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Abstract

Predicting video popularity is often framed as001
a supervised learning task, relying heavily on002
meta-information and aggregated engagement003
data. However, video popularity is shaped by004
complex cultural and social factors that such ap-005
proaches often overlook. We argue that Large006
Language Models (LLMs), with their deep con-007
textual awareness, can better capture these nu-008
ances. To bridge the gap between pixel-based009
video data and token-based LLMs, we con-010
vert frame-level visuals into sequential text011
representations using Vision-Language Mod-012
els. This enables LLMs to process multimodal013
content—titles, frame-based descriptions, and014
captions—capturing both engagement intensity015
(view count) and geographic spread (number016
of countries where a video trends). On 13,639017
popular videos, a supervised neural network018
using content embeddings achieves 80% accu-019
racy, while our LLM-based approach reaches020
82% without fine-tuning. Combining the neu-021
ral network’s predictions with the LLM further022
improves accuracy to 85.5%. Moreover, the023
LLM generates interpretable, theory-grounded024
explanations for its predictions. Manual valida-025
tions confirm the quality of these hypotheses026
and address concerns about hallucinations in027
the video-to-text conversion process. Overall,028
our findings suggest that LLMs, equipped with029
text-based multimodal representations, offer a030
powerful, interpretable, and data-efficient solu-031
tion for tasks requiring rich contextual insight,032
such as video popularity prediction.033

1 Introduction034

Video consumption now accounts for the majority035

of internet traffic and continues to grow rapidly,036

making video popularity prediction an important037

task for content creators, social media platforms,038

and advertisers (Cisco, 2021). Beyond its com-039

mercial importance, accurately identifying which040

videos will become popular offers insights for041

researchers studying information diffusion (Park042

et al., 2017; Rezvanian et al., 2023), social influ- 043

ence (Park et al., 2016; Lin et al., 2023b), cultural 044

dynamics (Park et al., 2017; Haldar et al., 2023), 045

and misuse in online networks (Beni et al., 2023). 046

Despite its significance, video popularity predic- 047

tion remains challenging due to factors such as 048

historical context (Ng and Taneja, 2023), cultural 049

trends (Park et al., 2017), and emotional engage- 050

ment (Guadagno et al., 2013; Park et al., 2016), 051

compounded by the enormous diversity of online 052

video content. 053

Despite the growing interest in this area, most 054

research has used statistical or supervised learning 055

approaches centered on meta-information and ag- 056

gregated engagement metrics (e.g., uploader reputa- 057

tion, view/comment/like counts, external social net- 058

work size) (Zhou et al., 2010; Shamma et al., 2011; 059

Borghol et al., 2012; Park et al., 2016). While these 060

signals are valuable, they generally reflect early 061

user reactions rather than the deeper contextual and 062

cultural nuances of the video content. These intrin- 063

sic qualities of video content may play a critical 064

role in how a video resonates with both local and 065

global audiences. However, traditional approaches 066

struggle to process and leverage such rich informa- 067

tion due to limited capacity in processing complex 068

multimodal data. 069

In this paper, we propose a novel approach to 070

video popularity prediction that shifts the focus to 071

the intrinsic qualities of a video’s textual, verbal, 072

and visual content, excluding after-the-fact user 073

engagement data such as early view counts and 074

social network signals. Our method leverages the 075

power of Vision-Language Models (VLMs) and 076

Large Language Models (LLMs) to extract and 077

interpret these intrinsic qualities, complemented 078

by conventional descriptors such as titles and de- 079

scriptions. More specifically, to address the chal- 080

lenge of integrating pixel-based video data with the 081

token-based architecture of LLMs, we use VLMs 082

to transform frame-level visual data into sequential 083
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textual representations. These representations are084

then combined with conventional video descriptors085

such as titles, descriptions, and captions (extracted086

from the video’s audio) to create a comprehensive087

multimodal textual representation. This transforma-088

tion allows LLMs to perform the video popularity089

prediction task, effectively capturing both vertical090

(e.g., view counts) and horizontal (e.g., geographic091

spread) aspects through its contextual understand-092

ing of textual content.093

Empirically, we introduce a novel prompting094

strategy that integrates supervised learning sig-095

nals into LLM-based predictions, outperforming096

deep learning models based on content embeddings097

and yielding interpretable, attribute-based explana-098

tions. Additionally, we present the Global Popu-099

lar Video Dataset (GPVD), a large-scale dataset of100

1.3M unique popular YouTube videos, enriched101

with titles, descriptions, and detailed metadata.102

This dataset uniquely includes three key popu-103

larity metrics—view counts, number of countries104

where a video trended, and number of days spent105

in trending—spanning 109 countries. The latter106

two metrics, which reflect the video’s global reach107

and sustained popularity, have been overlooked in108

prior research but are crucial for a comprehensive109

understanding of video virality. Our experiments110

use a balanced subset covering different popularity111

classes, varying engagement intensity and global112

reach, as detailed in the Methods section. Further-113

more, we address concerns related to hallucinations114

in video-to-text conversion and validate the qual-115

ity of attribute-based explanations through survey116

experiments.117

The key contributions of this paper are as fol-118

lows:119

• We formulate a video popularity prediction120

task that considers both engagement inten-121

sity (e.g., view counts) and geographic spread122

(e.g., the number of countries where the123

video trends), addressing the limitation of124

prior research that primarily focuses on one-125

dimensional metrics. This nuanced formula-126

tion can enable a more comprehensive under-127

standing of video success.128

• We introduce the GPVD, a large-scale dataset129

of 1.3M representative YouTube videos from130

109 countries, supplemented with metadata131

such as titles, descriptions, and detailed pop-132

ularity metrics. This dataset can facilitate133

research on multimodal video analysis and134

cross-cultural trends, bridging gaps in exist- 135

ing datasets. 136

• We develop an LLM-based prediction frame- 137

work leveraging a VLM-LLM pipeline that 138

transforms multimodal video content into tex- 139

tual representations, addressing modality gaps 140

and enabling unified reasoning over visual and 141

textual data. 142

• We systematically explore and evaluate vari- 143

ous prompting strategies, including hypothe- 144

sis generation, KNN-based example retrieval, 145

and the innovative integration of supervised 146

signals. These experiments provide insights 147

into the relative performance of different 148

strategies and their impact on prediction accu- 149

racy and interpretability. 150

• We conduct rigorous human evaluations to val- 151

idate the accuracy of visual-to-text transforma- 152

tions and assess the quality and interpretability 153

of the generated explanations. These evalu- 154

ations confirm the robustness of the pipeline 155

and the reliability of the predictions. 156

2 Related Work 157

Video Popularity Prediction Video popularity 158

prediction has traditionally been approached as a 159

supervised learning task, often aimed at estimating 160

view counts using features such as title length, run- 161

time, and early user engagement metrics (e.g., com- 162

ments and likes) (Zhou et al., 2010; West, 2011; 163

Borghol et al., 2012; Wang et al., 2012). Later 164

work introduced time-series analysis and user be- 165

havior modeling to track changes in popularity over 166

time (Broxton et al., 2013; Pinto et al., 2013; Val- 167

let et al., 2015; Park et al., 2016; Jog et al., 2021). 168

However, these methods mostly rely on aggregated 169

platform metrics and struggle to capture the cultural 170

and social dynamics that can significantly influence 171

a video’s success. 172

Further, the majority of these studies treat popu- 173

larity as a single-dimensional concept, typically fo- 174

cusing on view counts. Yet a video may accumulate 175

high views in a limited region without achieving 176

broader international reach. For instance, as Park 177

et al. (2017) illustrate that region-specific cultural 178

preferences can inflate view counts locally with- 179

out translating into global appeal. To address this 180

gap, we expand the notion of popularity to include 181

geographic spread (global vs. local reach) along- 182

side engagement intensity (view counts). We argue 183
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that Large Language Models (LLMs), equipped184

