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Abstract

We address the problem of learning optimal behavior from sub-optimal datasets for goal-
conditioned offline reinforcement learning under sparse rewards, invertible actions and
deterministic transitions. To do so, we propose the use of metric learning to approximate
the optimal value function instead of classic Temporal-Difference solutions that employ the
Bellman operator for their value updates. This representation choice allows us to avoid the
out-of-distribution issue caused by the max operator of the critic update in the offline setting
without any conservative or behavioral constraints on the value function. We introduce
distance monotonicity, a property for representations to recover optimality and propose an
optimization objective that leads to such property. We use the proposed value function
to guide the learning of a policy in an actor-critic fashion, a method we name MetricRL.
Experimentally, we show that our method estimates optimal behaviors from severely sub-
optimal offline datasets without suffering from out-of-distribution estimation errors. We
demonstrate that MetricRL consistently outperforms prior state-of-the-art goal-conditioned
RL methods in learning optimal policies from sub-optimal offline datasets.

1 Introduction
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Figure 1: Average reward on Minigrid
DoorKey (Chevalier-Boisvert et al., 2023) as a
function of the expected reward present in the
offline dataset. We contribute MetricRL (red line),
a novel goal-conditioned offline RL agent able to
learn near-optimal behavior from severely sub-optimal
datasets.

Effective decision-making is an integral part of in-
telligent behavior. To achieve this, learning-based
control methods have proven to be a viable option in
complex scenarios (Andrychowicz et al., 2020; Silver
et al., 2017; Mnih et al., 2013; Peters and Schaal,
2008). In particular, reinforcement learning (RL)
allows learning near-optimal behavior through trial-
and-error (Sutton and Barto, 2018). However, the
online reinforcement learning framework generally
requires slow, expensive (and potentially dangerous)
online interactions with the environment.

Offline RL, on the other hand, formalizes the learning
of optimal behaviors from a static dataset (Levine
et al., 2020). This approach offers many advantages
over its online counterpart, such as the ability to
leverage large-scale datasets to learn complex behav-
ior (Walke et al., 2023; Dasari et al., 2020) without
the need of re-collecting data (Shi et al., 2021; Gürtler
et al., 2023). Because of the inability to access the
environment, in offline RL it is assumed that the
dataset already includes suitable information to per-
form the given task. This data, however, may often
be collected by sub-optimal agents. In this work, we address the question of how to learn different (and
better) behaviors from the one observed in the dataset, regardless of its optimality. We focus on the challenge
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of learning near-optimal behavior from severely sub-optimal datasets, such as the ones collected by a random
policy. We empirically demonstrate in Section 4, and highlight in Figure 1, how under these conditions
current offline RL methods (Eysenbach et al., 2022; Wang et al., 2023; Ma et al., 2022; Kostrikov et al., 2021)
struggle significantly.

We focus on sparse-reward goal-conditioned offline reinforcement learning which aims at learning optimal
behavior to reach multiple goals within the same environment. Motivated by recent work in quasimetric
learning (Wang et al., 2023), we explore the use of metric learning to estimate policies from sub-optimal
offline data (Balasubramanian and Schwartz, 2002; McInnes et al., 2018). Differently from previous work,
by assuming invertible actions, we can naturally exploit symmetry in the learning process of our agent.
Endowing the agent with this bias allows for learning an approximation of the optimal value function in
severely sub-optimal data conditions without explicitly relying on the Bellman operator, (Bellman, 1954).
In turn, this allows us to avoid the out-of-distribution issue caused by the max operator used in dynamic
programming solutions, without requiring any additional conservative (e.g., as in CQL (Kumar et al., 2020))
or behavioral (e.g., as in BCQ (Fujimoto et al., 2019), BEAR (Kumar et al., 2019)) regularization of the
value function. The core idea of the proposed method is to exploit symmetries of metric spaces to learn an
embedding of the state space of the environment such that Euclidean distances are related to the minimum
number of actions needed to reach one state from the other. In particular, we introduce the notion of distance
monotonicity (DM) as a relaxation of isometries of this embedding and show that preserving DM provably
allows for the recovery of an optimal policy, regardless of the quality of the dataset used for training. We call
our method MetricRL.

We evaluate MetricRL across a wide range of literature-standard goal-conditioned reinforcement learning
tasks. We show how MetricRL outperforms prior goal-conditioned offline reinforcement learning methods in
learning near-optimal behavior from severely sub-optimal datasets. Additionally, we show how MetricRL
easily scales to high-dimensional observations.

In summary, our contributions are the following:

• MetricRL: We propose a novel method that exploits symmetries in latent representation spaces for
goal-conditioned offline reinforcement learning.

• Distance Monotonicity: We define a new property of these latent representation spaces. We show
that, under invertible actions, preserving such property provably leads to policy optimality.

• Learning from Sub-Optimal Offline Data: We demonstrate how MetricRL is able to recover
optimal behaviors in severely sub-optimal data conditions, outperforming prior state-of-the-art offline
RL methods across literature-standard environments.

2 Preliminaries and Assumptions

Goal-Reaching Reinforcement Learning: We consider standard Markov Decision Processes (MDPs) for
goal-reaching tasks, M = (S,A, T, r, γ), where S is the state space, A is the action space, T : S ×A→ S is
a deterministic transition function (a common assumption in recent offline RL methods (Ma et al., 2022;
Park et al., 2023; Wang et al., 2023)), r : S ×A→ R is a goal-conditioned, sparse reward, i.e., r(s, a) ̸= 0 iff
T (s, a) = sg (where sg is the goal-state), and γ ∈ [0, 1) is a discount factor on the future rewards of the agent.
We additionally define the goal states to be absorbing and consider the process terminated once these are
reached.

