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Abstract001

Retentive Network (RetNet) represents a sig-002
nificant advancement in neural network archi-003
tecture, offering an efficient alternative to the004
Transformer. While Transformers rely on self-005
attention to model dependencies, they suffer006
from high memory costs and limited scalabil-007
ity when handling long sequences due to their008
quadratic complexity. To mitigate these limita-009
tions, RetNet introduces a retention mechanism010
that unifies the inductive bias of recurrence with011
the global dependency modeling of attention.012
This mechanism enables linear-time inference,013
facilitates efficient modeling of extended con-014
texts, and remains compatible with fully par-015
allelizable training pipelines. RetNet has gar-016
nered significant research interest due to its017
consistently demonstrated cross-domain effec-018
tiveness, achieving robust performance across019
machine learning paradigms including natural020
language processing, speech recognition, and021
time-series analysis. However, a comprehen-022
sive review of RetNet is still missing from the023
current literature. This paper aims to fill that024
gap by offering the first detailed survey of the025
RetNet architecture, its key innovations, and026
its diverse applications. We also explore the027
main challenges associated with RetNet and028
propose future research directions to support029
its continued advancement in both academic030
research and practical deployment.031

1 Introduction032

Vaswani et al. (2017) proposed the Transformer ar-033

chitecture, which relies solely on the self-attention034

mechanisms. Owing to its ability to model long-035

range dependencies and its high degree of paral-036

lelism, the Transformer has emerged as the dom-037

inant paradigm in natural language processing038

(NLP). Beyond NLP, the Transformer has been suc-039

cessfully applied to a wide range of domains such040

as computer vision (CV), speech, and scientific ar-041

eas like chemistry and bioinformatics, reflecting042

*Corresponding authors

its versatility in modeling complex, long-range de- 043

pendencies across modalities. Despite its strengths, 044

the Transformer architecture faces notable limita- 045

tions. During training, its quadratic time complex- 046

ity makes modeling long sequences computation- 047

ally costly. In the inference phase, linear memory 048

complexity arises from storing KV cache for each 049

token, resulting in significant memory overhead. 050

Although various approaches have been explored 051

to mitigate the complexity of the Transformer, 052

achieving substantial reductions in computational 053

overhead remains challenging(Choromanski et al., 054

2020; Katharopoulos et al., 2020; Wang et al., 055

2020). 056

To address the computational limitations of tradi- 057

tional Transformers, many research advances have 058

emerged. Gated linear recurrent neural networks 059

(Qin et al., 2023; De et al.) incorporated gating 060

mechanisms to reduce the quadratic time complex- 061

ity typically associated with Transformer training. 062

State Space Models compressed sequence data into 063

fixed-size representations, effectively mitigating 064

the scaling issues inherent in Transformers (Gu 065

et al., 2021; Gu and Dao, 2023). Linear Trans- 066

formers (Katharopoulos et al., 2020) further al- 067

leviated memory and computational overhead by 068

employing linear attention mechanisms, allowing 069

both time and memory complexity to scale linearly 070

with sequence length. The Receptance Weighted 071

Key Value (RWKV) leverages linear attention to 072

reduce computational complexity and memory us- 073

age during inference (Peng et al., 2023; Li et al., 074

2024). Among these, RetNet (Sun et al., 2023) 075

stands out as a compelling solution, it integrated 076

a multi-scale retention mechanism which employs 077

three computational paradigms namely parallel, re- 078

current, and chunkwise recurrent representations. 079

By leveraging these paradigms, RetNet achieves 080

performance comparable to Transformers while en- 081

abling constant-time O(1) inference, reduced mem- 082

ory overhead, and efficient long-sequence model- 083
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ing.084

