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Abstract001

Recent advancements in large language models002
(LLMs) have highlighted the importance of im-003
proving their reasoning capabilities. A critical004
challenge lies in the scarcity of high-quality005
reasoning data—characterized by diversity and006
rich supervisory signals—necessary for robust007
model training. While data augmentation (DA)008
methods have been leveraged to mitigate this009
scarcity, prevailing approaches often introduce010
noise and exhibit logical inconsistencies,011
thereby diminishing their utility for complex012
reasoning tasks. Moreover, existing DA013
paradigms predominantly isolate data synthesis014
from label validation, failing to unify these015
complementary processes within a cohesive016
architecture. To address these limitations,017
we introduce Logical DA, a multi-agent018
framework for enhancing reasoning-focused019
data augmentation in few-shot learning020
scenarios. Our system includes four agents021
operating through two synergistic phases: (1)022
diverse data generation, and (2) label verifi-023
cation. The system incorporates a reflection024
mechanism to continuously improve data025
quality by leveraging feedback from logical026
validation. We demonstrate the effectiveness027
of Logical DA through experiments on various028
tasks and datasets, achieving the highest029
average improvement in task accuracy in both030
fine-tuning and in-context learning paradigms,031
with an average improvement of 7.61% when032
applied to fine-tuning. Our code is available033
at https://anonymous.4open.science/r/acl25-034
E819035

1 Introduction036

Researchers have been focusing on the reasoning037

capability of large language models (LLMs) re-038

cently (OpenAI, 2024), where a key challenge is039

the limitation of high-quality reasoning data for040

model training. The ideal training data of reason-041

ing is diverse and is rich in supervision information042

Figure 1: Low-quality data generation vs High-quality
data generation

(Long et al., 2024), which requires costly manual 043

annotations (Xu et al., 2025). 044

In view of this challenge, researchers have in- 045

creasingly employed data augmentation (DA) tech- 046

niques that enrich the dataset to alleviate the issue 047

of data scarcity (Chen et al., 2023). Facilitated 048

by the outstanding text generation capabilities of 049

LLMs, researchers have employed LLMs for DA, 050

including data generation derived from the original 051

dataset and prompt-based label assignment (Ding 052

et al., 2024), which have been experimentally veri- 053

fied effective (Dai et al., 2023a; Ding et al., 2023; 054

Peng et al., 2024). Driven by the target tasks, such 055

augmented data is then used for performance en- 056

hancement, via model training or integration into 057

In-Context Learning (ICL) within the LLM (Wang 058

et al., 2024a). 059

However, due to the inherent hallucination of 060

LLMs and the lack of verification for generated 061

labels, methods that rely solely on LLMs for data 062

generation (Dai et al., 2023a) often produce noisy 063

data, manifested as factual inaccuracies, label mis- 064

matches, or irrelevant content (Long et al., 2024), 065

which sabotages the effectiveness of reasoning data 066

augmentation, as shown in Figure 1. Moreover, the 067

generated data often suffers from a lack of diversity 068

that may jeopardize the model’s generalization abil- 069

ity, which can be partially alleviated by controlled 070

prompting (Yu et al., 2023a; Peng et al., 2024). 071

Another challenge is that existing augmentation 072
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techniques tend to focus on either data creation or073