The goal of the process is to find an optimal policy π∗(a | s, sg) that, given goal state sg, maximizes
the cumulative discounted reward of the agent for any possible starting state. To evaluate the op-
timality of the policy we resort to the goal-conditioned value function V π(s, sg), defined as the ex-
pected discounted cumulative reward starting in a particular state and acting according to a policy
π : V π(s, sg) = Eπ [

∑
t γ

trt|s0 = s, a = π(s, sg)] ∀s ∈ S. The value function associated with the optimal
policy is referred to as the optimal value function V ∗ = V π

∗ and, as such, is always greater or equal to any
other value functions, i.e. V ∗(s, sg) ≥ V π(s, sg) ∀s, π.
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Figure 2: We explore a form of symmetry in representation learning for goal-condition offline reinforcement
learning: we learn a metric space in which Euclidean distances between the representation of states (z, z′, z′′)
are related to the value function of the agent. We call our approach MetricRL. In the Minigrid Doorkey
environment, moving greedily to adjacent states translates to the optimal policy (red line) to reach the goal
(in green).

Offline Reinforcement Learning: In the offline RL setting, we assume we have access to a dataset D
of interactions with the environment described by the MDP and collected by some unknown policy πβ ,
i.e. Dπβ

= {(s, a ∼ πβ(a | s), r, s′ = T (s, a))}. A major issue in Offline RL stems from the way dynamic
programming methods estimate the optimal value function of the MDP. Most of the current algorithms rely
on temporal difference techniques to learn the critic function, e.g. DQN (Mnih et al., 2013), CQL (Kumar
et al., 2020), BEAR (Kumar et al., 2019), BCQ (Fujimoto et al., 2019). However, the max operator used to
estimate the target value has been shown to result in an overestimation of the expected return, Levine et al.
(2020). While this is not an issue in Online RL as the agent has the possibility of exploring overestimated
states, it results in catastrophic effects in Offline RL. In this paper, we rely on an alternative technique for
learning the critic. As discussed in prior work (Wang et al., 2023; Yang et al., 2020), the dataset D implicitly
defines a graph G = (S,A) where the nodes correspond to the states and the edges to the actions of the agent.
Here we assume that this graph only has one connected component, i.e., any two states in the dataset are
connected through a path on the graph. Furthermore, we assume that there always exists an inverse action,
i.e., ∃a′ ∈ A : T (s′, a′) = s ∀(s, a, s′ = T (s, a)). Note that a′ doesn’t necessarily need to correspond to the
actual opposite action and it can be any viable action. By endowing the graph G with a metric dS , we can
define a corresponding finite metric space (G, dS). For the tuple to be a valid metric space we need to define
the metric dS : S × S → R to respect the axioms of a metric space (Burago et al., 2001). In particular, we
can define the distance between any two states to be the number of edges on the shortest path connecting
them (geodesic distance).

3 Method

In this work we focus on learning near-optimal goal-conditioned behavior from sub-optimal offline data. In
these conditions, two main problems arise. The first is to learn an optimal behavior without depending
on the quality of the distribution of the data used. The second is to avoid the out-of-distribution shift
commonly faced in offline reinforcement learning (Levine et al., 2020). We propose to address this using a
metric learning approach to estimate the optimal value function. To do so, we start by defining distance
monotonicity (Section 3.1), a novel property on representations needed to recast the problem of optimal
value function estimation into metrics. We propose a loss function to learn maps that respect such property
and show how to build an approximation of the value function using distances in this learned representation
(Section 3.2). Finally, we define an actor-critic method to learn policies over this approximation and formally
prove their optimality (Section 3.3). We call our approach MetricRL.
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3.1 Distance Monotonicity

Consider a continuous map between the state space of an MDP for goal-reaching tasks and a latent
representation space: ϕ : S → Z ⊆ Rn. We can equip this latent vector space with a Euclidean norm
to obtain a Euclidean metric space (Z, ∥.∥2). Here we consider distances in the original space, dS as the
minimum number of actions an optimal policy needs to reach one state from the other. We say ϕ is
isometric if relative distances in the original state space dS and the latent metric space dZ are preserved, i.e.,
dZ (ϕ(s), ϕ(s′)) = dS(s, s′), ∀s, s′ ∈ S. In fact, if ϕ is isometric then the value function can be defined as simply
the norm of the distance between the current state and the goal state A.1, i.e., V ∗(s, sg) = γdZ (ϕ(s),ϕ(s′))rg
where rg represents the reward at the goal and the expectation has been dropped as we assume deterministic
transitions.

However, estimating an isometry between these two metric spaces is known to be not always possible (Bourgain,
1985; Matoušek, 2002). To overcome such issue, we consider a relaxation of isometries between metric spaces.
Given two metric spaces (S, dS) and (Z, dZ) and the corresponding map ϕ between them, we can define the
following property of ϕ:

Definition 3.1. We say ϕ is distance monotonic (DM) if for all s1, s2, s3 ∈ S, dS(s1, s3) ≤ dS(s2, s3) implies
dZ(z1, z3) ≤ dZ(z2, z3).

A similar property has been described in Ataer-Cansizoglu et al. (2014). There, however, it is imposed on a
learned representation by means of explicit constrain in the optimization procedure. Instead, we propose to
parameterize the map ϕθ and learn it by minimizing the following objective on the dataset D:

Lθ(D) = ED
[
(∥ϕθ(s′)− ϕθ(s)∥2 − 1)2 − λ ∥ϕθ(s′′)− ϕθ(s)∥2

]
, (1)
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Figure 3: Optimizing Equation 1 increases the ratio
of distance monotonic triplets (blue curve) on Maze2D
(Large). Distance monotonicity is also correlated with
an increase in the average return of the agent (orange
curve).

where (s, s′) are any two states connected by an ac-
tion sampled from D and s′′ are other states sampled
independently from the dataset at random.

Our loss function balances two requirements on the
learned representation: the first term forces the rep-
resentation to preserve the local distances of states
in the graph, encouraging connected states to be
separated by a vector of norm one in the latent
representation Z. As we show in Figure 2 (right, or-
ange arrows), the representation of connected states
(z, z′) lies on a circumference of radius one. The
second term of the loss maximizes the distance of
non-directly connected states, as highlighted in Fig-
ure 2 (right, blue arrows). This term of the loss is
unbounded if the graph defined by the dataset is
not composed of a single connected component. As
we discuss in Section 3.4, in cases where the dataset
defines multiple connected components (e.g., with
image observations) we can always define a synthetic
super-node to connect every termination state.

