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Abstract—To effectively engage in human society, the ability to
adapt, filter information, and make informed decisions in ever-
changing situations is critical. As robots and intelligent agents
become more integrated into human life, there is a growing
opportunity—and need—to offload the cognitive burden on
humans to these systems, particularly in dynamic, information-
rich scenarios.

To fill this critical need, we present Multi-RAG, a multimodal
retrieval-augmented generation (RAG) system designed to
provide adaptive assistance to humans in information-intensive
circumstances. Our system aims to improve situational
understanding and reduce cognitive load by integrating and
reasoning over multi-source information streams, including
video, audio, and text. As an enabling step toward long-term
human-robot partnerships, Multi-RAG explores how multimodal
information understanding can serve as a foundation for adaptive
robotic assistance in dynamic, human-centered situations. To
evaluate its capability in a realistic human-assistance proxy task,
we benchmarked Multi-RAG on the MMBench-Video dataset, a
challenging multimodal video understanding benchmark. Our
system achieves superior performance compared to existing
open-source video large language models (Video-LLMs) and
large vision-language models (LVLMs), while utilizing fewer
resources and less input data. The results demonstrate Multi-
RAG’s potential as a practical and efficient foundation for future
human-robot adaptive assistance systems in dynamic, real-world
contexts.

Index Terms—Al Assistance Systems, Human Cognitive Sup-
port, Large Language Models, Multimodal RAG, Video Under-
standing

I. INTRODUCTION

In today’s highly social and dynamic settings, we are
often overloaded with information. We actively or passively
receive vast amounts of information constantly from vari-
ous media and scenarios [3]. For example, students face
a significant influx of knowledge from both textbooks and
teachers in the classroom. Similarly, Army commanders issue
orders according to their extensive military training and how
it applies to the highly complex situation at hand. These
scenarios are all information-intensive. The inability to cope
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Fig. 1. An example interaction scenario with the Multi-RAG system: Based
on an open-ended user query, the system synthesizes visual, audio, and textual
inputs to infer the answer, demonstrating its ability for practical understanding
and decision support.

with excessive information can lead to serious performance
losses and potential health problems [4, [12]]. Therefore, it is
crucial to extract valuable information from the abundance of
information streams to enhance efficiency in communication,
learning, and decision-making.

Large Language Models (LLMs) are gaining popularity
and influencing all aspects of daily life. LLMs show strong
potential in improving information summarization techniques
by generating concise, coherent representations of lengthy
texts while retaining essential content, offering significant
utility across a variety of domains [5, 29]. They have also
demonstrated effectiveness in supporting various facets of
organizational decision-making, such as gathering information
and generating potential options to consider [[13} [14].

However, despite their growing popularity and capabilities,
LLMs still face notable limitations in technical reliability
and practical applicability. One major constraint is hallucina-



tions, as LLMs are known to occasionally generate plausible-
sounding but incorrect information [30]]. Additionally, LLMs
often lack the latest information because their training corpus
is typically outdated by several months or years [[15]. There-
fore, we propose a human-centered system that helps the agent
understand the world and increase its situational awareness
across multi-modal scenarios, ultimately benefiting humans.

We developed an integrated software-hardware system that
leverages Retrieval-Augmented Generation (RAG) to syner-
gistically combine the intrinsic knowledge of LLMs with
the vast and continuously evolving information from exter-
nal databases. In addition, the system incorporates advanced
perception capabilities—such as automatic speech recognition
(ASR) and vision-language models (VLMs)—to enable three
key functions: (1) perceiving and interpreting multimodal ex-
ternal inputs, (2) continuously acquiring and updating knowl-
edge from dynamic real-world sources, and (3) enhancing
human cognition by providing timely, context-aware support
across various contexts (see Figure [1).

To demonstrate the system’s effectiveness in supporting
human cognition and decision making, we focus our evaluation
on complex, real-world scenarios that require the integration
of multimodal information streams. Specifically, we employ an
open-source video understanding benchmark as a representa-
tive task, as video-based environments naturally embody high
information density and require both perceptual and reasoning
capabilities—core aspects of effective decision support. Ex-
perimental results show that our system effectively interprets
complex visual scenes and maintains high performance even
when provided with limited visual input, highlighting its
efficiency and robustness in resource-constrained scenarios.

II. RELATED WORKS

Our work is closely related to, and draws inspiration from,
prior research on memory augmentation systems, multi-modal
retrieval, and intelligent assistants.

