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Abstract

Retentive Network (RetNet) represents a sig-
nificant advancement in neural network archi-
tecture, offering an efficient alternative to the
Transformer. While Transformers rely on self-
attention to model dependencies, they suffer
from high memory costs and limited scalabil-
ity when handling long sequences due to their
quadratic complexity. To mitigate these limita-
tions, RetNet introduces a retention mechanism
that unifies the inductive bias of recurrence with
the global dependency modeling of attention.
This mechanism enables linear-time inference,
facilitates efficient modeling of extended con-
texts, and remains compatible with fully par-
allelizable training pipelines. RetNet has gar-
nered significant research interest due to its
consistently demonstrated cross-domain effec-
tiveness, achieving robust performance across
machine learning paradigms including natural
language processing, speech recognition, and
time-series analysis. However, a comprehen-
sive review of RetNet is still missing from the
current literature. This paper aims to fill that
gap by offering the first detailed survey of the
RetNet architecture, its key innovations, and
its diverse applications. We also explore the
main challenges associated with RetNet and
propose future research directions to support
its continued advancement in both academic
research and practical deployment.

1 Introduction

Vaswani et al. (2017) proposed the Transformer ar-
chitecture, which relies solely on the self-attention
mechanisms. Owing to its ability to model long-
range dependencies and its high degree of paral-
lelism, the Transformer has emerged as the dom-
inant paradigm in natural language processing
(NLP). Beyond NLP, the Transformer has been suc-
cessfully applied to a wide range of domains such
as computer vision (CV), speech, and scientific ar-
eas like chemistry and bioinformatics, reflecting
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its versatility in modeling complex, long-range de-
pendencies across modalities. Despite its strengths,
the Transformer architecture faces notable limita-
tions. During training, its quadratic time complex-
ity makes modeling long sequences computation-
ally costly. In the inference phase, linear memory
complexity arises from storing KV cache for each
token, resulting in significant memory overhead.
Although various approaches have been explored
to mitigate the complexity of the Transformer,
achieving substantial reductions in computational
overhead remains challenging(Choromanski et al.,
2020; Katharopoulos et al., 2020; Wang et al.,
2020).

To address the computational limitations of tradi-
tional Transformers, many research advances have
emerged. Gated linear recurrent neural networks
(Qin et al., 2023; De et al.) incorporated gating
mechanisms to reduce the quadratic time complex-
ity typically associated with Transformer training.
State Space Models compressed sequence data into
fixed-size representations, effectively mitigating
the scaling issues inherent in Transformers (Gu
et al., 2021; Gu and Dao, 2023). Linear Trans-
formers (Katharopoulos et al., 2020) further al-
leviated memory and computational overhead by
employing linear attention mechanisms, allowing
both time and memory complexity to scale linearly
with sequence length. The Receptance Weighted
Key Value (RWKYV) leverages linear attention to
reduce computational complexity and memory us-
age during inference (Peng et al., 2023; Li et al.,
2024). Among these, RetNet (Sun et al., 2023)
stands out as a compelling solution, it integrated
a multi-scale retention mechanism which employs
three computational paradigms namely parallel, re-
current, and chunkwise recurrent representations.
By leveraging these paradigms, RetNet achieves
performance comparable to Transformers while en-
abling constant-time O(1) inference, reduced mem-
ory overhead, and efficient long-sequence model-
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Figure 1: Structure of this paper.
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By employing the retention mechanism, the de-
cay mask makes RetNet very versatile for a wide
range of applications, from NLP (Cheng et al.,
2024), CV (Fan et al., 2024), natural science (Luo
et al., 2025) to social engineering (Yan et al., 2025).
With the rapid expansion of research and applica-
tions of RetNet, this survey aims to shed light on
current progress in this field. As depicted in Fig-
ure 1, the remainder of this paper is organized as
follows: Section 2 provides a systematic review of
basic concepts, including RNN and Transformer
architectures, Section 3 delves into the principle
and mechanism of RetNet, and Section 4 explores
the extensive applications of RetNet in diverse do-
mains, including NLP, CV, natural sciences, social
engineering, and audio processing. Section 5 exam-
ines the primary challenges confronting RetNet and
outlines prospective directions for future research.