The minimization of Equation 1 enforces the learning
of a distance monotonic map: in Figure 3 we highlight that the ratio of distance monotonic triplets significantly
increases as a function of the training of the map. This can be approximated by discretizing the state space,
building an ϵ-graph and the resulting distances in the state space as geodesics on the graph, comparing these
distances with distances in the learned representation Z. In Appendix A.2 we provide a more formal intuition
of this relationship as well as additional details on the evaluation of the distance monotonicity ratio.
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Figure 4: Estimated value function for different methods in Maze2D large using datasets collected using
policies of different values (rows). Values are normalized.

3.2 Value Function Approximation

Distance monotonic representations (Definition 3.1) allow us to recast the original goal-conditioned RL
problem as a distance one: similarly to the case of isometric maps, we can approximate the optimal value
function using distances in the learned latent representation:

Ṽ (s) = γdZ (ϕθ(s),ϕθ(sg))rg, (2)

where sg is the goal state and rg is its associated sparse reward (only given at the goal state). This
approximation would be identical to the true optimal value function only when the representation is an
isometry of the graph.

However, distance monotonicity is enough to retain relative distances between states. Figure 4 shows the
estimated value function of different algorithms for a maze-like problem, using offline datasets collected with
policies of different values (low, medium and high). In such problems the value function should retain the
topology of the maze and estimate the value of each position in the maze based on the distance to the goal
within the maze.

Figure 4 highlights that a distance monotonic representation (MetricRL) is the only value function able to
correctly estimate the low value of the bottom left corner of the maze when the goal is on the other branch of
the maze, regardless of the quality of the policy used to collect the offline dataset. Equations 1 and 2 allow
us to abstract the estimate of the value function from the distribution of the policy that collected the dataset.
Note that, for more complex topologies (e.g., loop on the top-right corner), distance monotonicity is not
equivalent to isometries. However, as we show in the next subsection, our approximation still allows us to
estimate a provably optimal policy.

3.3 MetricRL

Enforcing distance monotonicity in the latent representation allows us to learn an approximation of the true
value function, not fully recover it. However, when distance monotonicity is preserved a greedy policy built
on this value function is equivalent to the optimal policy given some assumptions. Define the greedy policy
according to the value function V as πVg (s) = arg maxa V (T (s, a)), note that in general the argmax results in
a set of possible actions. We have the following:
Theorem 3.2. If the MDP is deterministic, sparse, and goal-conditioned, then

πV
∗

g (s) ⊆ πṼg (s) ∀s ∈ S
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holds if ϕ is distance monotonic.

A proof can be found in Appendix A.3.
Remark 3.3. Intuitively, Theorem 3.2 states that every optimal action is also optimal in a DM representation
but not necessarily the reverse. This is due to the non-uniqueness of the argmax operator. Consider the case
of a representation ϕ that maps every state to the vertex of a simplex. Such a representation is DM and
for every state the argmax results in every viable action as the distance between any two pairs of states is
equal. It must be noted, however, that in a continuous high-dimensional Euclidean space, the probability of a
state being equidistant to other (suboptimal) states is effectively zero. This is particularly true when the
representation results from the optimization of the objective described in 1 as the negative term of the loss
would not be minimized.

To learn such policy we take a three-stage approach, which we call MetricRL: (i) we learn a distance monotonic
map, using the loss function of Equation 1; (ii) we define the value function using Equation 2; (iii) we estimate
a policy using the following loss function:

Lπ = Es,a∼D
[
−(Ṽ (s′)− Ṽ (s)) log(π(a | s))

]
. (3)

This optimization procedure for the policy is akin to the family of weighted maximum likelihood Nair et al.
(2020) or weighted imitation learning Wang et al. (2018). A key difference is that the advantage is not
exponentiated. Empirically this didn’t have particular effects on the learning of the policy and allowed the
removal of the additional hyper-parameter controlling the temperature of the exponential thus simplifying
the training procedure. Using a value function from a distance monotonic representation ensures the term
Ṽ (s′)− Ṽ (s) to be positive only for actions that bring the agent closer to the goal. This approach for the
policy update is particularly suitable for offline RL: actions are sampled from the dataset which guarantees
us to consider only in-distribution actions. Moreover, using the proposed distance monotonic representation
instead of Temporal Difference methods for the critic solves the classic offline RL issue of out-of-distribution
transitions (Levine et al., 2020).

3.4 Practical Implementation

Stabilizing the loss In practice, we take the logarithm of the contrastive term (second term) in Equation 1.
We have found this formulation to stabilize the training, in particular for environments with longer episode
horizons:

Lθ(D) = ED
[
(∥ϕθ(s′)− ϕθ(s)∥2 − 1)2 − λ log ∥ϕθ(s′′)− ϕθ(s)∥2

]
. (4)

Learning with images When learning with images, often the goal information is present in the image,
e.g., the position of the green square in the grid experiment in Figure 5, which can break the connectivity
assumption: two images with different goal positions are not connected by any path. This can be a problem
in practice as the second term in Equation 1 can grow indefinitely when comparing representations of images
with different goals. However, in the case of finite MDPs, we can easily recover it by introducing an additional
super-state that connects every termination state together. We present the implementation details of such
a super-state in Appendix A.4. The introduction of this super-state and the consequent connection of the
environments with different goals leads to a modification of the learned representation. Figure 5 shows this
learned representation. On the left is the distribution of the states for one single goal, while on the right is
the distribution of all the goals connected by the super-state (red star). The solution to this representation is
a radial distribution of the states connected in the middle by the super-state. All the states with the same
goal (orange dots in the image) compose one ray of the overall distribution.

4 Results

We evaluate MetricRL against standard baselines in offline reinforcement learning across multiple environments.
In all experiments we consider three types of offline datasets: a low dataset, often collected using a random
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Figure 5: Visualization of the two-dimensional latent space of MetricRL in the DoorKey environment when
considering state features (left) and image (right) observations. We observe that the addition of a super-
state (red star on the right figure) for image observations results in a significant change in the structure of
the embedded graph as each set of states with a different (and visible) goal gets separated (orange dots).
Nonetheless, in both cases, the optimal policy still follows a geodesic in the graph: from the starting state
(blue) the agent needs to pick up the key (yellow) to open the locked door (orange) and move to the goal
state (green).

