
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOGO-VGR: VISUAL GROUNDED REASONING FOR
OPEN-WORLD LOGO RECOGNITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in multimodal large language models (MLLMs) have been pri-
marily evaluated on general-purpose benchmarks, while their applications in
domain-specific scenarios, such as intelligent product moderation, remain un-
derexplored. To address this gap, we introduce an open-world logo recognition
benchmark, a core challenge in product moderation. Unlike traditional logo recog-
nition methods that rely on memorizing representations of tens of thousands of
brands—an impractical approach in real-world settings—our proposed method,
Logo-VGR, enables generalization to large-scale brand recognition with super-
vision from only a small subset of brands. Specifically, we reformulate logo
recognition as a comparison-based task, requiring the model to match product
images with candidate logos rather than directly generating brand labels. We
further observe that existing models tend to overfit by memorizing brand distri-
butions instead of learning robust multimodal reasoning, which results in poor
performance on unseen brands. To overcome this limitation, Logo-VGR intro-
duces a new paradigm of domain-specific multimodal reasoning: Logo Percep-
tion Grounding injects domain knowledge, and Logo-Guided Visual Grounded
Reasoning enhances the model’s reasoning capability. Experimental results show
that Logo-VGR outperforms strong baselines by nearly 10 points in OOD settings,
demonstrating superior generalization.

1 INTRODUTION

In recent years, multimodal large language models (MLLMs)(Bai et al., 2025; Wu et al., 2024;
Achiam et al., 2023) have been widely applied across various scenarios. Beyond direct zero-
shot problem solving, many studies have emphasized post-training paradigms, such as SFT and
PPO(Schulman et al., 2017), as well as GRPO(Shao et al., 2024), to adapt models to downstream
tasks better. Several open-source MLLMs, such as Qwen2.5-VL(Bai et al., 2025), have significantly
accelerated the deployment of intelligent applications.

To evaluate the performance of multimodal large language models (MLLMs) and post-training meth-
ods in domain-specific applications, we propose a benchmark for real-world scenarios: open-world
logo recognition, which is a crucial task in product moderation. In traditional logo recognition
methods, models are trained to learn and optimize representations for each class and then output
classification results. This approach often leads to overfitting and memorization of class-specific
features. However, with tens of thousands of brands in the open world, it is impractical to train
models to recognize such an enormous number of classes while still ensuring high accuracy. Rather
than relying on memorization, humans recognize unseen brands by comparing product images with
candidate logos—a reasoning process that naturally generalizes to these unseen brands.

Motivated by this, we reformulate the task by framing logo recognition as a comparison task rather
than directly predicting brand labels, requiring the model to match product images with candidate
logos. Ideally, this comparison-based formulation could lead to better generalization. To explicitly
evaluate the model’s ability to generalize to unseen brands, our benchmark is divided into in-domain
(ID) and out-of-domain (OOD) test sets, with OOD brands being entirely absent from the training
data. During evaluation, candidate logos are provided as references, and the model is required to
determine the correct match by comparing the product image with reference logos.
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As illustrated in Fig. 1, we observe that directly applying SFT or GRPO for answer supervision im-
proves accuracy on ID data but degrades generalization to OOD data. This suggests that the model
tends to memorize answer-specific knowledge while overlooking the development of general reason-
ing capabilities. To address this limitation, we propose Logo-VGR, a domain-specific multimodal
reasoning paradigm that learns generalized reasoning from a small amount of logo recognition data
and achieves strong generalization performance on OOD data.
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Figure 1: The accuracy results of different
methods on ID and OOD benchmarks. Here,
zero-shot refers to the Qwen2.5-VL-3B base-
line. Through SFT training, the model im-
proves its performance on ID data but simul-
taneously suffers from reduced generaliza-
tion ability. In contrast, Logo-VGR leverages
process supervision to encourage correct rea-
soning, thereby achieving stronger general-
ization.

