
Under review as a conference paper at ICLR 2024

POLYFORMER: SCALABLE GRAPH TRANSFORMER
VIA POLYNOMIAL ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Transformers have demonstrated superior performance in graph representa-
tion learning. However, many current methods focus on attention mechanisms be-
tween node pairs, limiting their scalability and expressiveness on node-level tasks.
While the recent NAGphormer attempts to address scalability by employing node
tokens in conjunction with vanilla multi-head self-attention, these tokens, which
are designed in the spatial domain, suffer from restricted expressiveness. On the
other front, some approaches have explored encoding eigenvalues or eigenvectors
in the spectral domain to boost expressiveness, but these methods incur significant
computational overhead due to the requirement for eigendecomposition. To over-
come these limitations, we first introduce node tokens using various polynomial
bases in the spectral domain. Then, we propose a tailored polynomial attention
mechanism, PolyAttn, which serves as a node-wise graph filter and offers power-
ful representation capabilities. Building on PolyAttn, we present PolyFormer, a
graph Transformer model specifically engineered for node-level tasks, offering a
desirable balance between scalability and expressiveness. Extensive experiments
demonstrate that our proposed methods excel at learning arbitrary node-wise fil-
ters, showing superior performance on both homophilic and heterophilic graphs,
and handling graphs containing up to 100 million nodes.

1 INTRODUCTION

Recently, Graph Neural Networks (GNNs) have been developed to address a range of graph-related
problems, such as node classification (Kipf & Welling, 2017; Velickovic et al., 2018; Hamilton et al.,
2017), link prediction (Zhang & Chen, 2018), and graph classification (Xu et al., 2019). GNNs can
be generally categorized into two types: spatial-based and spectral-based (He et al., 2021). Spatial-
based GNNs often rely on a message passing in the spatial domain to aggregate information, whereas
spectral-based GNNs perform graph filtering operations in the spectral domain. Concurrently, the
Transformer architecture (Vaswani et al., 2017), characterized by its unique attention mechanisms,
has been remarkably successful in fields like natural language processing (Devlin et al., 2019; Floridi
& Chiriatti, 2020), computer vision (Dosovitskiy et al., 2021; Liu et al., 2021), and audio applica-
tions (Dong et al., 2018; Gulati et al., 2020). To leverage the immense power of Transformer models,
the Transformer architecture has been recently adapted to graphs, termed graph Transformer, and
showcases enhanced performance in graph representation learning (Kreuzer et al., 2021; Ying et al.,
2021; Mialon et al., 2021; Rampásek et al., 2022).

Existing graph Transformers generally consider interactions between nodes when calculating atten-
tion and then utilize node representations for downstream tasks such as node classification or graph
regression (Min et al., 2022; Sun et al., 2023). However, it is worth questioning whether it is nec-
essary to consider attention on node pairs, regardless of node-level or graph-level tasks. In natural
language processing and computer vision, Transformer-based models mainly consider interactions
among tokens within a sentence or patches within an image, respectively, rather than implementing
attention mechanisms between sentences or images (Vaswani et al., 2017; Dosovitskiy et al., 2021).
Typically, attention mechanisms are employed on the sub-units constituting a target object. This
approach aims to capture the information exchanges among these sub-units, deriving a representa-
tion of the target object. Back to graph Transformers, although applying attention to pairs of nodes
is justifiable for graph-level tasks, it appears less rational for tasks centered on individual nodes.
In fact, two main limitations emerge from focusing on node-pair interactions on node-level tasks:

1

Under review as a conference paper at ICLR 2024

First, it leads to quadratic computational complexity (Vaswani et al., 2017), hindering scalability on
large-scale graphs. Second, it introduces noise and consequently impairs performance (Dwivedi &
Bresson, 2020). Therefore, for node-level tasks, it is reasonable to introduce the concept of node
tokens and implement the attention mechanism on it.

Motivation. Although NAGphormer (Chen et al., 2023) has attempted to use information from
various hops as units to represent each node, it designed node tokens on the spatial domain with
vanilla multi-head self-attention, neglecting the spectral information, which compromises perfor-
mance (Kreuzer et al., 2021). This naturally raises the question: Can we develop node tokens based
on the spectral domain with a tailored attention mechanism to capture spectral information and
thereby enhance expressive power?

On the other hand, though NAGphormer and some other existing graph Transformers (Kreuzer et al.,
2021; Rampásek et al., 2022; Bo et al., 2023) have attempted to utilize information from the spec-
tral domain, they often rely on eigendecomposition, which is both computationally expensive and
memory-intensive. Conversely, polynomial GNNs utilize truncated polynomials to approximate
graph filters, avoiding the need for eigendecomposition. However, a significant drawback of poly-
nomial GNNs is that they use shared polynomial coefficients for all nodes, leading to a node-unified
filter that inherently limits the model’s expressive power (Guo et al., 2023). Consequently, the sec-
ond question arises: For node tokens developed in the spectral domain, is it possible to leverage
efficient polynomial approximations while overcoming the disadvantages of polynomial GNNs, i.e.,
the constraint of node-unified filters?

Contribution. In this work, we provide affirmative answers to previously posed questions. First,
we introduce a novel node token based on polynomial bases, along with the specifically designed
Polynomial Attention (PolyAttn), to capture information in the spectral domain effectively. Both
theoretical and empirical analyses confirm that the PolyAttn, combined with polynomial node to-
kens, operates as a node-wise filter. This offers greater expressiveness compared to node-unified
filters while still avoiding burdensome eigendecomposition. Building on this, we propose a scal-
able and expressive graph Transformer termed PolyFormer. By leveraging the newly introduced
node token, PolyFormer can utilize mini-batch training, thereby significantly enhancing its scala-
bility. Moreover, the expressiveness of PolyAttn allows the model to excel on a variety of graphs,
including both homophilic and heterophilic ones. Through extensive experiments, we empirically
validate the performance, scalability, and efficiency advantages of PolyFormer on node-level tasks.
We summarize the contributions of this paper as follows:

• We introduce polynomial-based node tokens from the spectral domain and propose a tailored at-
tention mechanism, PolyAttn, which is notably expressive. Utilizing the node token and PolyAttn,
we propose PolyFormer, a scalable graph Transformer designed for node-level tasks.

• Theoretically, we demonstrate that PolyAttn functions as a node-wise filter with the designed node
token. We also illustrate that multi-head PolyAttn serves as a multi-channel filter. Moreover, We
explore the computational complexity tied to the proposed node token and PolyAttn.

• Comprehensive experiments validate that PolyAttn possesses greater expressive power than node-
unified filters. Building on PolyAttn, PolyFormer achieves a desirable balance between expressive
power and computational efficiency. It demonstrates superior performance on both homophilic
and heterophilic datasets and is capable of handling graphs with up to 100 million nodes.

2 BACKGROUND

Notations. Let us consider a graph G = (V,E), where V is the set of nodes and E is the set
of edges. The adjacency matrix is denoted as A ∈ {0, 1}N×N , where Aij = 1 signifies the
existence of an edge between nodes vi and vj , and N is the total number of nodes in the graph.
The normalized Laplacian of the graph is defined as L̂ = I − Â = I −D−1/2AD−1/2. In these
equations, I represents the identity matrix, Â denotes the normalized adjacency matrix, and D is a
diagonal degree matrix where Dii =

∑
j Aij . It is well-established that L̂ is a symmetric positive

semidefinite matrix, allowing for decomposition as L̂ = UΛU⊤ = Udiag(λ0, · · · , λN−1)U
⊤.

Here, Λ is a diagonal matrix composed of eigenvalues λi, i ∈ {0, · · · , N − 1}, and U consists of
the corresponding eigenvectors.