Algorithm 1 MetricRL.
Require: Initialize θ, ψ
Require: Offline dataset B, hyperparameters λ, η

1: repeat
2: Sample batch (s, a, s′, sg)×B ∼ D
3: sr = shuffle(s) ▷ shuffle states in the batch
4: Lθ = (∥ϕθ(s)− ϕθ(s′)∥2 − 1)2 − λ log(∥ϕθ(s)− ϕθ(sr)∥2)
5: Update θ ← θ − η∇θLθ
6: V = ∥ϕθ(s)− ϕθ(sg)∥2
7: V ′ = ∥ϕθ(s′)− ϕθ(sg)∥2
8: Lπ = −(V ′ − V ) log(πψ(a|s))
9: Update ψ ← ψ − η∇ψLπ

10: until convergence

policy or an untrained agent; a medium dataset, collected using the policy of an online RL agent during
training or adding stochasticity to a fully trained agent, and a high dataset, collected using the policy of a
fully-trained online RL agent.

For baselines, we consider:

• CQL (Kumar et al., 2020) introduces a conservative term in the estimation of the Q value. This
term penalizes the highest values of the estimated Q function;

• BCQ (Fujimoto et al., 2019) perturbs the policy learned with a VAE with a DDPG term;

• BEAR (Kumar et al., 2019) constrains the learned policy to the behavioral one estimated with BC;
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• PLAS (Zhou et al., 2021) trains the policy within the latent space of a conditional VAE trained on
the Offline dataset;

• IQL (Kostrikov et al., 2021) avoids sampling out-of-distribution actions using a SARSA like critic
update with quantile regression;

• ContrastiveRL (Eysenbach et al., 2022) approximates the value function of the policy that collected
the dataset using contrastive learning. To adapt it to offline RL, the objective is coupled with a
behavioral cloning term.

• QRL (Wang et al., 2023) estimates a quasimetric to approximate the value function using a contrastive
learning formulation. The model is paired with a learned policy regularized with a behavioral cloning
term to avoid out-of-distribution state-actions pairs in offline RL conditions.

• GoFAR (Ma et al., 2022) estimates an offline goal-conditioned RL policy by recasting it as a state
occupancy matching problem.

• HIQL (Park et al., 2024) Reformulates IQL to an action-free hierarchical model.

For each model, we perform standard hyperparameter tuning or use the author’s suggested hyperparameters
(if available). The complete list of training hyperparameters is available in Appendix A.5, CQL, BCQ, BEAR,
PLAS, IQL are implemented using Seno and Imai (2022). For the remaining models we use the author’s
provided code.

For environments, we consider:

• Maze2D (Fu et al., 2020): a navigation task within a two-dimensional maze, with continuous actions
and Newtonian physics. We consider three sizes of the maze: u-maze, medium and large. For each
size, we use a uniform random policy to collect the low dataset, a policy with Ornstein-Uhlenbeck
noise (Uhlenbeck and Ornstein, 1930) to collect the medium dataset, and we use the Minari dataset
provided in D4RL for the high dataset (Fu et al., 2020);

• Reach (Plappert et al., 2018): a manipulation task with a 7-DoF robot with continuous actions to
reach a randomly-selected goal position in the workspace. To collect the datasets we employ a PPO
agent trained on dense rewards along three different stages of training. For the low dataset, we use
the policy of the randomly-initialized agent, for the medium dataset we use a PPO agent achieving
half of the optimal expected reward, and for the high dataset we use the policy of the fully-converged
agent;

• Hypermaze: a novel navigation task on a grid-like n-dimensional maze with discrete actions. To collect
the offline datasets we employ a DQN agent trained online performing actions using an ϵ-greedy
policy: for the low dataset we use purely uniformly random actions, for the medium dataset we
sample random actions half of the time and optimal actions the other half, and for the high dataset
we use the policy of the fully-trained agent;

• Minigrid (Chevalier-Boisvert et al., 2023): a navigation task on a grid-like 2D room with discrete
actions. We restrict the action space of the agent to navigation actions and remove rotations. To
collect the offline datasets we employ the same strategy as above, that is ϵ-greedy on a fully trained
DQN agent. We consider 2 tasks, Minigrid Empty consists of an open grid with external walls as the
only obstacles. Minigrid DoorKey is a three-step task where the agent must first pick-up a key, then
open a door, then reach a goal position;

We present our main results in Figure 61 For a complete list of hyperparameters employed in the data
collection procedure, please refer to Appendix A.5.

1We present in Appendix A.8 additional results. The conclusions remain the same for those additional environments.
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Figure 6: Average reward returns on offline RL tasks with different types of datasets. All results are averaged
over 5 randomly-selected seeds. Higher is better. We present extra results in Appendix A.8. MetricRL is the
only model able to consistently learn near-optimal behavior from sub-optimal datasets (low and medium),
outperforming the baselines, while performing on par with optimal datasets (high).

MetricRL outperforms other methods in learning from sub-optimal datasets: The results highlight
that MetricRL is the only model able to maintain a consistent level of performance, regardless of the type of
dataset used for training. Additionally, MetricRL outperforms the other baseline methods when learning a
policy from datasets collected using sub-optimal policies (low and medium datasets). In particular, for low
datasets, MetricRL consistently outperforms all other baselines.

MetricRL provides more stable training across different data distributions in offline datasets: We
conduct an additional experiment on the Minigrid DoorKey environment and consider a finer discretization
of the distribution of rewards. We collect multiple datasets using an increasing value of ϵ for an ϵ-greedy
optimal DQN agent. As shown in Figure 1, MetricRL (red line) requires datasets with a smaller average
reward than the baselines to achieve optimal performance. Additionally, the results show that MetricRL does
not suffer from out-of-distribution data when the dataset has a very narrow distribution (almost all or all
optimal trajectories).