To mitigate the shortcut learning phenomenon where
models rely on memorization during training, we
employ GRPO with carefully designed rewards to
guide the model toward more generalized reason-
ing. Specifically, motivated by GRIT (Fan et al.,
2025), we encourage the model to explicitly output
coordinate-based evidence during reasoning—i.e.,
predicting the location of logos in the image for the
logo recognition task. To ensure that the model gen-
uinely solves the task, we supervise these visual Co-
ordinate Clues using an IoU-based metric. In partic-
ular, inspired by Vision-R1 (Zhan et al., 2025), we
calculate precision and recall for the predicted coor-
dinates and employ them as reward signals. In ad-
dition, to regulate the model’s Cognitive Trajectory,
we leverage a large language model as a judge to
evaluate the quality of its reasoning process.

Another critical challenge is equipping the model
with fundamental domain knowledge before ad-
dressing downstream tasks. In the context of logo
recognition, pretrained models generally focus on
generic objects and therefore lack sufficient logo-
specific perception. To address this, we introduce
a proxy logo detection task, requiring the model to
output the absolute coordinates of logos in JSON
format. Our training follows a two-stage paradigm:
(1) Supervised Fine-Tuning for Domain Knowledge Transfer, which explicitly teaches the model
domain-specific knowledge, and (2) Spatially-Aware Reward Design, which further enhances the
model’s spatial awareness through reinforcement learning.

Overall, our contributions can be summarized as follows:

• We construct a real-world multimodal benchmark for open-world logo recognition. With
in-domain (ID) and out-of-domain (OOD) splits, we focus on evaluating MLLMs’ domain-
specific reasoning and their generalization to unseen brands.

• We propose Logo-VGR, a novel post-training paradigm in domain-specific scenarios,
which strengthens reasoning generalization through a two-stage training strategy.

• Experimental results demonstrate that Logo-VGR achieves significant improvements on
both ID and OOD test sets, with nearly 10-point gains on OOD tasks.

2 LOGO RECOGNITION BENCHMARK

2.1 TASK DESIGN

The simplified illustration of the Logo Recognition Benchmark is shown in Fig. 2. The task requires
the model to identify the brand associated with a given product image. To prevent the model from
simply memorizing brand distributions, we reformulate the generative problem into a comparison
task: the model is required to select the correct brand from three candidate brands coarsely retrieved
by a detection model. To evaluate generalization ability, we split the test set into ID and OOD
subsets. We aim for the model to learn generalizable reasoning skills on the ID training set, which
can then be transferred to unseen OOD brands. We find that relying solely on direct supervision
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Figure 2: Overview of the Logo Recognition Benchmark. To prevent the model from memorizing
brand information, we reformulate the original memory-based task into a comparison-based one,
where the model is required to compare the features of product images with those of candidate logos
to produce the answer.

with the answers encourages the model to memorize brands and achieve better performance on the
training set, but it consequently results in poor generalization to OOD brands. In contrast, our Logo-
VGR method explicitly teaches the model how to reason during training, substantially enhancing its
ability to generalize.

Why choose Logo Recognition as the task? Existing studies primarily evaluate models on general-
domain datasets. However, the broader application of large models lies in diverse downstream tasks,
and a key challenge is how to leverage post-training to achieve strong performance in specialized
domains. This challenge is particularly critical for multimodal large models, which have great po-
tential economic value in replacing labor-intensive processes such as intelligent content auditing.
We therefore choose Logo Recognition, a core task in product auditing on e-commerce platforms,
to build our benchmark, which aims to evaluate how post-training can effectively adapt models to
real-world domain-specific problems.

Why reformulate logo generation into a comparison-based task? In traditional classification
settings, the model is required to memorize the features of each brand for recognition. This approach
is infeasible for millions of brands and does not generalize to unseen brands. To address this, we
reformulate the original generative task into a comparison-based task: the model is given three
candidate brand logos retrieved by a coarse detection model and is required to select the correct one.