2 Background

2.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are capable
of learning features and long-term dependencies
from sequential and time-series data (Salehinejad
et al., 2017). Specifically, RNN introduced a re-
current architecture that maintains a hidden state,

enabling the modeling of sequential data with vari-
able lengths through shared weights across time
steps (Hochreiter and Schmidhuber, 1997). The
operational mechanism of RNN is captured by the
following mathematical formulation:

he = fu(Whp, - hi1 + Whg - ze +0p) (1)

Y = fo(Who - bt + bo) 2

where h; denotes the hidden state at time step ¢, and
x is the input at time ¢. The function fz(+) is the
hidden layer activation function, and fo(-) is the
output activation function. y; denotes the output
at time t. Wpp, Wh,, and Wy, are the weight
matrices connecting the hidden-to-hidden, input-to-
hidden, and hidden-to-output layers, respectively.
by, and b, are the bias vectors for the hidden and
output layers.

Despite the RNN’s strength in modeling tempo-
ral sequences, a major limitation is the vanishing
gradient problem, which causes gradients to decay
exponentially over time steps. This significantly
impairs the network’s ability to retain and utilize
information from distant past inputs (Bengio et al.,
1994).

To mitigate the challenges of vanishing or ex-
ploding gradients encountered by RNN when pro-



cessing extended sequences, researchers have de-
veloped several advanced variants. Long short-
term memory network (LSTM) (Hochreiter and
Schmidhuber, 1997) incorporates gating mecha-
nisms to regulate information flow, enabling ef-
fective capture of long-term dependencies. Gated
recurrent unit (GRU) (Cho et al., 2014) offers a
simplified architecture compared to LSTM while
delivering comparable performance. Bidirectional
recurrent neural network (Bi-RNN) (Schuster and
Paliwal, 1997) processes sequences in both forward
and reverse directions simultaneously, providing a
more comprehensive understanding of sequential
patterns.

2.2 Transformer

The Transformer architecture dispenses with re-
currence entirely, relying instead on self-attention
mechanisms to model global dependencies between
inputs and outputs (Vaswani et al., 2017). This
fundamental shift enables the model to more ef-
fectively capture long-range relationships and sup-
ports stable, efficient training without the gradient
propagation issues commonly associated with re-
current structures.

The attention mechanism enables models to cap-
ture dependencies among different positions within
an input sequence, which is essential for learning
contextual relationships. In Self-Attention, the in-
put sequence is represented as a matrix X € R?*¢,
where n is the number of tokens and d is the dimen-
sionality of each token embedding. To generate the
necessary attention components, the Transformer
applies three independent trainable linear transfor-
mations to the input: the matrix X is projected
into the query, key, and value spaces using the
weight matrices W& e R4 WK ¢ R4¥dk and
WV e R%%dv  Ag a result, we obtain Q= XWe,
K=XWE andV =XWV.

Each row in @), K, and V' corresponds to a token
in the sequence, where () represents the queries
used to attend to other tokens, K represents the
keys that determine relevance, and V' carries the
actual content of the tokens. The Self-Attention
output is computed using the scaled dot-product
attention mechanism:

T

K
Attention(Q, K, V') = softmax <Q
Vi

where dj denotes the dimensionality of the key
vectors. The scaling factor \/dj, is used to mitigate

)V, 3

the impact of large dot-product values, ensuring
stable gradients and more effective learning.

The self-attention mechanism in the Transformer
is extended to multiple attention heads, each capa-
ble of learning distinct attention weights to effec-
tively capture diverse relational patterns. Multi-
head attention enables the model to process differ-
ent informational subspaces in parallel, enhancing
its representational capacity.

head; = Attention(QWZ2, KW VW) (4)

MultiHead(Q, K, V)
= Concat(heady, . .., head,)W©°

where h denotes the number of attention heads,
Concat represents the concatenation operation,
and WO is the trainable projection matrix, I/ViQ,
WiK , and WZV are the parameter matrice. Multi-
head attention significantly enhances the Trans-
former’s capability to address NLP tasks and other
forms of sequential data processing with improved

efficiency and expressiveness.

