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Abstract

Most large-scale chemical language models are trained on a single textual molec-
ular representation using self-supervised learning over large unlabeled corpora.
These models excel in tasks such as property prediction and molecule generation
by learning contextualized representations of input tokens. However, relying solely
on one representation may result in the loss of structural or semantic information
captured by alternative formats and may limit the model’s ability to generalize
across diverse molecular encodings. To address this limitation, we incorporate
multiple textual molecular representations—including SMILES, SELFIES, molec-
ular formula, IUPAC name, International Chemical Identifier (InChl), serialized
polymer graph (SPG), and electrolyte formulations in an unified vocabulary to
harness the unique strengths of each format. Here, we introduce a large encoder-
decoder chemical foundation model based on the Bamba architecture, a hybrid
of Transformers and Mamba-2 layers, designed to support multi-representational
inputs. The model is pre-trained in a BERT-style on 588 million samples, resulting
in a corpus of approximately 29 billion molecular tokens. These models serve
as a foundation for language chemical research in supporting different complex
tasks, including molecular properties prediction, classification, and molecular trans-
lation. Furthermore, extensive studies of the multimodal molecular latent space
indicate cross-representation alignment and reveal how different textual encod-
ings of the same molecule can converge toward a unified semantic representation.
This shared space may facilitate deeper insights into molecular structure, enhance
generalization, and support a broad range of downstream applications.

1 Introduction

The development of large-scale pre-training methodologies for chemical language models (LMs)
constitutes a significant advancement in the field of cheminformatics (1). These methodologies
demonstrate a notable efficacy in addressing complex molecular tasks, including the prediction of
properties and the generation of molecules (2; 3). The effectiveness of these models is mainly due to
their ability to acquire contextualized representations of input tokens through self-supervised learning
on extensive unlabeled corpora (4)).

With the advance of the Transformers architecture, several chemical models have been proposed to
leverage attention as its core module (55165 [7; 185 [9). The effectiveness of self-attention is attributed to
its ability to route information densely within a context window (10)), allowing it to model complex
data (11). However, this property presents essential limitations, such as the inability to model
anything outside of a finite window and the quadratic scaling with respect to the window length (12)).
A considerable amount of research has emerged on more efficient variants of attention to overcome
these drawbacks (13)).
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In particular, structured state-space sequence models (SSMs) have been introduced as a promising
class of architectures to support much longer context lengths for sequence modeling (14). These
models can be interpreted as a combination of recurrent neural networks (RNNs) and convolutional
neural networks (CNNs) (15). The Mamba model is a simplified end-to-end SSM-based neural
network architecture without attention or even MLP blocks (16). In this context, recent approaches
have demonstrated the efficiency and capability of SSMs in learning a chemical language better than or
comparable to Transformer-based models (17). To address the limitations and harness the advantages
of the self-attention and state-space modules, recent works have proposed a hybrid architecture of
Transformer and Mamba-2 layers for general large language models (LLMs) (18195 [20).

Most of the proposed chemical foundation models rely solely on a single representation or require the
adaptability of a new notation for model compatibility. Common molecular representations the models
are trained on include SMILES, SELFIES, and PSMILES. However, the use of specific notation may
limit the ability of the model to generalize across diverse molecular encodings. Furthermore, diverse
molecular notations may complement important molecular information that a specific one does not
contain. For PSMILES we used the serialized polymer graph (SPG) representation since it could
accommodate both a broad array of polymer architectures and be easily interoperable with existing
literature datasets—simplifying assembly of pre-training and benchmarking datasets (21)).