Figure 3: Statistics of brand distribution. A small
number of top brands account for the majority of
occurrences. We categorize the top brands as ID
brands and the remaining brands as OOD brands.

For rare cases where the correct brand is not
recalled, we add a “None of the above” op-
tion. The coarse retrieval model consists of
a logo detector and a representation–retrieval
module. The logo detector localizes poten-
tial logos in the product image, crops them for
representation learning, and then performs re-
trieval against a million-scale logo database.

Why split the test set into ID and OOD
subsets? According to the (World Intellec-
tual Property Organization, 2024), as of 2023,
there were approximately 88.2 million active
trademark registrations worldwide, and plat-
forms such as TikTok host more than 5 million
brands(London, 2023). Clearly, brand recog-
nition by memorizing every brand is infeasi-
ble. Instead, the model must be capable of gen-
eralizing by learning transferable multimodal
reasoning strategies during training. To eval-
uate this, we partition the test set based on
brand identity: ID represents brands seen dur-
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ing training, while OOD represents brands absent from the training set. Only by acquiring general
multimodal reasoning abilities can a model perform well across both ID and OOD settings.

2.2 DATA STATISTICS

The training set contains 7,409 question–answer pairs spanning 373 brands across 107 categories.
The test set consists of 1,853 question–answer pairs, while the OOD test set contains 1,814 ques-
tion–answer pairs involving 109 entirely novel brands. Detailed brand distribution statistics can be
found in the appendix. To facilitate coordinate prediction for multiple images, we concatenate sev-
eral product images (on average, five per instance) and adjust their coordinates accordingly. The
image resolution ranges from 224×224 to 1024×1024.

In real-world scenarios, brand distributions exhibit a long-tail pattern, where a small number of head
brands account for the vast majority of instances. We categorize the head brands as the training set
and randomly sample the tail brands to construct an OOD test set for evaluating the model’s gen-
eralization ability to unseen brands. The brand distribution of the dataset is illustrated in Fig. 3.
Consequently, due to the inherent distribution of real-world data, the model must generalize effec-
tively to numerous OOD brands after being trained on only a limited set of head brands.

3 RELATED WORK

Multimodal Large Language Models. Large language models (LLMs) have made remarkable
strides in text-based applications; however, their capabilities remain limited when faced with the
growing prevalence of vision-centric tasks. To bridge this gap, recent research has extended LLMs
into the visual modality, giving rise to multimodal large language models (MLLMs). Represen-
tative efforts such as LLaVA Liu et al. (2023), LLaMA (Touvron et al., 2023), Qwen-VL (Bai
et al., 2023), InternVL (Chen et al., 2024), and DeepSeek-VL (Lu et al., 2024) leverage large-scale
vision-language pretraining to strengthen perceptual grounding and cross-modal reasoning. In ad-
dition to large-scale pretraining, post-training techniques play a crucial role in adapting MLLMs
to specific downstream benchmarks and real-world scenarios. Instruction tuning and task-oriented
fine-tuning have been shown to improve alignment with human supervision, while reinforcement
learning approaches (Shao et al., 2024; Rafailov et al., 2023) further refine model reasoning and
output faithfulness. These strategies have demonstrated effectiveness across specialized domains,
including object detection (Zhan et al., 2024a) and semantic segmentation (Wei et al., 2024; Yang
et al., 2023), highlighting the versatility and growing potential of multimodal alignment techniques.

Visual Grounded Reasoning. Significant progress has been achieved in text-based Long-CoT(Guo
et al., 2025), and many studies have investigated how to extend model reasoning to the multimodal
domain. Modal-bridging approaches(Huang et al., 2025; Yang et al., 2025) generate image descrip-
tions with multimodal models and then feed those descriptions into Long-CoT language reasoning
models to produce reasoning traces, thereby enabling an indirect treatment of vision–language tasks.
To strengthen multimodal reasoning models’ attention to image content, “thinking with images”
methods(Fan et al., 2025; Wang et al., 2025a; Jiang et al., 2025) guide models to output explicit
spatial coordinates during reasoning so as to better ground the inference in the visual input. Other
approaches steer models to use tools(Zheng et al., 2025b; Wang et al., 2025b) for image processing,
thereby generating multimodal chains of thought.