MetricRL outperforms QRL in tasks with large action spaces: MetricRL is able to estimate good
policies in both discrete action spaces and continuous ones. In particular, it manages to converge in very
high-dimensional action spaces like the Hypermaze where there are 81 possible actions with low datasets.

MetricRL can learn from sub-optimal datasets of images: To evaluate the performance of MetricRL
when provided with high-dimensional observations (images) we reuse the MiniGrid Empty and DoorKey
environments and introduce a super-state following the discussion in Section 3.4. For every model, we
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introduce a CNN architecture that maps the images to a lower-dimensional representation. This highlights
that MetricRL maintains its performance, and remains the only model able to learn optimal behavior from
sub-optimal datasets. We present an additional result in the Appendix with Figure 14.

In Appendix A.6 we explore the sample efficiency of MetricRL in scenarios with large state spaces. The
results show that our method significantly outperforms temporal-difference (TD) methods (e.g., DQN (Mnih
et al., 2015)): to solve larger state space problems, we require a linear increase in the number of training
iterations against the exponential increase of TD methods. In Appendix A.7, we show how MetricRL can be
used in multi-goal tasks without modifications, considering changing multiple goals and discount factors at
execution time.

4.1 Discussion

MetricRL recasts the computation of the value function as a problem of measuring distances in an appropriate
learned metric space. To do so, it requires two additional assumptions on the MDPs it is applied to: the
existence of inverse actions and the connectivity of the dataset used to learn the value function. As stated in
Section 3.4, the connectivity assumption can be solved using “super-states” to join the states into a unique
connected component. The existence of inverse actions, on the other hand, defines a trade-off. It limits the
applicability of the proposed method to MDPs where the assumption is respected. On the other hand, it
greatly simplifies the learning process by imposing a relevant bias on the representation. MetricRL, in fact,
requires significantly fewer data points as it can interpolate missing transitions when the inverse transition is
present in the data. This allows to estimate effective policies even in severely sub-optimal data conditions as
shown in Section 4.

5 Related Work

Offline RL: The challenge of learning a policy from a static sub-optimal dataset of transitions and rewards
has been extensively studied (Levine et al., 2020). The problem of exploration is not considered as it is
assumed that the dataset given contains all the relevant information to estimate an optimal policy. Methods
can be roughly divided into four main categories. The first one is constraining the learned policy to not
deviate much from the policy that collected the dataset: Kumar et al. (2019) restrict policies to have the
same support as the behavior policy rather than the policy itself; Zhou et al. (2021) implicitly constrain the
policy by learning it using latent representations of actions with Gaussian prior (VAE), the constraint given
by the KL divergence term; Siegel et al. (2020) learns the behavioral policy explicitly. The second category
introduces a penalty in the reward function based on the uncertainty of the transitions or the reward function.
This penalty has been defined as the uncertainty of the learned Q function, (Kidambi et al., 2020; Yu et al.,
2020), or a measure of pessimism (regularization of the highest Q) (Kumar et al., 2020). A third family of
methods instead uses model-based RL and explicitly computes a model of the environment that can be used
in different forms to regularize the learned policy (Matsushima et al., 2020; Yu et al., 2021; Rigter et al.,
2022; Fujimoto et al., 2019). The last category includes in-sample algorithms which restrict the learning of
the policy only on data within the provided dataset and reweighted by an estimate of the advantage function.
This family of methods has been referred to as weighted supervised learning (Wang et al., 2018) or maximum
likelihood (Nair et al., 2020). It has been extended with different forms of regularization including expectile
regression for the critic (Kostrikov et al., 2021), penalizing out-of-distribution actions in the critic (Chebotar
et al., 2021), trust regions (Mao et al., 2023), goal relabeling (Yang et al., 2022) and Generative Adversarial
Networks (Wang et al., 2024). The policy estimate of our proposed method falls in this last category, as
can be seen in Equation 3. The use of Temporal Difference learning for the critic, however, subjects these
methods to the problem of distribution shift in Offline RL. In this work, we propose a method that can
estimate a high-return policy independently from the distribution of the data used even when the quality of
the data decreases substantially.

Contrastive Learning: Representation learning techniques have been used to aid the RL problem. Several
works have used contrastive learning models to speed up or improve the generalization of a classic RL
algorithm, (Laskin et al., 2020; Oord et al., 2018; Anand et al., 2019; Stooke et al., 2021). Other applications
include reward function estimation from demonstrations (Ma et al., 2022; Sermanet et al., 2018) or generating
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intermediate goals for curriculum learning (Venkattaramanujam et al., 2019). In Eysenbach et al. (2022);
Hatch et al. (2023) contrastive learning is used to estimate the discounted state occupancy measure which is
equivalent to the Q function in some particular cases. This method however works only when the reward
function can be expressed as a goal reaching density and doesn’t estimate the optimal Q value but rather the
Q value of a current policy, thus still requiring the concurrent learning of a policy in a classic RL fashion. Zhu
et al. (2022) proposes the use of contrastive learning to build a representation of states where distances are
correlated with reachability in terms of actions. After the representation is learned, they propose to explicitly
build the graph of the offline dataset and apply value iteration to get an estimate of the value function. The
policy can be obtained by applying Dijkstra on the learned graph. More similar to this work Wang et al.
(2023); Yang et al. (2020) estimate the optimal value function rather than the policy one. In Yang et al.
(2020) the authors use contrastive learning to find a representation where connections between states in
action terms can be estimated in terms of Euclidean distances. The value function can then be recovered
as the sum of the shortest path distances between the goal and the current state using depth-first search
classical algorithms. Wang et al. (2023) learns a map between pairs of states and a quasimetric representing
the estimated optimal value function of a goal-conditioned MDP. This is done by setting the distance between
two consecutive states to be equal to the reward between them and the distance between random pairs of
states to be maximized. The optimal value function can then be defined as the distance between each state
and the goal state. While being more general, quasimetrics cannot capture the appropriate bias induced by
the inverse actions assumption. We show empirically that our proposed method is more effective in estimating
a policy when data is severely sub-optimal. In this paper, we describe a property of representations needed
to ensure the optimality of the critic function and propose a simple method to recover such a representation
for a particular class of MDPs. Moreover, differently from the works above, we study the effectiveness of this
methodology in handling offline datasets collected by policies that are not necessarily optimal.