with extensive contextual knowledge, are uniquely185

poised to capture these subtleties in a way that ear-186

lier approaches—tied to simpler, often unimodal187

features—could not.188

Multimodal Learning and Modality Gaps In-189

corporating multimodal data, particularly for video190

understanding tasks, has long been challenging191

due to the modality gap between pixel-based im-192

agery and token-based language models. Exist-193

ing systems often adopt modular pipelines that194

use pre-trained visual encoders (e.g., ViT) for im-195

ages and language models (e.g., BERT) for text,196

then concatenate their embeddings (Zeng et al.,197

2022; Alayrac et al., 2022; Li et al., 2023a,b; Lu198

et al., 2022). Although these methods capture some199

visual-linguistic interactions, they may overlook200

crucial temporal and contextual information (Chen201

et al., 2023b; Qin et al., 2023).202

Recent advancements have leveraged VLMs to203

transform video frames into textual representations,204

enabling LLMs to reason over multimodal con-205

tent (Bhattacharyya et al., 2023; Khandelwal et al.,206

2024; Chen et al., 2023a). These approaches uti-207

lize pre-trained models and modular pipelines to208

generate textual summaries of videos, which are209

then employed for tasks such as classification and210

user behavior modeling. Collectively, they demon-211

strate the effectiveness of integrating VLMs with212

LLMs for video understanding tasks, emphasiz-213

ing the role of textual intermediaries to bridge the214

modality gap.215

Building on these innovations, our approach in-216

troduces a frame-to-text transformation pipeline217

that converts video frames into sequential textual218

descriptions via VLMs. This enables LLMs to pro-219

cess visual data as richly contextualized text, facil-220

itating unified reasoning across modalities. Com-221

pared to modular architectures that merely con-222

catenate embeddings, our method achieves deeper223

integration of multimodal data, capturing nuanced224

information from visual and textual content. More-225

over, our work extends this pipeline to an end pre-226

diction task using systematic prompt engineering,227

enabling comparisons across prompting techniques228

and offering insights into performance improve-229

ments.230

Natural Language Explanation and Prompt En-231

gineering Generating explanations alongside pre-232

dictions has been shown to enhance both model233

understanding and performance in complex tasks.234

Techniques like Chain-of-Thought prompting (Wei 235

et al., 2022) and self-consistency sampling (Wang 236

et al., 2022) have demonstrated how reasoning 237

chains can improve accuracy while maintaining 238

interpretability. Two-stage approaches, such as hy- 239

pothesis generation followed by task solving (Wang 240

et al., 2023), highlight the value of explanations 241

in boosting performance, though they often add 242

complexity to the prediction pipeline. 243

Building on Hanu et al. (2023), who demon- 244

strated the effectiveness of textual descriptions for 245

multimodal classification, we integrate hypothe- 246

sis generation directly into the prediction process, 247

streamlining the two-stage approach into an effi- 248

cient one-step process. This approach not only re- 249

duces computational overhead but also allows the 250

model to generate explanations alongside predic- 251

tions, enhancing both usability and interpretability. 252

Additionally, by incorporating supervised learning 253

outputs as additional signals within the prompt, we 254

further improve performance, enabling the model 255

to combine external insights with its internal rea- 256

soning. This integration bridges the gap between 257

data-driven learning and explainable AI, provid- 258

ing a unified framework for interpretable and high- 259

performing predictions. 260

3 Methods 261

Our method predicts video popularity by convert- 262

ing key frames into textual descriptions and inte- 263

grating them with video metadata for LLM-based 264

inference. Figure 1 illustrates two main stages, fol- 265

lowing the task definition and dataset description: 266

1. Transforming Video Content (§3.2): Gener- 267

ate textual summaries from sampled frames 268

using VideoLLava (Lin et al., 2023a) and align 269

them with time-synced captions, titles, and de- 270

scriptions. 271

2. Popularity Prediction (§3.3): Use structured 272

prompting in an LLM, combining context, rea- 273

soning, and transfer sets with supervised sig- 274

nals, few-shot, and near-example guidance. 275

The subsections below detail the task formula- 276

tion, data collection, video-to-text transformations, 277

and how we predict local-hit vs. global-big-hit cat- 278

egories. 279

3.1 Task Definition and Dataset 280

We redefine the video popularity prediction task by 281

introducing two dimensions: 282
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Preprocessing Video to Text
Examples Classification Popularity

4

1

Video

Figure 1: A training-free framework for video popularity prediction utilizing modality-aligned VLMs and LLMs.
The left shows the video preprocessing and content aggregation stages, where video content is transformed into
sequential text representations through VLMs. This transformation generates Video as Text summaries, combining
visual and textual information. The right illustrates the classification and prediction stages, where the LLM
processes the Video as Text summaries to predict a popularity score and provides an explanation based on the
identified patterns.

• Engagement Intensity: The total view count,283

reflecting audience size and engagement.284

• Geographic Spread: The number of coun-285

tries where the video appears on trending lists,286

capturing global reach.287

Formally, given a video v with multimodal fea-288

tures (frames, audio, captions), the goal is to pre-289

dict p(v) ∈ [0, 1] indicating the likelihood of being290

classified as either a ‘local hit’ or a ‘global big hit.’291

To support this, we introduce the Global Popular292

Video Dataset (GPVD), which includes the top 50293

daily trending YouTube videos across 109 countries294

over 589 days (February 13, 2021, to March 17,295

2023). The dataset contains approximately 5,450296

observations per day, totaling 3,210,050 observa-297

tions (1,302,698 unique videos), each with video298

IDs, trending countries, metadata, and popularity299

metrics (e.g., views, likes, dislikes).1 Given that the300

majority of videos neither go viral nor achieve sig-301

nificant consumption levels, gathering a representa-302

tive sample of globally popular videos is inherently303

challenging and valuable. Unlike prior studies with304

shorter collection periods (1-5 months) (Park et al.,305

2017; Ng and Taneja, 2023), our dataset spans over306

two years with broader geographic coverage. This307

enables both short-term trend analysis and long-308

term cross-cultural comparisons.309

Videos are classified into 16 groups via 4 × 4310

quantiles of Engagement Intensity and Geographic311

Spread. Our experiments focus on two extreme312

classes, namely ‘global big hit’ (top 25% in both313

1We will release the dataset, including video IDs, meta-
data, and Python code for video downloading, in a publicly
accessible repository upon the paper’s acceptance, ensuring
reproducibility and support for future research.

dimensions) and ‘local hit’ (bottom 25% in both di- 314

mensions). We randomly select a balanced sample 315

of 6,279 local-hit and 7,360 global-big-hit videos 316

to evaluate our framework. 317

3.2 Transforming Video Content into Text 318

Our pipeline converts raw video content into coher- 319

ent textual narratives: 320

1. Frame Extraction: Sample frames from the 321

video at uniform intervals (10 frames per 322

minute), V = {f1, f2, ..., fM}, to capture vi- 323

sual highlights. 324

2. Frames to Text Conversion: Apply Vide- 325

oLLava (Lin et al., 2023a) to each frame (or 326

frame window), generating descriptive text 327

SVideoLLava(V) = {S1, S2, . . . , SS}, where 328

each Si is a textual description generated 329

from a window of frames around fi (Si = 330

VideoLLava(fW
i )). 331

3. Caption Alignment: Combine the generated 332

frame-level summaries with time-synced cap- 333

tions, C = {C1, C2, . . . , CC}, aligning vi- 334

sual and audio cues for richer context. 335

4. Summarization: An LLM (ΦLLM) ingests the 336

combined text I alongside T (title) and D 337

(description), producing a concise final sum- 338

mary F . This step ensures the text is polished, 339

removing redundancies while maintaining nar- 340

rative consistency. 341

This process consolidates disparate video ele- 342

ments (visual, textual, and spoken) into a cohesive 343

textual narrative, facilitating effective LLM-based 344
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inference. Below is an excerpt of the prompt used345

for summarization:346

You’re an expert in YouTube videos with extensive347
experience in analyzing video content and trends.348
...349
<output>350
<scratchpad>351
Step 1: Identify key elements -... Step 2: Analyze352
Segment Transitions - ...353
...354
</scratchpad>355
<complete_summary>356
<segment_summaries>357
<introduction> Provide an overview of the video’s358
theme and initial setting. </introduction>359
...360
</segment_summaries>361
</output>362

3.3 Popularity Prediction through Prompting363

We employ a structured prompting strategy in three364

categories, progressively introducing reasoning365

steps, few-shot learning, near examples, hypoth-366

esis generation, and supervised signals:367

1. Context Set: Establishes the task objective by368

specifying instructions, task definitions, and369

output format.370

2. Reasoning Set: Encourages intermediate rea-371

soning through prompts like “think before372

evaluating” and “hypothesis generation,” en-373

hancing the model’s ability to process com-374

plex information and provide explanations for375

its prediction.376

3. Transfer Set: Refines predictions using exter-377

nal knowledge via techniques such as few-378

shot learning and near-example selection.379

Also incorporates signals from a supervised380

learning output.381

3.3.1 Sequential Prompting Approach382

We frame the task as a four-class classification383

(c ∈ {1, 2, 3, 4}) representing increasing popu-384

larity, then aggregate classes {1, 2} (local hits)385

vs. {3, 4} (global big hits). This yields more ro-386

bust boundaries and calibration than a strict binary387

setup.2 The input consists of integrated summaries,388

2During experiments, we observed that the LLM set a very
high threshold for the Global ‘Big’ Hit class, resulting in a
noticeable bias towards the Local Hit class. Introducing buffer
classes (1 and 2 for local hits and 3 and 4 for global hits)
addressed this issue by (1) allowing the model to express un-
certainty through intermediate predictions, avoiding forced
binary decisions; (2) creating a more granular classification
system that better reflects real-world ambiguities between ex-
treme categories; (3) enabling better-calibrated confidence
levels by incorporating buffer zones between classes; and (4)
establishing a smoother decision boundary between extremes,
reducing the potential for overly rigid classifications. This

titles, and descriptions, denoted as F(I, T,D). 389

Prompts were added sequentially to refine perfor- 390

mance, as described below: 391

Vanilla LLM Prompt (Context Set) A baseline 392

prompt Pvanilla included instructions, the task defi- 393

nition, and the required output format: 394

Pvanilla = Pinstructions + Ptask + Poutput 395

Thinking (Context + Reasoning Set) We added 396

Pthink, a Chain-of-Thought (Wei et al., 2022) com- 397

ponent that encourages explicit intermediate rea- 398

soning, improving the LLM’s ability to interpret 399

information within video content. 400

Few-shot Learning (Context + Reasoning + Trans- 401

fer Set) Few-shot learning (Brown et al., 2020) 402

was then introduced by providing labeled exam- 403

ples E = {(Ti,F(Ii, Ti, Di), yi)}Ni=1, where yi ∈ 404

{1, 2, 3, 4} denotes the popularity class. This en- 405

abled the model to generalize from analogous ex- 406

amples. 407

Near Examples (Context + Reasoning + Transfer Set) 408

We then incorporated semantically similar k ex- 409

amples, Enear, selected based on cosine similar- 410

ity between title embeddings generated using the 411

MPNet encoder (Song et al., 2020). These ex- 412

amples, Enear ⊆ E , were added to the prompt: 413

Pnear = Pvanilla +
∑

(Ti,F(Ii,Ti,Di),yi)∈Enear where 414

Ti, F(Ii, Ti, Di), and yi represent title, full in- 415

tegrated description, and popularity, respectively. 416

This provided the LLM with relevant context to 417

enhance predictions. 418

Hypothesis Generation (Full Context + Reasoning + 419

Transfer Set) Hypothesis generation prompted the 420

LLM to create a set of hypotheses H = {hj}Mj=1 421

based on Enear, using a hypothesis generation func- 422

tion Φhypothesis, a prompt designed to produce hy- 423

potheses (see Figure A1 for the final prompt). 424

While Wang et al. (2023) adopts a two-stage 425

approach—first generating hypotheses and then 426

solving the task—for inductive reasoning tasks, 427

we streamline the process by integrating hypothe- 428

sis generation directly into the ‘thinking’ process. 429

This adjustment enables the LLM to process and 430

synthesize information more effectively, leading 431

to more accurate and interpretable predictions by 432

embedding reasoning within the task-solving step. 433

adjustment significantly enhanced prediction performance,
leading us to adopt the four-class structure in our experimen-
tation pipeline. Details of the class setup can be found in
Section A.4 of the Appendix, which includes the final prompt
used in our experiments.
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Figure 2: Comparison of accuracy for video-title-only and full-integrated-description-based predictions across
models using different prompt sets. The plot shows performance improvements with each model enhancement,
beginning with the baseline ‘Vanilla’ model and culminating in the final configuration incorporating supervised
signals. The KNN (Cover and Hart, 1967) and supervised models are included as baselines.