2

Under review as a conference paper at ICLR 2024

Graph Filter. Graph filter serves as a crucial concept in the field of graph signal processing (Isufi
et al., 2022). Formally, given an original graph signal matrix or, equivalently, node feature matrix
X ∈ RN×d, the filtered signal Z ∈ RN×d is obtained through the graph filtering operation in the
spectral domain:

Z = Uh(Λ)U⊤X, (1)

where h(Λ) signifies the graph filter. Notably, this filter can become node-wise when h(·) in Equa-
tion 1 is tailored for individual nodes, denoted as h(i)(·) for node vi. Conversely, h(·) is considered
channel-wise if there exists a corresponding h(j)(·) for each signal channel X:,j , j ∈ {0, · · · , d−1}.
It is worth noting that directly learning h(Λ) necessitates eigendecomposition, which has a time
complexity of O(N3).

Polynomial GNNs. To alleviate the computational burden of eigendecomposition, recent studies
have introduced Polynomial GNNs for approximating h(Λ) using polynomials. These Polynomial
GNNs can be implemented with various bases, such as Monomial (Chien et al., 2021), Bernstein (He
et al., 2021), Chebyshev (Defferrard et al., 2016; He et al., 2022), Jacobi (Wang & Zhang, 2022),
and even optimal bases (Guo & Wei, 2023). Using a specific polynomial basis, the approximated
filtering operation can be represented as:

Z = Uh(Λ)U⊤X ≈
K∑

k=0

αkgk(P)X, (2)

where αk are the polynomial coefficients for all nodes, gk(·), k ∈ {0, · · · ,K} denotes a series
polynomial basis of truncated order K, and P refers to either the normalized adjacency matrix Â or
the normalized Laplacian matrix L̂. For example, the filtering operation of GPRGNN (Chien et al.,
2021) is Z =

∑K
k=0 αkÂ

kX, which uses the Monomial basis.

Transformer. The Transformer architecture (Vaswani et al., 2017) is a powerful deep learning
model that has had a significant impact in multiple domains. The critical component of the Trans-
former is its attention mechanism. For an input matrix X = [x1, . . . ,xn]

⊤ ∈ Rn×d, the attention
mechanism transforms X into Q, K, and V using learnable projection matrices WQ ∈ Rd×d′

,
WK ∈ Rd×d′

, and WV ∈ Rd×d′
as:

Q = XWQ, K = XWK , V = XWV . (3)

The output of the attention mechanism is computed as:

O = softmax
(
QK⊤
√
d

)
V. (4)

This attention mechanism can be executed multiple times to produce a multi-head attention mecha-
nism.

Graph Transformer. The Transformer architecture has been adapted for graph domains, termed
graph Transformers, which have gained significant attention. To integrate graph information into
Transformer-based models, multiple techniques have been developed, including the use of spectral
information (Kreuzer et al., 2021; Rampásek et al., 2022; Bo et al., 2023), GNNs as auxiliary mod-
ules (Mialon et al., 2021; Wu et al., 2021), and other encoding strategies (Ying et al., 2021; Zhao
et al., 2021). On another front, scalability challenges persist for graph Transformers. Solutions,
such as efficient attention mechanisms (Wu et al., 2022), sampling strategies (Zhang et al., 2022),
token-based methods (Chen et al., 2023), and approximation with global nodes (Kuang et al., 2021;
Kong et al., 2023), have been employed.

3 POLYFORMER

In this section, we introduce our proposed PolyFormer, a scalable graph transformer via polynomial
attention. First, we define the concept of node tokens based on polynomial bases. Utilizing these
node tokens, we describe our attention mechanism and provide an overview of the model architec-
ture. Finally, we analyze the computational complexity of our model and establish its relationship
with the graph filters.

3

Under review as a conference paper at ICLR 2024

Table 1: Recursive Computing Process of Polynomial Tokens for Different Bases.

Polynomial Type Initial Value Recursive Formula

Monomial Basis H0 = X Hk = ÂHk−1

Chebyshev Basis H0 = X,H1 = L̂X Hk = 2L̂Hk−1 −Hk−2

3.1 POLYNOMIAL TOKEN

Analogous to sentence tokenization in natural language processing, we introduce polynomial tokens
for nodes to enhance graph Transformer scalability on node-level tasks.

Definition 3.1. (Polynomial Token) For any node vi in a graph G = (V,E), the polynomial token
of the node is defined as h

(i)
k = (gk(P)X)i,: ∈ Rd, k ∈ {0, · · · ,K}, where gk(·) represents a

polynomial basis of order k, P is either Â or L̂, and X represents the node features.

In this work, we employ Monomial and Chebyshev bases for polynomial tokens. These choices
offer ease of implementation compared to more complex polynomial bases such as Bernstein or Ja-
cobi. Additionally, the Monomial basis provides a clear spatial interpretation, with h

(i)
k = (ÂkX)i,:

representing the information of the k-hop neighborhood from node vi. Meanwhile, the Cheby-
shev basis exhibits excellent fitting capabilities (Geddes, 1978). Both bases can be computed re-
cursively. Table 1 illustrates the recursive computing process for all nodes in the graph, where
Hk = [h

(0)
k , · · · ,h(N−1)

k]⊤ ∈ RN×d denotes the matrix consisting of polynomial tokens of order k
for k ∈ {0, · · · ,K}.
The adoption of polynomial tokens offers several distinct advantages. Firstly, these tokens can be
computed recursively. Once computed, they can be reused across epochs during both the training
and inference phases, leading to substantial reductions in computational time and memory usage.
Furthermore, by incorporating the normalized adjacency or Laplacian matrix P into the computa-
tional process, graph topology information is integrated into node tokens. This integration eliminates
the necessity for additional position or structure encodings, such as Laplacian eigenvectors, thereby
further enhancing the model’s efficiency. Finally, the inherent node-wise independence of these
polynomial tokens allows for mini-batch training, enabling us to scale the model to graphs with up
to 100 million nodes.

3.2 POLYATTN AND POLYFORMER

Given the polynomial tokens associated with each node, PolyFormer employs a tailored attention
mechanism to generate node representations. Firstly, we introduce the proposed attention mecha-
nism PolyAttn, tailored for polynomial tokens, which acts as a node-wise filter. Subsequently, we
detail the comprehensive architecture of PolyFormer.

PolyAttn. In this section, we first detail the process of the proposed PolyAttn for a given node vi.
Let us define the token matrix H(i) for node vi as H(i) = [h

(i)
0 , · · · ,h(i)

K]⊤ ∈ R(K+1)×d. Initially,
the value matrix V is initialized using the token matrix H(i). Subsequently, we use an order-specific
multi-layer perceptron (MLPj) to map the j-th order token h

(i)
j = H

(i)
j,: into a hidden space. This

step allows for the capture of unique contextual information for each order of polynomial tokens,
akin to the function of positional embeddings in standard Transformer architecture.

Upon obtaining the query matrix Q and the key matrix K by projecting H(i) through the learn-
able matrices WQ and WK , respectively, these matrices are used to compute the attention scores.
Notably, our attention mechanism employs the hyperbolic tangent function tanh(·) instead of the
softmax function used in the vanilla Transformer (Vaswani et al., 2017) and NAGphormer (Chen
et al., 2023). This is because the softmax function limits the expressive capability of PolyAttn when
it functions as a node-wise graph filter. Further clarification will be provided in Proposition 3.2.

Additionally, a node-shared attention bias β ∈ RK+1 is introduced to strike a balance between
node-specific and global patterns. Finally, the computed attention scores S are used to multiply with
the value matrix V, resulting in the final output representations. The pseudocode of PolyAttn is
provided as Algorithm 1. In practice, we employ multi-head PolyAttn to enhance expressive power.
More details are provided in Appendix C.

4

Under review as a conference paper at ICLR 2024

Figure 1: Illustration of the proposed PolyFormer. For a given graph, polynomial tokens for each
node are computed. These tokens are subsequently processed by PolyFormer, which consists of
L blocks. Notably, with the defined polynomial token, PolyAttn within each block functions as a
node-wise filter, adaptively learning graph filter specific to each node.

