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Abstract

Recent advancements in large language models
(LLMs) have highlighted the importance of im-
proving their reasoning capabilities. A critical
challenge lies in the scarcity of high-quality
reasoning data—characterized by diversity and
rich supervisory signals—necessary for robust
model training. While data augmentation (DA)
methods have been leveraged to mitigate this
scarcity, prevailing approaches often introduce
noise and exhibit logical inconsistencies,
thereby diminishing their utility for complex
reasoning tasks. Moreover, existing DA
paradigms predominantly isolate data synthesis
from label validation, failing to unify these
complementary processes within a cohesive
architecture. To address these limitations,
we introduce Logical DA, a multi-agent
framework for enhancing reasoning-focused
data augmentation in few-shot learning
scenarios. Our system includes four agents
operating through two synergistic phases: (1)
diverse data generation, and (2) label verifi-
cation. The system incorporates a reflection
mechanism to continuously improve data
quality by leveraging feedback from logical
validation. We demonstrate the effectiveness
of Logical DA through experiments on various
tasks and datasets, achieving the highest
average improvement in task accuracy in both
fine-tuning and in-context learning paradigms,
with an average improvement of 7.61% when
applied to fine-tuning. Our code is available
at https://anonymous.4open.science/t/acl25-
E819

1 Introduction

Researchers have been focusing on the reasoning
capability of large language models (LLMs) re-
cently (OpenAl, 2024), where a key challenge is
the limitation of high-quality reasoning data for
model training. The ideal training data of reason-
ing is diverse and is rich in supervision information

Figure 1: Low-quality data generation vs High-quality
data generation

(Long et al., 2024), which requires costly manual
annotations (Xu et al., 2025).

In view of this challenge, researchers have in-
creasingly employed data augmentation (DA) tech-
niques that enrich the dataset to alleviate the issue
of data scarcity (Chen et al., 2023). Facilitated
by the outstanding text generation capabilities of
LLMs, researchers have employed LLMs for DA,
including data generation derived from the original
dataset and prompt-based label assignment (Ding
et al., 2024), which have been experimentally veri-
fied effective (Dai et al., 2023a; Ding et al., 2023;
Peng et al., 2024). Driven by the target tasks, such
augmented data is then used for performance en-
hancement, via model training or integration into
In-Context Learning (ICL) within the LLM (Wang
et al., 2024a).

However, due to the inherent hallucination of
LLMs and the lack of verification for generated
labels, methods that rely solely on LLMs for data
generation (Dai et al., 2023a) often produce noisy
data, manifested as factual inaccuracies, label mis-
matches, or irrelevant content (Long et al., 2024),
which sabotages the effectiveness of reasoning data
augmentation, as shown in Figure 1. Moreover, the
generated data often suffers from a lack of diversity
that may jeopardize the model’s generalization abil-
ity, which can be partially alleviated by controlled
prompting (Yu et al., 2023a; Peng et al., 2024).
Another challenge is that existing augmentation
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techniques tend to focus on either data creation or
data annotation, where a unified framework that
effectively integrates both tasks is desired.

In this paper, we argue that an effective data
augmentation framework, which aims to generate
high-quality and logically sound data, requires two
key capabilities: generating diverse samples and
verifying logical correctness. Thus, inspired by the
advantages of LLM-based Multi-Agent Systems in
various domains (Chen et al., 2024), we propose a
multi-agent system to enhance data augmentation
in few-shot scenarios.

To jointly optimize data diversity and label con-
sistency, we architect a multi-agent framework
comprising four collaborative agents, structured
into two main phases:

(1) Diverse Data Generation: In this stage, the
Attribute Extraction Agent (AEA) performs an ini-
tial attribute extraction on the input data, gener-
ating a dynamic set of attributes specific to the
data. The Filtering Agent (FA) then selects appro-
priate attribute combinations that are free from ob-
vious logical conflicts and passes them to the Data
Generation Agent (DGA) to generate preliminary
transformed samples. Following this, FA filters
out samples with richer variety, which are further
processed by DGA to create high-diversity data.