data annotation, where a unified framework that074

effectively integrates both tasks is desired.075

In this paper, we argue that an effective data076

augmentation framework, which aims to generate077

high-quality and logically sound data, requires two078

key capabilities: generating diverse samples and079

verifying logical correctness. Thus, inspired by the080

advantages of LLM-based Multi-Agent Systems in081

various domains (Chen et al., 2024), we propose a082

multi-agent system to enhance data augmentation083

in few-shot scenarios.084

To jointly optimize data diversity and label con-085

sistency, we architect a multi-agent framework086

comprising four collaborative agents, structured087

into two main phases:088

(1) Diverse Data Generation: In this stage, the089

Attribute Extraction Agent (AEA) performs an ini-090

tial attribute extraction on the input data, gener-091

ating a dynamic set of attributes specific to the092

data. The Filtering Agent (FA) then selects appro-093

priate attribute combinations that are free from ob-094

vious logical conflicts and passes them to the Data095

Generation Agent (DGA) to generate preliminary096

transformed samples. Following this, FA filters097

out samples with richer variety, which are further098

processed by DGA to create high-diversity data.099

(2) Label Verification: To mitigate label mis-100

matches caused by hallucinations, we propose the101

Logical Label Verification Agent (LLVA), which102

grounds generated outputs in formal symbolic rea-103

soning primitives. This improves the labeling accu-104

racy of the generated reasoning data. Additionally,105

we implement a reflection mechanism based on106

logical validation feedback, allowing LLVA to feed107

label validation information back to DGA. This108

closed-loop architecture enables DGA to dynami-109

cally recalibrate its generation.110

Our contributions are three-fold as follows:111

• We first propose a complete multi-agent data112

augmentation framework, including the capa-113

bilities of generating data labeled with various114

categories and enhancing the fidelity of the115

generated data through logical validation.116

• Our work is pioneering in focusing on the117

augmentation of logical reasoning data, alle-118

viating the shortage of high-quality logical119

reasoning data and providing solid data sup-120

port for enhancing the reasoning capabilities121

of LLMs, thus playing a foundational role.122

• We conduct experiments on a wide spectrum 123

of tasks and datasets, demonstrating the effec- 124

tiveness of the augmented data by Logical DA 125

in both fine-tuning and in-context learning 126

2 Related Work 127

Logical Reasoning. Early approaches to LLM- 128

based reasoning operated directly on natural lan- 129

guage representations (Wei et al., 2022; Clark et al., 130

2020; Zhou et al., 2022a). However, given that 131

LLMs are essentially black-box probabilistic mod- 132

els, the reasoning outcomes derived in this manner 133

could not be guaranteed to be faithful and reliable 134

(Shanahan, 2024). Subsequently, a series of meth- 135

ods emerged that employed symbolic languages 136

as the fundamental units of reasoning (Pan et al., 137

2023; Gao et al., 2023b; Xu et al., 2024b). Owing 138

to their strict adherence to predefined reasoning 139

rules and logic, these methods are deemed to be 140

transparent and trustworthy. 141

Typically, LOGIC-LM (Pan et al., 2023) em- 142

ploys LLMs to convert natural language questions 143

into symbolic representations, which are subse- 144

quently processed through symbolic executors for 145

deterministic symbolic reasoning and result inter- 146

pretation. Similarly, SymbCoT (Xu et al., 2024b) 147

transforms natural language contexts into sym- 148

bolic formats, generates stepwise procedural plans, 149

and directs model reasoning along these structured 150

guidelines. Building upon this approach, Aristotle 151

(Xu et al., 2024a) implements an enhanced frame- 152

work that guides LLMs in applying the resolution 153

principle for logical deduction, achieving superior 154

performance in logic reasoning tasks. 155

Differing from the aforementioned works that 156

directly apply methods to enhance model reasoning 157

capabilities, our objective is to employ symbolic 158

reasoning to augment logical data. Additionally, 159

we integrate the model’s independent symbolic rea- 160

soning with the invocation of symbolic solvers, 161

thereby more comprehensively ensuring the logical 162

reasoning process. 163

Data Augmentation via LLMs. In recent years, 164

data augmentation techniques based on LLMs have 165

evolved from label-preserving to label-flipping ap- 166

proaches. Initially, methods directly utilized the 167

demonstrations in prompts to guide models in gen- 168

erating new task-specific data (Kumar et al., 2020; 169

Sahu et al., 2022; Dai et al., 2023b), which were 170

subsequently employed for model training or in- 171

context learning (Li et al., 2023; Su et al., 2024). 172
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However, the data generated in this manner, lack-173