Logo Recognition. Previous works have introduced numerous logo detection datasets, such as
OpenBrand (Jin et al., 2020), LogoDet-3K (Wang et al., 2022), and SalECI (Jiang et al., 2022),
where traditional computer vision-based detection methods (Yuan et al., 2025; Jia et al., 2024)
have achieved significant progress in this domain. In the context of logo classification, prior ap-
proaches (Hou et al., 2024) leveraged contrastive learning between CLIP text embeddings and logo
image representations for classification. However, under this paradigm, models tend to rely heav-
ily on optimizing and memorizing category distributions, which constrains their capacity for true
multimodal reasoning and impedes generalization. In this work, we focus on addressing product
recognition in real-world complex scenarios using MLLMs, aiming to enhance their capability for
analogical reasoning by guiding the models toward correct reasoning processes. Unlike prior meth-
ods, our approach emphasizes reasoning-oriented supervision rather than category memorization,
thereby enabling MLLMs to achieve stronger generalization and robustness in open-world settings.
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Figure 4: Illustration of the Logo-VGR framework. Logo-VGR is a two-stage, domain-adaptive
multimodal reasoning pipeline. In the first stage, domain knowledge is enhanced via logo detection
to improve low-level logo perception. In the second stage, Logo-Guided Visual Grounded Reasoning
is introduced to prevent shortcut reasoning based on logo-style memorization and to guide the model
toward a more principled and generalizable multimodal reasoning paradigm.

4 METHOD

4.1 OVERVIEW

To enhance the model’s generalization capability on domain-specific tasks, we propose Logo-VGR,
a two-stage, domain-adaptive multimodal reasoning pipeline, as seen in Fig. 4. First, we enhance
the model’s domain knowledge by leveraging logo detection tasks to improve its low-level logo per-
ception. To avoid shortcut reasoning based on logo-style memorization, we introduce Logo-Guided
Visual Grounded Reasoning, directing the model toward a principled and generalizable multimodal
reasoning paradigm.

• Stage 1: Logo Perception Grounding. An auxiliary detection task is employed to
strengthen the model’s ability to perceive logos in domain-specific scenarios. Coupled with
a two-step SFT + GRPO paradigm, this stage effectively enhances both logo perception and
brand awareness.

• Stage 2: Logo-Guided Visual Grounded Reasoning. The model’s reasoning process is
further refined via reinforcement learning to develop a more generalizable inference strat-
egy. To avoid shortcut reasoning driven by memorized logo patterns, Logo-VGR explicitly
supervises both the reasoning trajectory and the intermediate bounding-box coordinate pre-
dictions.

4.2 LOGO PERCEPTION GROUNDING

To strengthen the model’s domain-specific understanding, we perform continual pretraining within
the target domain. For logo recognition, we introduce an auxiliary detection task that enhances the
model’s capability in perceiving logos.

Most existing MLLM-based detection approaches (Zhan et al., 2024a;b) perform direct supervised
fine-tuning, where the model is trained to predict bounding boxes formatted as JSON. Recent
works(Zhan et al., 2025) have shown that reinforcement learning with IoU-based rewards achieves
superior performance and generalization compared with pure SFT. However, these methods often
assume that the model has been exposed to similar data during large-scale pretraining, which facili-
tates refinement through sampling-based optimization.

For domain-specific scenarios, we propose a two-step strategy: SFT is first employed to inject new
knowledge explicitly, followed by GRPO (Shao et al., 2024) to further optimize the model using
spatially-aware rewards.
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Supervised Fine-Tuning for Domain Knowledge Transfer. For unseen knowledge, token-level
cross-entropy supervision enables the model to quickly acquire new concepts. However, conven-
tional cross-entropy fails to consider spatial relationships. For example, coordinates “100” and “99”
are spatially adjacent, yet cross-entropy treats them as entirely different tokens, leading to overfit-
ting on the discrete training distribution while ignoring coordinate continuity. To mitigate this, we
introduce IoU-based reward signals to reinforce spatial awareness.