Other metrics: Other measures of state similarity from a control perspective have been explored before.
Bisimulation metric defines a measure of similarity between states in terms of future transitions and
rewards, (Ferns and Precup, 2014; Castro, 2020). These methods are theoretically grounded but particularly
difficult to make them work in practice. This is especially true in the case of continuous spaces. Older
work has explored different forms of value function approximation. By parametrically approximating the
map between each state and its value, (Ormoneit and Sen, 2002) approximates a notion of similarity (in a
value sense) between states with an appropriate kernel and rewrite the Bellman operator as a function of
this kernel. This still needs to solve the optimization problem with value iteration techniques. Proto-value
functions, (Parr et al., 2008), instead express the transition and reward functions as linear matrices, the value
function problem has exact solutions and can be estimated with an appropriate kernel method at the cost of
expressivity.

6 Conclusions

In this paper, we proposed MetricRL, a novel approximation method for the optimal value function of sparse,
deterministic, goal-conditioned MDPs. MetricRL relies on learning a distance monotonic representation
of the state space, allowing it to define a value function that is correlated with the distance of each state
to the goal. We have proved that, when the representation is indeed distance monotonic, a greedy policy
on this approximated value function is optimal for the class of MDPs stated above. Experimentally, we
have shown that MetricRL outperforms prior offline RL methods in learning near-optimal behavior from
severely sub-optimal datasets. For future work, we plan on generalizing the notion of distance monotonicity
to quasimetrics (Durugkar et al., 2021; Durugkar, 2023), extend our method to stochastic MDPs and adapt
it to online reinforcement learning problems.
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A Appendix

A.1 Sparse Goal-Conditioned Value Functions in Isometric Spaces

Recall the definition of the optimal value function described above as the maximum over the possible policies
of the expectation of the discounted cumulative reward: V ∗(s, sg) = maxπ Eπ [

∑
t γ

trt|s0 = s, a = π(s, sg)].

In the particular case of a deterministic MDP with a sparse goal-conditioned reward function, the value
function simplifies as there is only one state for which the reward is non-zero (the goal state). Moreover, in
the optimal value function, the estimated discounted cumulative reward becomes equivalent to the reward at
the goal discounted by γdG(s,sg), where dG(s, sg) is the geodesic. In this setting, the optimal value function
estimation can be reduced to a shortest path estimation problem.

Assuming ϕ is an isometry, dG(s, sg) = dZ(ϕ(s), ϕ(s′)) resulting in: V ∗(s, sg) = γdZ (ϕ(s),ϕ(s′))rg.

A.2 Distance Monotonicity Measure

We provide a more formal intuition on the increase in distance monotonicity of a representation that minimizes
Equation 1. As such, consider the following modification of the objective:

min
θ

ED [−∥ϕθ(s′′)− ϕθ(s)∥2] (5)

subject to: ∥ϕθ(s′)− ϕθ(s)∥2 = 1. (6)

Figure 7: The optimization
in A.2 increases the distance be-
tween the representations. As
long as z2 is outside of the cir-
cumference, the triplet s{1,2,3} is
distance monotonic.

This can be seen as the second term of the loss in Equation 1 with the first
term as an explicit constraint. As defined before, the distance between
any two points, si, sj , is the length of the geodesic on the graph defined
as the offline dataset. This is equivalent to the sum of the intermediate
steps within the geodesic path. Using the constraint in Equation A.2 we
can use triangular inequality to bound the distance between points in the
learned representation:

dZ(zi, zj) = ∥ϕθ(sj)− ϕθ(si)∥2 ∈ [0, dS(si, sj)] . (7)

The representation’s ϕθ distance monotonicity can be measured as the ratio
of triplets that respect the definition 3.1. That is, if dS(s1, s3) ≤ dS(s2, s3)
then dZ(z1, z3) ≤ dZ(z2, z3), where z = ϕ(s). The distance monotonicity
of ϕ increases for each triplet for which this becomes true. Graphically this
can be seen in Figure 7. As the distance dZ(z1, z3) is bounded, the distance
monotonicity of ϕ increases when dZ(z2, z3) ∈ [dZ(z1, z3), dS(s2, s3)] (or
equivalently z2 goes outside the blue circumference in the figure). As such,
distance monotonicity increases by stretching the distance between any
two states. This is equivalent to the objective described in Equation A.2.

A.2.1 Experiment on Distance Monotonicity Measure

We tested quantitatively the effects of minimizing the loss defined in
Equation 1 and the increase in distance monotonicity of the learned representation. To do so we used the
environment defined in Maze2D large with the high dataset. Figure 3 (blue curve) shows the increase in
distance monotonicity of a representation throughout the learning process. We computed the measure as
follows:

• Before starting the training we compute a discretization of the positions of the maze and an adjacency
matrix based on whether two positions are connected or not. This effectively defines a graph of the
states of the maze.
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• During every epoch of training we sample 1000 triplets of these nodes (s1, s2, s3) at random and
compute the distances on the graph between the two pairs using breath-first search, i.e., dG(s1, s3)
and dG(s2, s3).

• Concurrently we map these three points in Z using the representation that’s being learned and
compute the distances using a Euclidean norm, i.e., dZ(z1, z3) and dZ(z2, z3).

• We then compute the distance monotonicity (DM) ratio as the number of triplets among these 1000
for which if dG(s1, s3) ≤ dG(s2, s3) then dZ(z1, z3) ≤ dZ(z2, z3) or if dG(s2, s3) ≤ dG(s1, s3) then
dZ(z2, z3) ≤ dZ(z1, z3).

• The plot is also paired with the average reward a MetricRL agent achieves during training (orange
curve).

More results on this are provided in Figure 15.

A.3 Proof of Theorem 3.2

Proof. Here we prove that, assuming a deterministic, sparse, goal-conditioned MDP, every optimal solution
defined as the greedy policy on the optimal value function is contained in the greedy policy on a value function
defined as in Equation 2.