&)

3 Retentive Network

RNNs have difficulty capturing long-range depen-
dencies due to the vanishing gradient problem
and their inherently sequential structure, which
also limits parallelism (Yu et al., 2019). Trans-
former, while effective at capturing long-range de-
pendencies, face high computational complexity
and inefficiency in processing long sequences (Lin
et al., 2022). RetNet(Sun et al., 2023) theoreti-
cally derived the connection between recurrence
and attention and proposed retention mechanism
for sequence modeling. RetNet has been shown to
achieve low-cost inference, efficient long-sequence
modelling, Transformer-comparable performance,
and parallel model training simultaneously.

RetNet is constructed as a stack of L iden-
tical blocks, each comprising two core compo-
nents: a Multi-Scale Retention (MSR) module and
a Feed-Forward Network (FFN) module. For a
given sequence of input x = x---x;, where
|7] represents the length of the sequence, Ret-
Net utilizes an autoregressive encoding method
to process the sequence. The input is packed into
X0 = [xq,--- X5 € RII>dmoset  where dimodel
is the dimension of the hidden layer. Then com-
pute the contextualized vector representations as
follows:

X! = RetNet;(X'"™1), 1 e [1,L]. (6
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Figure 3: Overall architecture of RetNet.

Retention mechanism with a dual form of re-
cursion and parallelism is the key to the success
of RetNet. Project the input X € RI7|Xdmoset to
v, = X, - Wy, Where w,, is the trainable matrix
that maps inputs to value vectors. Then make the
projection @, K:

Q=XWe K=XxWkK, (7)

where W&, WX € R?*? are learnable matrices.

Consider a sequence modeling problem, through

the state s,, € R**? mapping v,, to a vector of oy,.
S, = As,_1 + ngn
n
_ (®)
Op = Qnsn = Z QnAn me—lr—Lvm
m=1
where K,,, Q,, is the projection of the time step n.
Further, diagonalize A = A(ye)A~,
where A is the reversible matrix, 7 is the
decay mask, according to Euler’s formula
e = [cosfy,sinby,--- ,cosfy_1,sinfy], then
A" = A(7e®)"mA~L n, m is the time step.
Equation 8 becomes:
n . .
On = Z(Qn('Yeza)n)(Km(’Vew)im)Tvm
m ©)
_ Z ,Yn—m(QneinG) (KmeimO)Tvm
m=1

where Qu (¢)", K, (7¢)
et al., 2022), T is the conjugate transpose. e
and e serve as rotational factors that encode
positional information using complex exponential
forms, where 6 denotes the learnable parameters
employed to model relative phase differences for
the purpose of capturing sequential dependencies.

~™ is the xPos (Sun
inf

Parallel Representation of Retention As shown

in Figure 2a, the retention layer is defined as:
Q=XW9ee, K=XWwres,
V=XWY,

n—m 10
Dnm - {7 ’ ( )

n>m
0, n<m’

Retention(X) = (QK " ® D)V



where © is the Hadamard product, © is the position-
dependent modulation term, and © denotes its com-
plex conjugate, and D € RII<17l constitutes a uni-
fied matrix that jointly encodes causal masking and
exponential decay as a function of relative posi-
tional distance.

Recurrent Representation of Retention As
shown in Figure 2b, at the n-th timestep, the output
is recurrently obtained as follows:

Sp = ySn—1+ K;Vn (11)
Retention(X,) = QnSp,n=1,--- ]|

Chunkwise Recurrent Representation of Reten-
tion The input sequences are segmented into
chunks. Within each chunk, the computation is
carried out using the parallel representation Equa-
tion 10. In contrast, information across chunks is
propagated using the recurrent representation Equa-
tion 11. Specifically, let B denote the chunk length.
The retention output of the ¢-th chunk is computed
as follows:

Qu = @Bi:B(i+1),
Ky) = Kpip(i+1),
Vi = VBi:B(i+1)»
R; = K(Vig ©¢) + 77 Ri 1,
Retention(X(;) = (Q[i]K[Tﬂ © D)V
Tnner-Chunk
+ (QpRi-1) ©¢&
ok

Ly =Y Gy =APT

(12)

where [i] indicates the i-th chunk, ie., z;; =
[Z(i—1)B+1," " > ZiB]. ¢ and £ are exponential de-
cay factors that modulate the influence of intra-
chunk and inter-chunk information.