ing explicit generation criteria and patterns, may174

lead to spurious correlations.175

In light of this limitation, several label-flipping176

data augmentation methods have emerged (Yoo177

et al., 2021; Yu et al., 2023a). These methods gen-178

erate diverse data that are either related or con-179

tradictory by editing the attributes of the input180

data. FlipDA (Zhou et al., 2022b)introduces a data181

augmentation method that jointly uses a genera-182

tive model (T5) and a classifier to generate label-183

flipped data. The key insight is that generating184

label-flipped data is more crucial for improving per-185

formance than generating label-preserved data. In-186

spired by this, CoTAM (Peng et al., 2024)instructed187

the LLM to flip labels to other labels in the dataset188

to get richer data.189

In our work, we also employ a label-flipping190

approach similar to those mentioned previously.191

However, rather than confining labels to strictly192

similar or opposing categories, we strive to intro-193

duce a broader spectrum of labels (i.e. True, False194

and Unknown). This strategy ensures the diversity195

of the generated data.196

LLM-Based Agents. The development of197

LLMs has demonstrated a notable capacity for in-198

teracting with environments and making decisions,199

thereby fulfilling expectations of intelligent agents200

(Li et al., 2024b). Drawing an analogy to real-world201

human society, where complex tasks are more202

efficiently, accurately, and systematically accom-203

plished through the division of labor among mul-204

tiple specialized departments, research on multi-205

agent systems based on LLMs has rapidly advanced206

across various domains. Examples include soft-207

ware development (Qian et al., 2024; Du et al.,208

2024), code generation (Islam et al., 2024), game209

simulation (Li et al., 2024a), and social network210

simulation (Gao et al., 2023a)).211

The overarching strategy of replacing single-212

agent models with multi-agent models involves213

decomposing tasks into multiple distinct subtasks214

and assigning them to different agents. The rela-215

tionships among these agents can be characterized216

as either linear pipelines (Yue et al., 2025; Liu217

et al., 2023; Shen et al., 2024), collective decision-218

making processes (Cheng et al., 2024; Liang et al.,219

2024), or iterative self-refinement (Wang et al.,220

2024b; Tang et al., 2024), ultimately converging to221

form a final decision.222

In our proposed framework, following the linear223

workflow of three agents responsible for attribute224

extraction, data filtering, and data generation, we 225

introduce a reflective mechanism for logical valida- 226

tion. This logical validation component provides 227

feedback to the data generation agent, enabling it 228

to verify and refine its output. 229

3 Preliminary 230

Problem Definition Our goal is to build a multi- 231

agent system for data augmentation in logical rea- 232

soning tasks. This system aims to enhance the 233

generation of high-quality and diverse reasoning 234

data to improve the model’s reasoning abilities. We 235

define an LLM agent a ∈ A as a specialized model 236

that takes text as input and returns text as output, 237

specified by a unique identifier label l and a map- 238

ping f : V → V . Each agent ai is specialized in a 239

specific subtask and is powered by an LLM Li. 240

For a text dataset D = {(xi,yi)}ki=1, where 241

each sample consists of an input text xi and a cor- 242

responding label yi, data augmentation (DA) using 243

large models involves utilizing prompts P to guide 244

LLMs in generating novel augmented data from 245

the given input text xi as follows: 246

(x′i, y
′
i) = L(P, (xi, yi)). (1) 247

Logical Reasoning Data For a logical reasoning 248

sample (xi, yi) ∈ D, the input text xi typically con- 249

sists of two text pairs (Prei, Hypi), where Prei 250

is a set of premises pi, p2, ...pn with each pi rep- 251

resents a logical statement, and Hypi is usually 252

a statement that we aim to evaluate based on the 253

premises. The label yi for logical data refers to the 254

logical relationship between the Prei and Hypi. 255

4 Method 256

4.1 Overview 257

In this paper, we propose Logical DA, a multi-agent 258

system for reasoning data augmentation in few-shot 259

scenarios. Our goal is to generate high-quality and 260

high-diversity reasoning data with rich supervision 261

signals (Long et al., 2024), which is essential for 262

model training. We decompose the data augmen- 263

tation task into two primary subtasks: 1) diverse 264

data generation and 2) label verification. We design 265

four agents to collaboratively complete the entire 266

task. Specifically, our system employs a structured 267

pipeline where agents specialize in specific tasks. 268

To address the repetition issue in data generated by 269

LLMs, we employ the Attribute Extraction Agent 270

and the Filter Agent, which enhance the diversity 271
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      Attribute Extract Agent     Data Filtering Agent

Data Gneration Agent

        Logical Label Verification Agent

Original Data
Premise(P):
By the time a case of rabies is confirmed, the disease may have 
taken hold in the area.

Hypothesis: A case of rabies was confirmed.

Relationship: Not Entailment.

Premise(P):
By the time a case of rabies is confirmed, the 
disease may have taken hold in the area.
Hypothesis: A case of rabies was confirmed.

Label: Not Entailment.

Attributes
Attribute 1: Disease Spread
Description: This attribute refers to the spread of 
rabies in the area before it was confirmed......
Possible Other Values:
The disease has not yet spread in the area.
The disease is spreading rapidly in other areas as well.

Attribute 2: Diagnosis Delay
Description:  This attribute reflects the potential 
delay in diagnosing rabies ......
Possible Other Values: 
Diagnosis was delayed, but no significant spread 
occurred.
The disease was confirmed quickly, leading to effective 
control.

.......

New data with different labels

           
           

    
      

  

           
           

    
       

 

Given that the disease has not yet spread in the area,
by the time a case of rabies is confirmed, the disease 

may still be effectively controlled.
Hypothesis: A case of rabies was not confirmed
Label:

Premise(P):
Given that the disease has not yet spread in the area,
by the time a case of rabies is confirmed, the disease 

may still be effectively controlled.
Hypothesis: A case of rabies was confirmed
Label: Not Entailment
Premise(P):

Entailment

.......

New data by attribute combination
Premise(P):
Given that the disease has not yet spread in the area, by 
the time a case of rabies is confirmed, the disease may 
still be effectively controlled.
Hypothesis: A case of rabies was confirmed
Label: Not Entailment
Premise(P):
Given that the disease has not yet spread in the area, by 
the time a case of rabies is confirmed, no significant 
spread of the disease would have occurred.
Hypothesis: A case of rabies was confirmed
Label: Not Entailment
.......

Attribute combination Diversity Filtering

          
           

     
      

  

Premise(P):
Given that the disease has not yet spread in the
area, by the time a case of rabies is confirmed, the 

disease may still be effectively controlled.
Hypothesis: A case of rabies was confirmed
Label: Not Entailment

Disease Spread × Diagnosis Delay
(The disease has not yet spread in the area. 
 ×
Diagnosis was delayed, but no significant 
spread occurred.)
(The disease has not yet spread in the area.,  
 ×
The disease was confirmed quickly, leading to 
effective control.)
......

.......

LLM

Attribute 1: value1, Attribute 2: value2 ... 