Supervised Signal (Final Prompt) The final en-434

hancement incorporated supervised signals from435

a baseline classifier Fclassifier, appending infor-436

mation like: “A supervised model (x% accurate)437

predicts a popularity rating of {prediction} with438

{confidence}.” This signal, though noisy, provided439

the LLM with an external estimate of the video’s440

potential popularity, thereby encouraging the LLM441

to weigh external insights as well as to consider the442

inherent uncertainty in such predictions.443

The final prompt, PFinal, was constructed444

through a straightforward concatenation:445

PFinal = Pvanilla + Pthink + Pfew-shot +446

Pnear + Phypothesis + Psupervised447

This comprehensive prompt guided the LLM to448

integrate reasoning, near examples, and supervised449

signals for informed predictions.450

4 Experiments and Results451

Implementation Details We conducted exper-452

iments using Claude Sonnet 3.5 (Anthropic AI,453

2024) for reasoning tasks and LLaMa 3 (Touvron454

et al., 2023) for zero-shot and in-context learning.455

Additional implementation details, including spe-456

cific configurations for LLaMa, are provided in457

Appendix A.3. The supervised baseline model was458

trained with the Adam optimizer (learning rate =459

0.001) and early stopping (patience = 6). Addi-460

tional details are included in Appendix A.8.461

Evaluation Metrics We used accuracy as the pri-462

mary metric, supplemented by precision and recall463

to evaluate classification quality.464

Ablation Study We conducted extensive abla- 465

tion studies to evaluate the robustness of our model. 466

Specifically, we analyzed the effects of tempera- 467

ture settings, the number of near-examples, and 468

different embedding type choices on performance. 469

Results in Appendix A.6 reveal the model’s stabil- 470

ity and performance across configurations. Further 471

experiments with Gemini 1.5 Pro, a state-of-the-art 472

Vision-Language Large Model (VLLM), demon- 473

strated consistent results, underscoring the general- 474

izability of our framework and prompting strategies 475

(see Appendix A.9). 476

4.1 Supervised Approach (Baseline) 477

The supervised baseline integrates multimodal em- 478

beddings for video features. Textual features like 479

titles (T ), descriptions (D), and captions (C) were 480

encoded using the MPNet base v2 encoder (Song 481

et al., 2020), yielding embeddings eT , eD, and eC. 482

Visual features, including video frames (V) and 483

thumbnails, were processed using CLIP (Radford 484

et al., 2021) and its video counterpart (Mendele- 485

vitch and Aguynamed, 2023), generating frame- 486

and video-level embeddings (eIi , eV). These em- 487

beddings were concatenated into a unified represen- 488

tation (v), input to a deep neural network classifier 489

for binary prediction (Fclassifier : Z → {0, 1}), 490

distinguishing ‘local hits’ from ‘global big hits.’ 491

This model provided a robust benchmark for com- 492

parison. 493

4.2 Impact of Sequential Prompts 494

We evaluated the performance of LLM-based 495

models using both title-only and full-integrated- 496
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description-based predictions. As shown in Fig-497

ure 2, incremental prompt enhancements led to498

significant accuracy gains.499

Starting with the vanilla prompt (Pvanilla), the500

model achieved 59.0% accuracy for title-only pre-501

dictions and 62.5% for integrated descriptions, in-502

dicating that the richer information provided in503

the description resulted in a noticeable improve-504

ment in accuracy. Adding thinking prompts (Pthink)505

and few-shot examples (Pfew-shot) progressively506

improved accuracy to 62.5% (title) and 66.0%507

(integrated-description). Incorporating 1-nearest-508

example and 10-nearest-example retrieval (Pnear)509

further boosted accuracy to 68.5% and 71.5% (ti-510

tle) and 71.5% and 72.0% (integrated-description),511

respectively. Hypothesis generation (Phypothesis)512

added another 6.0–10.0 percentage points, reach-513

ing 77.5% for title-based prediction and 82.0% for514

integrated-description-based. This underscores the515

value of hypothesis generation, allowing the model516

to generate and test multiple hypotheses, in enhanc-517

ing both accuracy and explainability.518

The final model, integrating supervised signals519

(Psupervised), achieved 79.0% accuracy for title-only520

predictions and 85.5% for integrated-description-521

based predictions. This marks improvements of 1.5522

and 3.5 percentage points over the previous model523

and 5.0 and 5.5 percentage points over the base-524

line supervised model. The results demonstrate525

that combining LLM reasoning, near examples,526

hypothesis generation, and supervised signals sig-527

nificantly enhances performance, outperforming528

traditional baselines and common prompting strate-529

gies like thinking and few-shot learning. Addi-530

tionally, the use of hypothesis generation provides531

attribute-based explanations, further improving the532

interpretability and transparency of the predictions.533

4.3 Manual Validations of Hallucinations and534

Hypothesis Quality535

To evaluate the video-to-text conversion process536

and the quality of the LLM-generated hypothe-537

ses, we conducted two surveys with human eval-538

uators in the US, recruited through Mechanical539

Turk (MTurk). All participants held at least a Mas-540

ter’s degree and were compensated at an hourly541

rate equivalent to USD 15 for tasks taking approx-542

imately 10–15 minutes each. The survey instruc-543

tions and questions are fully provided in Section544

A.2 of the Appendix.545

For the evaluation, we selected 5 videos from546

each popularity category (i.e., 5 local hits and 5547

global big hits; 10 videos in total), with each video 548

reviewed by 30 independent evaluators. This setup 549

resulted in a total of 300 evaluations for each task, 550

i.e., assessing (1) video-to-text conversion and (2) 551

hypothesis and analysis quality. Screening ques- 552

tions were implemented at the end of the survey 553

to ensure high-quality feedback. These questions 554

tested attention to video content, focusing on the 555

video’s title, activity, and evaluation metrics. Par- 556

ticipants answering all questions correctly were 557

classified as having “passed.” Notably, the results 558

showed consistency across both groups—those 559

who passed and those who did not—demonstrating 560

the robustness and reliability of our pipeline’s out- 561

puts. 562

4.3.1 Validation 1: Video-to-Text Conversion 563

Quality 564

Participants viewed short clips alongside model- 565

generated text and rated the text on a 1–5 scale 566

for accuracy, adherence, consistency, and align- 567

ment with the main topic. Mean scores exceeded 568

4.22 across all categories (Table 1), indicating that 569

the text was generally well-aligned with the visual 570

content and free of significant factual errors. No- 571

tably, even participants who did not pass the screen- 572

ing questions provided average ratings statistically 573

comparable to those who passed, further supporting 574

the robustness and reliability of our summarization 575

approach. 576

Metric All (N = 30) Passed (N = 12)

Accuracy 4.35± 0.30 4.32± 0.28
Adherence 4.28± 0.40 4.22± 0.10
Consistency 4.40± 0.25 4.36± 0.22
Main Topic 4.56± 0.24 4.55± 0.30

Table 1: Survey results evaluating video-to-text conver-
sion quality.

4.3.2 Validation 2: Hypothesis Quality and 577

LLM Analysis 578

The second survey measured the clarity and rel- 579

evance of hypotheses explaining each prediction, 580

along with the perceived quality of the LLM’s over- 581

all analysis (1–5 scale). Mean ratings exceeded 582

4.15 across both full samples and the “passed” sub- 583

samples (Table 2), demonstrating that annotators 584

generally regarded the model’s explanations as co- 585

herent and insightful. 586

These evaluations confirm that our video-to-text 587

pipeline produces accurate summaries with mini- 588
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Metric All (N = 30) Passed (N = 13)

Hypothesis 4.44± 0.26 4.45± 0.30
LLM Analysis 4.15± 0.25 4.24± 0.42

Table 2: Survey results on the qualities of the generated
hypothesis and LLM analysis.