PolyFormer. Building upon the attention mechanism designed for polynomial tokens, we introduce
the novel graph Transformer model PolyFormer. As illustrated in Figure 1, PolyFormer block is
described by the following equations:

H′(i) = PolyAttn
(

LN
(
H(i)

))
+H(i), (5)

H(i) = FFN
(

LN
(
H′(i)

))
+H′(i). (6)

Here, LN denotes Layer Normalization, which is implemented before PolyAttn (Xiong et al., 2020).
FFN refers to the Feed-Forward Network. Upon obtaining the token matrix H(i) ∈ R(K+1)×d for
node vi through L PolyFormer blocks, the final representation Zi,: ∈ Rc of node vi is computed as:

Zi,: = σ

((
K∑

k=0

H
(i)
k,:

)
W1

)
W2, (7)

where σ denotes the activation function. The matrices W1 ∈ Rd×d′
and W2 ∈ Rd′×c are learnable,

with d, d′ representing the hidden dimensions and c representing the number of node classes.

Algorithm 1: Pseudocode for PolyAttn

Input: Token matrix for node vi: H(i) = [h
(i)
0 , · · · ,h(i)

K]⊤ ∈ R(K+1)×d

Output: New token matrix for node vi: H′(i) ∈ R(K+1)×d

Learnable Parameters: Projection matrix WQ, WK ∈ Rd×d′
,

order-wise MLPj(j = 0, · · · ,K),
attention bias β ∈ RK+1

1 Initialize V with H(i)

2 for j = 0 to K do
3 H

(i)
j,: ← MLPj(H

(i)
j,:)

4 Q← H(i)WQ via projection matrix WQ; K← H(i)WK via projection matrix WK

5 Compute attention scores S← tanh(QK⊤)⊙B, where Bij = βj

6 H′(i) ← SV

7 return H′(i) # The representation of node vi after PolyAttn is Zi,: =
∑K

k=0 H
′(i)
k,: ∈ Rd.

5

Under review as a conference paper at ICLR 2024

3.3 THEORETICAL ANALYSIS

3.3.1 COMPLEXITY

Computing for Polynomial Tokens. As previously discussed, the polynomial tokens can be cal-
culated recursively. Each iteration for all nodes involves sparse multiplication with a computational
complexity of O(|E|). Thus, the overall complexity is O(K|E|), where K is the truncated order of
the polynomial tokens, and |E| is the number of edges in the graph. Importantly, these polynomial
tokens can be computed once and reused throughout the training and inference process.

Complexity of PolyAttn. Let d denote the hidden dimension of polynomial tokens, and K represent
the truncated order. In the context of one layer of PolyAttn, each node involves (K + 1) polyno-
mial tokens in attention computation, resulting in a complexity of O((K + 1)2d). With N nodes
in the graph and L layers of attention mechanisms, the total time complexity is O(LN(K + 1)2d).
Notably, in practical situations where K ≪ N , this signifies a substantial reduction in computa-
tional complexity, especially when compared to the O(LN2d) complexity of standard Transformer
models.

3.3.2 CONNECTION TO SPECTRAL FILTERING

To understand the connection between PolyAttn and graph filters, we give the following theorem
and propositions. All proofs are in Appendix B. First, we formally propose that PolyAttn serves as
a node-wise filter for polynomial tokens.

Theorem 3.1. With polynomial tokens as input, PolyAttn operates as a node-wise filter. Specifically,
for the representation Zi,: =

∑K
k=0 H

′(i)
k,: of node vi after applying PolyAttn, we have:

Zi,: =

K∑
k=0

H′(i)
k,: =

K∑
k=0

α
(i)
k (gk (P)X)i,: . (8)

Here, the coefficients α(i)
k depend not only on the polynomial order k but also on the specific node

vi. In other words, PolyAttn performs a node-wise polynomial filter on the graph signals.

Building on Theorem 3.1 above, we further propose that the multi-head PolyAttn acts as a multi-
channel filter.

Proposition 3.1. A multi-head PolyAttn with h heads can be interpreted as partitioning the node
representation into h channel groups with dimension dh = d

h and applying filtering to each group
separately. Formally:

Zi,p:q =

K∑
k=0

α
(i)
(p,q)k (gk(P)X)i,p:q . (9)

Here, α(i)
(p,q)k denotes the coefficient for order k on channels p to q of node vi’s representation, where

(p, q) = (j × dh, (j + 1)× dh − 1), j ∈ {0, · · · , h− 1}.

It is worth noting that our chosen activation function, tanh(·), enables PolyAttn with more powerful
expressiveness than the softmax function used in both vanilla Transformer and NAGphormer.

Proposition 3.2. For PolyAttn, which operates as a graph filter, the tanh function endows it with en-
hanced expressiveness, whereas the softmax function can limit the expressive capability of PolyAttn.

4 EXPERIMENTS

In this section, we conduct comprehensive experiments to evaluate the performance of the proposed
PolyAttn and PolyFormer. Specifically, we first evaluate PolyAttn’s ability on node-wise filtering
using both synthetic and real-world datasets. Then, we execute node classification tasks on both
small and large graphs to evaluate the effectiveness and efficiency of PolyFormer.

6

Under review as a conference paper at ICLR 2024

Table 2: Performance of PolyAttn on Synthetic Datasets (R2 score / the sum of squared error).

Model (5k para) Mixed low-pass Mixed high-pass Mixed band-pass Mixed rejection-pass Low&high-pass Band&rejection-pass
GCN 0.9953/2.0766 0.0186/39.6157 0.1060/14.0738 0.9772/10.9007 0.6315/86.8209 0.8823/128.2312
GAT 0.9954/2.0451 0.0441/38.5851 0.0132/14.0375 0.9775/10.7512 0.7373/61.8909 0.9229/83.9671
GPRGNN 0.9978/0.9784 0.9806/0.7846 0.9088/1.2977 0.9962/1.8374 0.8499/35.3719 0.9876/13.4890
BernNet 0.9976/1.0681 0.9808/0.7744 0.9231/1.0937 0.9968/1.5545 0.8493/35.5144 0.9875/13.6485
ChebNetII 0.9980/0.8991 0.9811/0.7615 0.9492/0.7229 0.9982/0.8610 0.8494/35.4702 0.9870/14.1149
PolyAttn (Mono) 0.9994/0.2550 0.9935/0.2631 0.9030/1.3798 0.9971/1.4025 0.9997/0.0696 0.9992/0.8763
PolyAttn (Cheb) 0.9997/0.1467 0.9960/0.0148 0.9945/0.0782 0.9996/0.1949 0.9999/0.0118 0.9999/0.0416

4.1 POLYATTN EXPERIMENTS

4.1.1 FITTING SIGNALS ON SYNTHETIC DATASETS.

Synthetic Datasets. We use images with a resolution of 100 × 100 from the Image Processing
in Matlab library 1. Each image can be represented as a 2D regular 4-neighborhood grid graph.
The pixel values, ranging from 0 to 1, serve as node signals. For the m-th image, there exists an
adjacency matrix Am ∈ R10000×10000 and a node signal xm ∈ R10000. Based on the raw signal of
each node, we apply two hybrid predefined filters to each image. Models are expected to learn these
predefined filtering patterns. More details can be seen in Appendix D.2.1.

Setup. We compare PolyAttn with 5 baseline methods, including GCN (Kipf & Welling, 2017),
GAT (Velickovic et al., 2018), GPRGNN Chien et al. (2021), BernNet (He et al., 2021), and Cheb-
NetII (He et al., 2022). For PolyAttn, we employ both Monomial and Chebyshev bases, denoted as
“PolyAttn (Mono)” and “PolyAttn (Cheb),” respectively. To ensure a fair comparison, all models
are constrained to one single layer and have approximately 5k parameters. The learning rate is uni-
formly set to 0.001, the training epochs to 50, 000, and the early stopping threshold to 400 iterations.
We employ two metrics to evaluate each method: the sum of squared errors and the R2 score.