Attribute-Value Set

Attribute 1: value2, Attribute 2: value 1 ... 

.......

LLM

②
Attribute
 

Filtering

LLM

④
Sample
Filtering

①
Extract

③
Initial 
Gneration

⑤
Data 
Gneration

LLM

⑥
Translating  

 

 
 

Premise(P):
∀x(Disease(x)→¬Spread(x))∧¬Confirm 

ed(x))→Controlled(x) 

Hypothesis: ∃x¬Confirmed(x)

......

Symbolic Reprentation

Logical Programing

First-order Logic Prover

SMT Solver

Constraint Optimization

......

Solver

⑦
Label
Verifier

Failure 
Execution

Reasoning by 
LLM

       
         

       
   

      

  

Premise(P):
Given that the disease has not yet
spread in the area, by the time a case
of rabies is confirmed, the disease may 

still be effectively controlled.
Hypothesis: A case of rabies was
confirmed
Label: Not Entailment
.......

Verified Data

Stage1: Diverse Data Generation Stage2: Label Verification

⑧
Verification 
Feedback

Premise(P):
∀x(Disease(x)→¬Spread(x))∧¬Confirm 

ed(x))→Controlled(x) 

Hypothesis: ∃xConfirmed(x)

Figure 2: Overview of our multi-agent system, which contains two stages: using an existing BERT to divide the
data according to difficulty and mixing up the samples to model’s training from easy to hard. Best viewed in color.

of the data generated by the Data Generation Agent272

by introducing variations in the attributes of the273

original data (Sec.4.2). For label consistency, the274

Logic Verifier Agent ensures logical alignment be-275

tween the generated data and its labels through276

symbolic reasoning (Sec.4.3). Moreover, Logical277

DA incorporates a reflection mechanism that itera-278

tively refines the data based on external validation279

feedback, improving the overall quality of the gen-280

erated reasoning data (Sec.4.3). The full framework281

is summarized in Figure 2 and demonstrated below.282

4.2 The Stage of Diverse Data Generation283

This is the stage more various samples are gen-284

erated by extracting the attributes of the original285

data and varying these attributes to create new data.286

We design three agents to systematically accom-287

plish this task, which will be introduced below in288

accordance with the pipeline.289

Attribute Extract Agent. In our pipeline, the290

initial agent is the Attribute Extract Agent (AEA).291

Inspired by Yu et al. (2023b) and (Peng et al., 2024),292

the Attribute Extraction Agent (AEA) is developed293

to extract multiple attributes from the input sample.294

This process is akin to a latent space, where alter-295

native possible values for each extracted attribute296

are identified, thereby forming a dynamic attribute-297

value set Attr = {(attri, valuei1 , ..., valueim)}.298

Filtering Agent. The Filtering Agent (FA) pri-299

marily performs two operations:(1) filtering of at- 300

tribute value combinations, and (2) data filtering 301

based on diversity. First, FA employs the LLM to 302

choose combinations of attribute values Attrcomb 303

from the attribute-value set Attr provided by the 304

previous agent, ensuring that the combinations se- 305

lected are free from apparent conflicts. Based 306

on the attribute combinations in Attrcomb, the 307

Data Generation Agent (DGA) generates the initial 308

dataset Xinit. Then, the FA selects the K most di- 309

verse samples from Xinit to form the seed dataset 310

Xseed for final diversified sample generation. 311

Specifically, for each x ∈ Xinit, FA uses an em- 312

bedding model E , in this case, the sentence-BERT 313

(Reimers and Gurevych, 2019) model—to map the 314

data from the text space to the vector space, result- 315

ing in E(x). Then, we use cosine similarity to mea- 316

sure the diversity between samples. A smaller co- 317

sine similarity indicates greater diversity between 318

samples. Consequently, FA selects the K samples 319

with the smallest pairwise cosine similarity to form 320

Xseed as Eq. 2. 321

Xseed = argmax
{x1,...,xK}

∑
1≤i<j≤K

(1− cos (θ (xi, xj))) (2) 322

Finally, FA passes the filtered data Xseed to the 323

Data Generation Agent for the generation of diver- 324

sified samples. 325

Data Generation Agent. The Data Generation 326
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Agent (DGA) is responsible for the final stage of327