By employing the retention mechanism, the de-085

cay mask makes RetNet very versatile for a wide086

range of applications, from NLP (Cheng et al.,087

2024), CV (Fan et al., 2024), natural science (Luo088

et al., 2025) to social engineering (Yan et al., 2025).089

With the rapid expansion of research and applica-090

tions of RetNet, this survey aims to shed light on091

current progress in this field. As depicted in Fig-092

ure 1, the remainder of this paper is organized as093

follows: Section 2 provides a systematic review of094

basic concepts, including RNN and Transformer095

architectures, Section 3 delves into the principle096

and mechanism of RetNet, and Section 4 explores097

the extensive applications of RetNet in diverse do-098

mains, including NLP, CV, natural sciences, social099

engineering, and audio processing. Section 5 exam-100

ines the primary challenges confronting RetNet and101

outlines prospective directions for future research.102

2 Background103

2.1 Recurrent Neural Networks104

Recurrent neural networks (RNNs) are capable105

of learning features and long-term dependencies106

from sequential and time-series data (Salehinejad107

et al., 2017). Specifically, RNN introduced a re-108

current architecture that maintains a hidden state,109

enabling the modeling of sequential data with vari- 110

able lengths through shared weights across time 111

steps (Hochreiter and Schmidhuber, 1997). The 112

operational mechanism of RNN is captured by the 113

following mathematical formulation: 114

ht = fH(Whh · ht−1 +Whx · xt + bh) (1) 115

116
yt = fO(Who · ht + bo) (2) 117

where ht denotes the hidden state at time step t, and 118

xt is the input at time t. The function fH(·) is the 119

hidden layer activation function, and fO(·) is the 120

output activation function. yt denotes the output 121

at time t. Whh, Whx, and Who are the weight 122

matrices connecting the hidden-to-hidden, input-to- 123

hidden, and hidden-to-output layers, respectively. 124

bh and bo are the bias vectors for the hidden and 125

output layers. 126

Despite the RNN’s strength in modeling tempo- 127

ral sequences, a major limitation is the vanishing 128

gradient problem, which causes gradients to decay 129

exponentially over time steps. This significantly 130

impairs the network’s ability to retain and utilize 131

information from distant past inputs (Bengio et al., 132

1994). 133

To mitigate the challenges of vanishing or ex- 134

ploding gradients encountered by RNN when pro- 135
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cessing extended sequences, researchers have de-136