(2) Label Verification: To mitigate label mis-
matches caused by hallucinations, we propose the
Logical Label Verification Agent (LLVA), which
grounds generated outputs in formal symbolic rea-
soning primitives. This improves the labeling accu-
racy of the generated reasoning data. Additionally,
we implement a reflection mechanism based on
logical validation feedback, allowing LLVA to feed
label validation information back to DGA. This
closed-loop architecture enables DGA to dynami-
cally recalibrate its generation.

Our contributions are three-fold as follows:

* We first propose a complete multi-agent data
augmentation framework, including the capa-
bilities of generating data labeled with various
categories and enhancing the fidelity of the
generated data through logical validation.

* Our work is pioneering in focusing on the
augmentation of logical reasoning data, alle-
viating the shortage of high-quality logical
reasoning data and providing solid data sup-
port for enhancing the reasoning capabilities
of LLMs, thus playing a foundational role.

* We conduct experiments on a wide spectrum
of tasks and datasets, demonstrating the effec-
tiveness of the augmented data by Logical DA
in both fine-tuning and in-context learning

2 Related Work

Logical Reasoning. Early approaches to LLM-
based reasoning operated directly on natural lan-
guage representations (Wei et al., 2022; Clark et al.,
2020; Zhou et al., 2022a). However, given that
LLMs are essentially black-box probabilistic mod-
els, the reasoning outcomes derived in this manner
could not be guaranteed to be faithful and reliable
(Shanahan, 2024). Subsequently, a series of meth-
ods emerged that employed symbolic languages
as the fundamental units of reasoning (Pan et al.,
2023; Gao et al., 2023b; Xu et al., 2024b). Owing
to their strict adherence to predefined reasoning
rules and logic, these methods are deemed to be
transparent and trustworthy.

Typically, LOGIC-LM (Pan et al., 2023) em-
ploys LLMs to convert natural language questions
into symbolic representations, which are subse-
quently processed through symbolic executors for
deterministic symbolic reasoning and result inter-
pretation. Similarly, SymbCoT (Xu et al., 2024b)
transforms natural language contexts into sym-
bolic formats, generates stepwise procedural plans,
and directs model reasoning along these structured
guidelines. Building upon this approach, Aristotle
(Xu et al., 2024a) implements an enhanced frame-
work that guides LLMs in applying the resolution
principle for logical deduction, achieving superior
performance in logic reasoning tasks.

Differing from the aforementioned works that
directly apply methods to enhance model reasoning
capabilities, our objective is to employ symbolic
reasoning to augment logical data. Additionally,
we integrate the model’s independent symbolic rea-
soning with the invocation of symbolic solvers,
thereby more comprehensively ensuring the logical
reasoning process.

Data Augmentation via LLMs. In recent years,
data augmentation techniques based on LLMs have
evolved from label-preserving to label-flipping ap-
proaches. Initially, methods directly utilized the
demonstrations in prompts to guide models in gen-
erating new task-specific data (Kumar et al., 2020;
Sahu et al., 2022; Dai et al., 2023b), which were
subsequently employed for model training or in-
context learning (Li et al., 2023; Su et al., 2024).



However, the data generated in this manner, lack-
ing explicit generation criteria and patterns, may
lead to spurious correlations.

In light of this limitation, several label-flipping
data augmentation methods have emerged (Yoo
etal., 2021; Yu et al., 2023a). These methods gen-
erate diverse data that are either related or con-
tradictory by editing the attributes of the input
data. FlipDA (Zhou et al., 2022b)introduces a data
augmentation method that jointly uses a genera-
tive model (T5) and a classifier to generate label-
flipped data. The key insight is that generating
label-flipped data is more crucial for improving per-
formance than generating label-preserved data. In-
spired by this, COTAM (Peng et al., 2024)instructed
the LLM to flip labels to other labels in the dataset
to get richer data.

In our work, we also employ a label-flipping
approach similar to those mentioned previously.
However, rather than confining labels to strictly
similar or opposing categories, we strive to intro-
duce a broader spectrum of labels (i.e. True, False
and Unknown). This strategy ensures the diversity
of the generated data.