Spatially-Aware Rewards for Knowledge Reinforcement. Let P = {p1, p2, . . . , p|P|} denote the
set of predicted bounding boxes and G = {g1, g2, . . . , g|G|} the ground-truth set. We first establish
a one-to-one correspondence between predictions and ground truths using the Hungarian matcher
(Carion et al., 2020), with m = min(|P|, |G|). For each matched pair (pi, gi), we compute the
Intersection-over-Union (IoU) and define a correctness indicator:

δi = 1[IoU(pi, gi) > τ ] , (1)

where τ is a predefined threshold. Motivated by (Zhan et al., 2025), we define the following reward
signals:

Precision Reward:

Rprecision =
1

|P|

m∑
i=1

δi, (2)

Recall Reward:

Rrecall =
1

|G|

m∑
i=1

δi. (3)

4.3 LOGO-GUIDED VISUAL GROUNDED REASONING

To mitigate shortcut visual reasoning, we explicitly supervise the model’s reasoning process. While
SFT effectively injects domain-specific brand knowledge, the model also needs to acquire robust
reasoning strategies to generalize to unseen brands. Prior approaches often rely on large-scale dis-
tilled CoT datasets to regulate multimodal reasoning, which heavily depends on teacher performance
and requires extensive rejection sampling. In contrast, GRPO (Shao et al., 2024) allows the model
to refine its reasoning using its own sampled trajectories combined with carefully designed reward
functions.

In the context of logo recognition, the key factor is accurately identifying the logo itself. Inspired by
GRIT (Fan et al., 2025), we encourage the model to output intermediate reasoning cues, specifically
the logo’s spatial coordinates, which are supervised using IoU-based rewards. To enhance robustness
and reduce potential reward exploitation, we also incorporate an LLM-as-a-judge mechanism to
evaluate the model’s reasoning process.

Bounding Box Format Reward. The model is encouraged to provide explicit reasoning evidence in
the form of coordinates. A positive reward is granted whenever the model outputs a valid bounding
box in the format [x1, y1, x2, y2].

Coordinate Clues Reward. To prevent the model from providing incorrect coordinate evidence
or forgetting to output coordinates during reasoning, we supervise the spatial coordinates during
the reinforcement learning stage. Following Eqs. (2) and (3), the main difference is that precise
localization is not the primary objective at this stage. The IoU threshold can be adjusted adaptively
according to annotation quality to avoid penalizing noisy labels.

Cognitive Trajectory Reward (CTR). To evaluate the quality of the model’s reasoning, we leverage
a large MLLM as an expert assessor. The expert receives the task prompt, the model’s output, the
ground truth, and the scoring criteria, and then produces a reasoning trajectory along with a score
ranging from 1 to 5. To avoid exploitation of the expert’s scoring tendencies, the reward is applied
only if the final answer is correct, and the contribution of the Cognitive Trajectory Reward is down-
weighted. For training efficiency, entire batches are processed in parallel, resulting in only a 20%
increase in computation time.

Final Reward:
R = αRacc + (1− α)(Rformat +Rbbox format +Rprecision +Rrecall +RCTR) (4)
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Base Model Training Methods
ID OOD