veloped several advanced variants. Long short-137

term memory network (LSTM) (Hochreiter and138

Schmidhuber, 1997) incorporates gating mecha-139

nisms to regulate information flow, enabling ef-140

fective capture of long-term dependencies. Gated141

recurrent unit (GRU) (Cho et al., 2014) offers a142

simplified architecture compared to LSTM while143

delivering comparable performance. Bidirectional144

recurrent neural network (Bi-RNN) (Schuster and145

Paliwal, 1997) processes sequences in both forward146

and reverse directions simultaneously, providing a147

more comprehensive understanding of sequential148

patterns.149

2.2 Transformer150

The Transformer architecture dispenses with re-151

currence entirely, relying instead on self-attention152

mechanisms to model global dependencies between153

inputs and outputs (Vaswani et al., 2017). This154

fundamental shift enables the model to more ef-155

fectively capture long-range relationships and sup-156

ports stable, efficient training without the gradient157

propagation issues commonly associated with re-158

current structures.159

The attention mechanism enables models to cap-160

ture dependencies among different positions within161

an input sequence, which is essential for learning162

contextual relationships. In Self-Attention, the in-163

put sequence is represented as a matrix X ∈ Rn×d,164

where n is the number of tokens and d is the dimen-165

sionality of each token embedding. To generate the166

necessary attention components, the Transformer167

applies three independent trainable linear transfor-168

mations to the input: the matrix X is projected169

into the query, key, and value spaces using the170

weight matrices WQ ∈ Rd×dq , WK ∈ Rd×dk , and171

W V ∈ Rd×dv . As a result, we obtain Q = XWQ,172

K = XWK , and V = XW V .173

Each row in Q, K, and V corresponds to a token174

in the sequence, where Q represents the queries175

used to attend to other tokens, K represents the176

keys that determine relevance, and V carries the177

actual content of the tokens. The Self-Attention178

output is computed using the scaled dot-product179

attention mechanism:180

Attention(Q,K, V ) = softmax
(
QK⊤
√
dk

)
V, (3)181

where dk denotes the dimensionality of the key182

vectors. The scaling factor
√
dk is used to mitigate183

the impact of large dot-product values, ensuring 184

stable gradients and more effective learning. 185

The self-attention mechanism in the Transformer 186

is extended to multiple attention heads, each capa- 187

ble of learning distinct attention weights to effec- 188

tively capture diverse relational patterns. Multi- 189

head attention enables the model to process differ- 190

ent informational subspaces in parallel, enhancing 191

its representational capacity. 192

headi = Attention(QWQ
i ,KWK

i , V W V
i ) (4) 193

194
MultiHead(Q,K, V )

= Concat(head1, . . . , headh)W
O

(5) 195

where h denotes the number of attention heads, 196

Concat represents the concatenation operation, 197

and WO is the trainable projection matrix, WQ
i , 198

WK
i , and W V

i are the parameter matrice. Multi- 199

head attention significantly enhances the Trans- 200

former’s capability to address NLP tasks and other 201

forms of sequential data processing with improved 202

efficiency and expressiveness. 203

3 Retentive Network 204

RNNs have difficulty capturing long-range depen- 205

dencies due to the vanishing gradient problem 206

and their inherently sequential structure, which 207

also limits parallelism (Yu et al., 2019). Trans- 208

former, while effective at capturing long-range de- 209

pendencies, face high computational complexity 210

and inefficiency in processing long sequences (Lin 211

et al., 2022). RetNet(Sun et al., 2023) theoreti- 212

cally derived the connection between recurrence 213

and attention and proposed retention mechanism 214

for sequence modeling. RetNet has been shown to 215

achieve low-cost inference, efficient long-sequence 216

modelling, Transformer-comparable performance, 217

and parallel model training simultaneously. 218

RetNet is constructed as a stack of L iden- 219

tical blocks, each comprising two core compo- 220

nents: a Multi-Scale Retention (MSR) module and 221

a Feed-Forward Network (FFN) module. For a 222

given sequence of input x = x1 · · ·x|j|, where 223

|j| represents the length of the sequence, Ret- 224

Net utilizes an autoregressive encoding method 225

to process the sequence. The input is packed into 226

X0 = [x1, · · · , x|j|] ∈ R|j|×dmodel , where dmodel 227

is the dimension of the hidden layer. Then com- 228

pute the contextualized vector representations as 229

follows: 230

X l = RetNetl(X
l−1), l ∈ [1, L]. (6) 231
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Figure 2: Dual form of RetNet. “GN” denotes GroupNorm.
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Figure 3: Overall architecture of RetNet.

Retention mechanism with a dual form of re-232

cursion and parallelism is the key to the success233

of RetNet. Project the input X ∈ R|j|×dmodel to234

vn = Xn · wv, where wv is the trainable matrix235

that maps inputs to value vectors. Then make the236

projection Q,K:237

Q = XWQ, K = XWK , (7)238

where WQ,WK ∈ Rd×d are learnable matrices.239

Consider a sequence modeling problem, through240

the state sn ∈ Rd×d mapping vn to a vector of on. 241

sn = Asn−1 +K⊤
n vn

on = Qnsn =
n∑

m=1

QnA
n−mK⊤

mvm
(8) 242

where Kn, Qn is the projection of the time step n. 243

Further, diagonalize A = Λ(γeiθ)Λ−1, 244

where Λ is the reversible matrix, γ is the 245

decay mask, according to Euler’s formula 246

eiθ = [cos θ1, sin θ2, · · · , cos θd−1, sin θd], then 247

An−m = Λ(γeiθ)n−mΛ−1, n, m is the time step. 248

Equation 8 becomes: 249

on =
n∑

m=1

(Qn(γe
iθ)n)(Km(γeiθ)−m)⊤vm

=
n∑

m=1

γn−m(Qne
inθ)(Kmeimθ)†vm

(9) 250

where Qn(γe
iθ)n, Km(γeiθ)−m is the xPos (Sun 251

et al., 2022), † is the conjugate transpose. einθ 252

and eimθ serve as rotational factors that encode 253

positional information using complex exponential 254

forms, where θ denotes the learnable parameters 255

employed to model relative phase differences for 256

the purpose of capturing sequential dependencies. 257

Parallel Representation of Retention As shown 258

in Figure 2a, the retention layer is defined as: 259

Q = (XWQ)⊙Θ, K = (XWK)⊙Θ,

V = XW V ,

Dnm =

{
γn−m, n ≥ m

0, n < m
,

Retention(X) = (QK⊤ ⊙D)V

(10) 260
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where ⊙ is the Hadamard product, Θ is the position-261