Gated Multi-Scale Retention In each layer, the
number of retention heads is defined as h =
dmode1/d, where d denotes the head dimension.
Each head is associated with distinct parameter
matrices W@, WE WV ¢ R4 MSR mech-
anism assigns a unique decay factor -y to each
head. For simplicity, identical ~ values are used
across different layers and kept fixed. To enhance
the non-linearity of the retention layers, a swish
gate (Hendrycks and Gimpel, 2016; Ramachandran
et al., 2017) is introduced. Given the input X, the

computation of the layer is defined as follows:

=1 — g 5-arange(0.h) ¢ Rh
head; = Retention(X, ;)

Y = GNp(Concat(heady, - - - , heady))
MSR(X) = (swish(XW) @ Y)W

(13)

where W&, WO € RdmoderXdmodel are Jearnable pa-
rameter matrices. arange(0, k) denotes a vector
of integers from O to A — 1, used to assign dis-
tinct decay scales across h attention heads. GN
denotes Group Normalization (Wu and He, 2018),
applied to each head output following the SubLLN
strategy in (Shoeybi et al., 2019). Since each head
employs a distinct -y scale, their output variances
differ, which necessitates separate normalization.

Overall Architecture of Retention Networks
As illustrated in Figure 3, an L-layer retention net-
work is constructed by stacking MSR and FFN
modules. The input sequence {z;} li' | is first
mapped to vector representations via a word em-
bedding layer. The resulting embeddings, denoted
as Xo = [71,--- 23] € RI7|>dmoset | serve as the
initial input to the model. The final output is repre-
sented as X~

Y! = MSR(LN(XY)) 4 Xx*

(14)
X! = FFN(LN(Y?!)) 4+ Y*

where LN(+) denotes the Layer Normalization func-
tion (Ba et al., 2016). The feed-forward network
(FFN) is defined as

FFN(X) = gelu(XWl)Wg,

where W7 and W5 are learnable parameter matri-
ces, and gelu(-) is the Gaussian Error Linear Unit
activation function.

4 Applications of Retentive Network

4.1 Natural Language Processing

RetNet has proven to be highly effective in a variety
of NLP tasks due to its efficient retention mecha-
nism. In language modeling, the decoder-decoder
architecture with gated retention mechanism was
introduced by Sun et al. (2024) to improve con-
textual understanding. For knowledge graph rea-
soning, Cheng et al. (2024) utilized RetNet as an
encoder. In multi-hop reasoning tasks, the STSR
model presented by Su et al. (2024) employed Ret-
Net’s parallel retention module to speed up training



and enhance performance in sequence-to-sequence
reasoning tasks. The LION framework, developed
by Afzal et al., adapted RetNet for bidirectional
language tasks, incorporating fixed decay masks
to efficiently capture long-range dependencies and
reduce computational costs. Afzal et al. (2025) fur-
ther refined this idea in LION-D, a bidirectional
variant of RetNet that supports linear-time infer-
ence while preserving the efficiency of parallel
training. He et al. (2024) introduced DenseRetNet,
which improves feature extraction by integrating
dense hidden connections.

4.2 Computer Vision

RetNet and their variants have demonstrated broad
applicability across various CV domains. The fixed
decay mask enables RetNet to efficiently capture
long-range spatial or temporal dependencies in im-
ages or videos.

Image Tasks. RetViT replaces standard attention
with parallelizable retention blocks to accelerate
training while maintaining representational capac-
ity (Dongre and Mehta, 2024). Fan et al. (2024)
extend RetNet’s one-dimensional unidirectional
decay matrix to a two-dimensional bidirectional
decay matrix, thereby designing Manhattan Self-
Attention (MaSA). ViR explores efficient vision
backbones by redesigning the retention mecha-
nism to support both parallel training and recur-
rent inference (Hatamizadeh et al., 2023b). An-
other ViR model leverages RetNet’s block struc-
ture and multi-scale design to recursively cap-
ture contextual dependencies across spatial scales
(Hatamizadeh et al., 2023a). Hu et al. (2024a) pro-
posed the SwiFTeR architecture, which employs
the Retention mechanism in the fusion model’s
decoder. SegRet applies multi-scale retention mod-
ules to strengthen hierarchical feature aggregation,
boosting semantic segmentation accuracy (Li et al.,
2025). Retention mechanism helps hyperspectral
models reduce memory cost while preserving spec-
tral discriminability (Arya et al., 2025; Paheding
et al., 2024). GRetNet enhances spatial feature
modeling via Gaussian-decayed retention based on
Manhattan distance (Han et al., 2024). Incorporat-
ing MaSA into LoFTR-like frameworks improves
coarse feature matching in challenging correspon-
dence tasks (Sui et al., 2024). Multi-focus image
fusion benefits from bidirectional 2D retention that
captures local spatial consistency (Huang et al.,
2024a). RetCompletion applies a fast parallelized