Acc F1 Acc F1

Qwen2.5-VL-32B

Zero-Shot

72.27 72.13 74.38 84.00
Doubao-Seed-1.6 68.24 67.83 81.40 88.83

Gemini2.5-Pro 67.39 67.25 89.07 93.21
GPT-4.1 67.93 67.92 90.49 94.17

Qwen2.5-VL-3B

Zero-Shot 55.37 54.81 67.05 75.67
SFT 80.48 80.46 70.07 80.52

GRPO 78.76 76.78 73.77 80.67
Logo-VGR 81.89 81.15 88.25 90.84

+3.13 +4.37 +14.48 +10.17

Qwen2.5-VL-7B

Zero-Shot 67.18 67.19 81.72 84.06
SFT 82.46 82.45 78.68 83.68

GRPO 82.42 82.30 84.60 88.39
Logo-VGR 83.25 83.14 91.98 94.37

+0.83 +0.84 +7.38 +5.98

Table 1: Performance of various MLLMs on the Open-world Logo Recognition Benchmark. Ac-
curacy and F1 score are reported for the four-class classification task. Our method demonstrates
significant improvements over the baseline (GRPO), with particularly strong gains on the OOD
dataset, highlighting enhanced generalization to unseen brands.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Training Details. All experiments are conducted on eight NVIDIA A800 GPUs. In the Logo
Perception Groudning Stage, we adopt LLaMA-Factory(Zheng et al., 2024) as the SFT training
framework for the logo detection task. The learning rate is set to 2×10−5, and training is performed
for 2 epochs on 30w logo detection samples. The batch size is fixed at 4, with a dynamic input
resolution ranging from 224 × 224 to 512 × 512. For the GRPO Reinforcement Stage, we employ
the Easy-R1(Zheng et al., 2025a) framework. The learning rate is set to 1 × 10−6, and gradient
updates are accumulated every 32 samples. The KL coefficient is set to 1× 10−3, with each sample
drawn 8 times. The IoU reward threshold τ is fixed at 0.5.

In the second stage, to facilitate the model in predicting detection coordinates across multiple im-
ages, we concatenate several product images either horizontally or vertically into a single image.
The dynamic resolution is set to range from 224×224 to 1024×1024. We again adopt the Easy-R1
framework with a learning rate of 1 × 10−6, updating gradients every 32 samples, setting the KL
coefficient to 1× 10−3, sampling each instance 8 times, and lowering the IoU reward threshold τ to
0.3. We set the weight α in Eq. (4) of the Acc reward to 0.5.

Evaluation Details. We report results using accuracy (Acc) and F1-score as the main evaluation
metrics. For zero-shot methods, since models exhibit varying levels of instruction-following ability,
we utilize Doubao-Seed-1.6 to assist in extracting the model’s responses.

For detection metrics, we employ pycocotools(COCO Consortium) to evaluate the average precision
(AP) of the models at IoU = 0.5. In addition, we use Eqs. (2) and (3) to evaluate the precision and
recall of model predictions.

5.2 EVALUATION ON OPEN-WORLD LOGO RECOGNITION BENCHMARK

Performance of Logo-VGR. We evaluate Logo-VGR on Qwen2.5-VL-3B(Bai et al., 2025) and
Qwen2.5-VL-7B. Both models, after being trained with conventional SFT or GRPO, show im-
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Training
Methods LPG Acc Format CTR Bbox

Format
Precision

Recall ID OOD

SFT / 80.48 70.77

GRPO

✓ ✓ 78.76 73.77
✓ ✓ ✓ 79.87 83.50
✓ ✓ ✓ ✓ 79.66 82.30

✓ ✓ ✓ ✓ ✓ 81.26 86.03
✓ ✓ ✓ ✓ ✓ ✓ 81.89 88.25

Table 2: Ablation study on the intermediate reward components in Logo Visual Grounding. LPG
denotes Logo Perception Grounding, and CTR stands for Cognitive Trajectory Reward. Reported
are the accuracies on both the ID and OOD test sets.

provements over the zero-shot baseline on both the ID and OOD test sets. SFT achieves superior
performance on the ID set, whereas GRPO demonstrates stronger generalization on the OOD set.
Nonetheless, both methods still suffer from performance degradation on OOD. In contrast, Logo-
VGR surpasses GRPO by 3 points on the ID set and by 14 points on the OOD set, highlighting
its effectiveness in substantially enhancing generalization to unseen brands. As model scale in-
creases, Qwen2.5-VL-7B itself demonstrates substantial improvements in generalization. Remark-
ably, Logo-VGR outperforms even larger models, such as GPT-4.1.