dependent modulation term, and Θ denotes its com-262

plex conjugate, and D ∈ R|j|×|j| constitutes a uni-263

fied matrix that jointly encodes causal masking and264

exponential decay as a function of relative posi-265

tional distance.266

Recurrent Representation of Retention As267

shown in Figure 2b, at the n-th timestep, the output268

is recurrently obtained as follows:269

Sn = γSn−1 +K⊤
n Vn

Retention(Xn) = QnSn, n = 1, · · · , |j|
(11)270

Chunkwise Recurrent Representation of Reten-271

tion The input sequences are segmented into272

chunks. Within each chunk, the computation is273

carried out using the parallel representation Equa-274

tion 10. In contrast, information across chunks is275

propagated using the recurrent representation Equa-276

tion 11. Specifically, let B denote the chunk length.277

The retention output of the i-th chunk is computed278

as follows:279

Q[i] = QBi:B(i+1),

K[i] = KBi:B(i+1),

V[i] = VBi:B(i+1),

Ri = K⊤
[i](V[i] ⊙ ζ) + γBRi−1,

Retention(X[i]) = (Q[i]K
⊺
[i] ⊙D)V[i]︸ ︷︷ ︸

Inner-Chunk

+ (Q[i]Ri−1)⊙ ξ︸ ︷︷ ︸
Cross-Chunk

ξij = γi+1, ζij = γB−i−1

(12)280

where [i] indicates the i-th chunk, i.e., x[i] =281

[x(i−1)B+1, · · · , xiB]. ζ and ξ are exponential de-282

cay factors that modulate the influence of intra-283

chunk and inter-chunk information.284

Gated Multi-Scale Retention In each layer, the285

number of retention heads is defined as h =286

dmodel/d, where d denotes the head dimension.287

Each head is associated with distinct parameter288

matrices WQ,WK ,W V ∈ Rd×d. MSR mech-289

anism assigns a unique decay factor γ to each290

head. For simplicity, identical γ values are used291

across different layers and kept fixed. To enhance292

the non-linearity of the retention layers, a swish293

gate (Hendrycks and Gimpel, 2016; Ramachandran294

et al., 2017) is introduced. Given the input X , the295

computation of the layer is defined as follows: 296

γ = 1− 2−5−arange(0,h) ∈ Rh

headi = Retention(X, γi)

Y = GNh(Concat(head1, · · · , headh))
MSR(X) = (swish(XWG)⊙ Y )WO

(13) 297

where WG, WO ∈ Rdmodel×dmodel are learnable pa- 298

rameter matrices. arange(0, h) denotes a vector 299

of integers from 0 to h − 1, used to assign dis- 300

tinct decay scales across h attention heads. GN 301

denotes Group Normalization (Wu and He, 2018), 302

applied to each head output following the SubLN 303

strategy in (Shoeybi et al., 2019). Since each head 304

employs a distinct γ scale, their output variances 305

differ, which necessitates separate normalization. 306

Overall Architecture of Retention Networks 307

As illustrated in Figure 3, an L-layer retention net- 308

work is constructed by stacking MSR and FFN 309

modules. The input sequence {xi}|j|i=1 is first 310

mapped to vector representations via a word em- 311

bedding layer. The resulting embeddings, denoted 312

as X0 = [x1, · · · , x|j|] ∈ R|j|×dmodel , serve as the 313

initial input to the model. The final output is repre- 314

sented as XL. 315

Y l = MSR(LN(X l)) +X l

X l+1 = FFN(LN(Y l)) + Y l
(14) 316

where LN(·) denotes the Layer Normalization func- 317

tion (Ba et al., 2016). The feed-forward network 318

(FFN) is defined as 319

FFN(X) = gelu(XW1)W2, 320

where W1 and W2 are learnable parameter matri- 321

ces, and gelu(·) is the Gaussian Error Linear Unit 322

activation function. 323

4 Applications of Retentive Network 324

4.1 Natural Language Processing 325

RetNet has proven to be highly effective in a variety 326

of NLP tasks due to its efficient retention mecha- 327

nism. In language modeling, the decoder-decoder 328

architecture with gated retention mechanism was 329

introduced by Sun et al. (2024) to improve con- 330

textual understanding. For knowledge graph rea- 331

soning, Cheng et al. (2024) utilized RetNet as an 332

encoder. In multi-hop reasoning tasks, the STSR 333

model presented by Su et al. (2024) employed Ret- 334

Net’s parallel retention module to speed up training 335
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and enhance performance in sequence-to-sequence336