LLM-Based Agents. The development of
LLMs has demonstrated a notable capacity for in-
teracting with environments and making decisions,
thereby fulfilling expectations of intelligent agents
(Lietal., 2024b). Drawing an analogy to real-world
human society, where complex tasks are more
efficiently, accurately, and systematically accom-
plished through the division of labor among mul-
tiple specialized departments, research on multi-
agent systems based on LLMs has rapidly advanced
across various domains. Examples include soft-
ware development (Qian et al., 2024; Du et al.,
2024), code generation (Islam et al., 2024), game
simulation (Li et al., 2024a), and social network
simulation (Gao et al., 2023a)).

The overarching strategy of replacing single-
agent models with multi-agent models involves
decomposing tasks into multiple distinct subtasks
and assigning them to different agents. The rela-
tionships among these agents can be characterized
as either linear pipelines (Yue et al., 2025; Liu
et al., 2023; Shen et al., 2024), collective decision-
making processes (Cheng et al., 2024; Liang et al.,
2024), or iterative self-refinement (Wang et al.,
2024b; Tang et al., 2024), ultimately converging to
form a final decision.

In our proposed framework, following the linear
workflow of three agents responsible for attribute

extraction, data filtering, and data generation, we
introduce a reflective mechanism for logical valida-
tion. This logical validation component provides
feedback to the data generation agent, enabling it
to verify and refine its output.

3 Preliminary

Problem Definition Our goal is to build a multi-
agent system for data augmentation in logical rea-
soning tasks. This system aims to enhance the
generation of high-quality and diverse reasoning
data to improve the model’s reasoning abilities. We
define an LLM agent a € A as a specialized model
that takes text as input and returns text as output,
specified by a unique identifier label [ and a map-
ping f : V — V. Each agent qa; is specialized in a
specific subtask and is powered by an LLM L;.

For a text dataset D = {(x;,yi)}*_,, where
each sample consists of an input text x; and a cor-
responding label y;, data augmentation (DA) using
large models involves utilizing prompts P to guide
LLMs in generating novel augmented data from
the given input text x; as follows:

(xf, ;) = L(P, (x4, y3))- (1)

Logical Reasoning Data For a logical reasoning
sample (z;,y;) € D, the input text x; typically con-
sists of two text pairs (Pre;, Hyp;), where Pre;
is a set of premises p;, p2, ...p, With each p; rep-
resents a logical statement, and Hyp; is usually
a statement that we aim to evaluate based on the
premises. The label y; for logical data refers to the
logical relationship between the Pre; and Hyp;.

4 Method

4.1 Overview

In this paper, we propose Logical DA, a multi-agent
system for reasoning data augmentation in few-shot
scenarios. Our goal is to generate high-quality and
high-diversity reasoning data with rich supervision
signals (Long et al., 2024), which is essential for
model training. We decompose the data augmen-
tation task into two primary subtasks: 1) diverse
data generation and 2) label verification. We design
four agents to collaboratively complete the entire
task. Specifically, our system employs a structured
pipeline where agents specialize in specific tasks.
To address the repetition issue in data generated by
LLMs, we employ the Attribute Extraction Agent
and the Filter Agent, which enhance the diversity
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Figure 2: Overview of our multi-agent system, which contains two stages: using an existing BERT to divide the
data according to difficulty and mixing up the samples to model’s training from easy to hard. Best viewed in color.

of the data generated by the Data Generation Agent
by introducing variations in the attributes of the
original data (Sec.4.2). For label consistency, the
Logic Verifier Agent ensures logical alignment be-
tween the generated data and its labels through
symbolic reasoning (Sec.4.3). Moreover, Logical
DA incorporates a reflection mechanism that itera-
tively refines the data based on external validation
feedback, improving the overall quality of the gen-
erated reasoning data (Sec.4.3). The full framework
is summarized in Figure 2 and demonstrated below.

4.2 The Stage of Diverse Data Generation

This is the stage more various samples are gen-
erated by extracting the attributes of the original
data and varying these attributes to create new data.
We design three agents to systematically accom-
plish this task, which will be introduced below in
accordance with the pipeline.

Attribute Extract Agent. In our pipeline, the
initial agent is the Attribute Extract Agent (AEA).
Inspired by Yu et al. (2023b) and (Peng et al., 2024),
the Attribute Extraction Agent (AEA) is developed
to extract multiple attributes from the input sample.
This process is akin to a latent space, where alter-
native possible values for each extracted attribute
are identified, thereby forming a dynamic attribute-
value set Attr = {(attr;, value;, , ...,value;,,)}.