retentive decoder for real-time image inpainting
(Cang et al., 2024). The Cross-Axis Transformer
integrates RetNet’s recurrent retention mechanism
to process visual attention across chunked image
regions (Erickson, 2023). The RetNet-based reten-
tion module is cleverly applied to rotating target
detection (Liu et al., 2024b).

Video Tasks. RCAT combines RetNet with CLIP
adapters, yielding strong results in video recogni-
tion across different datasets (Xie et al., 2024b).
Maskable RetNet introduces learnable masking
strategies, improving temporal localization in mo-
ment retrieval (Hu et al., 2024b). MonoRetNet pro-
posed a half-duplex bidirectional retention design
for monocular depth prediction from sequential
frames (Fan and Liu, 2024).

3D Data Modeling. RetFormer incorporates spa-
tial retention module tailored to 3D Transformer
backbones (Erabati and Araujo, 2024). LION mod-
els point cloud sequences with linear-time complex-
ity by applying groupwise retention in RNN-style
architectures (Liu et al., 2024c). RetSeg3D ex-
tends the retention concept from one-dimensional
sequences to 3D voxel grids for improved semantic
parsing (Erabati and Araujo, 2025). RangeRet in-
troduces a Manhattan distance-based spatial decay,
enhancing context aggregation in LiDAR segmen-
tation tasks (MOSCO, 2023). Octree-Retention
Fusion exploits parallel retention with exponen-
tial decay masks to improve hierarchical context
modeling in point cloud compression (Zhang et al.,
2024c).

Cross-modal Tasks. RECA refines multi-hop
reasoning in VQA tasks by integrating decay-aware
attention across modalities (Zhu et al., 2025). In
UAV geolocation, RMT’s spatially constrained re-
tention enables robust matching between aerial and
satellite views (Lin et al., 2024). For image fusion,
RetNet facilitates cross-modal shared feature ex-
traction, enabling more coherent integration of text
and visual signals (Wang et al., 2025c).

Robotic Perception. RAMPGrasp deploys mul-
tiscale retention to improve robustness against oc-
clusions and cluttered scenes (Huang et al., 2025a).
VVNet fuses RetNet modules with ViT backbones
to address noise and visibility challenges in under-
water imagery (Liu et al., 2024a). HFA-Net em-
ploys RMT’s MaSA to embed fine-grained spatial
priors for subtle facial movement detection (Zhang
et al., 2025b). The RetNet-based RMT block is



integrated into the YOLOV9s backbone network,
enhancing local and global feature extraction capa-
bilities (Xu et al., 2024).

4.3 Natural Science

RetNet has demonstrated remarkable versatility
across diverse domains in the natural sciences, at-
tributed primarily to its efficient retention mecha-
nism, scalable attention modeling, and capacity to
encode long-range dependencies.

Chemistry. Miao et al. (2024) augmented molec-
ular feature learning by embedding the retention
structure during information propagation. Knit-
ter et al. (2024); Knitter (2024) applied Retenet to
Neural-Network Quantum States (NQS). RetNet’s
utility extends to lithium-ion battery state-of-health
(SoH) estimation, where its retention mechanism
excels in capturing temporal degradation patterns
(Chen et al., 2024).