Results. As demonstrated in Table 2, PolyAttn outperforms other polynomial GNNs on all datasets.
Compared to traditional polynomial GNNs, which employ unified coefficients for all nodes within
a graph, PolyAttn uses tailored attention mechanisms for polynomial tokens to enable node-wise
filtering. This design choice endows PolyAttn with greater expressive power. Further evidence of
this capability is provided in Figures 2a and 2b. In this figure, filters learned for all nodes are divided
into one of two clusters using the k-means (Jain & Dubes, 1988) algorithm, and the representative
filter (centroid) for each cluster is plotted. PolyAttn is shown to successfully derive individual filter
patterns without requiring prior knowledge of predefined filters. This underscores PolyAttn’s ability
to learn graph filters for each node adaptively.

0.0 0.5 1.0 1.5 2.0

0.0
0.2
0.4
0.6
0.8
1.0

h(
)

GroundTruth 1
GroundTruth 2
PolyAttn: Centroid 1
PolyAttn: Centroid 2

(a) Mixed low-pass

0.0 0.5 1.0 1.5 2.00.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

h(
)

GroundTruth 1
GroundTruth 2
PolyAttn: Centroid 1
PolyAttn: Centroid 2

(b) Low & high-pass

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

h(
)

(c) UniFilter on Questions

0.0 0.5 1.0 1.5 2.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

h(
)

Centroid 1
Centroid 2
Centroid 3
Centroid 4
Centroid 5

(d) PolyAttn on Questions

Figure 2: Left: Learned Filters of PolyAttn on Synthetic Datasets. Right: Learned Filters of UniFil-
ter and PolyAttn on the real-world Questions Dataset.

4.1.2 PERFORMANCE ON REAL-WORLD DATASETS

Setup. We choose four real-world datasets to evaluate the efficacy of PolyAttn as a node-wise filter,
including two homophilic graphs (PubMed (Namata et al., 2012) and CS (Shchur et al., 2018)) and
two heterophilic graphs (Roman-empire and Questions (Platonov et al., 2023)). Dataset details and
other settings are listed in Appendix D.1. As baseline models, we employ Monomial-based filters
with uniform coefficients, denoted as “UniFilter (Mono),” and Chebyshev-based filters, denoted
as “UniFilter (Cheb).” Correspondingly, we use node-wise filters based on PolyAttn, denoted as
“PolyAttn (Mono)” and “PolyAttn (Cheb).” All models are configured with a single filtering layer
to ensure a fair comparison. More details are listed in Appendix D.2.2.

1https://ww2.mathworks.cn/products/image.html

7

https://ww2.mathworks.cn/products/image.html

Under review as a conference paper at ICLR 2024

Table 3: Performance of PolyAttn on Real-world Datasets.

CS Pubmed Roman-empire Questions

UniFilter (Mono) 95.32±0.24 89.61±0.44 73.44±0.80 73.19±1.52
PolyAttn (Mono) 95.99±0.07 90.85±0.31 74.17±0.59 76.83±0.79
Improvement (%) 0.70 1.38 0.99 4.96

UniFilter (Cheb) 96.17±0.10 88.65±0.35 72.81±0.73 74.55±0.78
PolyAttn (Cheb) 96.03±0.15 89.85±0.46 74.03±0.45 75.90±0.72
Improvement (%) -0.15 1.35 1.68 1.81

Results. Table 3 shows the mean accuracies with a 95% confidence interval over 10 runs. We
observe that PolyAttn performs better on both homophilic and heterophilic graphs, with especially
notable improvements on the latter one, which suggests the benefits of its node-wise filtering ability.
Further insights are illustrated in Figures 2c and 2d, which show the learned filters by “UniFil-
ter(Cheb)” and “PolyAttn(Cheb)” on Questions. The node-wise filters learned by PolyAttn are cat-
egorized into one of five clusters using the k-means algorithm (Jain & Dubes, 1988). Interestingly,
we observe that PolyAttn learns various filters on different graph nodes. Given that PolyAttn im-
provements UniFilter by at least 1.8% on Questions, it may suggest that these node-wise filters are
necessary. More illustrations on other datasets are available in Appendix E.

4.2 POLYFORMER EXPERIMENTS

4.2.1 NODE CLASSIFICATION

Setup. We employ datasets including four homophilic datasets (Sen et al., 2008; Shchur et al.,
2018) and four heterophilic datasets (Platonov et al., 2023). Detailed characteristics and splits of
these datasets are provided in Appendix D.1. As for baselines, we select several recent state-of-
the-art spectral GNNs, including GPRGNN (Chien et al., 2021), BernNet (He et al., 2021), and
ChebNetII (He et al., 2022). Additionally, Our comparison includes competitive graph Transformer
models NAGphormer (Chen et al., 2023) and Specformer (Bo et al., 2023) to further underscore the
performance of our approach. We report the mean accuracy with a 95% confidence interval over 10
runs. More details are displayed in Appendix D.3.1.

Table 4: Performance of PolyFormer on Node Classification. “OOM” means “out of memory,” and
“*” indicates the use of truncated eigenvalues and eigenvectors as suggested by Bo et al. (2023).

Homophilic Heterophilic
Citeseer CS Pubmed Physics Minesweeper Tolokers Roman-empire Questions

MLP 78.74±0.64 95.53±0.13 87.06±0.35 97.10±0.71 50.97±0.54 74.12±0.48 66.64±0.32 71.87±0.41
GCN 80.16±1.09 94.95±0.17 87.34±0.37 97.74±0.35 72.23±0.56 77.22±0.73 53.45±0.27 76.28±0.64
GAT 80.67±1.05 93.93±0.26 86.55±0.36 97.82±0.28 81.39±1.69 77.87±1.00 51.51±0.86 74.94±0.56

GPRGNN 80.61±0.75 95.26±0.15 91.00±0.34 97.74±0.35 90.10±0.34 77.25±0.61 74.08±0.54 74.36±0.67
BernNet 79.63±0.78 95.42±0.29 90.56±0.40 97.64±0.38 77.93±0.59 76.83±0.53 72.70±0.30 74.25±0.73

ChebNetII 80.25±0.65 96.33±0.12 90.60±0.17 97.25±0.78 83.64±0.40 79.23±0.43 74.64±0.39 74.41±0.58
Transformer 78.70±0.59 OOM 89.10±0.43 OOM 50.29±1.09 74.24±0.58 65.29±0.47 OOM
Specformer 81.69±0.78 96.07±0.10 89.94±0.33 97.70±0.60* 89.93±0.41 80.42±0.55 69.94±0.34 76.49±0.58*

NAGphormer 79.77±0.81 95.89±0.13 89.65±0.45 97.23±0.23 88.06±0.43 81.57±0.44 74.45±0.48 75.13±0.70

PolyFormer (Mono) 82.37±0.65 96.49±0.09 91.01±0.41 98.42±0.16 90.69±0.38 84.00±0.45 78.89±0.39 77.46±0.65
PolyFormer (Cheb) 81.80±0.76 96.49±0.17 90.68±0.31 98.08±0.27 91.90±0.35 83.88±0.33 80.27±0.39 77.26±0.50

Results. As shown in Table 4, our model consistently outperforms most baseline models, especially
excelling on heterophilic datasets. Notably, when compared with spectral GNNs like BernNet (He
et al., 2021) and ChebNetII (He et al., 2022), which utilize sophisticated polynomial bases such
as Bernstein or advanced techniques like Chebyshev Interpolation, our model showcases superior
performance. Such results suggest that the introduction of node-wise coefficients significantly boosts
our model’s expressive power. Furthermore, our model maintains competitive performance against
transformer-based approaches. This observation indicates that focusing on information within a
limited scope, i.e., a truncation of polynomial basis, appears to provide the necessary expressiveness
for achieving competitive results. Conversely, taking all node pairs into account may introduce
redundant noise that diminishes the model’s performance.

8

Under review as a conference paper at ICLR 2024

Table 5: Performance of PolyFormer for Node Classification on Large-Scale Datasets. “-” means
“out of memory” or failing to complete preprocessing within 24 hours.