To simplify the notation we will refer to ϕ(s) as z.

We start by rewriting the statement of the Theorem in the argmax form:

πV
∗

g (s) ⊆ πṼg (s) (8)
=⇒ arg max

a
[V ∗(s′ = T (s, a))] ⊆ arg max

a

[
Ṽ (s′ = T (s, a))

]
, (9)

here we make use of the fact that the MDP is deterministic and thus the tuple (s, a) injectively corresponds
to a unique next state s′ through the transition function T .

We can rewrite the left-hand side using Bellman and the right-hand side using the definition of the value
function of Equation 2:

arg max
a

[
max
a′

(r(s′, a′) + γV ∗(s′′))
]
⊆ arg max

a

[
γdZ (z′,zg)rg

]
, (10)

where again we denote s′′ = T (s′, a′). Assuming a deterministic sparse goal-conditioned MDP, the maximum
of the left-hand side in Equation 10 is equal to the discount factor raised to the power of the minimal number
of actions needed to reach the goal, dS(s′, sg), times the reward at the goal, rg:

max
a′

(r(s′, a′) + γV ∗(s′′)) = γdS(s′,sg)rg. (11)

We can now rewrite Equation 10 as:

arg max
a

[
γdS(s′,sg)rg

]
⊆ arg max

a

[
γdZ (z′,zg)rg

]
, (12)

and change the argmax to an argmin by dropping the discount factor (γ < 1) and the reward value:

arg min
a

[dS(s′, sg)] ⊆ arg min
a

[dZ(z′, zg)] . (13)

We can now make use of the distance monotonicity assumption of ϕ. The set of actions a that minimizes the
left-hand side of the above equation implies that for every other state ŝ that can be reached from s we have:

dS(s′, sg) ≤ dS(ŝ, sg), (14)
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if ϕ is distance monotonic, this implies:

dZ(z′, zg) ≤ dZ(ẑ, zg), (15)

for their corresponding latent representation and thus the actions that minimize dS(s′, sg) are contained in
the actions that minimize dZ(z′, zg) resulting in:

aV ∗ ⊆ aṼ ∀s ∈ S, (16)

where we denoted aṼ as the set of actions that minimize dZ(z′, zg) and aV ∗ as the set of actions that minimize
dS(s′, sg). This, in turn, implies that the optimal policy is contained in πṼg (s) thus concluding the proof.

A.4 Incorporating Super-States in the Dataset

Here we provide a short description on how to add super-states in the dataset to connect it. The steps can
be summarized as follows:

• Define super-states: These can be defined synthetically by creating a state that is not present in
the dataset. In the experiments, we always defined it as a vector of all zeros of the same dimensionality
of the state space.

• Add transitions: The offline dataset can then be augmented with synthetic transitions. For each
trajectory in the dataset, we can append a new transition from the terminating state to the meta
state. The action connecting these states is not relevant as it will not be used in the representation.
In the experiments, we set the action value to a random (but valid) value.

A.5 Experimental Details

For each experiment, we provide the results for 5 runs with different seeds. Each model is trained for 100
epochs consisting of 500 batches of 256 data points each. Every model is trained using the Adam optimizer
with a learning rate of 10−3. All experiments have been conducted using an NVIDIA RTX 3080 GPU
accelerator.

Both the policy and the value function are parameterized using a simple Multi-Layer Perception architecture
consisting of 3 layers with 64 neurons each and a ReLU activation function. In the case of MetricRL, the
policy outputs the mean of a Gaussian distribution with fixed variance when the actions are continuous and
the logits of a Categorical distribution when the actions are discrete. When the observations are images we
use a CNN architecture consisting of 4 layers with 64 filters each of size 3 by 3 to preprocess the images.

A.5.1 Model Hyperparameters

MetricRL: The representation of the metric space has always dimension 128. The regularization term λ in
Equation 1 is 1 and the variance of the policy when actions are continuous is 1.

CQL: γ = 0.95, we use a conservative weight of 5.0.

BCQ: γ = 0.95, action flexibility: 0.5, we sample 10 actions per step and use 2 critics.

BEAR: γ = 0.95, we use an adaptive α with an initial value of 0.001 and a threshold of 0.05, we use 2 critics
modules and sample 10 actions per step.

PLAS: γ = 0.95, we use 2 critics modules.

IQL: γ = 0.95 , we use 2 critics modules and an expectile value of 0.9.

ContrastiveRL: γ = 0.95, an offline regularization of 0.05 and a fixed variance for the policy of 1.

QRL: ϵ = 0.25, initial λ = 0.01, offset softplus 500 and β = 0.01 and an offline regularization of 0.05.

GoFAR: γ = 0.98 and a discriminator gradient penalty of 0.01. For the f-divergence we use the χ2-divergence.
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Figure 8: Wall positions (yellow) in the HyperMazes in 2D and 3D, in blue are free cells.

A.5.2 Evaluation Scenarios

Maze2D: The goal of the environment is to navigate an agent (actuated ball) to a target position inside a maze
of varying complexity. The state space is 4-dimensional consisting of position and velocity in the plane, the
action space is the torque applied to the ball in the two directions. The reward function is defined to be 1
when the agent reaches a position within 5 cm from the goal state and zero otherwise. Transitions take into
consideration the momentum of the ball, frictions in the environment and collisions with the walls. For the
low dataset we collect a dataset of 1000 trajectories of the agent performing uniform random actions. For the
medium dataset we collect actions according to an Ornstein-Uhlenbeck process with parameters: θ = 0.1 and
σ = 0.2. For the high dataset we rely on the Minari dataset provided by Fu et al. [33].

Reach: The task consists of moving the end-effector of a simulated 7-DoF arm to a desired position in 3D.
The state space consists of positions and velocities in 3D of the end effector and gripper of the robot and
the goal refers to the desired position of the end-effector and zero velocity. Actions are translations of the
end-effector. We first train a PPO agent online to solve the task and collect datasets at different stages of the
training to define different qualities.