A. Memory Augmentation Systems

Memory augmentation systems have been an active area
of research since Vannevar Bush’s conception of the Memex
in 1945 [6]. Building on this foundation, wearable memory
augmentation devices have gained increasing attention since
the 1990s, evolving from early concepts such as “memory
prosthesis” [[17]. Previous work in memory augmentation has
placed significant emphasis on the audio modality. Stud-
ies have explored personal audio memory aids that sup-
port keyword-based search, such as Vemuri et al’s system
[27]. Additionally, researchers have investigated audio life-
logging using wearable microphones and developed various
smartphone-based browsing methods and real-time discrete
and minimally disruptive querying mechanisms to access the
recorded content [28}131]. With the development of multimedia
technology, we hope the future memory augmentation media
is not limited in the audio, therefore, we present a multimodal
information retrieval method that enables users to retrieve
information from captured video and other file types.

B. Multimodal RAG Paradigms

Multimodal RAG systems can be implemented through a
variety of distinct paradigms, each with unique approaches to
handling multimodal embedding, retrieval, and generation [[1]].

1) Cross-Modal: Models like CLIP [23], ALBEF [18]
enable both images and text to be encoded into a shared vector
space, facilitating multimodal retrieval within existing text-
centric frameworks. This approach primarily requires replacing
the unimodal embedding model with a multimodal encoder
and using a multimodal LLM for generation, allowing unified
question answering across modalities.

2) Separate Modality Pipelines: This approach treats each
modality independently, designing dedicated retrieval and gen-
eration pipelines for each. Modality-specific encoders are used
to embed queries and retrieve relevant content within the same
modality, while generation relies on separate models tailored
to each type of data. A re-ranking component can further
optimize selection by identifying the most relevant results
across different modality-specific retrieval stores [21]].

3) Single Primary Modality: The single modality paradigm
grounds all multimodal information into the embedding space
of a primary modality, which is selected based on the focus
of the application. Both retrieval and generation are then
primarily performed using models specialized for the primary
modality, allowing the system to standardize processing and
leverage the strengths of typically text-based pipelines.

C. Existing Assistants

MerryQurry is an LLM-powered educational assistant that
provides personalized, source-grounded support for students
and educators, while addressing concerns around academic in-
tegrity and Al overreliance [24]. Expanding LLMs to domain-
specific tasks, Kallakurik et al. [16] propose a medical Al
assistant for edge devices that uses input-driven saliency to
prune irrelevant neurons, enabling efficient deployment under
hardware constraints. Moving beyond language-only inputs,
STREAMMIND introduces a video-language framework for
real-time streaming comprehension and dialogue, allowing Al
systems to proactively respond to video content using context-
aware natural language generation [9].

III. SYSTEM DESIGN

Building on the single primary modality paradigm discussed
in Section [l our system adopts this approach to build the
video encoder, knowledge database, and RAG pipeline shown
in Figure [2] Specifically, it integrates multimodal information
from video, audio, and documents, by converting all inputs
into unified textual representations [2]. Visual and audio data
are processed into descriptive text and auxiliary metadata,
which are indexed in a vector database, while the original
files are archived for potential future reference. At inference,
user queries are matched to relevant content through semantic
retrieval, and a large language model generates the final
response based on both the query and retrieved information. In
the following sections, we detail the video encoder framework,



the construction of the knowledge database, and the RAG
pipeline.

A. Video Encoder

The processing of video data is bifurcated into two par-
allel streams: image processing and audio processing. For
the video component, a sampling module is employed to
select requisite frames. We have developed two distinct sets
of sampling strategies tailored for two specific scenarios:
educational environments and general-purpose applications.
Specifically, within the context of classroom settings, the
visual content predominantly consists of presentation slides.
Lecturers typically expound upon a single visual frame for
an extended duration, rendering a high frequency of input
unnecessary. Consequently, for the visual stream, we have
implemented a pre-processing stage designed to filter the input
frames. Only upon detection of a substantive change in the
visual content is the image subsequently fed into the VLM.
Mean Square Error is used to measure the discrepancy between
frame A and frame B of size M x N with C channels:

MSE(4. B) = 3755 2

k=0
(D

To determine whether a newly sampled frame contains
sufficient visual change for further processing, we compare its
MSE against a cutoff value derived from sample videos of a
recorded lecture series. In general-purpose scenarios character-
ized by high-frequency transformations of visual content, the
utility derived from input-filtering in the pre-processing stage
is notably diminished. Consequently, for tasks of this nature,
a uniform sampling methodology is employed. For the given
video, the frame sampler samples n frames at a constant rate.
These frames { Fy, F1,...F,, } are fed into the Vision Language
Model to generate the text descriptions {Dg, D1, ...D,} with
timestamps. In addition to descriptions of the depicted content,
auxiliary metadata are also generated, which include sum-
maries and preliminary analyses [19]. Temporal summaries
are generated at fixed intervals or upon slide transitions using
prompts that ensure preservation of global context and miti-
gate overemphasis on individual frames. Preliminary analysis
explains the video’s principal thematic focus, its predominant
stylistic characteristics, and salient scene transitions. These
auxiliary outputs augment frame-level descriptions by provid-
ing a macroscopic account of content progression alongside
an initial interpretive framework of the video’s subject matter
and structure.

Audio also encompasses a considerable volume of infor-
mation. For corresponding video frames, audio recognition
is implemented using OpenAI’'s Whisper Model—a general-
purpose speech recognition model that supports automatic
multilingual speech recognition. Audio information is con-
verted into text using this model and appended to the frame’s
image text descriptions and auxiliary texts.

B. Knowledge Database

The choice of source file formats and the granularity of
retrieval units profoundly influence the quality of subsequent
generative outputs. Markdown has emerged as a preferred for-
mat for large language models due to several advantages: (1)
it imposes a clear hierarchical structure through standardized
syntax for headings, lists, and other organizational elements;
(2) it supports typographic emphases—such as bolding, italics,
and code spans—that facilitate nuanced semantic distinctions;
and (3) it remains inherently human-readable, thereby enabling
seamless collaboration between automated systems and human
reviewers. As such, the text descriptions generated in Section
I1I-Alare formatted as Markdown files. To build the knowledge
database, the content of these documents is chunked and
embedded, or encoded as vectors, for storage within a unified
vector space.

1) Chunking: Chunking of documents before embedding
ensures manageable input sizes to embedding models, pre-
serves content, and reduces computational load, thus im-
proving embedding quality and efficiency [8, 26, 20]. To
chunk contextual documents, files are first loaded via format-
appropriate parsers. During ingestion, each document is as-
signed a unique identifier, and basic metadata is recorded
alongside the text chunk. To ensure that individual textual
segments operate within the contextual window of the LLM
while preserving meaningful semantic units and temporal
information, documents are tokenized and partitioned into
fixed-length chunks with an overlapping ratio. This approach
guarantees that concepts spanning chunk boundaries are not
lost.

2) Embedding: We utilized LangChain[7] to generate em-
beddings for the contextual documents, enabling seamless
integration of the LLM into the retrieval pipeline described
in Section [L1]. Each text chunk is passed through an
embedding model (OpenAIEmbeddings[22]), and the output
dense vector captures the chunk’s semantic content in a
continuous space. The resulting vectors are stored in a vector
database (Chromal25]).

C. RAG Agent

The retrieval pipeline takes inputs from the knowledge
database and user query to conduct a similarity search and
generate context-aware system responses.

1) Retrieval: Our system retrieves the top & chunks most
relevant to the user query based on semantic similarity. Like
the document chunks, queries undergo vectorization. Retrieval
is achieved by computing the cosine similarity between the
embedding of the query Q and the document chunk C.

{Ciy,...,C;, } = argtopy, {Cosine_similarity(Q, Cj) |

j:l,...,N} "
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The framework of our Multi-RAG pipeline contains three key modules. In the video encoder, the VLM, receives input from the frame sampler, and

the ASR processes visual and audio streams, respectively, converting multimodal external inputs into unified textual descriptions and embeddings. Next, these
are stored in the knowledge vector database, where a retrieval-augmented generation (RAG) agent selects relevant information in response to the user query.
The LLM then synthesizes the retrieved content to generate the final system response.

2) Generation: The original input query and the retrieved
chunks are fed into LLM to generate the final system answer.
In our system, we employ two distinct prompt types to guide
the model’s response generation. The first prompt type is
designed to encourage open-ended reasoning and creative
inference, allowing the model greater flexibility in generating
explanations and predictions. The second prompt type, by
contrast, places a stronger emphasis on factual grounding and
concise answers, promoting a more balanced trade-off between
creativity and accuracy.

IV. EXPERIMENTATION

To rigorously assess the effectiveness of our system in
supporting multimodal reasoning, we conducted experiments
using standardized video understanding benchmarks and sys-
tematic parameter analyses.