Filtering Agent. The Filtering Agent (FA) pri-

marily performs two operations:(1) filtering of at-
tribute value combinations, and (2) data filtering
based on diversity. First, FA employs the LLM to
choose combinations of attribute values Attrcompb
from the attribute-value set Attr provided by the
previous agent, ensuring that the combinations se-
lected are free from apparent conflicts. Based
on the attribute combinations in Attrcomn, the
Data Generation Agent (DGA) generates the initial
dataset X;,,;;. Then, the FA selects the K most di-
verse samples from X;,,;; to form the seed dataset
Xseeq for final diversified sample generation.

Specifically, for each « € Xj,;;, FA uses an em-
bedding model &, in this case, the sentence-BERT
(Reimers and Gurevych, 2019) model—to map the
data from the text space to the vector space, result-
ing in £(z). Then, we use cosine similarity to mea-
sure the diversity between samples. A smaller co-
sine similarity indicates greater diversity between
samples. Consequently, FA selects the K samples
with the smallest pairwise cosine similarity to form
Xseeq as Eq. 2.

Xocea = argmaz (1 —cos (6 (z;,z;))) ()
{e1rr <<k
Finally, FA passes the filtered data X 4 to the
Data Generation Agent for the generation of diver-
sified samples.
Data Generation Agent. The Data Generation



Agent (DGA) is responsible for the final stage of
diversified data generation. The data generation
methodology employed by the DGA is a two-step
process: initially, it produces the preliminary trans-
formed data X;,;; by means of attribute transfor-
mations; subsequently, for the X .4 refined by FA,
it executes the conclusive multi-label data genera-
tion, adjusting the data to maintain alignment with
predetermined label relationships.

In the first step of generation, DGA constructs
a set of prompts P;,;; by combining the attribute-
value pairs obtained from FA with the initial trans-
formation prompt Pj,;;. Then, DGA uses these
prompts to invoke the LLM for transformation
L(Pinit,, , Attreom), producing the set Xj,;¢. This
process is akin to latent space transformation: the
original data is first mapped into an attribute space,
and through attribute transformations in this space,
it is then mapped back into the text space, resulting
in diverse text samples.

In the second step of generation, in contrast to
certain LLM-based data augmentation techniques
(Dai et al., 2023a; Ding et al., 2023) that apply
transformations while preserving labels, the DGA
employs an LLLM to generate data with label mod-
ifications since label modification augmentation
provides valuable insights into the crucial compo-
nents of a sentence that determine its label (Zhou
et al., 2022b). Additionally, recent advancements
(Peng et al., 2024) demonstrate that large language
models have shown remarkable ability in control-
ling single-attribute transformations. Inspired by
the aforementioned approaches, DGA employs a
multi-label generation strategy for data generation,
where the data is transformed into various logical
relationships suitable for reasoning tasks. Practi-
cally, for a reasoning task dataset D with a label set
C, the DGA generates data for a given data point
(z,y) € DasEq. 3

Xnew = {(2}, ¢)) |2} = L(z),¢c; € C}  (3)

Where it is important to note that, in this context,
we do not require z to be labeled data. Instead, we
only need to know the task information associated
with the data, which allows us to generate new data
with various labels. The DGA then forwards the
newly created data to the Logical Label Verification
Agent for validation and amendment.

4.3 The Stage of Label Verification.

The task at this stage is to mitigate the incorrect la-
beling of generated data due to LLM hallucinations,

which can adversely affect its utility. The integra-
tion of symbolic languages with large language
models (Pan et al., 2023) has shown significant im-
provements in logical reasoning capabilities. To
ensure better logical validation of generated reason-
ing data, we propose the Logical Label Verification
Agent. This agent utilizes a specialized symbolic
solver, combined with its own symbolic reasoning,
to validate the generated labels.

Logical Label Verification Agent. The Logical
Label Verification Agent (LLVA) validates the la-
bels of the data generated by the Data Generation
Agent (DGA), ensuring that the logical relation-
ships between the generated data and their labels
are consistent. In cases where discrepancies are
found, the LLVA corrects the labels of the erro-
neous data, producing a validated dataset.