mal hallucination and that the model’s hypotheses589

offer meaningful, interpretable insights into video590

popularity. Collectively, they underscore the effec-591

tiveness of our approach in both generating reliable592

content representations and delivering transparent,593

high-quality predictions.594

5 Discussion and Future Work595

The results of our experiments demonstrate the ef-596

fectiveness of our approach to video popularity pre-597

diction, where LLMs are progressively enhanced598

through structured prompting techniques. In par-599

ticular, the performance improvements—from the600

vanilla prompt to the final model incorporating601

hypothesis generation and supervised signals—602

underscore the potential of combining LLM rea-603

soning capabilities with supervised learning604

methods. Notably, hypothesis generation not only605

improved performance as a major contributor to the606

gains but also enhanced explainability—validated607

through survey experiments—making predictions608

more transparent and providing insights into factors609

driving video popularity.610

Our extensive ablation studies, presented in Sec-611

tions A.6-A.10 of the Appendix, validate the robust-612

ness of our framework across various temperature613

settings, model architectures, and video languages.614

The results highlight its ability to maintain stable615

performance under varying conditions, emphasiz-616

ing its generalizability and reliability even when617

model parameters fluctuate.618

Overall, the results indicate that our approach619

provides a highly effective solution for multimodal620

prediction tasks, surpassing traditional supervised621

models and simpler methods that rely on example-622

based guidance, such as few-shot and near exam-623

ples. Additionally, by incorporating two key di-624

mensions of popularity—engagement intensity625

and geographic spread—our framework delivers a626

more nuanced and comprehensive understanding of627

the factors driving video success, moving beyond628

the one-dimensional view count focus prevalent in629

previous research.630

Beyond video popularity prediction, the tech-631

niques developed in this study have broader impli- 632

cations and applications across various domains. 633

For instance, our VLM-to-LLM pipeline and hy- 634

pothesis generation methods could generalize to 635

social media analysis, enabling trend, sentiment, or 636

engagement prediction on multimodal platforms. 637

In healthcare, the interpretability of hypotheses 638

generated by LLMs could enhance transparency 639

in medical imaging and diagnosis, where explain- 640

able AI is critical for trust and adoption. Similarly, 641

the approach could support education by offering 642

explainable feedback for student assessments or 643

personalized content. Finally, in computational so- 644

cial science, the high-quality hypothesis generation 645

demonstrated by our framework could transform 646

theoretical exploration by offering nuanced expla- 647

nations, shifting the focus beyond simple statistical 648

coefficients to a richer understanding of sociologi- 649

cal and cultural phenomena. These broader applica- 650

tions underscore the versatility and transformative 651

potential of our approach. 652

Future research could explore several promis- 653

ing directions. Refining the hypothesis generation 654

process, particularly by incorporating advanced re- 655

inforcement learning techniques, holds potential 656

for further accuracy improvements. Specifically, 657

the LLM can act as an agent generating hypotheses 658

about video popularity factors, with each hypothe- 659

sis representing an action within the state space of 660

possible predictions. Prediction accuracy serves as 661

a reward signal, guiding the system to learn which 662

hypotheses are most effective. Additionally, im- 663

proving the model’s ability to account for cultural 664

and emotional factors could enhance predictions for 665

content like humor or emotionally resonant videos, 666

where traditional metrics (e.g., view counts) may 667

be insufficient. A deeper understanding of these 668

factors could also enable the model to better align 669

with user contexts, gauging video appeal based on 670

situational factors and intent. Further integration 671

of multimodal data, such as audio analysis or gran- 672

ular sentiment analysis of comments, could offer 673

richer insights into the drivers of video popular- 674

ity. Finally, future work could explore real-time 675

prediction capabilities and adapt this framework to 676

predict trends across platforms beyond YouTube. 677

6 Limitations 678

Although our framework demonstrates strong per- 679

formance and generalizability, several limitations 680

merit further attention: 681
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Reliance on Targeted Dimensions Our ap-682

proach effectively captures both geographic spread683

and engagement intensity, reflecting how global684

appeal and influencer-driven novelty can drive pop-685

ularity (e.g., videos featuring prominent teams or686

unique gaming challenges). However, it remains687

unclear whether the LLM consistently relies on688

these specific dimensions throughout its reasoning689

process. While hypothesis generation provides a690

transparent lens into the model’s predictions, fu-691

ture research is needed to confirm whether these692

explanations truly align with the model’s internal693

decision-making. For illustrative examples and ad-694

ditional analysis, refer to Appendix A.11.695

Cultural and Emotional Nuances The model696

struggles with content heavily influenced by cul-697

tural specificity or emotional resonance—such as698

comedic or highly local videos—where it may over-699

estimate or underestimate global appeal. This sug-700

gests that subtle factors like humor, sentiment, or701

region-specific context are not yet fully captured.702

Potential improvements include incorporating cul-703

tural embeddings or advanced sentiment analysis704

to handle these nuanced elements more effectively.705

Scope of the Dataset Although our dataset in-706

cludes popular YouTube videos at varying levels707

of success, it focuses on content that has already708

gained noticeable traction on a single platform.709

Consequently, generalizing these findings to other710

platforms or less prominent videos may be limited.711

Incorporating data from more diverse sources, in-712

cluding niche or region-specific platforms, could713

provide a fuller picture of the factors driving video714

success.715

Video-to-Text Conversion Because our method716

relies on converting frames and audio into tex-717

tual summaries, errors in this step can propagate718

through the pipeline. While manual checks indicate719

generally high-quality text with minimal halluci-720

nations, ensuring consistent performance across721

different video genres and formats may still be a722

challenge. Future work could explore additional723

multimodal consistency checks or robust alignment724

techniques to further reduce the risk of transforma-725

tion errors.726

7 Ethical Considerations727

This study was deemed exempt by the IRB at [In-728

stitution Name], as the classification tasks did not729

involve human subjects and no personally identifi- 730

able information was collected during the manual 731

validation process. Crowdworkers were recruited 732

via Amazon Mechanical Turk and compensated 733

at an average rate of $15/hour for tasks requiring 734

approximately 10–15 minutes. Participants were 735

provided with a clear description of the study’s pur- 736

pose before opting in and were free to withdraw at 737

any time. 738

The dataset used in this study consists of pub- 739

licly available data collected via the YouTube API 740

and excludes any personally identifiable informa- 741

tion. While the dataset primarily features popular 742

videos, reducing the likelihood of harmful or sensi- 743

tive content, we implemented additional safeguards 744

to further mitigate potential risks. Specifically, dur- 745

ing the manual evaluation process, we randomly 746

sampled a larger set of random videos (e.g., 100 747

videos) to screen for potentially problematic con- 748

tent, such as toxicity or inappropriate material, and 749

found no such instances in the sampled data. This 750

thorough screening ensured that annotators were 751

not exposed to harmful content and confirmed that 752

the dataset does not contain severely harmful mate- 753

rial, as anticipated. 754

To prevent misuse, we plan to share the dataset 755

under controlled access. Researchers will be re- 756

quired to agree to terms of use prohibiting mali- 757

cious activities, such as targeted harassment or or- 758

chestrated misinformation campaigns. These mea- 759

sures reflect our commitment to ethical research 760

practices and responsible data stewardship. 761
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A Appendix950

The appendix provides an in-depth exploration of our video popularity prediction framework, offering951

detailed analyses and insights to supplement the main text. Its primary objectives are to demonstrate952

the robustness of our approach, provide a comprehensive understanding of the dataset, and highlight the953

performance improvements achieved over baseline models. Additionally, we present key ablation studies954

to examine the impact of various hyperparameters on our model’s performance.955

A.1 Overview of Pipeline956

Figure 1 presents an overview of our approach. This high-level view depicts our training-free framework957

for video popularity prediction, which leverages modality-aligned Vision-Language Models (VLMs)958

and Large Language Models (LLMs) to generate Video as Text summaries. In the preprocessing stage959

(left), video content is transformed into sequential text representations using VLMs. During the content960

aggregation stage, visual and textual information is aligned and combined. The LLM then processes these961

text summaries to predict a video’s popularity score (ranging from 1 to 4) and generates explanations based962

on identified patterns (right). These explanations take the form of hypotheses grounded in theoretically963

sound attributes. For example, if the video is about a national football game organized by FIFA, the model964

may highlight its global appeal due to the prominence of the organization and the attention drawn by965

specific teams, such as Brazil.966

A.2 Surveys for Human Evaluation967

To evaluate the video-to-text conversion process and the quality of LLM-generated hypotheses, we968

conducted two separate surveys. The first focused on assessing video-to-text conversion quality, while the969

second evaluated the quality of hypotheses and LLM analysis. Each survey included clear instructions,970

detailed evaluation criteria, and screening questions to ensure participant attention and understanding.971

Participants were recruited through Amazon Mechanical Turk (MTurk) and compensated at an hourly rate972

equivalent to USD 15, reflecting fair pay for tasks requiring approximately 10–15 minutes each.973

A.2.1 Survey 1: Video-to-Text Conversion Quality974

Video-to-Text Conversion Quality: Initial Instructions

Welcome to our research study on video-to-text transcription quality. We are academic researchers
from ****, investigating the accuracy of automated transcription systems.

Survey Overview

In this survey, you will:

• Watch short video clips

• Read the corresponding automated transcriptions

• Answer questions about the accuracy and quality of the transcriptions

The survey should take approximately 8-12 minutes to complete. You will receive:

□ Base compensation: USD 1.25

□ Potential bonus: Up to USD 5 total for high-quality responses

Your Role as an Evaluator

Describing video content accurately is an incredibly complex task for AI. It requires understanding
context, nuance, and implied information—skills that come naturally to humans but are extremely
challenging for machines. Your task will involve:

• Watching diverse video clips
975
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• Reviewing AI-generated content descriptions

• Providing detailed feedback on accuracy and quality

Key Evaluation Areas

When assessing the AI-generated descriptions, please consider:

• Overall accuracy in capturing key themes and concepts

• AI’s ability to understand context and implied information

• Areas where the AI shows particular understanding

• Opportunities for improvement

Important Considerations

Please note:

• The AI system provides a comprehensive overview, not word-for-word transcription

• Focus on overall meaning and key points rather than exact phrasing

• The AI may make contextual inferences

Ready to Begin?

□ I understand all the above instructions thoroughly
976

Video-to-Text Conversion Quality: Evaluation Criteria

1. Overall Accuracy
How accurately does the text description match the content of the video?

□ 1: Completely inaccurate

□ 2: Mostly inaccurate

□ 3: Somewhat accurate

□ 4: Mostly accurate

□ 5: Highly accurate

2. Content Accuracy
How closely does the text description stick to the content presented in the video?

□ 1: Mostly unrelated to video content

□ 2: Significant deviations from video content

□ 3: Moderate adherence to video content

□ 4: Close adherence to video content

□ 5: Perfectly matches video content
977

13



3. Main Topic Capture
How well does the text description capture the main topic(s) discussed in the video?

□ 1: Misses all main topics

□ 2: Captures few main topics

□ 3: Captures some main topics

□ 4: Captures most main topics

□ 5: Accurately captures all main topics

4. Key Point Coverage
To what extent are key points from the video included in the text description?

□ 1: Misses all key points

□ 2: Includes few key points

□ 3: Includes some key points

□ 4: Covers most key points

□ 5: Covers all key points
978

Video-to-Text Conversion Quality: Task: Video Transcription Evaluation

Watch this Video, you will be given the task of evaluating a short transcript about this video next:
Video title: Cristiano Ronaldo Hat-Trick! | Manchester United 3-2 Norwich | Highlights

[Youtube Video]

Important Note

Your careful attention to this video is essential for accurately understanding the issues related
to AI behavior and the quality of AI-generated video transcriptions. The more accurately
you understand and remember the video’s content, the more accurate and valuable your
evaluation will be. We encourage you to watch the entire video attentively, as your insights
will directly impact the assessment of AI performance!
Participants who demonstrate a thorough understanding of the video content will be eligible
for bonus compensation. Thank you for your dedication to this task!