reasoning tasks. The LION framework, developed337

by Afzal et al., adapted RetNet for bidirectional338

language tasks, incorporating fixed decay masks339

to efficiently capture long-range dependencies and340

reduce computational costs. Afzal et al. (2025) fur-341

ther refined this idea in LION-D, a bidirectional342

variant of RetNet that supports linear-time infer-343

ence while preserving the efficiency of parallel344

training. He et al. (2024) introduced DenseRetNet,345

which improves feature extraction by integrating346

dense hidden connections.347

4.2 Computer Vision348

RetNet and their variants have demonstrated broad349

applicability across various CV domains. The fixed350

decay mask enables RetNet to efficiently capture351

long-range spatial or temporal dependencies in im-352

ages or videos.353

Image Tasks. RetViT replaces standard attention354

with parallelizable retention blocks to accelerate355

training while maintaining representational capac-356

ity (Dongre and Mehta, 2024). Fan et al. (2024)357

extend RetNet’s one-dimensional unidirectional358

decay matrix to a two-dimensional bidirectional359

decay matrix, thereby designing Manhattan Self-360

Attention (MaSA). ViR explores efficient vision361

backbones by redesigning the retention mecha-362

nism to support both parallel training and recur-363

rent inference (Hatamizadeh et al., 2023b). An-364

other ViR model leverages RetNet’s block struc-365

ture and multi-scale design to recursively cap-366

ture contextual dependencies across spatial scales367

(Hatamizadeh et al., 2023a). Hu et al. (2024a) pro-368

posed the SwiFTeR architecture, which employs369

the Retention mechanism in the fusion model’s370

decoder. SegRet applies multi-scale retention mod-371

ules to strengthen hierarchical feature aggregation,372

boosting semantic segmentation accuracy (Li et al.,373

2025). Retention mechanism helps hyperspectral374

models reduce memory cost while preserving spec-375

tral discriminability (Arya et al., 2025; Paheding376

et al., 2024). GRetNet enhances spatial feature377

modeling via Gaussian-decayed retention based on378

Manhattan distance (Han et al., 2024). Incorporat-379

ing MaSA into LoFTR-like frameworks improves380

coarse feature matching in challenging correspon-381

dence tasks (Sui et al., 2024). Multi-focus image382

fusion benefits from bidirectional 2D retention that383

captures local spatial consistency (Huang et al.,384

2024a). RetCompletion applies a fast parallelized385

retentive decoder for real-time image inpainting 386

(Cang et al., 2024). The Cross-Axis Transformer 387

integrates RetNet’s recurrent retention mechanism 388

to process visual attention across chunked image 389

regions (Erickson, 2023). The RetNet-based reten- 390

tion module is cleverly applied to rotating target 391

detection (Liu et al., 2024b). 392

Video Tasks. RCAT combines RetNet with CLIP 393

adapters, yielding strong results in video recogni- 394

tion across different datasets (Xie et al., 2024b). 395

Maskable RetNet introduces learnable masking 396

strategies, improving temporal localization in mo- 397

ment retrieval (Hu et al., 2024b). MonoRetNet pro- 398

posed a half-duplex bidirectional retention design 399

for monocular depth prediction from sequential 400

frames (Fan and Liu, 2024). 401

3D Data Modeling. RetFormer incorporates spa- 402

tial retention module tailored to 3D Transformer 403

backbones (Erabati and Araujo, 2024). LION mod- 404

els point cloud sequences with linear-time complex- 405

ity by applying groupwise retention in RNN-style 406

architectures (Liu et al., 2024c). RetSeg3D ex- 407

tends the retention concept from one-dimensional 408

sequences to 3D voxel grids for improved semantic 409

parsing (Erabati and Araujo, 2025). RangeRet in- 410

troduces a Manhattan distance-based spatial decay, 411

enhancing context aggregation in LiDAR segmen- 412

tation tasks (MOSCO, 2023). Octree-Retention 413

Fusion exploits parallel retention with exponen- 414

tial decay masks to improve hierarchical context 415

modeling in point cloud compression (Zhang et al., 416

2024c). 417

Cross-modal Tasks. RECA refines multi-hop 418

reasoning in VQA tasks by integrating decay-aware 419

attention across modalities (Zhu et al., 2025). In 420

UAV geolocation, RMT’s spatially constrained re- 421

tention enables robust matching between aerial and 422

satellite views (Lin et al., 2024). For image fusion, 423

RetNet facilitates cross-modal shared feature ex- 424

traction, enabling more coherent integration of text 425

and visual signals (Wang et al., 2025c). 426

Robotic Perception. RAMPGrasp deploys mul- 427

tiscale retention to improve robustness against oc- 428

clusions and cluttered scenes (Huang et al., 2025a). 429

VVNet fuses RetNet modules with ViT backbones 430

to address noise and visibility challenges in under- 431

water imagery (Liu et al., 2024a). HFA-Net em- 432

ploys RMT’s MaSA to embed fine-grained spatial 433

priors for subtle facial movement detection (Zhang 434

et al., 2025b). The RetNet-based RMT block is 435
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integrated into the YOLOv9s backbone network,436