Hypermaze: Defines a generalization of the classic Grid Maze navigation task. The environment consists of
a hypercube of n dimensions of m cells per dimension where every cell can either be empty or wall. The
agent occupies one cell at a time if it is empty and can translate to adjacent cells if they are not walls. The
positions of the wall are initialized in an S-like shape similar to Figure 8 when the hypermaze is defined in
either 2 or 3 dimensions. The goal of the environment is to reach a goal placed on the other side of the maze.

For the results in Figure 6 we fix the maze to be 4 dimensional with 20 cells per dimension. We collect the
datasets by first training a DQN agent online to solve the task and then collect 3 datasets using an ϵ-greedy
policy with ϵ respectively of values 0.9, 0.5 and 0.1.

For the sample complexity analysis our method is coupled with a learned transition function to recover the Q
estimate. We vary the dimensions (from 2 to 5) and the number of cells (from 10 to 50). Here the state space
is defined as the position of the agent in the maze discretized into cells plus whether there are obstacles or
not in the adjacent cells. To train the agents, random states and actions are sampled from the environment.
A reward of 1 is given only if the agent steps into the goal state at the end of the maze.

Minigrid: We experiment with two variations of the minigrid environment. The first is the Empty environment
where an agent translates freely within a grid-like environment. The state is described by the 2D position of
the agent and the actions are the 4 possible translation directions. The reward is 1 once a randomly selected
cell is reached and 0 otherwise. The DoorKey environment introduces bottlenecks in the MDP. A wall is

19



Under review as submission to TMLR

10 15 20 25 30 35 40 45 50

Hypermaze size

0

1000

2000

3000

4000

5000

6000

7000

S
a
m

p
le

 C
o
m

p
le

x
it

y

DQN MetricRL

2.0 2.5 3.0 3.5 4.0 4.5 5.0

Hypermaze Dimension

0

200

400

600

800

1000

1200

S
a
m

p
le

 C
o
m

p
le

x
it

y

DQN MetricRL

Figure 9: Number of updates required to reliably solve the Hypermaze environment with varying number of
cells (left plot) and dimensions (right plot).

introduced in the center of the grid separating it into 2 rooms with a closed door in the middle. In the first
room, a key is placed in a random position. The goal is to pick up the key, open the door and reach a goal
cell in the other room. The state space is defined as the position in the grid of the agent plus the position of
the key plus a binary value describing whether the door is open or not. Actions are translations in the grid
plus a pick-up action that has an effect only when the agent is adjacent to the key plus an open door action
that has an effect only when the agent has the key and is adjacent to the door. As before, The datasets are
collected by training a DQN agent online to convergence and collecting the datasets using ϵ-greedy strategy
with the three different values for ϵ. For the high-dimensional observations case we use images rendered by
the environment as the states. These are 80 by 80 pixels with 3 color channels.

A.6 Sample-Efficiency

A main advantage of MetricRL stems from the nature of the loss function. Temporal difference methods (e.g.,
DQN) are known for their inefficiency when the time horizon grows considerably [62]. On the other hand,
MetricRL mitigates this issue by using neural networks to learn a representation of a metric space.

To validate our hypothesis, we compare MetricRL against DQN [36] in the Hypermaze environment, considering
a variable number of dimensions and cells. This allows us to control for both the dimensionality of the action
space and the size of the state space of the underlying MDP.

In Figure 9 we present the number of iterations required for the two methods to solve the maze at least 25
times consecutively during training as a function of the size of the maze (state space). The results show that
for MetricRL the number of iterations required to learn to perform the maze grows linearly with the size of
the maze. However, for DQN the number of iterations rises exponentially.

A.7 Multi-goal Tasks

Another advantage of the proposed representation used in Equation 2 is that it does not depend explicitly on
the goal. As long as goals are valid states within the training distribution, they can be arbitrarily used to
estimate the value function. The explicit use of the discount factor allows for reshaping the value function to
increase or decrease long-term reward delay. Moreover, with a slight modification, we can easily consider
multiple competing goals. In this setting, the agent has to consider both the possible reward it can get in
each goal state as well as its relative distance to each goal. As such, the discount factor of the MDP influences
the optimal policy of the agent. For example when the agent has to navigate in a maze toward a door but
there are multiple doors. In this case, the agent has to learn both how to navigate the maze as well as make
the decision of which door to choose based on their reward and the length of the path.
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(a) γ = 0.9 (b) γ = 0.95 (c) γ = 0.99 (d) γ = 0.999

Figure 10: Visualization of the gradient of the value function learned by MetricRL in an environment
containing two fixed goals with different rewards (r1, r2), as a function of the discount factor: the green star
has r1 = 0.7 and the orange star has r2 = 1.0.

With multiple rewards, the value function approximation can be reformulated by considering the maximum
over the value function of all the possible goals (si, ri):

Ṽ (s) = max
i
{γdZ (ϕ(s),ϕ(si))ri}. (17)

A.8 Additional Results

In this section, we provide additional results on the experiments described.

Maze2D: We additionally provide the results for the u-maze and the medium maze described in Fu et al. [33],
(Figures 11 and 12). Results confirm the findings described in the paper. MetricRL consistently outperforms
the baselines in the case of low and medium datasets.

MetricRL CQL BCQ BEAR PLAS IQL ContrastiveRL QRL GoFAR HIQL
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Figure 11: Average reward returns on Maze2D u-maze with different types of datasets. All results are averaged
over 5 randomly-selected seeds. Higher is better.

Minigrid: We provide results of the Empty environment with states and images as input, (Figures 13 and 14).

Below (Figure 15) are additional results on the increase in distance monotonicity measure paired with an
increase in reward for different mazes and datasets of Maze2D.
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Figure 12: Average reward returns on Maze2D medium maze with different types of datasets. All results are
averaged over 5 randomly-selected seeds. Higher is better.
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Figure 13: Average reward returns on Minigrid Empty with different types of datasets. All results are
averaged over 5 randomly-selected seeds. Higher is better.
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Figure 14: Average reward returns on Minigrid Empty with images with different types of datasets. All
results are averaged over 5 randomly-selected seeds. Higher is better.
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Figure 15: Distance monotonicity ratio compared with average reward on Maze2D environments with different
mazes and datasets.
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