A. Supporting Datasets

The MMBench-Video benchmark [[10] is designed to com-
prehensively evaluate the video understanding capabilities of
LVLMs. It features long-form YouTube videos and uses open-
ended questions to reflect real-world application scenarios. The
dataset includes 609 video clips across 16 major categories
such as news, science, and finance. Video durations range
from 30 seconds to 6 minutes, with a total of 1998 question-
answer(QA) pairs.

The QA setting in the MMBench-Video benchmark is struc-
tured around a three-level hierarchical capability taxonomy. At
the highest level (Level 1), capabilities are divided into two do-
mains: Perception and Reasoning. These are further subdivided
into nine Level 2 capabilities: Coarse Perception (CP), Fine-
grained Perception with Single-Instance (FP-S), Fine-grained

Perception with Cross-Instance (FP-C), Hallucination (HL),
Logic Reasoning (LR), Attribute Reasoning (AR), Relation
Reasoning (RR), Common Sense Reasoning (CSR), and Tem-
poral Reasoning (TR). Level 3 capabilities consist of 26 fine-
grained categories, capturing a broad spectrum of cognitive
skills relevant to video understanding.

B. Evaluation Procedures

In evaluating the performance of our video understand-
ing system, we also assess its operational efficiency. This
is investigated by systematically reducing the input frame
rate to determine the necessity of high-frequency sampling.
Concurrently, comprehensive ablation studies are conducted
to elucidate the influence of other critical parameters, in-
cluding the integration of audio information, the number
of retrieved contextual chunks, and variations in question
generation prompt design.

The experimental procedure commenced with the extraction
of video frames at a rate of 1 frame per second (fps);
corresponding textual descriptions, timestamped and chrono-
logically ordered, were then recorded. An initial evaluation
relevant to the benchmark was conducted using this 1 fps
dataset.

Subsequently, the frame rate was effectively halved to 0.5
fps by removing alternate frames, and a second evaluation was
performed. Finally, an Automatic Speech Recognition (ASR)
module was employed to transcribe the video’s audio content.
This transcribed audio information was then integrated into the
respective datasets for both the 1 fps and 0.5 fps conditions.
Subsequently, as detailed in Section documents were
augmented with auxiliary contextual information to facilitate



TABLE I
COMPARISON OF VIDEO-LLMS ON PERCEPTION AND REASONING TASKS

Model Overall Perception Reasoning
Mean CP FP-S FP-C HL [Mean [ LR. AR RR CSR TR [ Mean
Open-source Video-LLMs
LLaMA-VID-[1fps] 1.08 1.30  1.09 093 042 0.94 071 121 1.08 0.83 1.04 1.02
MovieLLM-[1fps] 0.87 095 0.82 0.70  0.15 0.65 052 1.12 122 054 1.05 0.97
VideoStreaming-[64f+] 1.12 1.38 1.13 0.8 0.32 1.13 077 127 111 101 1.10 1.09
Open-source LVLMs
InternVL2-26B-[16f] 1.41 1.56 148 123 0.52 1.42 1.06 1.61 145 138 1.23 1.35
VILA1.5-40B-[14f] 1.61 1.78 1.72 135 047 1.63 1.12 178 1.61 148 145 1.52
Proprietary LVLMs for Images
Gemini-Pro-v1.5-[1fps] 1.94 1.99  2.04 1.70 1.90 1.98 198 202 192 1.78 1.63 1.86
GPT-4o-[1fps] 2.15 223 224 2.01 1.90 2.19 211 212 217 194 197 2.08
Ours
Multi-RAG, 0.5fps, promptl 2.14 220 2.14 1.71 1.48 2.08 253 224 212 220 209 2.21
Multi-RAG, 0.5fps, prompt2 2.12 2,17 217 1.71 2.18 2.11 244 219 196 219 2.07 2.14
TABLE 11
LLaMA-VID [1fps] GPT-40 [16f] RESULTS OF ABLATION STUDY.
MovieLLM [1fps] GPT-40 [1fps]
. Videtl)S.treaming [64f] [0 Ours(Promptl) PerceptionReasoning]Overall
Gemini-Pro-v1.5 [1fps] Ours(Prompt2) Methods Mean Mean | Mean
Multi-RAG 2.12 2.14 2.12
RR CSR Multi-RAG w/o Audio 2.03 2.02 2.03
Multi-RAG w/o Auxiliary metadata 2.09 2.12 2.10
Multi-RAG w/o Audio & Auxiliary metadata|  2.02 1.98 2.01
TABLE III
RESULTS OF SYSTEM WITH DIFFERENT RETRIEVED CHUNKS.
Perception Reasonin, Overall
Top-k Methods Mela)m Mean ¢ Mean
Top-1 Multi-RAG 1.93 1.90 1.92
Top-3 Multi-RAG 2.03 2.06 2.04
Top-5 Multi-RAG 2.12 2.14 2.12
Top-7 Multi-RAG 2.08 2.15 2.10
LR CcpP
V. RESULTS