Performance of State-of-the-Art MLLMs. We further assess several state-of-the-art MLLMs,
including Qwen2.5-VL-32B(Bai et al., 2025), Doubao-Seed-1.6(ByteDance Seed, 2025), Gemini-
2.5-Pro(Comanici et al., 2025), and GPT-4.1(Achiam et al., 2023), on our benchmark. On the ID
dataset, these models achieve relatively modest performance, with accuracy around 70%, primarily
due to the lack of pre-training in this specific domain. However, their strong generalization ability
enables them to perform substantially better on the OOD dataset compared to ID. This improvement
can be attributed to the fact that the OOD set consists largely of less-popular brands whose logos
exhibit fewer variations and are less affected by counterfeits or adversarial perturbations.

5.3 ABLATION STUDIES

We performed ablation experiments on different components of Logo-VGR, including the enhanced
perception training in Sec. 4.2 (LPG) and the reward design in Sec. 4.3.

Effectiveness of Cognitive Trajectory Supervision. As shown in Table 2, incorporating the Cog-
nitive Trajectory Reward—where the MLLM supervises the model’s reasoning process—leads to a
substantial performance gain on the OOD dataset. This highlights the crucial role of guiding models
to adopt a principled reasoning paradigm.

Reasoning with Coordinate Clues. We observe that without Logo Perception Grounding, spatial
coordinate outputs fail to enhance reasoning ability, as coordinate generation largely relies on robust
logo perception. Once Logo Perception Grounding is introduced, the model’s capability improves
markedly. Moreover, additional supervision over coordinates reinforces intermediate visual cues
and further enhances generalization.

Analysis of Grounding Metrics. We evaluate the model’s logo grounding capability using AP50,
precision, and recall on the Openbrand benchmark(Jin et al., 2020), as illustrated in Tables 3 and 4.
Here, AP50 denotes the Average Precision at an IoU threshold of 0.5, which reflects the alignment
accuracy between predicted bounding boxes and the ground truth.

As shown in Table 3, the baseline Qwen2.5-VL exhibits limited grounding ability for domain-
specific logos, with an AP50 of only 0.061. After SFT training, the model demonstrates substantial
improvement in generating accurate logo coordinates, achieving an AP50 of 0.628. With additional
Spatial Clues Rewards (precision and recall supervision), the AP50 further increases by over 15
points, while precision and recall both improve by nearly 7 percentage points.
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Figure 5: Visualization result of Logo-VGR. The red boxes indicate the predicted coordinates gener-
ated by the model. Inference is performed by comparing the logo features extracted from the product
image (shown in green) with those of the candidate logos (shown in blue).

Moreover, during the Logo-Guided Visual Grounded Reasoning stage, we investigate the effect
of supervising Coordinate Clues (Table 4). Without such supervision, the model tends to exploit
the Bounding Box Format Reward by outputting coordinates without meaningful grounding. This
highlights the necessity of supervising intermediate coordinates to ensure robust reasoning in down-
stream tasks.

Table 3: Logo grounding performance compar-
ison on AP50, Precision, and Recall.

Method AP50 Precision Recall

Zero-shot 0.061 – –
SFT 0.628 81.1 82.9
Logo-VGR 0.780 94.2 87.4

Table 4: Effect of Coordinate Clue Supervision.

Method Precision Recall

w/o Coordinate Sup. 0.8 0.7
w/ Coordinate Sup. 61.9 58.5

5.4 QUALITATIVE ANALYSIS

We visualize the model’s answers along with the textual coordinate outputs, as illustrated in Fig. 5.
The model correctly provides visual coordinates as supporting evidence, compares the detected logo
features with those of the candidate reference logos, and then outputs the final decision while clearly
explaining the rejection of alternative options. Additional visualization results are provided in the
appendix.