Physics. JetRetNet exploits retention mechanism
to encode multiscale dependencies among tracking
and vertex features (Guvenli and Isildak, 2024).
Radio-frequency signal classification integrates
bidirectional retention and cross-block state fu-
sion to accommodate the causal structure of mod-
ulation tasks (Han et al., 2025). RAD addresses
anomaly detection in cyber-physical systems by
employing multi-scale retention and rotational po-
sitional encodings to model long-term dependen-
cies efficiently (Min et al., 2025). Cheng and Cao
(2025) exploited RMT enables fine-grained target
modeling in radar perception by distributing atten-
tion according to spatial proximity. RetNet has
been adapted to assess transient stability through a
time-adaptive framework (Zhang et al., 2024a). In
planetary environments, RetNet’s retention mecha-
nism has been employed for unmanned aerial vehi-
cle (UAV) monocular visual odometry (Liu et al.,
2025).

Biology and Medicine. In biomedical sequence
analysis, RetNet have been explored for haplotype
assembly (Luo et al., 2025). Liu et al. (2024d) in-
corporated RetNet to capture spike protein features.
Two RETNets are used to extract drug features and
protein features, respectively (Peng et al., 2024). In
transcriptomic analysis, RetNet variant processes
large-scale cell data (Zeng et al., 2024).

For EEG decoding, RetNet captures bidirec-
tional temporal dependencies (Wang et al., 2025b).
RetNet denoises EEG signals (Wang et al., 2024a).

RetNet decodes temporal patterns for emotion
recognition, fused with spatial features (Xu et al.,
2025).

In medical image processing, ELKarazle et al.
(2023) enabled real-time polyp segmentation with
bidirectional retention. Chu et al. (2024) enhanced
polyp segmentation with spatial distance-based re-
tention. RetNet models spatial correlations for
echocardiography segmentation (Lin et al., 2025a).
Zhou et al. (2024) improved CT denoising via co-
retention mechanism. RetNet captures rotation-
invariant features for medical image classification
(Li and Huang, 2025).

4.4 Social Engineering

RetNet has been extensively adopted in various
societal engineering tasks due to its powerful ca-
pability to capture long-range dependencies and
retain critical information throughout sequential
modeling.

In building change detection, RetNet extracts
and preserves spatial features from remote sens-
ing images (Lin and Piao, 2024). In fire detection,
RetNet’s Local Attention (LA) enhances global
feature extraction in YOLO-based models (Kim
et al., 2024). For earthquake early warning, RetNet
encodes nonlinear couplings in seismic wave em-
beddings (Zhang et al., 2024b). In photovoltaic
forecasting, RetNet extracts high-order features
from hazy weather data (Yang et al., 2024b). In
bridge damage assessment, RetNet captures criti-
cal features under varying conditions, enhancing
anomaly detection (Wang et al., 2025a). For track
circuit entity recognition, multi-scale retention
(MSR) optimizes long-distance dependency model-
ing (Chen et al., 2025). In human-robot collabora-
tion, 3DMaSA extends RetNet to predict force and
velocity from video sequences (Dominguez-Vidal
and Sanfeliu, 2024). In coal gangue identification,
RetNet’s retention mechanism optimizes model
size and inference speed (Zhang et al., 2025d). The
application in tea disease detection, using RetNet
for spatial modeling (Lin et al., 2025b).

For urban traffic flow prediction, The Tempo-
ral Self-Retention (TSR) block to decode time-
dependent features extracted by the Temporal Self-
Attention module (Li and Bao). Spatial RetNet
and temporal RetNet both utilizing multi-scale
retention mechanism to effectively capture spa-
tial and temporal dependencies (Zhu et al., 2024).
Another study by employing RetNet’s causal de-
cay mechanism in the temporal branch (Long



et al., 2024). Meanwhile, H-RetNet supports het-
erogeneous inputs through parallel branches and
modality-specific retention strategies (Yan et al.,
2025). For more applications of RetNet, the reader
is referred to A, B.

5 Challenges and Future Directions

5.1 Expanding RetNet to Future Applications

In multimodal sentiment analysis, RetNet inte-
grates textual, visual, and auditory signals for accu-
rate emotion recognition. In autonomous systems,
it processes real-time LIDAR, camera, and audio
streams to enhance decision-making. Future work
should focus on improving cross-modal alignment
and robustness to noise and resolution variability.

In healthcare, RetNet’s capacity to model high-
dimensional longitudinal data enables predictive
modeling for personalized medicine. By leverag-
ing data from electronic health records, wearables,
and medical imaging, RetNet can forecast disease
trajectories such as chronic or neurodegenerative
conditions.