diversified data generation. The data generation328

methodology employed by the DGA is a two-step329

process: initially, it produces the preliminary trans-330

formed data Xinit by means of attribute transfor-331

mations; subsequently, for the Xseed refined by FA,332

it executes the conclusive multi-label data genera-333

tion, adjusting the data to maintain alignment with334

predetermined label relationships.335

In the first step of generation, DGA constructs336

a set of prompts Pinit by combining the attribute-337

value pairs obtained from FA with the initial trans-338

formation prompt Pinit. Then, DGA uses these339

prompts to invoke the LLM for transformation340

L(Piniti′ , Attrcomb), producing the set Xinit. This341

process is akin to latent space transformation: the342

original data is first mapped into an attribute space,343

and through attribute transformations in this space,344

it is then mapped back into the text space, resulting345

in diverse text samples.346

In the second step of generation, in contrast to347

certain LLM-based data augmentation techniques348

(Dai et al., 2023a; Ding et al., 2023) that apply349

transformations while preserving labels, the DGA350

employs an LLM to generate data with label mod-351

ifications since label modification augmentation352

provides valuable insights into the crucial compo-353

nents of a sentence that determine its label (Zhou354

et al., 2022b). Additionally, recent advancements355

(Peng et al., 2024) demonstrate that large language356

models have shown remarkable ability in control-357

ling single-attribute transformations. Inspired by358

the aforementioned approaches, DGA employs a359

multi-label generation strategy for data generation,360

where the data is transformed into various logical361

relationships suitable for reasoning tasks. Practi-362

cally, for a reasoning task dataset D with a label set363

C, the DGA generates data for a given data point364

(x, y) ∈ D as Eq. 3365

Xnew = {(x′i, ci)|x′i = L(x), ci ∈ C} (3)366

Where it is important to note that, in this context,367

we do not require x to be labeled data. Instead, we368

only need to know the task information associated369

with the data, which allows us to generate new data370

with various labels. The DGA then forwards the371

newly created data to the Logical Label Verification372

Agent for validation and amendment.373

4.3 The Stage of Label Verification.374

The task at this stage is to mitigate the incorrect la-375

beling of generated data due to LLM hallucinations,376

which can adversely affect its utility. The integra- 377

tion of symbolic languages with large language 378

models (Pan et al., 2023) has shown significant im- 379

provements in logical reasoning capabilities. To 380

ensure better logical validation of generated reason- 381

ing data, we propose the Logical Label Verification 382

Agent. This agent utilizes a specialized symbolic 383

solver, combined with its own symbolic reasoning, 384

to validate the generated labels. 385

Logical Label Verification Agent. The Logical 386

Label Verification Agent (LLVA) validates the la- 387

bels of the data generated by the Data Generation 388

Agent (DGA), ensuring that the logical relation- 389

ships between the generated data and their labels 390

are consistent. In cases where discrepancies are 391

found, the LLVA corrects the labels of the erro- 392

neous data, producing a validated dataset. 393

LLVA performs three primary actions: transla- 394

tion, solving, and label verification. In particular, 395

the LLVA first translates a given input text into 396

its corresponding symbolic representation. Then, 397

depending on the inference task, it selects an ap- 398

propriate symbolic solver to process the translated 399

symbolic language. However, since the solver can- 400

not fully execute the transformed symbolic rep- 401

resentation, inspired by the enhanced reasoning 402

capabilities of LLMs using symbolic language (Xu 403

et al., 2024b), we leverage an LLM to perform rea- 404

soning based on symbolic operation rules. This 405

enables logical verification of the generated data 406

labels and allows for necessary corrections. Finally, 407

the results from the logical reasoning are validated 408

against the data’s labels, and any inconsistencies 409

are corrected. The validated data is then ready for 410

downstream applications. 411

4.4 Agent reflection mechanism based on 412

label validation feedback 413

To enhance the Data Generation Agent’s (DGA) 414

ability to generate reasoning data that better aligns 415

with logical relationships, and inspired by stud- 416

ies (Gou et al., 2023) showing the effectiveness 417

of external validation in improving agent capabili- 418

ties, we have designed a feedback-based reflection 419

mechanism for our multi-agent system. In this 420

mechanism, information from the Logical Label 421

Verification Agent (LLVA) during the label valida- 422

tion phase is fed back to the DGA to optimize its 423

subsequent data generation. 424
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CB RTE FOLIO ProofWriter AR-LSAT LogDed Score
Method

Acc. Acc. Acc. Acc. Acc. Acc. Avg. ∆ (↑)

Performance of Different LLM DA Methods

BERT-base 55.94 52.21 34.64 39.44 22.79 18.33 37.22 –
-w/ AugGPT 72.01 54.62 36.76 36.44 23.23 17.55 40.10 +2.88
-w/ FlipDA++ 57.14 56.55 37.08 49.05 23.51 22.22 40.92 +3.70
-w/ AttrPrompt 72.01 53.42 36.51 46.16 22.83 19.33 41.68 +4.46
-w/ COTDA 71.42 52.82 37.57 42.55 23.08 17.55 40.83 +3.61
-w/ COTAM 57.14 56.55 34.31 37.05 23.80 21.99 38.47 +1.25
-w/ SelfLLMDA 72.01 52.94 36.27 40.38 22.22 18.33 40.35 +3.13
-w/ Logical DA (Ours) 74.10 56.19 39.14 51.85 24.38 23.33 44.83 +7.61

Table 1: Comparison between our and the vanilla method applied to DA methods on the benchmarks. “∆” denotes
the improvement of our methods compared to the baselines. Bold denotes the best performance.

Model FOLIO ProofWriter LogDed Avg.