Transcript

Introduction
This video is a recording of a football match between two teams, featuring commentary and
analysis throughout. The initial setting is a stadium with players from both teams on the field.

979
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Segment Details
• Segment 1: The first segment shows a man walking on the field while another man walks in

the background. The commentator describes the scene, mentioning the ball and a goal scored
by Adrian Luna.

• Segment 2: In this segment, a man is seen walking towards the camera, wearing a yellow
shirt, while another man sits on the ground, wearing a red shirt. The commentators discuss
the game, highlighting great deliveries and goals scored.

• Segment 3: This segment shows more gameplay, with the commentators analyzing the
players’ moves and discussing the score.

Overall
The overall impact of this video is an immersive and engaging experience for football fans. The
combination of exciting commentary, intense gameplay, and skilled players creates a thrilling
narrative that will likely appeal to viewers who enjoy sports content.

Evaluation
1 2 3 4 5

Not at all Slightly Somewhat Mostly Completely

How accurately does the text description
match the content of the video?

□ □ □ □ □

How closely does the text description stick
to the content presented in the video?

□ □ □ □ □

How consistent is the information in the text
description with the facts presented in the
video?

□ □ □ □ □

How well does the text description capture
the main topic(s) discussed in the video?

□ □ □ □ □

980

Video-to-Text Conversion Quality: Screening Questions

Q1. Which videos did you evaluate in this survey?

□ SUPAHOTFIRE vs BLUEFACE
□ Cristiano Ronaldo Hat-Trick
□ Kerala Blasters FC vs Jamshedpur FC Highlights
□ Where I’m Travelling Next- Solo Trip?

Q2. In the videos you evaluated, which of the following activities was not mentioned?

□ Playing rock-paper-scissors
□ Eating cake
□ A football match
□ Skydiving

Q3. In the evaluation process, what were you asked to rate about the video transcriptions?

□ Overall Accuracy
□ Content Accuracy
□ Main Topic Capture
□ Video Production Quality
□ Key Point Coverage

Q4. Thank you for participating in our study. Your insights will help us improve our AI model
for predicting video popularity. Do you have any additional comments or feedback about the
model’s predictions or this survey?

981
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A.2.2 Survey 2: Hypothesis Quality and LLM Analysis982

Hypothesis Quality and LLM Analysis: Initial Instructions

Welcome

Welcome to our research study on video popularity prediction using AI models. We are academic
researchers from · · · , investigating how Large Language Models (LLMs) can predict video
popularity.

Survey Overview
In this survey, you will:

• Read video descriptions and LLM-generated hypotheses about video popularity
• Rate the accuracy and relevance of these hypotheses
• Assess the LLM’s ability on critical analysis and judgment

The survey should take approximately 8-12 minutes to complete. You will receive:

□ Base compensation: USD 1.25
□ Potential bonus: Up to USD 5 total for high-quality responses

Study Overview
We are evaluating a Language Learning Model (LLM) designed to predict video popularity based
on content analysis. The LLM analyzes videos from YouTube’s trending page and generates
hypotheses about what makes videos popular, as well as providing a detailed analysis of each
video’s content. Your role is to:

• Rate the hypotheses generated by the LLM
• Assess the LLM’s critical analysis and judgment for TWO separate videos

Video Popularity Rating Scale
The LLM rates videos on a 4-point scale:

• Popular: Likely to have general appeal and be popular for a short while
• Moderately Popular: Has several appealing elements for more than basic popularity
• Highly Popular: Likely to be popular among a broad audience but may not reach ultra popularity
• Ultra Popular: Strong potential to become ultra popular, featuring unique, engaging, and broadly appealing content

Note: While the LLM uses this 4-point scale to rate video popularity, your task will be to rate your
agreement with the LLM’s hypotheses and analysis using a different 4-point scale.

983

Hypothesis Quality and LLM Analysis: Instructions - Part 2

Your Tasks

Task 1: Rate the LLM’s Hypotheses
You will be presented with video descriptions and the LLM’s hypotheses about what makes them
popular. You will rate your agreement with 4-5 specific hypotheses generated by the LLM about
what makes the video popular. For example, a hypothesis looks like ’Sport highlights, especially
from important matches, tend to be ultra popular’, to which you can Strongly agree, Agree,
Disagree or Strongly Disagree. Your job is to rate how much you generally agree or disagree with
given hypothesis based on the same information provided to the LLM.

Task 2: Assess the LLM’s Critical Analysis
You will evaluate the LLM’s critical analysis of the video, including its assessment of factors
influencing popularity and its final popularity prediction.

984
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Rating Scale for Your Responses

You will use a 4-point scale to rate both the LLM’s hypotheses and its critical analysis. This
scale is designed to encourage you to form a definitive opinion based on your knowledge and the
information provided. For both tasks, use the following scale:

• 1 - Strongly Disagree: The hypothesis or analysis is clearly incorrect or irrelevant

• 2 - Disagree: The hypothesis or analysis has major flaws or inaccuracies

• 3 - Agree: The hypothesis or analysis is mostly accurate and relevant

• 4 - Strongly Agree: The hypothesis or analysis is highly accurate and insightful

Tips for Completing the Tasks

• Read each video description and LLM hypothesis carefully before rating

• Consider each hypothesis and analysis point carefully. Draw on your own knowledge of pop-
ular online content, but focus primarily on the information provided in the video description

• For instance, if you think the LLM’s hypothesis about sports highlights is accurate based on
the video description and your knowledge, you might select ’Agree’ or ’Strongly Agree’

• Try to be consistent in your ratings across similar types of content

Your thoughtful evaluations will help us improve the LLM’s ability to predict video popularity,
ultimately contributing to a better understanding of content trends on platforms like YouTube.

985

Hypothesis Quality and LLM Analysis: Video: Minecraft but there’s Cartoon Hearts

Video summary

Introduction: The video opens with a mysterious green figure walking around a dark room,
setting the tone for a fantastical and humorous adventure. Segment Details - Segment 1: In-
troduces the green figure, referencing Shrek and showcasing magic powers · · · Conclusion:
The video’s impact is significant, as it showcases the creators imagination and ability to
blend disparate elements into a cohesive narrative. The humor, entertainment value, and
references to popular franchises will likely appeal to viewers who enjoy fantasy, scifi, and
comedy.

In the next two pages, you will be shown 2 tasks:

• Task 1: Rate the hypotheses generated by the LLM

• Task 2: Assess the LLM’s critical analysis and judgment
986
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Task 1: Rate the LLM’s Hypotheses

Video Information
Important Note

Your careful attention to this video description is essential for accurately understanding
the quality of AI-generated hypothesis. The more accurately you understand the video’s
content, the more accurate and valuable your evaluation will be. We encourage you to read
the entire video description attentively, as your insights will directly impact the assessment
of AI performance!
Participants who demonstrate a thorough understanding of the video content will be eligible
for bonus compensation. Thank you for your dedication to this task!

Model’s Hypotheses
Strongly Disagree Disagree Agree Strongly Agree

H1: Videos with unique
Minecraft concepts tend to be
ultra-popular

□ □ □ □

H2: Content that blends multi-
ple franchises or pop culture el-
ements has broader appeal

□ □ □ □

H3: Videos with humorous and
imaginative content encourage
sharing and discussion

□ □ □ □

H4: Fast-paced content with
diverse visual elements keeps
viewers more engaged

□ □ □ □

If you Disagree/Strongly Disagree, do you have any better hypotheses or suggestions for improving
the provided hypotheses?

Task 2: Assess the LLM’s Critical Analysis

Factors in the given video that could influence popularity:
• F1: Creative concept: "Minecraft but there’s Cartoon Hearts" (very positive)
• F2: Blending of multiple franchises (Shrek, Teen Titans, Star Wars, Scooby-Doo) (positive)
• F3: Humorous and playful tone (positive)
• F4: Imaginative scenarios (magic powers, cyber crystals, outer space) (positive)
• F5: Alignment with geek culture trends (positive)
• F6: Potential for viewer engagement and discussion (positive)

LLM’s Final Analysis: Considering all factors, especially the similarity to other ultra popular
videos and the supervised model prediction, this video is likely to be Ultra Popular. It has all the
elements of highly engaging content that tends to perform exceptionally well, particularly in the
gaming and geek culture niches.

Strongly Disagree Disagree Agree Strongly Agree

F1: Creative concept □ □ □ □
F2: Blending of multiple fran-
chises

□ □ □ □

F3: Humorous and playful tone □ □ □ □
F4: Imaginative scenarios □ □ □ □
F5: Alignment with geek cul-
ture trends

□ □ □ □

F6: Potential for viewer engage-
ment

□ □ □ □

987
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Hypothesis Quality and LLM Analysis: Screening Questions

Q1. What was the primary task you were asked to perform in this survey?