Twitch-Gamers ogbn-arxiv Pokec ogbn-papers100M

MLP 60.92±0.07 55.50±0.23 62.37±0.02 47.24±0.31
GCN 62.18±0.26 71.74±0.29 75.45±0.17 -

ChebNet 62.31±0.37 71.12±0.22 - -
GPR-GNN 62.59±0.38 71.78±0.18 80.74±0.22 65.89±0.35

Specformer 64.22±0.04 72.37±0.18 - -
NAGphormer 64.38±0.04 71.04±0.94 - -
NodeFormer 61.12±0.05 60.02±0.52 70.48±0.45 -

PolyFormer 64.79±0.10 72.42±0.19 82.29±0.14 67.11±0.20

4.2.2 NODE CLASSIFICATIONS ON LARGE-SCALE DATASETS

Setup. We perform node classification tasks on two expansive citation networks: ogbn-arxiv and
ogbn-papers100M (Hu et al., 2020), in addition to two large-scale heterophilic graphs: Twitch-
Gamers and Pokec, sourced from (Lim et al., 2021) to demonstrating the scalability of our model.
More information is provided in Appendix D.1. We select common GNN models, including (Kipf
& Welling, 2017; Chien et al., 2021; Defferrard et al., 2016). For graph Transformer models, we use
expressive Specformer (Bo et al., 2023), and two scalable baseline Nodeformer (Wu et al., 2022)
and NAGphormer (Chen et al., 2023). More details are available in Appendix D.3.2.

Results. Table 5 shows the mean accuracies over multiple runs. Due to our efficient node tokeniza-
tion techniques, PolyFormer exhibits great scalability up to the graph ogbn-papers100M, which
has over 100 million nodes. In contrast, models such as NAGphormer (Chen et al., 2023) and
Specformer (Bo et al., 2023) rely on Laplacian eigenvectors or eigenvalues, which constrains their
scalability. Moreover, by leveraging expressive PolyAttn, our model outperforms all baselines.

4.3 COMPLEXITY COMPARISON

In this subsection, we evaluate PolyFormer in comparison to other graph Transformer models con-
cerning time and GPU memory consumption. More details are available in Appendix D.4.

Results. Table 6 illustrates that our PolyFormer is significantly faster and more memory-efficient
compared to other Transformer-based models. Firstly, in comparison to the addition of position
encoding using Laplacian eigenvectors or eigenvalues, the preprocessing of polynomial tokens is
substantially quicker. Secondly, our proposed PolyAttn exhibits lower complexity compared to
methods that implement attention on node pairs, resulting in minimal runtime and GPU usage. Both
of these are theoretically analyzed in Section 3.3.1. In conclusion, our proposed model performs
well in both running efficiency and memory consumption.

Table 6: Model Performance Comparison on Roman-empire.

Model Prep. Time (s) Train. (ms/epoch) Infer. (ms/epoch) Max GPU Mem. (MB)

Transformer 0 1676.35 786.27 8640.65
NAGphormer 45.83 351.83 708.21 1277.15
Specformer 1270.88 992.24 1945.89 10714.23
PolyFormer 0.89 300.85 291.53 1207.06

5 CONCLUSION

In this study, we introduce a novel formulation of node tokens that leverages polynomial bases to
efficiently capture spectral domain information. Further, we propose PolyAttn, which functions as
a node-wise filter. This approach outperforms traditional node-unified filters in terms of expres-
siveness while simultaneously avoiding computational overhead. Building on polynomial tokens
and PolyAttn, we present PolyFormer, a scalable graph Transformer designed specifically for node-
level tasks. PolyFormer strikes a balance between expressive power and computational efficiency.
Extensive empirical evaluations corroborate the superior performance, scalability, and efficiency of
PolyFormer. A promising future direction is to improve PolyFormer with more advanced polyno-
mial approximation and graph spectral techniques.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A
next-generation hyperparameter optimization framework. In SIGKDD, pp. 2623–2631, 2019.

Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks
meet transformers. In ICLR, 2023.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
for node classification in large graphs. In ICLR, 2023.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In ICLR, 2021.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In NeurIPS, pp. 3837–3845, 2016.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, pp. 4171–4186, 2019.

Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: a no-recurrence sequence-to-sequence
model for speech recognition. In ICASSP, pp. 5884–5888, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
CoRR, abs/2012.09699, 2020. URL https://arxiv.org/abs/2012.09699.

Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and consequences. Minds
and Machines, 30:681–694, 2020.

Keith O Geddes. Near-minimax polynomial approximation in an elliptical region. SIAM Journal on
Numerical Analysis, 15(6):1225–1233, 1978.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming Pang. Conformer: Convolution-augmented
transformer for speech recognition. In INTERSPEECH, pp. 5036–5040. ISCA, 2020.

Jingwei Guo, Kaizhu Huang, Xinping Yi, and Rui Zhang. Graph neural networks with diverse
spectral filtering. In WWW, pp. 306–316, 2023.

Yuhe Guo and Zhewei Wei. Graph neural networks with learnable and optimal polynomial bases.
In ICML, volume 202, pp. 12077–12097, 2023.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, pp. 1025–1035, 2017.

Mingguo He, Zhewei Wei, Zengfeng Huang, and Hongteng Xu. Bernnet: Learning arbitrary graph
spectral filters via bernstein approximation. In NeurIPS, pp. 14239–14251, 2021.

Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional neural networks on graphs with cheby-
shev approximation, revisited. In NeurIPS, pp. 7264–7276, 2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In NeurIPS,
pp. 22118–22133, 2020.

Elvin Isufi, Fernando Gama, David I. Shuman, and Santiago Segarra. Graph filters for signal pro-
cessing and machine learning on graphs. CoRR, abs/2211.08854, 2022. doi: 10.48550/arXiv.
2211.08854. URL https://doi.org/10.48550/arXiv.2211.08854.

Anil K Jain and Richard C Dubes. Algorithms for clustering data. Prentice-Hall, Inc., 1988.

10

https://arxiv.org/abs/2012.09699
https://doi.org/10.48550/arXiv.2211.08854

Under review as a conference paper at ICLR 2024

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C. Bayan Bruss, and Tom Goldstein.
Goat: A global transformer on large-scale graphs. In ICML, volume 202, pp. 17375–17390,
2023.

Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio
Tossou. Rethinking graph transformers with spectral attention. In NeurIPS, pp. 21618–21629,
2021.

Weirui Kuang, WANG Zhen, Yaliang Li, Zhewei Wei, and Bolin Ding. Coarformer: Transformer
for large graph via graph coarsening. 2021.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. In NeurIPS, pp. 20887–20902, 2021.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, pp. 9992–
10002, 2021.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. CoRR, abs/2106.05667, 2021. URL https://arxiv.org/abs/
2106.05667.

Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin Zhao,
Junzhou Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview from
architecture perspective. CoRR, abs/2202.08455, 2022. URL https://arxiv.org/abs/
2202.08455.

Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active surveying
for collective classification. In 10th international workshop on mining and learning with graphs,
volume 8, pp. 1, 2012.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of gnns under heterophily: Are we really making progress? In
ICLR, 2023.

Ladislav Rampásek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. In NeurIPS, pp.
14501–14515, 2022.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. CoRR, abs/1811.05868, 2018. URL http://arxiv.
org/abs/1811.05868.

Chengcheng Sun, Chenhao Li, Xiang Lin, Tianji Zheng, Fanrong Meng, Xiaobin Rui, and Zhixiao
Wang. Attention-based graph neural networks: a survey. Artificial Intelligence Review, pp. 1–48,
2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, pp. 5998–6008,
2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

11

https://arxiv.org/abs/2106.05667
https://arxiv.org/abs/2106.05667
https://arxiv.org/abs/2202.08455
https://arxiv.org/abs/2202.08455
http://arxiv.org/abs/1811.05868
http://arxiv.org/abs/1811.05868

Under review as a conference paper at ICLR 2024

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In ICML,
volume 162, pp. 23341–23362, 2022.