In this study, we present a novel hybrid architecture of a large general string-based molecular founda-
tion model of the Transformer and Mamba-2 layers, denoted STR-Bamba,og,. Our STR-Bambayogas
encoder-decoder foundation model leverages multiple molecular string textual representations in a
single vocabulary using an efficient attention and SSM-based model. Our main contributions are:

* We pre-train a large-scale encoder-decoder foundation model for molecules, denoted STR-
Bambaysg s, on more than 117 million small molecules from PubChem (22)), 2 million
synthetic and real polymers from the literature (21)), and 258 electrolyte formulations (23),
resulting in 119 million unique molecules. With the multimodal setting, the total training
data is composed of 588 million samples, which is equivalent to 29 billion molecular tokens.

* A special custom tokenizer for enconding the different molecular representations individually.
We built a custom tokenizer to handle each modality properly in a single unified vocabulary
of molecular textual representations.

e Our STR-Bambays6,, foundation model is an inference-efficiency hybrid Transformer and
Mamba-2 base model of 426 million parameters. The design of the model architecture
allows for the use of longer context lengths, opening space to leverage multiple molecular
representations into a single input. All used code and checkpoints for these models are in
progress to be fully open-sourced.

* We perform extensive experimentation on several classification and regression property
prediction tasks from 27 benchmark datasets, covering a wide range of tasks for small
molecules, and polymer molecules. We also study the quality of the latent space created by
the STR-Bambayo6 s model to represent the multimodal setting of molecular representations.
Furthermore, an evaluation of the capabilities of the encoder-decoder configuration of the
proposed architecture is conducted by translating different molecular formats of the same
molecule.

2 Overview of the proposed approach

The following detail the proposed approach of the STR-Bamba architecture to leverage the multimodal
molecular textual representations setting in a unified vocabulary and model.

Tokenization: A custom tokenizer was carefully built to encode the seven different molecular
representations supported by STR-Bamba appropriately. Specifically, we employed the Byte-Pair
Encoding (BPE) tokenization for the main encoding process, and a pre-tokenizer step is performed to
handle each modality individually. To identify each modality, we considered the special token repre-
sentations, i.e., <smiles> for SMILES, <selfies> for SELFIES, <iupac> for [IUPAC name, <inchi>
for InChl, <formula> for molecular formula, <polymer_spg> for SPG, and <formulation_start> for
electrolyte formulations.
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Figure 1: This figure illustrates the general architecture of the base STR-Bamba,a,, model.

For SMILES, SELFIES and SPG we used the regular expression from (24) to split in an atom-wise
approach since it has been extensively used for molecular models (2551265 1275 |9). For the molecular
formula and InChlI notations, we first extract the numbers associated with the atoms. Finally,
formulations use the same atom-wise tokenization with the addition of recognizing formulation
compositions. Although the [IUPAC name is not preprocessed beforehand, the BPE appropriately
encodes the high-frequency pieces of the name. We trained the tokenizer with 5% of the total training
data, resulting in approximately 28 million samples for all molecular modalities. The size of the
constructed vocabulary yields 5000 tokens, with 13 special tokens and 4987 molecular tokens.

Pre-training Data: A combination of small and polymer molecules, and electrolyte formulation
data was used to compose our training data. The data on small molecules were extracted from the
PubChem database, resulting in a total of 118 million molecules. However, since it does not contain
the SELFIES representations, we generated the SELFIES format from the SMILES notation. Hence,
the remaining data consist of 117 million molecules with a minimum loss of the total extracted data.

The collection of polymer data for pre-training is a composition of synthetics with experimental
datasets, forming a dataset of approximately 2 million polymer structures. The use of generated
polymer data is known to contain non-viable polymer structures. Hence, the pre-training data were
carefully pooled from a selection of open literature sources, (2852951305 13151325 13351345 1355 1365 1375
38 139), avoiding whenever possible, datasets containing potentially problematic structure. We also
enriched the training data with an additional 258 electrolyte formulations. Therefore, the total dataset
size for pre-training the STR-Bambaysg)s model comprises approximately 588 million samples.
From this total, each of the five molecular modalities from PubChem is used, resulting in 585M
samples added with the polymer and formulation data.