FP-C

Fig. 3. Comparison of mainstream Video-LLMs, LVLMs, and our system
on MMBench-Video. This graph illustrates performance in the Level 2
capabilities from the QA setting in the MMBench-Video benchmark. Those
are Coarse Perception (CP), Fine-grained Perception with Single-Instance (FP-
S), Fine-grained Perception with Cross-Instance (FP-C), Hallucination (HL),
Logic Reasoning (LR), Attribute Reasoning (AR), Relation Reasoning (RR),
Common Sense Reasoning (CSR), and Temporal Reasoning (TR).

a further evaluation of the results. To reduce operational costs
and latency, GPT-4.1 mini was chosen over GPT-4o, despite
offering no additional improvements in model intelligence.
Aligned with the evaluation methodology established in the
MMBench-video, we employed GPT-4 to assess the discrep-
ancy between the model’s generated answer and ground truth
answers.

We present the best configuration of our system in Table [
and compare it with the strongest baseline, GPT-40 at 1
fps input. Notably, our system achieves comparable or even
superior performance while operating at only half the input
frame rate (0.5fps). With promptl, our system attains an
overall mean of 2.14, nearly matching GPT-40, and even
surpasses GPT-40 in reasoning mean (2.21 vs. 2.08). Similarly,
with prompt2, the overall mean remains high at 2.12, and
the system demonstrates a balanced improvement in both
perception and reasoning, with particularly strong performance
in perception hallucination when using prompt2. Figure El
intuitively shows the capabilities of each model against our
system in the different tasks.

Overall, these results highlight the efficiency and effective-
ness of our proposed system. It matches or exceeds the state-
of-the-art proprietary models on several tasks, particularly in
reasoning, while demonstrating robust performance even at
reduced frame rates. This underscores the benefits of prompt
design and multimodal fusion in achieving high performance
across a variety of video understanding tasks.



A. Ablation Studies

We performed ablation studies to quantify the contributions
of two key components—audio and textual auxiliary meta-
data—to the overall system performance, using prompt2 as
the baseline configuration. As shown in Table [II, the results
highlight the effectiveness of the evaluated components. Audio
information contributes substantially to overall performance,
while auxiliary text offers a smaller but still positive impact.
Notably, the system exhibits the lowest performance when
both components are removed, underscoring their complemen-
tary roles in the system.

B. Parameter Analysis

As shown in Table increasing the number of retrieved
chunks (top-k) generally leads to improved system perfor-
mance. Both perception mean and reasoning mean metrics
increase as top-k rises from 1 to 5, reaching optimal values
at top-5. However, further increasing top-k to 7 yields only
marginal changes, indicating diminishing returns. These re-
sults, also obtained with the prompt 2, suggest that retrieving
a moderate number of relevant chunks (such as top-5) strikes
a good balance between information coverage and retrieval
efficiency.

VI. CONCLUSION

As robots increasingly integrate into the fabric of human
society, enabling them to learn continually from human inter-
action is both a technical imperative and a societal opportu-
nity. Our Multi-RAG system demonstrates how multi-modal
retrieval-augmented generation can serve as a scalable, adap-
tive foundation for robotic systems that support human cogni-
tion in dynamic, information-rich environments. By grounding
perception, audio, and image in real-time, human-centered
inputs, this work bridges the gap between static Al models
and socially aware, learning-enabled agents.

Moving forward, we plan to enhance the system’s user
interface to further optimize human cognitive support, ensuring
more intuitive and effective interactions for users in real-
world settings. Additionally, we will explore adaptive retrieval
strategies that dynamically allocate computational resources
based on real-time context, aiming to minimize system over-
head while maintaining robustness and responsiveness across
complex and evolving scenarios.

