bag-of-word loss proposed by Zhao et al.
(2017), which proved to be complementary to
the KL annealing method and very effective in
mitigating vanishing latent variables.

Therefore, our regularized ELBO learning
objective along with the auxiliary loss is formulated
as follows:

L = LELBo + Lbow
where,
Lpow = Eq¢(z|x,y) [Inge (Ybow|za X)]

Suppose f = MLPyy,,(z,y) € RIVI where |V| is
the vocabulary size. Then

lyl efYt

log p (Ybow|z,x) = log H =V
i—1 j efj

where |y| is the length of y and y; is the word
index of the ¢th word in y (Zhao et al., 2017).



Model | Dist-1 | Dist-2 | Dist-3 | sBL-2* | sBL-3"
Transformer 0.2383 | 0.6919 | 0.8633 | 0.5380 | 0.3185

CVAE (ours) 0.2049 | 0.7036 | 0.9042 | 0.5597 | 0.3035
Transformer+CVAE (ours) | 0.2718 | 0.7601 | 0.8954 | 0.4519 | 0.2507
reference summaries ‘ 0.2971 | 0.8305 | 0.9552 | 0.4265 | 0.2372

Table 1: Abstractive summarization results in diversity metrics. The metric with * means that the lower score, the

better performance. This notation applies to the following tables. sBL represents self-BLEU.

Model | RG-1 | RG-2 | RG-L | BERTSc | tBL-2 | tBL-3
ABS+ (Rush et al., 2015) 29.76 | 11.88 | 26.96 - - -
RAS-LSTM (Chopra et al., 2016) | 31.71 | 13.63 | 29.31 - - -
Transformer 28.82 | 11.54 | 26.57 87.63 0.5069 | 0.2971
CVAE (ours) 18.06 | 5.69 | 17.18 85.94 0.4912 | 0.2561
Transformer+CVAE (ours) 31.36 | 14.16 | 29.35 89.23 0.5272 | 0.3120

Table 2: Abstractive summarization results in quality metrics. tBL represents test-BLEU.

Dataset Gigaword
Training pairs 3803957
Validation pairs 189651
Testing pairs 1951
Vocabulary size 124413

Table 3: Dataset statistics

4 Experiments

4.1 Data Settings

To evaluate the effectiveness of our proposed
methods, we experimented on the Annotated
English Gigaword dataset (Napoles et al., 2012).
It consists of article-summary pairs which are
the first sentence of the original articles paired
with corresponding the titles. We follow the pre-
processing steps in Rush et al. (2015). All digits in
the pre-processed dataset are replaced with “#” and
all word tokens appearing in less than 5 times are
marked as “UNK”. The details of the data is shown
in Table 3.

4.2 Baselines

We compare the our proposed models with the
following state-of-the-art models.

Transformer. The transformer we implemented
is trained on the default model parameters proposed
in (Vaswani et al., 2017).

ABS+. ABS+ (Rush et al., 2015) is an improved
version of Attention-based Summarization which

utilizes an attention-based encoder and a feed-
forward neural network language model (NNLM).

RAS-LSTM. RAS-LSTM (Recurrent Attentive
Summarizer) is proposed by Chopra et al.,
utilizing a conditional RNN for single-sentence
summarization (Chopra et al., 2016). It adopts
the attentive recurrent architecture, combining
a convolutional attention-based encoder and an
LSTM recurrent decoder. The model is easily
trained on large datasets in an end-to-end fashion.

CVAE. The structure of our CVAE model is an
RNN-based conditional variational autoencoder
initially intended for dialogue response generation.
It is proposed by Zhou and Wang (2018), who used
several tricks to prevent the CVAE model from
deteriorating to a plain Seq2Seq model by applying
KL annealing, early stopping and bag-of-words
loss.