Qitian Wu, Wentao Zhao, Zenan Li, David P. Wipf, and Junchi Yan. Nodeformer: A scalable graph
structure learning transformer for node classification. In NeurIPS, 2022.

Zhanghao Wu, Paras Jain, Matthew A. Wright, Azalia Mirhoseini, Joseph E. Gonzalez, and Ion
Stoica. Representing long-range context for graph neural networks with global attention. In
NeurIPS, pp. 13266–13279, 2021.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer architec-
ture. In ICML, volume 119, pp. 10524–10533, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In NeurIPS, pp.
28877–28888, 2021.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In NeurIPS, pp.
5171–5181, 2018.

Zaixi Zhang, Qi Liu, Qingyong Hu, and Chee-Kong Lee. Hierarchical graph transformer with
adaptive node sampling. In NeurIPS, pp. 21171–21183, 2022.

Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie, and Yan-
fang Ye. Gophormer: Ego-graph transformer for node classification. CoRR, abs/2110.13094,
2021. URL https://arxiv.org/abs/2110.13094.

12

https://arxiv.org/abs/2110.13094

Under review as a conference paper at ICLR 2024

A NOTATIONS

Table 7: Summary of notations in this paper.

Notation Description
G = (V,E) A graph where V is the set of nodes and E is the set of edges.

N Total number of nodes in the graph.
A(Â) The adjacency matrix of the graph and its normalized version.
L̂ Normalized Laplacian of the graph.
P Refers to either Â or L̂.

X ∈ RN×d Original graph signal matrix or node feature matrix.
Z ∈ RN×d or Z ∈ RN×c Filtered signal or representation of nodes.

{gk(·)}Kk=0 Series polynomial basis of truncated order K.
{αk}Kk=0 Polynomial coefficients for all nodes, i.e.Z ≈

∑K
k=0 αkgk(P)X.

{α(i)
k }Kk=0 Polynomial coefficients of nodes vi, i.e.Zi,: ≈

∑K
k=0 α

(i)
k (gk(P)X)i,: .

{α(p,q)k}Kk=0 Coefficients on channel (p,q),i.e.Z:,p:q ≈
∑K

k=0 α(p,q)k (gk(P)X):,p:q .

h
(i)
k ∈ Rd Polynomial token of order k for node vi.

Hk ∈ RN×d Matrix contains order-k polynomial tokens for all nodes.
H(i) ∈ R(K+1)×d Token matrix for node vi.

β ∈ R(K+1) Attention bias vector shared across all nodes.
B ∈ R(K+1)×(K+1) Attention bias matrix, where each entry Bij equals βj .
Q,K,V ∈ R(K+1)×d The query, key, and value matrices, respectively.
S ∈ R(K+1)×(K+1) The attention score matrix.

B PROOF

B.1 PROOF OF THE THEOREM

Here we provide the detailed proof for Theorem 3.1.

Proof. For a node vi in the graph, the corresponding token matrix is given by H(i) =

[h
(i)
0 , · · · ,h(i)

K]⊤ ∈ R(K+1)×d. When processed by the order-wise MLP, each row H
(i)
j,: is updated

as H(i)
j,: = MLPj(H

(i)
j,:). Subsequently, the query matrix Q and the key matrix K are calculated as

Q = H(i)WQ and K = H(i)WK , respectively. The attention matrix Aattn ∈ R(K+1)×(K+1) is
then formulated as follows:

Aattn =


a00 a01 · · · a0K
a10 a11 · · · a1K

...
...

. . .
...

aK0 aK1 · · · aKK

 , (10)

where aij = (QK⊤)ij .

Taking the activation function σ and the attention bias matirx B into account, the corresponding
attention score matrix S = Aattn ⊙B ∈ R(K+1)×(K+1), where Bij = βj , j ∈ {0, · · · ,K}.

According to H′(i) = SV and V = H(i), we have:

H′(i) = SH(i) =


s00 s01 · · · s0K
s10 s11 · · · s1K

...
...

. . .
...

sK0 sK1 · · · sKK

[h(i)
0 , · · · ,h(i)

K

]⊤
=

[
K∑

k=0

s0kh
(i)
k , · · · ,

K∑
k=0

sKkh
(i)
k

]⊤
,

(11)

13

Under review as a conference paper at ICLR 2024

where H′(i) ∈ R(K+1)×d. As representation of node vi is calculated by Zi,: =
∑K

k=0 H
′(i)
k,:, we

have:

Zi,: =

K∑
k=0

H′(i)
k,:

=

K∑
k=0

s0kh
(i)
k + · · ·+

K∑
k=0

sKkh
(i)
k

=

K∑
k=0

sk0h
(i)
0 + · · ·+

K∑
k=0

skKh
(i)
K

= α
(i)
0 h

(i)
0 + · · ·+ α

(i)
K h

(i)
K

=

K∑
k=0

α
(i)
k h

(i)
k

=

K∑
k=0

α
(i)
k (gk (P)X)i,: .

(12)

Here, α(i)
j denotes

α
(i)
j =

K∑
k=0

skj , j ∈ {0, · · · ,K}

and is computed based on the node’s token matrix H(i). This value serves as a node-wise weight for
the polynomial filter and is determined by both the node features and the topology information of
the node vi. Consequently, the described PolyAttn mechanism functions as a node-wise filter.

B.2 PROOF OF THE PROPOSITIONS

In the following, we present a proof for Proposition 3.1.

Proof. For node vi, the multi-head PolyAttn mechanism employs the sub-channel of the token ma-
trix H

(i)
:,jdh:(j+1)dh−1 for head j, where j ∈ {0, . . . , h− 1}.

According to Theorem 3.1, there exists a set of node-wise coefficients for node vi, denoted by
α
(i)
(jdh,(j+1)dh−1)k, with k ∈ {0, . . . ,K}. These coefficients are computed based on the corre-

sponding sub-channel of the token matrix H
(i)
:,jdh:(j+1)dh−1. The contribution of head j to the node

representation Zi,: can then be formally expressed as:

Zi,jdh:(j+1)dh−1 =

K∑
k=0

α
(i)
(jdh,(j+1)dh−1)k(gk(P)X)i,jdh:(j+1)dh−1. (13)

By concatenating the contributions from all heads, we obtain the complete node representation for
node vi. Throughout this procedure, the multi-head PolyAttn mechanism performs a filtering oper-
ation on each channel group separately.

Below, we deliver a detailed proof for Proposition 3.2.

Proof. According to Proof B.1, when the PolyAttn functions as a node-wise filter for node vi, we
have:

Zi,: =

K∑
k=0

H′(i)
k,: =

K∑
k=0

α
(i)
k (gk (P)X)i,: ,

14

Under review as a conference paper at ICLR 2024

where

α
(i)
j =

K∑
k=0

skj =

K∑
k=0

σ(akj)βj , j ∈ {0, · · · ,K}.

If the softmax function is employed, then for any node vi in the graph, the value of
∑K

k=0 σ(akj)

remains positive after the softmax operation. The sign of α(i)
j is thus determined by the bias βj .

Since this bias is not node-specific, it implies that the coefficients of all nodes are constrained by the
bias βj , thereby limiting the expressive power of PolyAttn when acting as a node-wise filter. For
instance, when all biases βj are positive, then

α
(i)
j =

K∑
k=0

skj =

K∑
k=0

σ(akj)βj > 0,

PolyAttn with a Monomial basis can only serve as a low-pass filter for all nodes (Chien et al.,
2021). In contrast, the activation function tanh(·) allows the coefficient α(i)

j =
∑K

k=0 skj =∑K
k=0 σ(akj)βj to vary across nodes, enhancing the expressive power of PolyAttn.