Llama-3.2-3b-instruct
-w/ CoTDA 32.83 26.83 20.33 26.66
-w/ CoTAM 31.37 32.66 18.66 27.56
-w/ Logical DA (Ours) 34.80 33.05 21.33 29.72

GPT-3.5-turbo
-w/ CoTDA 46.07 59.67 25.33 43.69
-w/ CoTAM 38.73 59.67 27.66 42.02
-w/ Logical DA (Ours) 49.16 62.26 30.16 47.19

Table 2: Experimental results of different data aug-
mentation in ICL experiment. All values are average
accuracy (%) of three runs with different seeds. Models
are given 3 labeled data.

5 Experiments425

5.1 Datasets and metrics426

To investigate whether our method can effectively427

enhance model performance on reasoning tasks, we428

conduct extensive experiments on various reason-429

ing tasks, including various tasks from FewGLUE430

(Schick and Schütze, 2020) and other complex431

reasoning benchmarks. i.e., natural language in-432

ference (RTE, CB), deductive logical reasoning433

(ProofWriter (Tafjord et al., 2020), LogicalDeduc-434

tion (LogDed) (Srivastava et al., 2022)), and logical435

reasoning tasks (AR-LSAT (Zhong et al., 2022b),436

FOLIO (Han et al., 2024)). To simulate the low-437

resource scenarios, we randomly select 10 samples438

per class from the training set for each task and use439

them for training the models. More information440

about the dataset can be found in Appendix A.441

We use accuracy and EM (Exact Match) to eval-442

uate the performance of the pre-trained models and443

LLMs on these datasets, respectively.444

5.2 Compared Methods 445

We compared our method with other cutting- 446

edge counterparts, including FlipDA (Zhou et al., 447

2022b), AugGPT (Dai et al., 2023a), AttrPrompt 448

(Yu et al., 2023b), CoT Attribute Manipulation (Co- 449

TAM) (Peng et al., 2024), CoT Data Augmentation 450

(CoTDA) (Peng et al., 2024) and Self-LLMDA (Li 451

et al., 2024c). As the original FlipDA requires 452

a large supervised dataset that is inapplicable to 453

few-shot learning, we use an LLM-based variant 454

FlipDA++ (Peng et al., 2024). More information 455

about the baseline methods can be found in Ap- 456

pendix B. 457

5.3 Experiments settings 458

To comprehensively evaluate whether the data gen- 459

erated by our Logical DA can effectively enhance 460

the model’s logical reasoning capabilities, we con- 461

duct two sets of experiments: Fine-tuning and in- 462

Context Learning (ICL). These experiments assess 463

the performance of our method in both model train- 464

ing and large model context learning scenarios 465

1) Fine-tuning experiment: using the generated 466

data to fine-tune the pre-trained models such as 467

BERT (Devlin, 2018). 468

Specifically, we use the representative BERT- 469

BASE model as the backbone PLM, and fine-tune 470

them in a two-stage manner. Specifically, follow- 471

ing many previous mixup methods, we first train 472

the backbone PLMs (without using data augmenta- 473

tion) with a learning rate of 5e-5, and then continue 474

fine-tuning the models using the data augmentation 475

strategy with a learning rate of 1e-5. Note that our 476

methods are only adopted in the second stage. 477

We set a maximum sequence length of 128 and a 478

6



batch size of 32. AdamW optimizer with a weight479

decay of 1e-4 is used to optimize the model. We480

use a linear scheduler with a warmup for 10% of481

the total training step.482

2) In-context learning (ICL) experiment: ex-483

tracting K samples from the generated data as ex-484

amples and adding them into prompts to guide the485

generation of large language models such as Llama486

and GPT. We use GPT-3.5-turbo and Llama-3.2-487

3b-instruct as the base model, setting the parameter488

K = 3 and the temperature to 0.

Method FOLIO ProofWriter LogDed Avg. ∆

Logical DA 39.04 51.85 24.38 38.42 –
-w/o Verifier 37.57 49.81 22.83 36.73 -1.69
-w/o Attr Trans 38.23 49.16 23.51 36.96 -1.45

Table 3: Experimental results of ablation study. All
values are average accuracy (%) of three runs with dif-
ferent seeds.