□ Predict which videos would become viral
□ Assess the LLM’s hypotheses and analysis about video popularity
□ Provide your own theories about what makes videos popular
□ Compare different AI models’ performance in analyzing videos

These video-specific screening questions were randomly assigned based on the viewed
video:

Q2. Which of the following elements were present in the video you analyzed? (select all that
apply)

□ Commentary and analysis
□ Great deliveries and goals scored
□ Interviews with team managers
□ Slow-motion replays
□ Adrian Luna scoring a goal
□ Penalty shootout

Q3. Which of the following elements were present in the video you analyzed? (select all that
apply)

□ References to Shrek
□ Mining of cyber crystals
□ Outer space scenes
□ Pokémon battles
□ Teen Titans-inspired content
□ Underwater exploration

Q4. Which of the following elements were present in the video you analyzed? (select all that
apply)

□ Internal struggle of the protagonist
□ Car chase scenes
□ Self-harm depicted
□ Comedic dialogue
□ Apology and plea for forgiveness
□ Transformation sequences

Q5. Which of the following elements were present in the video you analyzed? (select all that
apply)

□ Two men playing video games
□ Reaction to a music video
□ Wearing headphones
□ Dancing performances
□ Occasional singing into microphones
□ Cooking demonstrations

988
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A.3 Implementation Details989

The video popularity prediction pipeline was implemented using PyTorch 2.1.0 and the transformers990

4.35.0 library. The content aggregation was performed using a custom module that combined textual991

information from titles, descriptions, and generated captions. We employed Claude 3.5 Sonnet (accessed992

via Anthropic’s API) (Anthropic AI, 2024) as our primary LLM for classification and hypothesis gen-993

eration, while also using LLaMa 3 70B (Touvron et al., 2023) Instruct offline on two NVIDIA RTX994

A4000 GPUs using tensor parallelism and quantization (2.8 bits per weight) for efficient video-to-text995

generations. The VLM component (of VideoLLava) used a fine-tuned CLIP model to align visual and996

textual features. The entire pipeline was orchestrated using a custom Python script that handled data997

flow between components, with batching implemented to optimize throughput. For the offline LLaMa 3998

70B setup, we achieved approximately 2 tokens per second inference speed. All experiments maintained999

consistent hyperparameters (Temperature: 0.5, Max Tokens: 4096, Top-p: 0.95) to ensure reproducibility.1000

A.4 Final prompt1001

Figure A1 illustrates the final prompt structure for video popularity prediction using LLMs. The prompt1002

incorporates step-by-step instructions, contextual elements, and a structured output format designed to1003

guide the LLM in analyzing and predicting video popularity.1004

Key features of the prompt include:1005

• Instructions: Clear definitions of the task and the four popularity classes, ranging from “Locally1006

Moderately Popular” to “Globally Ultra Popular,” to ensure the model understands the classification1007

criteria.1008

• Step-by-Step Reasoning: A scratchpad mechanism encourages the model to reason through interme-1009

diate steps, such as comparing the given video to similar examples, considering supervised model1010

predictions, and generating hypotheses to explain observed patterns.1011

• Structured Output: The prompt specifies a coherent format for outputs, including an evaluation rating1012

and explanatory reasoning, ensuring interpretability and consistency.1013

.1014

A.5 Dataset Analysis1015

Our dataset analysis uncovers several key insights that help contextualize the dynamics of video popularity1016

and inform our prediction task design. We highlight the importance of considering both geographical1017

reach and view count as critical factors in assessing a video’s popularity. Our analysis shows a positive1018

correlation between a video’s international presence and its view count, with notable clusters of videos1019

distributed across different quadrants of this relationship.1020

Additionally, a three-dimensional analysis that includes the duration a video remains on trending lists1021

reveals a more nuanced relationship between trending duration, geographical reach, and view counts.1022

We observe an optimal range of 100-200 units of trending duration and a reach of 15-35 countries as1023

indicators of peak performance. However, outliers in this analysis suggest that content quality and other1024

unquantified factors play important roles in determining a video’s success.1025

A.5.1 Dataset features and video categorization1026

We present the features used for each video (Figure A2, left) and a heatmap categorizing videos based1027

on engagement intensity and geographical reach (Figure A2, right). This information provides crucial1028

context for understanding the nature of our dataset and how we distinguish globally viral videos from1029

those with more localized popularity.1030

A.5.2 Geographical reach vs. view count1031

To better understand how a video’s international presence relates to its popularity, we analyzed our dataset,1032

focusing on the connection between the number of countries a video reaches and its total views. Figure1033

A3 visualizes this relationship.1034

20



Final Prompt for Video Popularity Prediction

<Instructions>
You will be predicting the potential popularity of a video based on its title and a description of its content.
Note: All videos in this dataset are from YouTube’s trending page, meaning they have already achieved a significant level
of popularity.
Your task is to provide a ‘popularity rating’ indicating how likely the video is to become popular among viewers, using the
following 1-4 scale:
1 - Locally Moderately Popular: The video is likely to appeal to be popular, and has elements of general appeal and is
probable to be popular for shorter while.
2 - Locally Popular: The video has several appealing elements for more than basic popularity.
3 - Globally Highly Popular: The video is likely to be popular among a broad audience but may not have elements that lead
to ultra popularity status.
4 - Globally Ultra Popular: The video has strong potential to become ultra popular, featuring unique, engaging, and broadly
appealing content.
</Instructions>

<output>
<scratchpad>
Think step by step inside <scratchpad>Your analysis here</scratchpad>.
Step 1: Look at the given <video_description>{description}</video_description>, and First, answer the question: “compar-
ing this video with videos in <similar_examples>, are videos similar to this video in the popular or ultra popular category?".
Step 1.5: A supervised model (80% accurate) predicts a popularity rating of {supervised_prediction} with {super-
vised_confidence:.2f} confidence. Factor this into your analysis.
Step 2: Then create 4 hypothesis about why videos in the <similar_examples>are ultra popular (Evaluation=4) and some
popular (Evaluation=1). Try to catch patterns from these example videos, try to generalise patterns that make a video reach
high popularity, and why some stay in basic popularity.
...
Step 4: Now expand on that reasoning think about whether the given and <video_description>are going to be Locally
Moderately Popular, Locally Popular, Globally Highly Popular, or Globally Ultra Popular, give more weight to answer of
step 1: 1 is for “Locally Moderately Popular” and 4 is for “Globally Ultra Popular.”
</scratchpad>
<Evaluation>rating</Evaluation>
</output>

Now predict the popularity for the given video title and description, using the proper output format. Your insights could
help shape the future of video content creation.

Figure A1: The final prompt structure for video popularity prediction using Large Language Models. The prompt
incorporates instructions, a structured output format, and a step-by-step analysis process.

The plot is bisected by two red lines representing the median values for each dimension, effectively 1035

partitioning the data into four distinct quadrants. The median number of countries reached by a video is 1036

47.5, while the median total view count is approximately 2.9 million (2,896,886 views). The visualization 1037

shows that videos reaching more countries tend to get more views, but not all videos are spread out 1038

evenly. We observe a general positive correlation between a video’s geographical reach and its view 1039

count, suggesting that videos with broader international appeal tend to accumulate more views. Also, a 1040

significant cluster of videos is concentrated in the lower-left quadrant, indicating a substantial number 1041

of videos with both limited geographical reach and relatively low view counts. While the upper-right 1042

quadrant contains videos that have achieved both high view counts and extensive geographical reach, 1043

representing the most globally popular content in our dataset. 1044

A.5.3 Three-dimensional analysis: Trending lists, reach, and view counts 1045

We conducted a three-dimensional analysis that examines the relationship between the duration a video 1046

remains on trending lists, its geographical reach, and its total view count. This analysis, visualized through 1047

a heatmap (Figure A4), provides a more comprehensive understanding of the complex dynamics of spread. 1048

The heatmap reveals that videos with longer trending durations and broader international reach generally 1049

garner higher viewership, though the relationship is not entirely linear. Peak viewership, depicted by the 1050

darkest regions on the heatmap, is concentrated in the upper-right quadrant. This suggests that videos 1051

with extended sequences (roughly 150–200 units) and significant global reach (spanning 30–40 countries) 1052

tend to achieve the highest view counts. The single highest point, with a logarithmic view count of 1053

approximately 12.5, corresponds to a sequence length of 175 and an international presence in 35 countries. 1054

Examining sequence length patterns, we observe a notable increase in viewership as sequence length 1055
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Figure A2: Left: The list of features for a youtube video. Right: Heatmap categorization of YouTube videos into
16 quantiles based on two key dimensions: the number of views and the number of countries in which the video
trended. Videos are classified into ‘Global Big Hit’ (top 25% in both dimensions) and ‘Local Hit’ (bottom 25% in
both dimensions), with cell colors indicating the relative density of each class.
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Figure A3: The plot depicts the relationship between the number of countries a video reaches and its total view
count. Blue lines represent the median values for each dimension, dividing the plot into quadrants.

increases from 0 to about 100 units. Beyond this point, the relationship becomes more complex, with1056

videos between 100-200 units performing particularly well, especially when they reach a moderate to high1057

number of countries. Interestingly, there’s a slight decline in viewership for extremely long sequences1058

(200+), suggesting an optimal range for sequence length.1059

The impact of country reach on viewership is evident, with videos reaching more countries generally1060

receiving more views. However, this relationship varies across different sequence lengths. For shorter1061

sequences (0-50), the impact of reaching more countries is less pronounced, while it becomes more1062

significant for medium to long sequences.1063

Several notable patterns emerge from this analysis:1064

• A clear region of low viewership is visible in the bottom-left corner, corresponding to short sequences1065

with minimal international reach.1066

• A ‘hot zone’ appears in the middle-right area of the heatmap, encompassing sequence lengths of1067

100–175 and country counts of 15–35, where viewership is consistently high.1068
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Figure A4: Heatmap depicting the relationship between trending duration (x-axis), number of countries reached
(y-axis), and the logarithm of total views (color intensity) (say that image is truncated to 127 sequence length).