LLVA performs three primary actions: transla-
tion, solving, and label verification. In particular,
the LLVA first translates a given input text into
its corresponding symbolic representation. Then,
depending on the inference task, it selects an ap-
propriate symbolic solver to process the translated
symbolic language. However, since the solver can-
not fully execute the transformed symbolic rep-
resentation, inspired by the enhanced reasoning
capabilities of LLMs using symbolic language (Xu
et al., 2024b), we leverage an LLM to perform rea-
soning based on symbolic operation rules. This
enables logical verification of the generated data
labels and allows for necessary corrections. Finally,
the results from the logical reasoning are validated
against the data’s labels, and any inconsistencies
are corrected. The validated data is then ready for
downstream applications.

4.4 Agent reflection mechanism based on
label validation feedback

To enhance the Data Generation Agent’s (DGA)
ability to generate reasoning data that better aligns
with logical relationships, and inspired by stud-
ies (Gou et al., 2023) showing the effectiveness
of external validation in improving agent capabili-
ties, we have designed a feedback-based reflection
mechanism for our multi-agent system. In this
mechanism, information from the Logical Label
Verification Agent (LLVA) during the label valida-
tion phase is fed back to the DGA to optimize its
subsequent data generation.



CB RTE FOLIO ProofWriter AR-LSAT LogDed Score
Method
Acc.  Acc. Acc. Acc. Acc. Acc. Avg. A1)
Performance of Different LLM DA Methods
BERT-base 5594 5221 34.64 39.44 22.79 18.33  37.22 -
 -w/AugGPT 7201 5462 3676 3644 2323 1755 4010 +2.88
-w/ FlipDA++ 57.14 56.55 37.08 49.05 23.51 2222 4092 +3.70
-w/ AttrPrompt 72.01 5342 36.51 46.16 22.83 19.33 41.68 +4.46
-w/ COTDA 7142 52.82 3757 42.55 23.08 17.55 40.83 +3.61
-w/ COTAM 57.14 56.55 34.31 37.05 23.80 21.99 3847 +1.25
-w/ SelfLLMDA 72.01 5294  36.27 40.38 22.22 18.33 40.35 +3.13
-w/ Logical DA (Ours) 74.10 56.19  39.14 51.85 24.38 23.33 44.83 +7.61

Table 1: Comparison between our and the vanilla method applied to DA methods on the benchmarks. “A” denotes
the improvement of our methods compared to the baselines. Bold denotes the best performance.

Model FOLIO ProofWriter LogDed Avg.

 Llama-3.2-3b-instret
-w/ CoTDA 32.83 26.83 20.33  26.66
-w/ CoTAM 31.37 32.66 18.66  27.56
-w/ Logical DA (Ours)  34.80 33.05 21.33  29.72

(GPT3.5-twrbo
-w/ CoTDA 46.07 59.67 2533  43.69
-w/ CoTAM 38.73 59.67 27.66  42.02
-w/ Logical DA (Ours)  49.16 62.26 30.16 47.19

Table 2: Experimental results of different data aug-
mentation in ICL experiment. All values are average
accuracy (%) of three runs with different seeds. Models
are given 3 labeled data.

5 Experiments

5.1 Datasets and metrics

To investigate whether our method can effectively
enhance model performance on reasoning tasks, we
conduct extensive experiments on various reason-
ing tasks, including various tasks from FewGLUE
(Schick and Schiitze, 2020) and other complex
reasoning benchmarks. i.e., natural language in-
ference (RTE, CB), deductive logical reasoning
(ProofWriter (Tafjord et al., 2020), LogicalDeduc-
tion (LogDed) (Srivastava et al., 2022)), and logical
reasoning tasks (AR-LSAT (Zhong et al., 2022b),
FOLIO (Han et al., 2024)). To simulate the low-
resource scenarios, we randomly select 10 samples
per class from the training set for each task and use
them for training the models. More information
about the dataset can be found in Appendix A.

We use accuracy and EM (Exact Match) to eval-
uate the performance of the pre-trained models and
LLMs on these datasets, respectively.