489

5.4 Main results490

The full results of fine-tuning and ICL are shown491

in Table 1 and Table 2, and we can find that:492

Logical DA surpasses the cutting-edge counter-493

parts in most settings. Our Logical DA brings494

much better performance improvements than the495

other counterparts, i.e., up to +7.61% average score.496

Additionally, compared to the other LLM-based497

DA methods, Logical DA can also achieve superior498

performance. These results show the effectiveness499

of our Logical DA method.500

Logical DA brings consistent and significant per-501

formance gains among all fine-tuning and in-502

context learning. Here, we verify whether our503

Logical DA can still work in the LLM scenarios.504

Taking some tasks as examples, we show the con-505

trastive results in Table 2. It can be seen that, with506

the assistance of our Logical DA, LLM achieves507

much better performance against the baselines.508

Logical DA works well in both model sizes. As509

shown in Table 2, Logical DA consistently out-510

performs other methods in terms of the average511

score for both Llama-3.2-3b-instruct and GPT-3.5-512

turbo models. Specifically, Logical DA achieves513

the highest average score of 29.72% for Llama-3.2-514

3b-instruct and 47.19% for GPT-3.5-turbo, indi-515

cating its effectiveness in enhancing model perfor-516

mance regardless of the model size.517

5.5 Ablation Studies 518

We evaluate the impact of each component of our 519

Logical DA, including i) diversity data generation, 520

ii) label verification. By removing the correspond- 521

ing agents from our multi-agent system and observ- 522

ing the resulting data generation, we assess their 523

individual contributions. 524

Impact of diversity data generation. As men- 525

tioned in Sec 4.2, to obtain more diverse samples, 526

we perform attribute transformations to generate 527

the initial samples. To validate the importance of 528

this step, we conducted a comparison experiment 529

by removing the corresponding agents from the 530

original system. As shown in Table 3, the per- 531

formance dropped significantly, highlighting the 532

critical role of this step. 533

Impact of Label Verification A key component 534

of our method is the label verification stage. To 535

evaluate its effectiveness, we removed the Logical 536

Label Verification Agent (LLVA) from our system 537

and compared the performance with that of the full 538

Logical DA system. As shown in Table 3, when this 539

agent is removed, the model’s performance drops 540

significantly, indicating that the LLVA agent plays 541

an essential role in ensuring the logical consistency 542

of the generated reasoning data, thereby enhancing 543

the model’s reasoning capabilities. 544

5.6 Direct Evaluation of Data Quality 545

The results of the above experiments demonstrate 546

the exceptional performance of the data generated 547

by our Logical DA for model training. In this sec- 548

tion, we directly evaluate the quality of the gener- 549

ated data, including assessments of data diversity 550

and data faithfulness (Long et al., 2024). 551
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Figure 3: The proportion of unique words.

Divisity Evaluation Inspired by AttrPrompt (Yu 552

et al., 2023a), we evaluate the diversity of the data 553

generated by our system from two aspects: 1) the 554

7



Figure 4: The distribution of data similarity.

proportion of unique words in the generated data555

and 2) the distribution of data similarity.556

Figure 3 shows the proportion of unique words557

in all generated words, a metric often used to assess558

the diversity of the text. The results demonstrate559

that Logical DA generated a higher data diversity560

than any other baseline method.561

Moreover, to gain a more intuitive understanding562

of the data distribution, we calculated the cosine563

similarity matrix among the data, normalized it,564

and plotted the distribution curve of the cosine sim-565

ilarity. As shown in Figure 4, Logical DA exhibits566

a more favorable similarity distribution compared567

to other methods. Specifically, the data generated568

by Logical DA shows a lower cosine similarity,569

indicating greater diversity and less redundancy.

Method FOLIO ProofWriter LogDed Avg.

FlipDA++ 45.00 30.00 48.00 41.00
CoTDA 60.00 59.00 57.00 58.66
CoTAM 51.00 25.00 36.00 37.33
Logical DA (Ours) 69.00 57.00 66.00 64.00

Table 4: Experimental results of data faithfulness.

570

Data Faithfulness To evaluate the data faithful-571

ness of the data generated by our method, We com-572

pare the correctness of the labels generated by dif-573

ferent methods against the target labels, which are574

derived from a more powerful model, GPT-4o, and575

human annotations. The results, as shown in the576

table 4, indicate that our method significantly out-577

performs other methods that use LLM for data gen-578

eration in terms of label accuracy.579

Figure 5: Analysis of task generalization

5.7 Analysis of Model Generalization 580

To investigate whether our Logical DA improves 581

model generalization, we conduct experiments 582

measuring the cross-task zero-shot performance. 583

The performance of out-of-domain (OOD) data is 584

widely used to verify the model generalization (Xu 585

et al., 2021; Zhong et al., 2022a). Following the ap- 586

proach of (Zhong et al., 2022a), we evaluate model 587

performance on several OOD datasets. Specifically, 588

we fine-tune BERT-BASE model on data gener- 589

ated using different methods (including “AugGPT”, 590

“CoTAM”, and “Logical DA (ours)”) on the RTE 591

task, and then evaluate on other tasks, i.e., SST2 592

and Rotten tomato. The results are illustrated in 593

Figure 5. We observe that Logical DA consistently 594

outperforms the other counterparts, indicating that 595

our method boosts the performance of models on 596

OOD data. 597

6 Conclusion 598

In this study, we propose Logical DA, a multi-agent 599

framework that enhances logical reasoning data 600

augmentation in few-shot settings. The system 601

combines two core functions: generating diverse 602

reasoning data and verifying logical correctness 603

through label validation. By coordinating four spe- 604

cialized agents, it resolves key challenges in ex- 605

isting methods—data repetition, label mismatches, 606

and limited diversity. Experiments demonstrate 607

consistent performance gains in both fine-tuning 608

and in-context learning tasks, advancing language 609

models’ reasoning capabilities while reducing re- 610

liance on costly manual annotation. 611

Future work will aim to explore applying our 612

system to other multi-agent frameworks to mitigate 613

the negative impacts caused by contextual logical 614

conflicts in multi-agent collaboration. Also, follow 615

researches can extend this paradigm to multimodal 616

reasoning tasks, and optimize computational effi- 617

ciency for real-time deployment. 618
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7 Limitations619