enhancing local and global feature extraction capa-437

bilities (Xu et al., 2024).438

4.3 Natural Science439

RetNet has demonstrated remarkable versatility440

across diverse domains in the natural sciences, at-441

tributed primarily to its efficient retention mecha-442

nism, scalable attention modeling, and capacity to443

encode long-range dependencies.444

Chemistry. Miao et al. (2024) augmented molec-445

ular feature learning by embedding the retention446

structure during information propagation. Knit-447

ter et al. (2024); Knitter (2024) applied Retenet to448

Neural-Network Quantum States (NQS). RetNet’s449

utility extends to lithium-ion battery state-of-health450

(SoH) estimation, where its retention mechanism451

excels in capturing temporal degradation patterns452

(Chen et al., 2024).453

Physics. JetRetNet exploits retention mechanism454

to encode multiscale dependencies among tracking455

and vertex features (Guvenli and Isildak, 2024).456

Radio-frequency signal classification integrates457

bidirectional retention and cross-block state fu-458

sion to accommodate the causal structure of mod-459

ulation tasks (Han et al., 2025). RAD addresses460

anomaly detection in cyber-physical systems by461

employing multi-scale retention and rotational po-462

sitional encodings to model long-term dependen-463

cies efficiently (Min et al., 2025). Cheng and Cao464

(2025) exploited RMT enables fine-grained target465

modeling in radar perception by distributing atten-466

tion according to spatial proximity. RetNet has467

been adapted to assess transient stability through a468

time-adaptive framework (Zhang et al., 2024a). In469

planetary environments, RetNet’s retention mecha-470

nism has been employed for unmanned aerial vehi-471

cle (UAV) monocular visual odometry (Liu et al.,472

2025).473

Biology and Medicine. In biomedical sequence474

analysis, RetNet have been explored for haplotype475

assembly (Luo et al., 2025). Liu et al. (2024d) in-476

corporated RetNet to capture spike protein features.477

Two RETNets are used to extract drug features and478

protein features, respectively (Peng et al., 2024). In479

transcriptomic analysis, RetNet variant processes480

large-scale cell data (Zeng et al., 2024).481

For EEG decoding, RetNet captures bidirec-482

tional temporal dependencies (Wang et al., 2025b).483

RetNet denoises EEG signals (Wang et al., 2024a).484

RetNet decodes temporal patterns for emotion 485

recognition, fused with spatial features (Xu et al., 486

2025). 487

In medical image processing, ELKarazle et al. 488

(2023) enabled real-time polyp segmentation with 489

bidirectional retention. Chu et al. (2024) enhanced 490

polyp segmentation with spatial distance-based re- 491

tention. RetNet models spatial correlations for 492

echocardiography segmentation (Lin et al., 2025a). 493

Zhou et al. (2024) improved CT denoising via co- 494

retention mechanism. RetNet captures rotation- 495

invariant features for medical image classification 496

(Li and Huang, 2025). 497

4.4 Social Engineering 498

RetNet has been extensively adopted in various 499

societal engineering tasks due to its powerful ca- 500

pability to capture long-range dependencies and 501

retain critical information throughout sequential 502

modeling. 503

In building change detection, RetNet extracts 504

and preserves spatial features from remote sens- 505

ing images (Lin and Piao, 2024). In fire detection, 506

RetNet’s Local Attention (LA) enhances global 507

feature extraction in YOLO-based models (Kim 508

et al., 2024). For earthquake early warning, RetNet 509

encodes nonlinear couplings in seismic wave em- 510

beddings (Zhang et al., 2024b). In photovoltaic 511

forecasting, RetNet extracts high-order features 512

from hazy weather data (Yang et al., 2024b). In 513

bridge damage assessment, RetNet captures criti- 514

cal features under varying conditions, enhancing 515

anomaly detection (Wang et al., 2025a). For track 516

circuit entity recognition, multi-scale retention 517

(MSR) optimizes long-distance dependency model- 518

ing (Chen et al., 2025). In human-robot collabora- 519

tion, 3DMaSA extends RetNet to predict force and 520

velocity from video sequences (Domínguez-Vidal 521

and Sanfeliu, 2024). In coal gangue identification, 522

RetNet’s retention mechanism optimizes model 523

size and inference speed (Zhang et al., 2025d). The 524

application in tea disease detection, using RetNet 525

for spatial modeling (Lin et al., 2025b). 526

For urban traffic flow prediction, The Tempo- 527

ral Self-Retention (TSR) block to decode time- 528

dependent features extracted by the Temporal Self- 529

Attention module (Li and Bao). Spatial RetNet 530

and temporal RetNet both utilizing multi-scale 531

retention mechanism to effectively capture spa- 532

tial and temporal dependencies (Zhu et al., 2024). 533

Another study by employing RetNet’s causal de- 534

cay mechanism in the temporal branch (Long 535
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et al., 2024). Meanwhile, H-RetNet supports het-536