We hope this work fosters deeper interdisciplinary discus-
sions and inspires novel frameworks that push the frontier
of continual robot learning, from memory augmentation to
human-norm acquisition, ultimately empowering robots to
become more capable, collaborative, and socially intelligent
partners in our shared future.
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APPENDIX

A. Prompts Adopted in the Multi-RAG System

System Prompts for the RAG Pipeline:
Prompt Type 1

You are an assistant answering questions based
primarily on the provided context.
Instructions:
1. Answer concisely and directly within one
sentence.
2. Analyze the ’Context’ provided below.
3. Synthesize information from the ’Context’
to answer the ’'User’s Question’.
4. Even 1f the information is insufficient,
guess the most possible answer.
Minimize negative responses and stimulate
your imagination!
5. Base your answer mainly on the ’‘Context’.
Avoid introducing external knowledge.
6. Combine information from different parts of
the context if needed.
7. Do not use phrases like
context...".
Context from Previous Conversation:
{context}
User’s Question:
{question}
Response:

"According to the

Describe this video frame concisely and
capture the key information:

You are an AI assistant skilled at analyzing
text descriptions of video content.

Your goal is to synthesize this analysis into
a single, coherent paragraph summarizing
key aspects.

Analyze the following text describing video
content. Then, write one single paragraph
that weaves together these elements:

Topic: What is the main subject matter?

Emotion: What is the dominant mood or feeling?

Scene: Briefly describe the key visual setting

or elements mentioned in the text.

Style: What is the likely style of the video?

System Prompt for Evaluation

Prompt Type 2

You are an assistant answering questions based
primarily on the provided context.

Instructions:

1. Answer concisely and directly within one
sentence.

2. Analyze the ’Context’ provided below.

3. Synthesize information from the ’Context’
to answer the ’'User’s Question’.

4. If the context does not clearly contain the
answer, you may offer the

single most plausible guess —-- but you MUST:

— Prefix with "Speculative —--"

— Keep the guess concise (<=1 sentence).

— Do NOT present speculation as fact.

- If no reasonable guess exists, reply
Unknown."

- Avoid empty phrases like "not possible to
determine" unless "Unknown" is the only
honest response.

This lets you use imagination while making
it clear what is evidence-based.

5. Base your answer mainly on the ’'Context’.
Avoid introducing external knowledge.

6. Combine information from different parts of
the context if needed.

7. Do not use phrases like "According to the
context...".

Context from Previous Conversation:

{context}

User’s Question:

{question}

Response:

As an AI assistant, your task is to evaluate a
candidate answer in comparison to a given
correct answer.

The question, groundtruth answer, and

candidate answer will be provided.

Your assessment should range from 0 to 3,

based solely on semantic similarity:

— 0: No similarity (entirely incorrect)

- 1: Low similarity (largely incorrect)

— 2: High similarity (largely correct)

- 3: Complete similarity (entirely correct)

Your response should be a single integer from
0, 1, 2, or 3.

Question: [QUESTION]

Groundtruth answer: [ANNOTATED ANSWER]
Candidate answer: [CANDIDATE ANSWER]
Your response:

System Prompt for Frame Description and Auxiliary Text

Multi-RAG
| [start Conversation] [ Read Aloud ][ Correct Content] [File Management| [ Video Parser | [ Summary | [ Exit

[ StartsTr

[Response Type: | [O Concise Mode ] [_Detail Mode

] [0 Vector Retrieval (Adapive) |

Voice Input [ Submit |

Fig. 4. The Multi-RAG user interface is organized into three main columns.
The left column serves as the dialogue section, displaying transcripts of ongo-
ing conversations. The central column is dedicated to the Q&A area, where
the system presents answers to user queries. The right column focuses on
video content and is divided into two parts: the upper section provides rolling
or overall video summaries, while the lower section displays detailed video
descriptions, including selected frames and corresponding audio transcripts.




B. Experimental User interface

We have implemented a graphical user interface to facilitate
further experimentation. The top section features a function
bar, providing controls for initiating or terminating speech
recognition, real-time error correction, engaging in dialogue
with the system, file management, video parsing, and summary
requests. The main display area is divided into three columns:
the left column serves as the dialogue panel, displaying
transcripts of ongoing interactions; the central column is
dedicated to the Q&A area, where system responses to user
queries are presented; and the right column is devoted to
video content, with the upper section offering dynamic or
overall video summaries and the lower section presenting
detailed video descriptions, including representative frames
and associated audio transcripts. The bottom section of the
interface allows users to select the response type and input
questions, supporting both voice and text modalities.

C. Cost

The total cost for API call of this experiment is approxi-
mately $482.
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