4.3 Training Details

We implement the experiment with the Pytorch
framework on an NIVIDIA 1080Ti GPU. We
set the maximum number of words in an article
or summary to 1000. To initialize the input
embeddings of the source encoder, target encoder,
and decoder, we apply the 300-dimensional pre-
trained GloVe embeddings (Pennington et al.,
2014). The encoder and decoder are both
composed of a stack of 4 sub-layers of transformer
heads with hidden dimension h 300. The
dimension of the latent variable is fixed to 300. The
prior network and recognition network comprise



Model | Dist-1 | Dist-2 | Dist-3 | sBL-2* | sBL-3"
Transformer+CVAE (w/ pre-train) 0.2718 | 0.7601 | 0.8954 | 0.4519 | 0.2507
Transformer+CVAE (w/o pre-train) 0.2607 | 0.7877 | 0.9606 | 0.7886 | 0.5526

Transformer+CVAE (w/ pre-train & w/o Gate) | 0.2484 | 0.8103 | 0.9714 | 0.4756 | 0.2405

reference summaries

| 0.2971 | 0.8305 | 0.9552 [ 0.4265 | 0.2372

Table 4: Selected abstractive summarization results for ablation study in diversity metrics.

Model | RG-1 | RG-2 | RG-L | BERTSc | tBL-2 | tBL-3
Transformer+CVAE (w/ pre-train) 31.36 | 14.16 | 29.35 89.23 0.5272 | 0.3120
Transformer+CVAE (w/o pre-train) 27.2 | 10.70 | 25.34 82.06 0.4271 | 0.2864
Transformer+CVAE (w/ pre-train & w/o Gate) | 24.21 | 8.75 | 22.54 86.76 0.4840 | 0.2568

Table 5: Selected abstractive summarization results for ablation study in quality metrics.

of 3-layer MLPs with hidden dimension 512 (Lin
et al., 2020). As we only use the first sentence of
the source and the target, the vocabulary size is
124413. We set the batch size to 128 for the base
transformer, CVAE, and Transformer+CVAE, and
we shuffle the training data randomly at each epoch.
KL annealing, early stopping methods (Bowman
et al., 2016), and auxiliary loss (Zhao et al., 2017)
are applied in the training process. We use the
Adam optimizer (Kingma and Ba, 2014) with initial
learning rate 2 x 10~%. In order to avoid over-
fitting, we set the dropout rate for each encoder and
decoder layer to be 0.1. We adopt greedy decoding
for testing (K = 1) and the beam size is set to 5.

4.4 Evaluation Metrics

4.4.1 Diversity Metrics

Distinct-N. Distinct-N, proposed by Li et al.
(2016), is calculated by the number of distinct n-
grams divided by the total number of n-grams in
all the generated summaries. We apply this metric
for unigrams, bigrams, and trigrams (denoted Dist-
1, Dist-2, Dist-3) to measure the diversity of
generation.

self-BLEU. self-BLEU (Zhu et al., 2018a)
measures the variety of the generated text. It
measures the diversity of a generated sentence
based on other generated sentences. Then by taking
the average of the BLEU scores of all generated
sentences, we get the self-BLEU metric. Note that
in contrast to test-BLEU, lower self-BLEU score
shows higher diversity. We employ self-BLEU-2
(bigram), self-BLEU-3 (trigram) as our metrics.

4.4.2 Quality Metrics

We evaluate the quality of our generated summaries
based on informativeness, fluency and the
contextual similarity to the reference (Aralikatte
et al., 2021).

ROUGE score. ROUGE score (Lin, 2004)
calculates the amount of overlapping content as n-
grams between the generated text and the reference.
To evaluate the lexical overlap between our test
results and the reference, we report ROUGE-1
and ROUGE-2 for informativeness evaluation and
ROUGE-L for fluency evaluation.