5.2 Compared Methods

We compared our method with other cutting-
edge counterparts, including FlipDA (Zhou et al.,
2022b), AugGPT (Dai et al., 2023a), AttrPrompt
(Yu et al., 2023b), CoT Attribute Manipulation (Co-
TAM) (Peng et al., 2024), CoT Data Augmentation
(CoTDA) (Peng et al., 2024) and Self-LLMDA (Li
et al., 2024c). As the original FlipDA requires
a large supervised dataset that is inapplicable to
few-shot learning, we use an LLM-based variant
FlipDA++ (Peng et al., 2024). More information
about the baseline methods can be found in Ap-
pendix B.

5.3 Experiments settings

To comprehensively evaluate whether the data gen-
erated by our Logical DA can effectively enhance
the model’s logical reasoning capabilities, we con-
duct two sets of experiments: Fine-tuning and in-
Context Learning (ICL). These experiments assess
the performance of our method in both model train-
ing and large model context learning scenarios

1) Fine-tuning experiment: using the generated
data to fine-tune the pre-trained models such as
BERT (Devlin, 2018).

Specifically, we use the representative BERT-
BASE model as the backbone PLM, and fine-tune
them in a two-stage manner. Specifically, follow-
ing many previous mixup methods, we first train
the backbone PLMs (without using data augmenta-
tion) with a learning rate of Se-5, and then continue
fine-tuning the models using the data augmentation
strategy with a learning rate of 1e-5. Note that our
methods are only adopted in the second stage.

We set a maximum sequence length of 128 and a



batch size of 32. AdamW optimizer with a weight
decay of le-4 is used to optimize the model. We
use a linear scheduler with a warmup for 10% of
the total training step.

2) In-context learning (ICL) experiment: ex-
tracting K samples from the generated data as ex-
amples and adding them into prompts to guide the
generation of large language models such as Llama
and GPT. We use GPT-3.5-turbo and Llama-3.2-
3b-instruct as the base model, setting the parameter
K = 3 and the temperature to 0.

Method FOLIO ProofWriter LogDed Avg. A
_LogicalDa 3904 3 5185 2438 3842 -
-w/o Verifier 37.57 49.81 22.83 3673 -1.69
-w/o Attr Trans ~ 38.23 49.16 2351 3696 -1.45

Table 3: Experimental results of ablation study. All
values are average accuracy (%) of three runs with dif-
ferent seeds.

5.4 Main results

The full results of fine-tuning and ICL are shown
in Table 1 and Table 2, and we can find that:

Logical DA surpasses the cutting-edge counter-
parts in most settings. Our Logical DA brings
much better performance improvements than the
other counterparts, i.e., up to +7.61% average score.
Additionally, compared to the other LLM-based
DA methods, Logical DA can also achieve superior
performance. These results show the effectiveness
of our Logical DA method.

Logical DA brings consistent and significant per-
formance gains among all fine-tuning and in-
context learning. Here, we verify whether our
Logical DA can still work in the LLM scenarios.
Taking some tasks as examples, we show the con-
trastive results in Table 2. It can be seen that, with
the assistance of our Logical DA, LLM achieves
much better performance against the baselines.

Logical DA works well in both model sizes. As
shown in Table 2, Logical DA consistently out-
performs other methods in terms of the average
score for both Llama-3.2-3b-instruct and GPT-3.5-
turbo models. Specifically, Logical DA achieves
the highest average score of 29.72% for Llama-3.2-
3b-instruct and 47.19% for GPT-3.5-turbo, indi-
cating its effectiveness in enhancing model perfor-
mance regardless of the model size.

5.5 Ablation Studies

We evaluate the impact of each component of our
Logical DA, including i) diversity data generation,
ii) label verification. By removing the correspond-
ing agents from our multi-agent system and observ-
ing the resulting data generation, we assess their
individual contributions.

Impact of diversity data generation. As men-
tioned in Sec 4.2, to obtain more diverse samples,
we perform attribute transformations to generate
the initial samples. To validate the importance of
this step, we conducted a comparison experiment
by removing the corresponding agents from the
original system. As shown in Table 3, the per-
formance dropped significantly, highlighting the
critical role of this step.