6 CONCLUSION

In this work, we present Logo-VGR, a novel paradigm for domain-specific multimodal reasoning
in intelligent product moderation. By reformulating logo recognition as a comparison-based task,
our approach circumvents the impracticality of memorizing massive brand vocabularies and instead
focuses on robust reasoning over product–logo pairs. Through the integration of Logo Perception
Grounding and Logo-Guided Visual Grounded Reasoning, Logo-VGR effectively mitigates over-
fitting to brand distributions and significantly improves generalization to unseen brands. Extensive
experiments demonstrate that Logo-VGR achieves substantial performance gains over strong base-
lines, particularly in OOD settings. These findings highlight the potential of domain-specific multi-
modal reasoning frameworks in advancing real-world applications of MLLMs for product modera-
tion and beyond.
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ETHICS STATEMENT

Our dataset is constructed based on publicly available product data from online shopping platforms.
We ensured that no personally identifiable information or sensitive user data was collected. The
dataset only contains product-level information that is already publicly accessible. Therefore, our
work does not involve human subjects, privacy violations, or ethical risks beyond those addressed
by using publicly available resources.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we will release the full dataset and the code used in
our experiments upon publication. The main paper and appendix provide detailed descriptions of
the data collection and preprocessing steps, the model architectures, and the training procedures. We
believe these resources will enable other researchers to fully reproduce and extend our findings.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS

In this work, Large Language Models (LLMs) were used as auxiliary tools during the writing and
polishing of the manuscript. The details are as follows:

• Scope of Use: LLMs were only employed for language polishing, sentence refinement, and
improving clarity of expression. They were not used to generate core experimental data,
model outputs, or quantitative results. All academic conclusions, experimental setups, and
evaluation metrics were independently conducted and validated by the authors.

• Human Oversight: All suggestions and outputs from LLMs were carefully reviewed, re-
vised when necessary, and finally confirmed by the authors. The authors take full respon-
sibility for the final content of the manuscript.

• Ethics and Compliance: The authors adhered to academic and institutional guidelines in
the use of LLMs, ensuring that unverifiable or unauthorized information was not incorpo-
rated into the research conclusions.
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A.2 PROMPT FOR COGNITIVE TRAJECTORY EVALUATION WITH LLMS

We provide the detailed prompt used with Doubao-Seed1.6 for evaluating Cognitive Trajectories:

Role: You are a reinforcement learning reward modeling expert, responsible for scoring the quality
of the Assistant’s responses.

Evaluation Criteria: 1. Does the answer clearly explain the judgment basis? For example, when
distinguishing between genuine and counterfeit products, it should point out specific differences
between the given logo and the authentic one. 2. Does the answer demonstrate reasoning, with
a concise and logical thought process? 3. Is the answer accurate, without hallucinations in the
description of images?

Original Task Description: {prompt str}
Assistant’s Response: {response str}
Ground Truth: {ground truth}
Please, based on the above criteria, output the scoring rationale and the total score (an integer from
1 to 5). The reasoning should not exceed 100 words.

Output Format: <think>(Briefly write the scoring rationale)</think>
<answer>(Fill in the total score: an integer between 1 and
5)</answer>

A.3 MORE DETAILED DATASET SPECIFICATIONS

We visualize the brand distributions in our dataset, including both the training set and the OOD test
set, as shown in Figs. 6 and 7. The brand distributions exhibit a long-tail pattern, with head brands
such as “NIKE” and “adidas” occupying the vast majority of the data. Therefore, it is crucial to learn
a generalizable reasoning strategy on these head brands, which can then be effectively transferred to
unseen OOD brands.

A.4 ADDITIONAL VISUALIZATION RESULTS

We provide additional visualizations in Figs. 8 and 9. The model generates coordinate clues and de-
scribes the logo features in the product images. It then compares these features with each candidate
logo and finally produces the prediction.

Figure 8: Additional Visualization.
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Figure 9: Additional Visualization.
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