• Evidence of potential diminishing returns is observed for sequences exceeding 200 in length and 1069

country counts above 40. 1070

• Scattered ‘hot spots’ are present across the heatmap, highlighting outlier videos with unexpectedly 1071

high viewership. 1072

A.5.4 Video categories 1073

YouTube’s content ecosystem is diverse, encompassing a wide range of video categories. Our dataset 1074

provides a unique opportunity to analyze popularity trends across these categories, offering insights that 1075

are typically challenging to obtain. In this section, we present an analysis based on 11 heatmaps, each 1076

representing a distinct YouTube category (Figure A5). These heat maps visualize the complex interaction 1077

between the length of the sequence, the number of countries reached, and the total views for each category. 1078

This multi-dimensional analysis reveals both overarching trends and category-specific patterns in video 1079

popularity. 1080

Our analysis reveals several consistent patterns across categories. The maximum number of views 1081

ranges from 182 million to 1.48 billion views. The average number of views for most categories falls 1082

between 63,000 and 251,000 views. Interestingly, for almost all categories, maximum views occur at very 1083

short sequence lengths (mostly 1) and low number of countries (2), suggesting that brief, targeted content 1084

can achieve high viewership. 1085

Each category exhibits unique characteristics. The Games category demonstrates the highest maximum 1086

views (about 1.48 billion views) and one of the highest average views, indicating high engagement. In 1087

contrast, the News category contains the largest number of videos but shows a lower average view count, 1088

suggesting a high volume of content with more moderate individual performance. The Music category, 1089

despite having the fewest videos, maintains a competitive average view count, indicating that music videos 1090

tend to perform well relative to their number. The NonCategory exhibits the lowest average views, which 1091

might be expected for content that doesn’t fit into standard categories. 1092

The relationship between sequence length, country reach, and views varies across categories. Across 1093

most categories, shorter sequence lengths (0-20) tend to have higher average view counts. The Games 1094

category shows particularly high performance for short sequences (about 31,000 views on average). 1095
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Figure A5: Heatmaps depicting the relationship between sequence length, number of countries reached, and
logarithm of total views for 11 YouTube categories. Each heatmap represents a different category, with color
intensity indicating log10(Views).

Regarding country reach, videos reaching 6-10 countries often have the highest average views across1096

categories. There’s a consistent decline in average views as the number of countries increases beyond 15,1097

suggesting that very broad international appeal is rare.1098

Studying Popularity and Reach We looked at how different video categories do across popularity1099

and international reach using a grid of pie charts (Figure A6). Each pie chart represents a different1100

quantile combination of video popularity (views) and international reach (number of countries), providing1101

a comprehensive view of category distribution across various levels of success.1102

Our analysis uncovers the universal appeal of certain video categories across different levels of popular-1103

ity and geographical spread. Notably, “People,” “News,” and “Sports” stand out, appearing in the majority1104

of quantiles, indicating their widespread popularity. “Comedy” and “Film” also show strong presence,1105

suggesting their content resonates across various levels of success and international reach.1106

A.6 Ablation Study1107

A detailed ablation study was conducted to examine the effects of key model hyperparameters on prediction1108

accuracy. This investigation focused on the interaction between the embedding type used for near example1109

retrieval, the count of these examples, and the temperature parameter of the Large Language Model (LLM).1110

By methodically adjusting these parameters, the study aimed to reveal how variations in these elements1111

influence the framework’s predictive capabilities. The analysis closely examines the impact of embedding1112

types, whether sourced from video descriptions or titles, the strategic selection of near example quantities,1113

and the temperature settings within the LLM, providing a thorough examination of their combined effects1114

on performance. This study is crucial as it illuminates the framework’s operational nuances and informs1115

potential adjustments, enhancing its effectiveness in the intricate task of video content analysis and1116

prediction. Through this rigorous analysis, we aim to explore the framework’s responsiveness to different1117
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Figure A6: 4x4 grid of pie charts showing the distribution of video categories across different quantiles of popularity
(views) and international reach (number of countries).

hyperparameters, contributing to a nuanced understanding of its predictive mechanisms. This endeavor is 1118

not about optimizing the model per se but about uncovering how the framework behaves under varied 1119

conditions, offering valuable insights into its structure and function. 1120

A.6.1 Impact of embedding type on model performance 1121

In our study of our proposed framework, we focused on understanding how the choice of embedding 1122

type, whether video descriptions or titles, used to find similar videos affects the accuracy of predicting 1123

video popularity. It’s important to note that while both methods use full video descriptions, the key 1124

difference lies in how these similar videos are identified. This study looks into how choosing between 1125

video descriptions or titles to find similar videos affects prediction accuracy, showing that using titles to 1126

retrieve examples, surprisingly make our pipeline’s predictions better. 1127

We report the findings in Figure A7, which show a nuanced resut of different kinds retrieved examples. 1128

Video-to-text achieved a mean accuracy of 81.75%, showcasing a consistent prediction capability with 1129

a standard deviation of 0.35%. This suggests that descriptions provide a reliable basis for similarity 1130

matching, albeit with a marginally lower accuracy compared to titles. Conversely, title embeddings 1131

yielded a higher mean accuracy of 85.5%, indicating their effectiveness in accurately identifying highly 1132

popular videos, albeit with increased variability, as evidenced by a standard deviation of 1.77%. This 1133

discrepancy may stem from the complexity and length of generated video descriptions, which could 1134

introduce extraneous information, diluting the core elements necessary for precise similarity matching. 1135

Titles, being more succinct, appear to offer a more focused approach for example retrieval, likely due to 1136

their ability to encapsulate the video’s essence more directly. In contrast, the KNN model exhibited a 1137

mean accuracy of 79% with video descriptions and 73.5% with titles, highlighting a different pattern of 1138

performance that underscores the importance of model choice in leveraging embedding types effectively. 1139

This means that the way we select similar videos is key, and using titles, which are shorter, might predict 1140

popularity better by focusing on the main points of the video. The study shows that how we choose 1141

similar videos can make a big difference in how well our pipeline works, suggesting that we should think 1142

carefully about how we find these videos to improve predictions. 1143
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Figure A7: This graph compares how well our pipeling and near-examples models predict video popularity using 10
examples each, showing that using titles to find similar videos works better, even though both methods use examples
containing full video descriptions as input. The only difference lies in how we find these examples: using titles or
descriptions.

A.6.2 Impact of number of near examples on model performance1144

In this part of our study, we looked at how changing the number of similar videos (near examples) used by1145

the our pipeline affects its ability to predict video popularity. Near examples are similar videos retrieved1146

from the database that the model uses to identify patterns and make predictions. This analysis aims to1147

determine the relationship of near examples, prediction accuracy and computational efficiency. We kept1148

everything else the same and only changed the number of these examples to see how it impacts accuracy1149

and how efficiently the model works.1150
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Figure A8: Impact of the number of near examples on accuracy. The plot shows mean accuracy and standard
deviation for 1, 5, 10, 15, 20, and 30 near examples.

We tested using different numbers of near-examples, from 1 to 30, and found that more examples can1151

actually help the model predict better, even though they might not seem as accurate when used in simpler1152

models. Figure A8 shows this. The model’s accuracy changes as we use more examples, with the best1153

accuracy at 20 examples, suggesting this number might be just right for our model.1154

26



Interestingly, as we add more examples, the model’s predictions become a bit less consistent, but it gets 1155

better at predicting overall. This means that even if more examples don’t always lead to better results in 1156

simpler models, the LLM can use them to understand videos better and make more accurate predictions. 1157

However, using too many examples can actually make predictions a bit worse, showing there’s a sweet 1158

spot at 20 examples where the model is both accurate and consistent. This finding is important because it 1159

shows that the LLM can use more information to improve, but there’s a point where adding more doesn’t 1160

help as much. It also reminds us that while more examples can help, we need to consider how much work 1161

the model has to do. Looking at how different types of videos respond to more examples could help us 1162

fine-tune the model even more, making it better at predicting video popularity. 1163

A.6.3 Impact of temperature on model performance 1164

In language models, temperature is a hyperparameter that controls the randomness of the model’s output. 1165

A lower temperature makes the model more deterministic in its predictions, while a higher temperature 1166

increases randomness and creativity. In the context of LLM based video popularity prediction, temperature 1167

plays a crucial role in balancing between making consistent, safe predictions and exploring more diverse, 1168

potentially insightful outcomes. Finding the optimal temperature is essential for maximizing the model’s 1169

predictive accuracy while maintaining its ability to generalize across various video types and popularity 1170

patterns. 1171
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Figure A9: Impact of temperature settings. The plot shows mean accuracy for temperatures ranging from 0.0 to 1.0.

We looked at how different temperature settings affect the model’s accuracy to find the best balance. 1172

Figure A9 shows that the model works well across a range of temperatures, with 0.3 and 0.6 being optimal, 1173

both hitting 85.4% accuracy with little variation. This means the model can handle different temperatures 1174

well, but there’s a slight dip at 0.8 that needs more study. Future work could look closer at temperatures 1175

between 0.6 and 1.0 to understand why and improve predictions. 1176

A.7 Additional Ablation Study - Supervised Model 1177

This section presents a detailed ablation study of our supervised model for video popularity prediction. By 1178

systematically analyzing the performance of different feature combinations, we aim to identify the most 1179

effective features and understand the trade-offs between model complexity and prediction accuracy. To 1180

investigate the effectiveness of different feature combinations in predicting video popularity, we conducted 1181

a series of experiments using various feature sets. We analyzed the performance of individual features, 1182

pairwise combinations, triple combinations, and complex feature sets. This comprehensive analysis 1183

aims to identify the most effective feature combinations and understand the trade-offs between model 1184
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complexity and prediction accuracy.1185

A.8 Additional Ablation Study - Baseline Multimodal Model1186

Feature Embedding model Embedding Size

Text (Title, Description, Captions) MPNet 768
Image (Thumbnail) CLIP 512
Video (Key Frame Aggregation) VideoCLIP 512

Table A1: Baseline Embeddings

Component Details
Preprocessing
Layer

Uses a linear transformation to map input data to a fixed di-
mensionality (processed_dim).

Main Layers Composed of fully connected layers with batch normalization
and ReLU activation. Includes dropout for regularization. Lay-
ers are sequentially connected with increasing reduction in
dimensionality (1024 → 512 → 256 → 128).