Impact of Label Verification A key component
of our method is the label verification stage. To
evaluate its effectiveness, we removed the Logical
Label Verification Agent (LLVA) from our system
and compared the performance with that of the full
Logical DA system. As shown in Table 3, when this
agent is removed, the model’s performance drops
significantly, indicating that the LLVA agent plays
an essential role in ensuring the logical consistency
of the generated reasoning data, thereby enhancing
the model’s reasoning capabilities.

5.6 Direct Evaluation of Data Quality

The results of the above experiments demonstrate
the exceptional performance of the data generated
by our Logical DA for model training. In this sec-
tion, we directly evaluate the quality of the gener-
ated data, including assessments of data diversity
and data faithfulness (Long et al., 2024).

ProofWriter LogicalDeduction AR-LSAT

FOLIO CB RTE

AugGPT CoTAM CoTDA FlipDA++ AttrPrompt Self-LLMDA Logical DA

Figure 3: The proportion of unique words.

Divisity Evaluation Inspired by AttrPrompt (Yu
et al., 2023a), we evaluate the diversity of the data
generated by our system from two aspects: 1) the
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proportion of unique words in the generated data
and 2) the distribution of data similarity.

Figure 3 shows the proportion of unique words
in all generated words, a metric often used to assess
the diversity of the text. The results demonstrate
that Logical DA generated a higher data diversity
than any other baseline method.

Moreover, to gain a more intuitive understanding
of the data distribution, we calculated the cosine
similarity matrix among the data, normalized it,
and plotted the distribution curve of the cosine sim-
ilarity. As shown in Figure 4, Logical DA exhibits
a more favorable similarity distribution compared
to other methods. Specifically, the data generated
by Logical DA shows a lower cosine similarity,
indicating greater diversity and less redundancy.

Method FOLIO ProofWriter LogDed Avg.

FlipDA++ 45.00 30.00 48.00  41.00
CoTDA 60.00 59.00 57.00  58.66
CoTAM 51.00 25.00 36.00 37.33
Logical DA (Ours)  69.00 57.00 66.00  64.00

Table 4: Experimental results of data faithfulness.

Data Faithfulness To evaluate the data faithful-
ness of the data generated by our method, We com-
pare the correctness of the labels generated by dif-
ferent methods against the target labels, which are
derived from a more powerful model, GPT-40, and
human annotations. The results, as shown in the
table 4, indicate that our method significantly out-
performs other methods that use LLM for data gen-
eration in terms of label accuracy.

RTE — SST2

RTE — Rotten

Accuracy (%)

40 . .
AugGPT CoTAM Logical DA

Figure 5: Analysis of task generalization

5.7 Analysis of Model Generalization

To investigate whether our Logical DA improves
model generalization, we conduct experiments
measuring the cross-task zero-shot performance.
The performance of out-of-domain (OOD) data is
widely used to verify the model generalization (Xu
et al., 2021; Zhong et al., 2022a). Following the ap-
proach of (Zhong et al., 2022a), we evaluate model
performance on several OOD datasets. Specifically,
we fine-tune BERT-BASE model on data gener-
ated using different methods (including “AugGPT”,
“CoTAM”, and “Logical DA (ours)”) on the RTE
task, and then evaluate on other tasks, i.e., SST2
and Rotten tomato. The results are illustrated in
Figure 5. We observe that Logical DA consistently
outperforms the other counterparts, indicating that
our method boosts the performance of models on
OOD data.

6 Conclusion

In this study, we propose Logical DA, a multi-agent
framework that enhances logical reasoning data
augmentation in few-shot settings. The system
combines two core functions: generating diverse
reasoning data and verifying logical correctness
through label validation. By coordinating four spe-
cialized agents, it resolves key challenges in ex-
isting methods—data repetition, label mismatches,
and limited diversity. Experiments demonstrate
consistent performance gains in both fine-tuning
and in-context learning tasks, advancing language
models’ reasoning capabilities while reducing re-
liance on costly manual annotation.

Future work will aim to explore applying our
system to other multi-agent frameworks to mitigate
the negative impacts caused by contextual logical
conflicts in multi-agent collaboration. Also, follow
researches can extend this paradigm to multimodal
reasoning tasks, and optimize computational effi-
ciency for real-time deployment.