Despite the significant advancements in generating620

higher-quality logical reasoning data and enhanc-621

ing model reasoning capabilities reported in this622

paper, our work has several potential limitations.623

Firstly, due to limited computational resources, we624

have only validated our Logical DA framework625

on the fine-tuning of pre-trained language models626

(PLMs) and in-context learning (ICL) of large lan-627

guage models (LLMs). Expanding our experiments628

to include fine-tuning of LLMs would provide addi-629

tional evidence of the robustness and generalizabil-630

ity of our approach. Secondly, while Logical DA631

primarily focuses on logical reasoning tasks, ap-632

plying it to a wider range of reasoning tasks could633

significantly increase its utility and impact. Future634

work will aim to extend this paradigm to broader635

domains of reasoning. Lastly, the effectiveness of636

our method depends on the capabilities of under-637

lying LLMs. Limitations in these models could638

impact the performance of Logical DA.639

8 Ethics Statement640

Our work involves utilizing large language mod-641

els to generate high-quality reasoning data, which642

poses no ethical concerns.643
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A Datasets Details 920

CB: A dataset from FewGLUE (Schick and 921

Schütze, 2020), containing examples with two sen- 922

tences: a premise p and a hypothesis h. The task is 923

to determine whether the relationship between the 924

premise and the hypothesis is one of entailment, 925

contradiction, or neutrality. 926

RTE: A dataset from FewGLUE (Schick and 927

Schütze, 2020), also containing examples with two 928

sentences: a premise p and a hypothesis h. CB is 929

specifically designed to test common sense and rea- 930

soning abilities, often requiring deeper understand- 931

ing and inference. RTE, on the other hand, focuses 932

more on whether the premise can directly entail 933

the hypothesis, typically involving more straight- 934

forward logical relationships. 935

ProofWriter (Tafjord et al., 2020): A widely 936

used dataset for deductive logical reasoning. The 937

problems are presented in a more natural language 938

format. We utilize the open-world assumption 939

(OWA) subset, where each example consists of 940

a (problem, goal) pair, and the label is one of 941

{Proved,Disproved, Unknown}. 942

LogicalDeduction: A challenging logical rea- 943

soning task from the BigBench (Srivastava et al., 944
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2022) collaborative benchmark. The problems pri-945

marily involve deducing the order of a sequence of946

objects based on a minimal set of conditions.947

AR-LSAT (Zhong et al., 2022b): This dataset948

compiles all analytical logic reasoning questions949

from the Law School Admission Test (LSAT) ad-950

ministered between 1991 and 2016.951

FOLIO (Han et al., 2024): A challenging expert-952

written dataset designed for logical reasoning tasks.953

The questions are closely aligned with real-world954

knowledge, use highly natural language, and re-955

quire complex first-order logic reasoning to solve.956

B Baseline Details957

FlipDA++ (Zhou et al., 2022b): FlipDA is a tradi-958

tional method for data augmentation using a well-959

tuned T5 model to switch labels. The sentence and960

the new label are given to T5, which then masks961

and fills in parts of the sentence based on the new962

label to change its meaning. Since the original963

FlipDA needs a lot of labeled data, which is not964

suitable for few-shot learning, FlipDA++ was cre-965

ated (Peng et al., 2024), which works by telling the966

LLM to replace parts of the sentence with the new967

label.968

AugGPT (Dai et al., 2023a): an approach that969

rephrases each sentence in the training samples970

into multiple conceptually similar but semantically971

different samples.972

AttrPrompt (Yu et al., 2023b): a framework de-973

signed to generate diverse and less biased training974

data for NLP tasks by using attributed prompts. It975

leverages Large Language Models (LLMs) to gen-976

erate training data with specific attributes, aiming977

to improve data diversity and reduce systemic bias.978

CoT Attribute Manipulation (CoTAM) (Peng979

et al., 2024): an approach that generates new data980

from existing examples by only tweaking the user-981

provided, task-specific attribute, e.g., sentiment982

polarity or topic in movie reviews.983

CoT Data Augmentation (CoTDA) (Peng et al.,984

2024): an augmentation variant of CoTAM that985

applies a similar CoT for conventional augmenta-986

tion. Instead of directly asking for augmentation,987

CoTDA let the LLM follow our proposed CoT and988

propose a methodology to write a sentence with the989

same attributes as the input sentence.990

Self-LLMDA (Li et al., 2024c): a framework991

that automates augmentation instruction generation992

and selection, facilitating LLM to generate task-993

specific augmented data.994
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