C IMPLEMENTATION DETAILS

Multi-head PolyAttn. Here we provide pseudocode for the multi-head PolyAttn mechanism as
below:

Algorithm 2: Pseudocode for Multi-head PolyAttn

Input: Token matrix for node vi: H(i) = [h
(i)
0 , · · · ,h(i)

K]⊤ ∈ R(K+1)×d

Output: New token matrix for node vi: H′(i) ∈ R(K+1)×d

Learnable Parameters: Projection matrix WQ, WK ∈ Rd×(dh×h),
token-wise MLPj(j = 0, · · · ,K),
attention bias B ∈ R(h×(K+1)

1 Initialize V with H(i)

2 for j = 0 to K do
3 H

(i)
j,: ← MLPj(H

(i)
j,:)

4 Q← H(i)WQ via projection matrix WQ; K← H(i)WK via projection matrix WK

5 Reshape Q,K into h heads to get
Q(m) ∈ R(K+1)×dh ,K(m) ∈ R(K+1)×dh ,m ∈ {0, · · · , h− 1}

6 for m = 0 to h− 1 do
7 S(m) ← tanh(Q(m)K

⊤
(m))⊙Bm,j

8 H′(i)
(m) ← S(m)V:p,q , where (p, q) = (dh ×m, dh × (m+ 1)− 1)

9 H′(i) ← [H′(i)
(0)|| · · · ||H

′(i)
(h−1)] ∈ R(K+1)×d, where [·|| · · · ||·] means concatenating matrices

10 return H′(i)

Attention Bias. In implementation, we imposed constraints on the bias corresponding to each
order of polynomial tokens. Specifically, for the learnable bias β, the attention bias matrix B ∈
R(K+1)×(K+1) is defined as Bij =

βj

(j+1)r , where hyperparameter r is the constraint factor.

Order-wise MLP. To enhance the expressive capacity of the order-wise MLP, we use the hyperpa-
rameter m to increase the intermediate dimension of the order-wise MLP. Specifically, for an input
dimension d the intermediate dimension of the order-wise MLP is m× d.

15

Under review as a conference paper at ICLR 2024

D EXPERIMENTAL SETTINGS

D.1 DATASET DESCRIPTION

D.1.1 DATASET STATISTICS

Here we provide detailed characteristics of all datasets used in the experiments, as shown in Table 8
and Table 9.

Table 8: Statistics of Real-world Datasets.

Dataset Citeseer CS Pubmed Physics Minesweeper Tolokers Roman-empire Questions
Nodes 3,327 18,333 19,717 34,493 10,000 11,758 22,662 48,921
Edges 9,104 163,788 44,324 495,924 39,402 519,000 32,927 153,540

Features 3,703 6,805 500 8,415 7 10 300 301
Classes 6 15 3 5 2 2 18 2

Table 9: Statistics of Large-scale Datasets.

Dataset Twitch-Gamers ogbn-arxiv pokec ogbn-papers100M
Nodes 168,114 169,343 1,632,803 111,059,956
Edges 6,797,557 1,166,243 30,622,564 1,615,685,872
Features 7 128 65 128
Classes 2 40 2 172

D.1.2 DATASET SPLITS

For homophilic datasets including Citeseer, CS, Pubmed, and Physics, we employ a random split:
60% for the training set, 20% for the validation set, and 20% for the test set, following the approach
of (He et al., 2021).

For heterophilic graphs, namely Minesweeper, Tolokers, Roman-empire, and Questions, we adopt
the given split: 50% for training, 25% for validation, and 25% for testing, as provided in (Platonov
et al., 2023).

For large-scale datasets, we utilize the split from (Lim et al., 2021) for Twitch-gamers and pokec.
Meanwhile, for ogbn-arxiv and ogbn-papers100M, we adhere to the given splits as presented in (Hu
et al., 2020).

D.2 POLYATTN EXPERIMENTS

D.2.1 FITTING SIGNALS IN SYNTHETIC DATASETS

Based on the raw signal of each node in a graph, we apply one of two predefined filters. For
example, for nodes with signals x1 < 0.5, we define a low-pass filter h1(λ) = exp(−10λ2),
resulting in a filtered signal z1 = Uh1(Λ)U⊤x1. Conversely, for nodes with signals x1 ≥ 0.5,
we implement a high-pass filter h2(λ) = 1 − exp(−10λ2), yielding the corresponding filtered
signal z2 = Uh2(Λ)U⊤x2. For eigenvalues λ ∈ [0, 2], the predefined filters h1(λ) and h2(λ) are
presented in Table 10. Given the original graph signals x1,x2 and the filtered graph signals z1, z2,
Models are expected to learn these filtering patterns.

In this experiment, every model uses a truncated order of K = 10 within one layer. Additionally,
We employed one head for PolyAttn. All models have total parameters of approximately 50, 000,
achieved by using an adaptive hidden dimension.

D.2.2 PERFORMANCE ON REAL-WORLD DATASETS

To ensure a fair comparison, the truncated order K is set to 10 and the layer to be 1 for both the
node-unified filter and PolyAttn. We also set the number of heads for PolyAttn as 1.

16

Under review as a conference paper at ICLR 2024

Filters h1(λ) h2(λ)

Mixed low-pass h(λ) = e−5λ2

h(λ) = e−20λ2

Mixed high-pass h(λ) = 1− e−5λ2

h(λ) = 1− e−20λ2

Mixed band-pass h(λ) = e−5(λ−1)2 h(λ) = e−20(λ−1)2

Mixed rejection-pass h(λ) = 1− e−5(λ−1)2 h(λ) = 1− e−20(λ−1)2

Low & high-pass h(λ) = 1− e−10λ2

h(λ) = e−10λ2

Band & rejection-pass h(λ) = 1− e−10(λ−1)2 h(λ) = e−10(λ−1)2

Table 10: The predefined filters on graph signals.

Hyperparameters, including hidden dimensions, learning rates, and weight-decay rates, are fine-
tuned through 200 rounds of Optuna (Akiba et al., 2019) hyperparameter search. The best configu-
ration is chosen based on its performance on the validation set. The final outcomes are the averages
of 10 evaluations on the test set with a 95% confidence interval using the optimal parameters.

The Optuna search space consists of 100 trials, with the searching space provided below:

• Hidden dimension: {16, 32, 64, 128, 256};
• Learning rates: {5e-5, 2e-4, 1e-3, 1e-2};
• Weight decays: {0.0, 1e-5, 1e-4, 5e-4, 1e-3};
• Dropout rates: {0.0, 0.1, 0.2, . . . , 0.9};

There is one extra hyperparameter for PolyAttn:

• Multiplying factor m for order-wise MLP: {1.0, 2.0, 0.5}.

D.3 POLYFORMER EXPERIMENTS

D.3.1 NODE CLASSIFICATIONS

We train all models with the Adam optimizer (Kingma & Ba, 2015). Early stopping is employed
with a patience of 200 epochs out of a total of 2000 epochs. The mean test accuracy, along with a
95% confidence interval, is reported based on 10 runs.

Hyperparameter selection is carried out on the validation sets. To expedite the hyperparameter
selection process, we utilize Optuna (Akiba et al., 2019), performing a maximum of 400 complete
trials within the following hyperparameter ranges:

• Truncated order K of polynomial tokens: {2, 4, 6, 8, 10, 12, 14};
• Number of layers: {1, 2, 3, 4};
• Number of heads: {1, 2, 4, 8, 16};
• Hidden dimension: {16, 32, 64, 128, 256};
• Hidden size for FFN: {32, 64, 128, 256, 512};
• Learning rates: {0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01};
• Weight decays: {0.0, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3};
• Dropout rates: {0.0, 0.1, 0.2, . . . , 0.9};
• Constraint factor r: {1.0, 1.2, 1.4, 1.6, 1.8, 2.0};
• Multiplying factor m for order-wise MLP : {1.0, 2.0, 0.5}.

As demonstrated in Tables 11 and 12, the primary hyperparameters utilized in our model for node
classification tasks are presented. Further details will be provided in the accompanying code release.