5.2 Technology and Hardware Optimization

As RetNet’s applications scale to large-scale de-
ployments, energy efficiency becomes a critical
consideration, particularly for edge and mobile en-
vironments. The retention mechanism’s reduced
computational complexity offers inherent energy
savings compared to Transformers, but further op-
timizations are necessary to meet the demands of
sustainable computing.

RetNet’s distinct computational patterns, includ-
ing parallel, recurrent, and chunkwise recurrent
blending, require customized hardware solutions
to fully exploit its efficiency. Developing RetNet-
specific accelerators, such as retention-aware com-
pute units, can significantly enhance performance.

5.3 Security and Stability

Similar to Transformer-based models, RetNet ex-
hibits vulnerabilities to adversarial attacks. Its re-
tention mechanism, while effective for capturing
long-term dependencies, may amplify sensitivity to
adversarial perturbations, potentially compromis-
ing reliability in safety-critical applications such as
secure communications or surveillance systems.
RetNet models, trained on large-scale datasets,
often inherit societal biases, such as those related
to gender, race, or socioeconomic status, embedded
in the training data. These biases can subtly skew

predictions, leading to unintended and inequitable
outcomes.

5.4 Ecosystem and Community Development

The widespread adoption of RetNet, in its capac-
ity as an emerging neural architecture, is contin-
gent on the development of a robust open source
ecosystem. The success of architectures such as
Transformer, BERT, and GPT, whose proliferation
has been significantly supported by accessible and
well-maintained open source libraries, has provided
a foundation for RetNet. The requirement for an
easy-to-use, feature-complete, and extensible soft-
ware framework to accelerate research and deploy-
ment is equally important.

In addition, the establishment of standardized,
challenging benchmark datasets and evaluation pro-
tocols is critical for objectively assessing RetNet’s
performance across a range of tasks and domains.
Such benchmarks will not only facilitate fair com-
parisons with existing models, but also ensure the
reliability, robustness, and generalizability of Ret-
Net in real-world applications.

5.5 Challenges in RetNet Enhancement

While the explicit decay mechanism in RetNet en-
ables efficient modeling of long-range dependen-
cies by attenuating past information over time, it
also introduces limitations in adaptively preserv-
ing salient contextual signals. The current de-
cay formulation, typically based on fixed or pre-
defined functions, may not fully capture the dy-
namic nature of temporal importance across dif-
ferent tasks or modalities. Future research should
explore adaptive or learnable decay strategies that
allow the model to modulate memory retention
based on input characteristics or task demands.
For instance, incorporating gating mechanisms or
attention-informed decay functions could enable
RetNet to selectively preserve or forget past infor-
mation more effectively.

6 Conclusion

This paper presents a thorough survey of the current
literature on RetNet, offering analytical insights,
exploring practical applications, and outlining key
challenges and future research directions. As the
first dedicated review of RetNet to our knowledge,
this work seeks to capture the evolving landscape
of RetNet-related studies and provide valuable per-
spectives to support continued innovation and ex-
ploration in this emerging field.



Limitations

This paper provides a comprehensive review of Re-
tentive Network (RetNet) and its theoretical foun-
dations, empirical performance, and practical appli-
cations. Nevertheless, due to the rapidly evolving
nature of this research area, especially in terms of
variant designs and scalability optimization, certain
notable works may have been inadvertently omit-
ted. Additionally, a number of studies discussed in
this survey rely on earlier benchmarks or smaller-
scale evaluations, which may not fully reflect the
performance characteristics of RetNet models in
large-scale or real-world scenarios. We encourage
future research to incorporate state-of-the-art im-
plementations and diverse application contexts to
offer more comprehensive and practical guidance.
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A Audio

In recent years, the RetNet has demonstrated sig-
nificant promise across various audio-related tasks,
particularly due to its capacity to efficiently model
long-range dependencies while maintaining linear
computational complexity.

Huang and Chen (2024) advanced long-form
speaker diarization by developing the RetNet-
EEND framework, which replaces the Transformer
encoder in the EEND-EDA model with a RetNet-
based architecture. Liang and Li (2024) proposed
the LS-EEND model, which replaces the con-
ventional masked self-attention mechanism in the
encoder with Retention, enabling the model to
achieve linear time complexity and improved effi-
ciency. RetNet has also demonstrated strong po-
tential in the domain of speech enhancement. In
the LRetUNet architecture, Zhang et al. (2025c)
integrated RetNet with LSTM units to construct a
time-frequency representation module specifically
designed for single-channel speech enhancement.