Dimension Match-
ing Layers

Linear layers that adjust dimensions to enable addition of resid-
ual connections at each main layer stage.

Attention Layer Consists of a linear transformation, a tanh activation, and a
softmax output to produce attention weights.

Final Classifica-
tion Layer

A fully connected layer that takes the attended features and
outputs the final classification results.

Overall Model Ar-
chitecture

Input data is processed through layers that include preprocess-
ing, main processing with residuals, attention application, and
final classification.

Table A2: Baseline Multimodal Model Description

To establish a strong foundation for comparison, we implement a baseline multimodal model that1187

leverages deep learning techniques to predict video popularity. The architecture of this baseline model is1188

described in Table A2. The model consists of several key components, including a preprocessing layer to1189

handle variable input sizes, main layers to learn complex representations, dimension matching layers to1190

facilitate residual connections, an attention layer to weigh the importance of different parts of the input1191

data, and a final classification layer to produce the output.1192

The baseline model utilizes various embeddings to represent the different features of the video data, as1193

detailed in Table ??. For textual features, such as the title, description, and captions, the MPNet model is1194

employed to generate embeddings of size 768. Visual features, including the thumbnail, are processed1195

using the CLIP model, resulting in embeddings of size 512. Finally, the video content is represented1196

using key frame aggregation and the VideoCLIP model, producing embeddings of size 512. The baseline1197

multimodal model serves as a robust point of comparison for our proposed framework, allowing us to1198

assess the performance improvements achieved through the integration of VLMs and LLMs in the video1199

popularity prediction task.1200

A.8.1 Individual feature performance1201

We begin by examining the predictive power of each feature type in isolation. Table A3 presents the1202

performance scores for individual features.1203

As shown in Table A3, video features and description features achieved the highest individual perfor-1204

mance with a score of 0.79, followed closely by thumbnail features (0.77) and caption features (0.76).1205

Title features showed the lowest individual performance at 0.75, suggesting that while titles contribute to1206

prediction, they may not be as informative as other features when used alone.1207
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Feature Score
Thumbnail 0.77
Video 0.79
Title 0.75
Description 0.79
Caption 0.76

Table A3: Performance Scores for Individual Features

A.8.2 Feature combination performance 1208

Next, we explore the synergistic effects of combining different feature types. Table A4 illustrates the 1209

performance scores for various feature combinations. 1210

Combination
- 75 75 73 74

- 76 76 72

& - - 77 76

& & - - - 78

Table A4: Performance analysis of multimodal feature combinations for video popularity prediction. Icons represent

title and description ( ), video content ( ), thumbnail ( ), and caption ( ). Bold numbers indicate the
highest score in each row.

The combination of title features with other modalities consistently improved performance. Notably, 1211

the combination of thumbnail, description, and caption features achieved the highest score of 78%, 1212

demonstrating the complementary nature of these modalities in predicting video popularity. 1213

A.8.3 Complex feature combinations 1214

Finally, we investigated the impact of combining four or five feature types. Table A5 shows the perfor- 1215

mance scores for these complex feature combinations. 1216

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Score
Videotext Thumbnail Video Title Description 0.81
Videotext Thumbnail Video Title Caption 0.81
Videotext Thumbnail Video Description Caption 0.83
Videotext Thumbnail Title Description Caption 0.82
Videotext Video Title Description Caption 0.80
Thumbnail Video Title Description Caption 0.82

Table A5: Performance Scores for Complex Feature Combinations

The combination of videotext, thumbnail, video, description, and caption features achieved the highest 1217

score of 0.83. However, it’s important to note that this score is not significantly higher than some of the 1218

triple feature combinations, suggesting a point of diminishing returns in terms of prediction accuracy as 1219

we increase feature complexity. 1220

These results highlight the importance of considering multiple modalities in video popularity prediction. 1221

While individual features provide valuable information, the combination of complementary features 1222
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leads to improved prediction accuracy. However, the experiments also reveal a trade-off between model1223

complexity and performance gains, as the most complex feature combinations do not necessarily yield1224

significantly better results than some simpler combinations. The analysis suggests that careful feature1225

selection and combination can lead to efficient and effective video popularity prediction models. This1226

combination likely captures a diverse range of information about the video content, including visual1227

appeal, textual context, and spoken content.1228

These findings suggest that while incorporating multiple modalities can improve prediction accuracy,1229

there is a point of diminishing returns. Future model development should focus on optimizing the balance1230

between feature complexity and performance gains, potentially prioritizing the most informative feature1231

combinations identified in this study.1232

A.9 Comparison with Vision-Language Large Model1233

To further strengthen our contribution, we conducted additional experiments using an advanced Vision-1234

Language Large Model (VLLM), Gemini. Specifically, we used the Gemini 1.5 Pro model, accessed1235

as API in Vertex library. The input to the model included a combination of the summariser prompt and1236

the final prediction prompt. The sequential frames were aligned with the video’s existing captions to1237

ensure that visual and verbal elements were synchronized before being fed into the LLM to generate the1238

video-to-frame summary for the entire video. This process closely follows the steps described in Section1239

3.2 where “Frame Extraction” step (extracting 5 frames per minute) and the “Caption Matching and Data1240

Integration” step were employed to align captions and frames for LLM processing. Subsequently, "Frames1241

to Text Conversion and Summarization" step generated the final video summary using an LLM call. For1242

prediction, we used the same final prompt detailed in Figure A2, ensuring consistency with our primary1243

method.1244

These experiments confirmed that our strategy—incorporating sequential prompting, hypothesis genera-1245

tion, and supervised signals—consistently improves prediction performance, even with this state-of-the-art1246

model (see Figure A10. This underscores the generalizability and robustness of our approach across1247

different model architectures.1248

Notably, this result demonstrates that more advanced models do not inherently outperform others1249

across all aspects; rather, each model tends to excel in specific areas. This highlights the importance of1250

strategically combining models based on their unique strengths to achieve optimal results. Additionally,1251

the prompting strategies developed in this work offer practical guidance for designing effective multimodal1252

solutions. These insights not only inform future research on multimodal learning but also emphasize the1253

value of integrating pre-trained models tailored to specific task requirements.1254
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Figure A10: Performance evaluation of the Gemini 1.5 Pro model for video popularity prediction, demonstrating
the impact of sequential prompting, hypothesis generation, and supervised signals.
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A.10 Addressing Language Imbalance in Target Classes 1255

To assess potential language imbalance in classifying ‘local hit’ and ‘global big hit,’ we analyzed the 1256

dataset’s language distribution and its impact on model performance. Figure A11 shows the distribution 1257

of target classes across major languages in the entire dataset (red) and the subset used in our experiment 1258

(blue). English accounts for approximately 40% of the ‘global big hit’ category and 15% of the ‘local hit’ 1259

category, indicating an overrepresentation in the ‘global big hit’ class. However, non-English languages, 1260

including Spanish, Hindi, and French, contribute significantly to both categories, suggesting that the 1261

dataset maintains reasonable language diversity. 1262
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Figure A11: Distribution of ‘local hit’ and ‘global big hit’ categories across major languages. English accounts
for 40% of the ‘global big hit’ category and 15% of the ‘local hit’ category, with other languages contributing
substantially to both.

To evaluate potential language bias, we analyzed prediction accuracy across languages. As shown 1263

in Figure A12, the model performs comparably for both major (e.g., English, Spanish) and minor 1264

(e.g., Swedish, Indonesian) languages, with no significant bias favoring English or other dominant 1265

languages. These results suggest that language representation does not disproportionately affect the 1266

model’s predictions. 1267
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Figure A12: Prediction accuracy for ‘local hit’ and ‘global big hit’ categories across languages. The results
show comparable model performance across major (e.g., English, Spanish) and minor (e.g., Swedish, Indonesian)
languages, indicating that prediction accuracy is not significantly influenced by language representation.
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Figure A13: Illustration of our LLM-based pipeline for explainable video popularity prediction. Shown are two
successful predictions (outlined in black) and one misclassification (outlined in red), highlighting both the strengths
and challenges of the approach.

A.11 Additional Qualitative Analysis1268

In this section, we present a deeper qualitative analysis of our LLM-based framework by highlighting1269

two successful predictions and one misclassification (Figure A13). These examples offer additional1270

insights into how our method processes visual and textual information to generate final predictions and1271

accompanying explanations.1272

Positive Examples Two videos, “Mexico vs. Brazil Highlights” and “Minecraft Survivor VS 3 Hitmen,”1273

illustrate how our pipeline effectively identifies factors driving popularity. In the football highlights, the1274

model attributes the video’s success to the involvement of the internationally recognized Brazilian national1275

team and star players such as Vinícius and Richarlison. This demonstrates the framework’s capacity to1276

capture both engagement intensity (high view counts driven by star power) and geographic spread (global1277

appeal of Brazil’s national team and the event, FIFA World Cup). Similarly, for the Minecraft video, the1278

model recognizes a unique speedrun challenge and engaging personalities, reflecting its ability to detect1279

cross-border relevance within gaming communities.1280
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Negative Example The misclassification of the “Dad Jokes” video reveals potential challenges in 1281

capturing cultural or emotional nuances. Although the pipeline identifies the universal appeal of humor 1282

and the involvement of popular creators, it overestimates the video’s worldwide reach. This suggests that 1283

subtle context factors (e.g., culturally specific humor) can be difficult for the model to fully grasp, pointing 1284

to areas where additional sentiment analysis or more nuanced cultural embeddings might prove valuable. 1285

Discussion Overall, these qualitative examples demonstrate that our pipeline can effectively integrate 1286

textual summaries, captions, and high-level contextual signals to predict video popularity. While the 1287

misclassification underscores the difficulty of handling culturally specific or emotionally resonant content, 1288

the two correct predictions illustrate the framework’s ability to capture global appeal and engagement 1289

drivers across diverse video genres. Future work could delve more deeply into cultural features, sentiment 1290

modeling, or real-time data streams to further refine the approach. 1291
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