BERTScore. BERTScore (Devlin et al., 2019)
computes the the sum of cosine similarities
between the hypothesis and reference text in token-
level. We use BERTScore as the metric to evaluate
semantic similarity between our test results and the
reference.

test-BLEU. We use fest-BLEU (Zhu et al.,
2018b) to calculate the similarity between the
generated summaries and the reference. The
score is within the range [0, 1], and the higher
score means better alignment with the real data.
We employ test-BLEU-2 (bigram), test-BLEU-3
(trigram) as our metrics.

5 Results

5.1 Diversity Evaluation

The result of diversity evaluation is shown
in Table 1. Our proposed model, the
Transformer+CVAE with pre-training, ranks the
highest in Dist-1 and Dist-2 metrics, exhibiting a
greater number of distinct unigrams and bigrams



in the generated summaries. The CVAE seq-
to-seq model implemented by us achieves the
highest score in Dist-3, reflecting that the CVAE
framework efficiently captures semantic variations
in the latent space. The Transformer+CVAE model
scores the lowest in both self-BLEU-2 and self-
BLEU-3, and is close to the reference summaries,
which shows stronger diversity in sentence level.
One of the reasons why the base Transformer
obtains low diversity score is its deterministic
nature; and the CVAE RNN-based model is less
robust when facing the vanishing latent variable
problem, scoring relatively poorer in most diversity
metrics. Overall, our proposed model performs the
best in boosting diversity in summaries.

5.2 Quality Evaluation

The quality evaluation result is shown in Table 2.
Our goal is to maintain good summarization
quality when adding diversity to the sentences,
and our Transformer+CVAE model achieves great
performance in the quality metrics. Comparing to
the seq-to-seq state-of-the-art generation models
such as ABS+ and RAS-LSTM, our model
outperforms both of them in ROUGE-2 and
ROUGE-L, presenting higher informativeness
and fluency. Our model also defeats the
base Transformer model in all ROUGE metrics,
showing the ability of CVAE framework to extract
core information apart from collecting semantic
variations. Our model obtains the highest score
in BERTScore and test-BLEUs, exibiting greater
similarities to the reference summaries. So
our model combines the advantage of attention
mechanism and the latent distribution. The CVAE
seq-to-seq model ranks the lowest in quality tests,
indicating that RNN-based CVAE is less effective
in aligning article-summary pairs than transformer-
based CVAE. In addition, our model is more
efficient in training compared to RNN-based CVAE
models.

5.3 Ablation Study

We examines the effect of pre-training and gating
mechanism on the diversity and quality of our
Transformer+CVAE model. The comparisons are
shown in Table 4 and Table 5,respectively.

5.3.1 The Effect of Pre-training

We pre-trained our Transformer+CVAE model
with the base Transformer to make it more
robust. Compared with the model without pre-

training, our model scores higher in Dist-1 and
self-BLEUs, but scores lower in Dist-2 and Dist-
3. Except for the self-BLEUs, both models
show similar performance in diversity metrics. In
terms of quality, it is manifest that our model
is more powerful than the counterpart without
pre-training, ranking the highest in all quality
metrics. Therefore, we conclude that pre-training
substantially enhances the quality of our generated
summaries, but it is not certain whether pre-training
affects the extraction of latent meanings to a
notable degree.

5.3.2 The Effect of Gating Mechanism

To investigate whether the gated unit we designed
is beneficial to achieving our goal, we built
another model (with pre-training) where the latent
variable z is directly added to the [SOS] token
instead of entering the gated unit. The counterpart
without gated unit outperforms our model in
Dist-2, Dist-3 and self-BLEU-3, while the latter
defeats the former in the remaining diversity
metrics. Therefore, there is no substantive evidence
that the gating mechanism improves diversity.
However, the counterpart without gated unit
performs the poorest in ROUGE scores, exposing
no enhancement in quality. In conclusion, though
exhibiting similar diversity level, our model with
gated unit steadily maintains the quality of the
generated summaries.