D.3.2 NODE CLASSIFICATIONS ON LARGE-SCALE DATASETS

The reported results for GNNs are sourced from He et al. (2022), whereas those for the Graph
Transformer are derived from the recommended hyperparameters or hyperparameter searching. The

17

Under review as a conference paper at ICLR 2024

Dataset K layers heads lr wd hidden d ffn dropout r m
Citeseer 6 1 4 5e-4 1e-3 256 128 0.9 2.0 2.0
CS 2 1 8 1e-3 1e-07 128 128 0.0 1.0 1.0
Pubmed 2 2 8 5e-3 1e-3 256 32 0.5 1.6 2.0
physics 4 1 2 1e-3 1e-05 128 256 0.9 1.2 0.5
Minesweeper 10 4 8 0.01 1e-05 16 32 0.2 1.6 2.0
Tolokers 10 1 16 5e-4 1e-08 64 128 0.2 1.0 1.0
Roman-empire 14 3 16 1e-4 1e-3 256 64 0.5 1.0 2.0
Questions 12 1 4 5e-4 1e-3 128 256 0.2 1.0 1.0

Table 11: Hyperparameters for PolyFormer (Mono).

Dataset K layers heads lr wd hidden d ffn dropout r m
Citeseer 6 1 4 5e-4 1e-3 256 128 0.9 2.0 2.0
CS 2 1 8 1e-3 1e-07 128 128 0.0 1.0 1.0
Pubmed 2 2 8 5e-3 1e-3 256 32 0.5 1.6 2.0
physics 4 1 2 1e-3 1e-05 128 256 0.9 1.2 0.5
Minesweeper 10 4 8 0.01 1e-05 16 32 0.2 1.6 2.0
Tolokers 10 1 16 5e-4 1e-08 64 128 0.2 1.0 1.0
Roman-empire 14 3 16 1e-4 1e-3 256 64 0.5 1.0 2.0
Questions 12 1 4 5e-4 1e-3 128 256 0.2 1.0 1.0

Table 12: Hyperparameters for PolyFormer (Cheb).

mean test accuracy, accompanied by a 95% confidence interval, is reported based on either 5 or 10
runs.

We utilize the Adam optimizer (Kingma & Ba, 2015) to train our models. Early stopping is imple-
mented with patience at 250 epochs within an overall training span of 2000 epochs. The hyperpa-
rameter space used for experiments on large-scale datasets is enumerated below:

• Truncated order K of polynomial tokens: {4, 8, 10};
• Number of layers: {1, 2};
• Number of heads: {1, 4, 8};
• Hidden dimension: {128, 512};
• Hidden size for FFN: {512, 1024};
• Learning rates: {0.00005, 0.0002, 0.01};
• Weight decays: {0.0, 0.00005, 0.0005, 0.001};
• Dropout rates: {0.0, 0.25, 0.4, 0.6, 0.8};
• Constraint factor r: {1.0, 2.0};
• Multiplying factor m for order-wise MLP: {0.5, 1.0};
• Batch size: {10000, 20000, 50000}.

D.4 COMPLEXITY COMPARISON

In the comparison experiment, we set the number of layers and the number of heads for all models
to 1. To ensure a fair comparison, we kept the total number of parameters at approximately 50, 000,
adjusting the hidden size as needed. Specifically, for NAGphormer, we set the position encoding
dimension to 15, as suggested by Chen et al. (2023). For Specformer, we use all eigenvalues and
eigenvectors, as Bo et al. (2023) recommends. For our proposed PolyFormer, we set the truncated
order K to 10, consistent with the number of hops for NAGphormer. Other hyperparameters, such
as learning rates and weight decays, are kept consistent across all models.

18

Under review as a conference paper at ICLR 2024

E FILTERS OF POLYATTN

In this section, we present the filters learned by PolyAttn on real-world datasets, as implemented in
Section 4.1.2.

As shown below, PolyAttn can learn node-wise filters, which provides it with greater expressive
power compared to node-unified filters. Additionally, there is a noticeable increase in the variation
of filters learned by PolyAttn for heterophilic datasets. In contrast, for homophilic graphs, PolyAttn
tends to derive similar or identical filters across different nodes. These observations suggest that
PolyAttn has the capability to adaptively learn filters based on the specific characteristics of each
graph.

0.0 0.5 1.0 1.5 2.0
5

10

15

20

25

30

h(
)

(a) Filter of UniFilter

0.0 0.5 1.0 1.5 2.0

20

30

40

50

60
h(

)
Centroid 1
Centroid 2
Centroid 3
Centroid 4
Centroid 5

(b) Filters of PolyAttn

0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

h(
)

(c) Filter of UniFilter

0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

h(
)

Centroid 1
Centroid 2
Centroid 3
Centroid 4
Centroid 5

(d) Filters of PolyAttn

Figure 3: Filters Learned by UniFilter and PolyAttn on PubMed (Monomial basis, left and Cheby-
shev basis, right).

0.0 0.5 1.0 1.5 2.0
5

10
15
20
25
30
35

h(
)

(a) Filter of UniFilter

0.0 0.5 1.0 1.5 2.0
10
15
20
25
30
35

h(
)

Centroid 1
Centroid 2
Centroid 3
Centroid 4
Centroid 5

(b) Filters of PolyAttn

0.0 0.5 1.0 1.5 2.02
0
2
4
6
8

10
12

h(
)

(c) Filter of UniFilter

0.0 0.5 1.0 1.5 2.0
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5

h(
)

Centroid 1
Centroid 2
Centroid 3
Centroid 4
Centroid 5

(d) Filters of PolyAttn

Figure 4: Filters Learned by UniFilter and PolyAttn on CS (Monomial basis, left and Chebyshev
basis, right).

0.0 0.5 1.0 1.5 2.0
5
6
7
8
9

10
11
12

h(
)

(a) Filter of UniFilter

0.0 0.5 1.0 1.5 2.0
0

10

20

30

40

50

h(
)

Centroid 1
Centroid 2
Centroid 3
Centroid 4
Centroid 5

(b) Filters of PolyAttn

0.0 0.5 1.0 1.5 2.08
6
4
2
0
2
4
6
8

h(
)

(c) Filter of UniFilter

0.0 0.5 1.0 1.5 2.0
10
20
30
40
50
60
70

h(
)

Centroid 1
Centroid 2
Centroid 3
Centroid 4
Centroid 5

(d) Filters of PolyAttn

Figure 5: Filters Learned by UniFilter and PolyAttn on Roman-empire (Monomial basis, left and
Chebyshev basis, right).

19

Under review as a conference paper at ICLR 2024

0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0

h(
)

(a) Filter of UniFilter

0.0 0.5 1.0 1.5 2.0
0
5

10
15
20
25
30

h(
)

Centroid 1
Centroid 2
Centroid 3
Centroid 4
Centroid 5

(b) Filters of PolyAttn

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

h(
)

(c) Filter of UniFilter

0.0 0.5 1.0 1.5 2.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

h(
)

Centroid 1
Centroid 2
Centroid 3
Centroid 4
Centroid 5

(d) Filters of PolyAttn

Figure 6: Filters Learned by UniFilter and PolyAttn on Questions (Monomial basis, left and Cheby-
shev basis, right).

20

	Introduction
	Background
	PolyFormer
	Polynomial Token
	PolyAttn and PolyFormer
	Theoretical Analysis
	Complexity
	Connection to Spectral Filtering

	Experiments
	PolyAttn Experiments
	Fitting Signals on Synthetic Datasets.
	Performance on Real-world Datasets

	PolyFormer Experiments
	Node Classification
	Node Classifications on Large-scale Datasets

	Complexity Comparison

	Conclusion
	Notations
	Proof
	Proof of the Theorem
	Proof of the Propositions

	Implementation Details
	Experimental Settings
	Dataset Description
	Dataset Statistics
	Dataset Splits

	PolyAttn Experiments
	Fitting Signals in Synthetic Datasets
	Performance on Real-World Datasets

	PolyFormer Experiments
	Node Classifications
	Node Classifications on Large-Scale Datasets

	Complexity Comparison

	Filters of PolyAttn