erogeneous inputs through parallel branches and537

modality-specific retention strategies (Yan et al.,538

2025). For more applications of RetNet, the reader539

is referred to A, B.540

5 Challenges and Future Directions541

5.1 Expanding RetNet to Future Applications542

In multimodal sentiment analysis, RetNet inte-543

grates textual, visual, and auditory signals for accu-544

rate emotion recognition. In autonomous systems,545

it processes real-time LIDAR, camera, and audio546

streams to enhance decision-making. Future work547

should focus on improving cross-modal alignment548

and robustness to noise and resolution variability.549

In healthcare, RetNet’s capacity to model high-550

dimensional longitudinal data enables predictive551

modeling for personalized medicine. By leverag-552

ing data from electronic health records, wearables,553

and medical imaging, RetNet can forecast disease554

trajectories such as chronic or neurodegenerative555

conditions.556

5.2 Technology and Hardware Optimization557

As RetNet’s applications scale to large-scale de-558

ployments, energy efficiency becomes a critical559

consideration, particularly for edge and mobile en-560

vironments. The retention mechanism’s reduced561

computational complexity offers inherent energy562

savings compared to Transformers, but further op-563

timizations are necessary to meet the demands of564

sustainable computing.565

RetNet’s distinct computational patterns, includ-566

ing parallel, recurrent, and chunkwise recurrent567

blending, require customized hardware solutions568

to fully exploit its efficiency. Developing RetNet-569

specific accelerators, such as retention-aware com-570

pute units, can significantly enhance performance.571

5.3 Security and Stability572

Similar to Transformer-based models, RetNet ex-573

hibits vulnerabilities to adversarial attacks. Its re-574

tention mechanism, while effective for capturing575

long-term dependencies, may amplify sensitivity to576

adversarial perturbations, potentially compromis-577

ing reliability in safety-critical applications such as578

secure communications or surveillance systems.579

RetNet models, trained on large-scale datasets,580

often inherit societal biases, such as those related581

to gender, race, or socioeconomic status, embedded582

in the training data. These biases can subtly skew583

predictions, leading to unintended and inequitable 584

outcomes. 585

5.4 Ecosystem and Community Development 586

The widespread adoption of RetNet, in its capac- 587

ity as an emerging neural architecture, is contin- 588

gent on the development of a robust open source 589

ecosystem. The success of architectures such as 590

Transformer, BERT, and GPT, whose proliferation 591

has been significantly supported by accessible and 592

well-maintained open source libraries, has provided 593

a foundation for RetNet. The requirement for an 594

easy-to-use, feature-complete, and extensible soft- 595

ware framework to accelerate research and deploy- 596

ment is equally important. 597

In addition, the establishment of standardized, 598

challenging benchmark datasets and evaluation pro- 599

tocols is critical for objectively assessing RetNet’s 600

performance across a range of tasks and domains. 601

Such benchmarks will not only facilitate fair com- 602

parisons with existing models, but also ensure the 603

reliability, robustness, and generalizability of Ret- 604

Net in real-world applications. 605

5.5 Challenges in RetNet Enhancement 606

While the explicit decay mechanism in RetNet en- 607

ables efficient modeling of long-range dependen- 608

cies by attenuating past information over time, it 609

also introduces limitations in adaptively preserv- 610

ing salient contextual signals. The current de- 611

cay formulation, typically based on fixed or pre- 612

defined functions, may not fully capture the dy- 613

namic nature of temporal importance across dif- 614

ferent tasks or modalities. Future research should 615

explore adaptive or learnable decay strategies that 616

allow the model to modulate memory retention 617

based on input characteristics or task demands. 618

For instance, incorporating gating mechanisms or 619

attention-informed decay functions could enable 620

RetNet to selectively preserve or forget past infor- 621

mation more effectively. 622

6 Conclusion 623

This paper presents a thorough survey of the current 624

literature on RetNet, offering analytical insights, 625

exploring practical applications, and outlining key 626

challenges and future research directions. As the 627

first dedicated review of RetNet to our knowledge, 628

this work seeks to capture the evolving landscape 629

of RetNet-related studies and provide valuable per- 630

spectives to support continued innovation and ex- 631

ploration in this emerging field. 632
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Limitations633

This paper provides a comprehensive review of Re-634

tentive Network (RetNet) and its theoretical foun-635

dations, empirical performance, and practical appli-636

cations. Nevertheless, due to the rapidly evolving637

nature of this research area, especially in terms of638

variant designs and scalability optimization, certain639

notable works may have been inadvertently omit-640

ted. Additionally, a number of studies discussed in641

this survey rely on earlier benchmarks or smaller-642

scale evaluations, which may not fully reflect the643

performance characteristics of RetNet models in644

large-scale or real-world scenarios. We encourage645

future research to incorporate state-of-the-art im-646

plementations and diverse application contexts to647

offer more comprehensive and practical guidance.648
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A Audio1180