5.4 Case Study

In Table 6, we show some cases of abstractive
summaries. First, we observe that the Transformer
tends to generate relevant but plain summaries. For
example, in Summary 1, the Transformer extracts
the core information of the article, but the generated
words only come from the article. It is a common
problem with the abstractive summaries produced
by the Transformer. Second, we discover that
the RNN-based CVAE might fail to capture the
essential imformation in the article. For example,
in Summary 2, obviously the summary focuses on
US stocks, but the highlight is the slight recovery
of Wall Street. Similar problem with the RNN-
based CVAE can be found in Summary 4, where
the important subject in the summary is marked
“UNK?”. Last but not least, our Transformer+CVAE
model not only captures the core meaning of the
article, but it also generates diversified summaries.
For example, in Summary 2, our model generates a
new phrase “eke out”, which does not appear in the



Article 1
federation -Irb- fia -rrb- .

japan ’s toyota team europe were banned from the world rally championship for one year
here on friday in a crushing ruling by the world council of the international automobile

Summary 1

Transformer: toyota banned from world rally for year

CVAE: top seed banned from world cup

Transformer+CVAE: toyota banned from world championship for a crushing defeat
Reference: toyota are banned for a year

Article 2
news .

us shares managed modest gains in morning trade thursday as investors looked for bargains
after a punishing three-day market selloff and shook off more bleak economic and corporate

Summary 2

Transformer: wall street gains on bargain-hunting

CVAE: us stocks rally against dow gains #.## percent
Transformer+CVAE: wall street ekes out gains after selloff weak economy
Reference: wall street struggles higher after three-day rout

Article 3

russian president vladimir putin returned sunday a long-lost icon of our lady of vladimir to
russia ’s orthodox patriarch alexy ii ahead of the easter service in moscow , vowing to bring
back other relics lost in the soviet times .

Summary 3
start

Transformer: putin returns to russia ’s orthodox patriarch
CVAE: russian president returns from moscow to orthodox church
Transformer+CVAE: putin returns to ex-soviet republics lay hold soviet monument to mark

Reference: putin hands long-lost icon to orthodox patriarch pledges to return more

Article 4

led by a lone ivory coast army pickup truck , french and west african military convoys set
off in jeeps and armored vehicles friday on a mission to secure the lawless west after civil war .

Summary 4

Transformer: ivory coast army sets off for west african military convoy

CVAE: UNK military convoy sent to west coast

Transformer+CVAE: ivory coast army peacekeepers head for west african convoy
Reference: french-led troops set off to secure ivory coast ’s law

Table 6: Case study of the abstractive summarization.

article but means the same thing as “win something
with efforts”. Similar examples are in Summary
1, where “defeat” substitutes “ruling by”, and in
Summary 4, the word “peacekeepers” modify the
“african military army”.

6 Conclusion

This paper proposes the Transformer+CVAE
model, which integrates the CVAE frame-
work into the Transformer by introducing
the prior/recognition networks that bridges the
Transformer encoder and decoder. We utilize the
latent variables generated in the global receptive
field of the transformer by fusing them to the
starting-of-sequence ([SOS]) of the decoder inputs.
To better tune the weights of the latent variables in
the sequence, we designed a gated unit to blend the
latent representation and the [SOS] token. Our
goal is to generate abstractive summaries with

greater diversity and keep high quality. To evaluate
the effectiveness of the Transformer+CVAE we
proposed, we conduct evaluation in diversity
and quality. The results show that our model
outperforms the base Transformer and RNN-based
CVAE in diversity metrics. In the meantime,
our model achieves high quality scores compared
to state-of-the-art seq-to-seq models, the base
Transformer and the RNN-based CVAE. To make
our result more robust, we examined the effect
of pre-training and gating mechanism on our
model and concluded that both pre-training the
gating mechanism enhances the quality, while
giving support to generating diverse results. In
the future, we will try to incorporate the latent
variables sequentially into the internal structure
of the Transformer decoder, and compare the
effectiveness of the sequential model and the global
model.
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