7 Limitations

Despite the significant advancements in generating
higher-quality logical reasoning data and enhanc-
ing model reasoning capabilities reported in this
paper, our work has several potential limitations.
Firstly, due to limited computational resources, we
have only validated our Logical DA framework
on the fine-tuning of pre-trained language models
(PLMs) and in-context learning (ICL) of large lan-
guage models (LLMs). Expanding our experiments
to include fine-tuning of LLMs would provide addi-
tional evidence of the robustness and generalizabil-
ity of our approach. Secondly, while Logical DA
primarily focuses on logical reasoning tasks, ap-
plying it to a wider range of reasoning tasks could
significantly increase its utility and impact. Future
work will aim to extend this paradigm to broader
domains of reasoning. Lastly, the effectiveness of
our method depends on the capabilities of under-
lying LLMs. Limitations in these models could
impact the performance of Logical DA.

8 Ethics Statement

Our work involves utilizing large language mod-
els to generate high-quality reasoning data, which
poses no ethical concerns.
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A Datasets Details

CB: A dataset from FewGLUE (Schick and
Schiitze, 2020), containing examples with two sen-
tences: a premise p and a hypothesis h. The task is
to determine whether the relationship between the
premise and the hypothesis is one of entailment,
contradiction, or neutrality.

RTE: A dataset from FewGLUE (Schick and
Schiitze, 2020), also containing examples with two
sentences: a premise p and a hypothesis h. CB is
specifically designed to test common sense and rea-
soning abilities, often requiring deeper understand-
ing and inference. RTE, on the other hand, focuses
more on whether the premise can directly entail
the hypothesis, typically involving more straight-
forward logical relationships.

ProofWriter (Tafjord et al., 2020): A widely
used dataset for deductive logical reasoning. The
problems are presented in a more natural language
format. We utilize the open-world assumption
(OWA) subset, where each example consists of
a (problem, goal) pair, and the label is one of
{Proved, Disproved, Unknown}.

LogicalDeduction: A challenging logical rea-
soning task from the BigBench (Srivastava et al.,
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2022) collaborative benchmark. The problems pri-
marily involve deducing the order of a sequence of
objects based on a minimal set of conditions.

AR-LSAT (Zhong et al., 2022b): This dataset
compiles all analytical logic reasoning questions
from the Law School Admission Test (LSAT) ad-
ministered between 1991 and 2016.

FOLIO (Han et al., 2024): A challenging expert-
written dataset designed for logical reasoning tasks.
The questions are closely aligned with real-world
knowledge, use highly natural language, and re-
quire complex first-order logic reasoning to solve.

B Baseline Details

FlipDA++ (Zhou et al., 2022b): FlipDA is a tradi-
tional method for data augmentation using a well-
tuned TS5 model to switch labels. The sentence and
the new label are given to TS5, which then masks
and fills in parts of the sentence based on the new
label to change its meaning. Since the original
FlipDA needs a lot of labeled data, which is not
suitable for few-shot learning, FlipDA++ was cre-
ated (Peng et al., 2024), which works by telling the
LLM to replace parts of the sentence with the new
label.

AugGPT (Dai et al., 2023a): an approach that
rephrases each sentence in the training samples
into multiple conceptually similar but semantically
different samples.

AttrPrompt (Yu et al., 2023b): a framework de-
signed to generate diverse and less biased training
data for NLP tasks by using attributed prompts. It
leverages Large Language Models (LLMs) to gen-
erate training data with specific attributes, aiming
to improve data diversity and reduce systemic bias.

CoT Attribute Manipulation (CoTAM) (Peng
et al., 2024): an approach that generates new data
from existing examples by only tweaking the user-
provided, task-specific attribute, e.g., sentiment
polarity or topic in movie reviews.

CoT Data Augmentation (CoTDA) (Peng et al.,
2024): an augmentation variant of CoTAM that
applies a similar CoT for conventional augmenta-
tion. Instead of directly asking for augmentation,
CoTDA let the LLM follow our proposed CoT and
propose a methodology to write a sentence with the
same attributes as the input sentence.

Self-LLMDA (Li et al., 2024c): a framework
that automates augmentation instruction generation
and selection, facilitating LLM to generate task-
specific augmented data.
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