In recent years, the RetNet has demonstrated sig-1181

nificant promise across various audio-related tasks,1182

particularly due to its capacity to efficiently model1183

long-range dependencies while maintaining linear1184

computational complexity.1185

Huang and Chen (2024) advanced long-form1186

speaker diarization by developing the RetNet-1187

EEND framework, which replaces the Transformer1188

encoder in the EEND-EDA model with a RetNet-1189

based architecture. Liang and Li (2024) proposed1190

the LS-EEND model, which replaces the con-1191

ventional masked self-attention mechanism in the1192

encoder with Retention, enabling the model to1193

achieve linear time complexity and improved effi-1194

ciency. RetNet has also demonstrated strong po-1195

tential in the domain of speech enhancement. In1196

the LRetUNet architecture, Zhang et al. (2025c)1197

integrated RetNet with LSTM units to construct a1198

time-frequency representation module specifically1199

designed for single-channel speech enhancement.1200

B Others1201

RetNet has found versatile applications in multi-1202

ple domains, leveraging its capability to efficiently1203

model long-term dependencies and handle complex1204

sequential data.1205

In multimodal representation learning, VL-1206

MFER introduces a bidirectional RetNet (Bi-1207

RetNet) that exploits both parallel and recursive1208

forms of multiscale retention to fuse visual and1209

language modalities (Guo et al., 2024).1210

In the educational domain, a customized Reten-1211

tive Module extends the original RetNet with a1212

multiscale retention layer, capturing not only the1213

temporal dependencies between student interac-1214

tions but also their forgetting patterns, thereby en-1215

hancing the precision of learning state modeling1216

(Linhao et al., 2024).1217

RetNet has also proven effective for time-series1218

forecasting. LeRet leverages a causal retention en-1219

coder alongside multiscale retention modules to1220

enhance nonlinear feature extraction in repaired1221

sequences (Huang et al., 2024b). In reinforce-1222

ment learning-based recommender systems, Ret-1223

Net substitutes traditional masked attention with1224

a segmented multiscale retention scheme, signifi- 1225

cantly improving efficiency and robustness in long- 1226

range modeling (Wang et al., 2024b). For sequen- 1227

tial recommendation, dual RetNet modules encode 1228

both item and user history, enriching the person- 1229

alized representation space (Wu, 2024). CFPSG 1230

further incorporates RetNet into a unified frame- 1231

work to support next-POI prediction by capturing 1232

fine-grained temporal correlations (Feiyu, 2024). 1233

RetNet’s architectural flexibility makes it well- 1234

suited for modeling motion and control dynamics. 1235

In EQNet, RetNet serves as the core of a struc- 1236

tured state-space model, improving encoding effi- 1237

ciency in multi-agent motion forecasting (Huang 1238

et al., 2025b). Similarly, the NC-RetNet introduces 1239

a non-causal retention mask to access both past 1240

and future frames within blocks, improving 3D hu- 1241

man pose estimation while maintaining low latency 1242

(Zheng et al., 2024). In TT-DF, RetNet powers the 1243

motion-guided branch, balancing long-range de- 1244

pendency modeling and computational cost (Yang 1245

et al., 2024a). For robotic manipulation, it is em- 1246

ployed to process time-series inputs from learned 1247

impedance control dynamics (Okada et al., 2024). 1248

Language and reasoning tasks also benefit from 1249

RetNet’s capabilities. In ASTE, a novel bidirec- 1250

tional retention scheme inspired by RetNet bridges 1251

sequential and syntactic modeling gaps, boost- 1252

ing sentiment triplet extraction performance (Yang 1253

et al., 2024c). For world modeling, RetNet sup- 1254

ports observation, reward, and termination predic- 1255

tion within REM, and is extended via the POP 1256

mechanism to generate observation sequences in 1257

parallel during imagination (Cohen et al., 2024). 1258

System-level advancements further highlight 1259

RetNet’s efficiency. A high-throughput FPGA in- 1260

ference accelerator incorporates RetNet to max- 1261

imize hardware utility via dual-mode structure 1262

and linear computation (Nian et al., 2024). In 1263

FlashVideo, RetNet functions as the decoder, with 1264

parallel retention for training and autoregressive 1265

decoding for inference (Lei et al., 2023). Sable 1266

introduces an encoder-decoder RetNet for MARL 1267

with cross-retention and dynamic state resetting 1268

to better capture long-term dependencies in online 1269

settings (Mahjoub et al., 2025). In software en- 1270

gineering, RetNet is adopted as the encoder for 1271

cloud software code generation from multimodal 1272

knowledge (Zhang et al., 2025a). 1273

In the domain of network analysis, RetNet 1274

proves invaluable in both encrypted and anoma- 1275

lous traffic scenarios. RN-ETE extends RetNet 1276
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by incorporating a multi-resolution self-attention1277

mechanism, enabling bidirectional retention within1278

encrypted traffic encoding for more effective net-1279

work traffic encryption and analysis (Qiu et al.,1280

2024). On the other hand, UARC applies RetNet’s1281

retention-based reconstruction module to model1282

long-term temporal patterns in network traffic, ad-1283

dressing the challenges of anomaly detection in1284

traffic streams (Xie et al., 2024a).1285

In dynamic graph deep learning, Chang et al.1286

(2024) proposed the Graph Retention Network1287

(GRN) as a unified architecture for deep learning1288

on dynamic graphs.1289
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