B Others

RetNet has found versatile applications in multi-
ple domains, leveraging its capability to efficiently
model long-term dependencies and handle complex
sequential data.

In multimodal representation learning, VL-
MFER introduces a bidirectional RetNet (Bi-
RetNet) that exploits both parallel and recursive
forms of multiscale retention to fuse visual and
language modalities (Guo et al., 2024).

In the educational domain, a customized Reten-
tive Module extends the original RetNet with a
multiscale retention layer, capturing not only the
temporal dependencies between student interac-
tions but also their forgetting patterns, thereby en-
hancing the precision of learning state modeling
(Linhao et al., 2024).

RetNet has also proven effective for time-series
forecasting. LeRet leverages a causal retention en-
coder alongside multiscale retention modules to
enhance nonlinear feature extraction in repaired
sequences (Huang et al., 2024b). In reinforce-
ment learning-based recommender systems, Ret-
Net substitutes traditional masked attention with
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a segmented multiscale retention scheme, signifi-
cantly improving efficiency and robustness in long-
range modeling (Wang et al., 2024b). For sequen-
tial recommendation, dual RetNet modules encode
both item and user history, enriching the person-
alized representation space (Wu, 2024). CFPSG
further incorporates RetNet into a unified frame-
work to support next-POI prediction by capturing
fine-grained temporal correlations (Feiyu, 2024).
RetNet’s architectural flexibility makes it well-
suited for modeling motion and control dynamics.
In EQNet, RetNet serves as the core of a struc-
tured state-space model, improving encoding effi-
ciency in multi-agent motion forecasting (Huang
et al., 2025b). Similarly, the NC-RetNet introduces
a non-causal retention mask to access both past
and future frames within blocks, improving 3D hu-
man pose estimation while maintaining low latency
(Zheng et al., 2024). In TT-DF, RetNet powers the
motion-guided branch, balancing long-range de-
pendency modeling and computational cost (Yang
et al., 2024a). For robotic manipulation, it is em-
ployed to process time-series inputs from learned
impedance control dynamics (Okada et al., 2024).
Language and reasoning tasks also benefit from
RetNet’s capabilities. In ASTE, a novel bidirec-
tional retention scheme inspired by RetNet bridges
sequential and syntactic modeling gaps, boost-
ing sentiment triplet extraction performance (Yang
et al., 2024¢c). For world modeling, RetNet sup-
ports observation, reward, and termination predic-
tion within REM, and is extended via the POP
mechanism to generate observation sequences in
parallel during imagination (Cohen et al., 2024).
System-level advancements further highlight
RetNet’s efficiency. A high-throughput FPGA in-
ference accelerator incorporates RetNet to max-
imize hardware utility via dual-mode structure
and linear computation (Nian et al., 2024). In
FlashVideo, RetNet functions as the decoder, with
parallel retention for training and autoregressive
decoding for inference (Lei et al., 2023). Sable
introduces an encoder-decoder RetNet for MARL
with cross-retention and dynamic state resetting
to better capture long-term dependencies in online
settings (Mahjoub et al., 2025). In software en-
gineering, RetNet is adopted as the encoder for
cloud software code generation from multimodal
knowledge (Zhang et al., 2025a).
In the domain of network analysis, RetNet
proves invaluable in both encrypted and anoma-
lous traffic scenarios. RN-ETE extends RetNet



by incorporating a multi-resolution self-attention
mechanism, enabling bidirectional retention within
encrypted traffic encoding for more effective net-
work traffic encryption and analysis (Qiu et al.,
2024). On the other hand, UARC applies RetNet’s
retention-based reconstruction module to model
long-term temporal patterns in network traffic, ad-
dressing the challenges of anomaly detection in
traffic streams (Xie et al., 2024a).

In dynamic graph deep learning, Chang et al.
(2024) proposed the Graph Retention Network
(GRN) as a unified architecture for deep learning
on dynamic graphs.
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