Model Architecture: STR-Bambaysgys is an encoder-decoder model built on the Bamba archi-
tecture [ﬂ an inference-efficient hybrid approach of Transformer and Mamba-2. This architecture
leverages the strengths of both attention and state-space mechanisms. We slightly modified the
Bamba architecture to handle multiple molecular representations and exploit the multimodal setting
into a single unified vocabulary and model, which are shown in Fig. [T} The model configuration for
the base architecture, Mamba-2, and Transformer used in our implementation is shown in Tablem

"https://huggingface.co/blog/bamba
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Table 1: STR-Bambayos,s base architecture specificity.
Hidden size ~ Layers  Irstart ~ Vocabsize  Datasetsize  #tokens  #Encoder  # Decoder  Total params
1024 24 3e-5 5000 119M 29B 163M 263M 426M

dstate dconv  headdim  expand factor dtmin dtmax  dtinit floor
128 4 64 2 0.001 0.1 le-4

attn layer index ~ head dim  num heads  numheadskv ~ out proj bias  gkv proj bias  rotary emb size
6, 18 64 16 8 false false 64

To align different representations of the same molecule, we performed a modification of the embedding
layer similar to the BERT model. To achieve this, we trained the encoder with an aggregation of
token and sentence embeddings. The token embedding learns to encode each molecular token
properly, and the sentence embedding learns to align one molecular input concatenated to another or
a series of representations separated by the <sep> special token. In addition, there is no need to add
positional encodings after the embedding layer, since Mamba operates in a recurrent way. Finally, the
embeddings are shared between the encoder and the decoder to take advantage of the embeddings
learned from the encoder.

Following the Bamba model specificity, we placed two attention layers at the beginning and end of
the total of 24 layers. Specifically, one attention is followed by 6 layers of Mamba-2 and the other by
18 layers. Additionally, Grouped Query Attention (GQA) and Rotary Position Embeddings (RoPE)
are employed in the attention mechanisms to improve training and inference efficiency without losing
performance. The use of RoPE embeddings is also exploited to further optimize the relative encoding
through position-dependent rotations I?,,, of the query and keys at position m. These rotations can be
implemented as pointwise multiplications and do not significantly increase computational complexity
as shown in Eq. (I).

St (P(Buntm), ¢(Bnkn)) v
ZnN:1 <<P(Qm)7 ‘P(kn»

where (),K,V are the query, key and value, respectively, and ¢ is a random feature map.

Attention,,(Q, K, V) = (D

Since the base Bamba architecture is a decoder-only model, we also added a cross-attention layer
after each Mamba-2 and Transformer layers of the decoder to construct an effective encoder-decoder
architecture. The addition of the cross-attention layer is incorporated to generate valid molecular
notations conditioned with the embeddings from the encoder. In the implementation, we used the
same cross-attention mechanism as in the BART model, receiving the contextual queries and keys
from the encoder’s embeddings (40).

For the state-space layers, we specifically used the Mamba-2 architecture (41). The Mamba-2 is an
improvement of the original Mamba work by simultaneously allowing much larger state dimensions
and reducing the training. The Mamba models originate from a continuous-time system that maps
an input function or sequence x(t) € RM to an output response signal y(t) € R through an
implicit latent state h(¢) € RY which can be mathematically formulated using the following ordinary
differential equations.

@

where A € RV*N and C' € RO*¥ control how the current state evolves over time and translates to
the output, B € RV*M and D € RO*M depict how the input influences the state and the output,
respectively.

The tokens extracted from the molecular representations through the hybrid Transformer and SSM
encoder are embedded in a 1024-dimensional space. Furthermore, each encoder-decoder layer
is designed to process the molecular token embeddings, represented as x € RT*%, where T
denotes the input tokens, and L represents the dimension of the embedding space. The length of
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T has no theoretical limit except for hardware limitations, which opens space to leverage multiple
representations in a single input string text.

Pre-training strategies: The STR-Bambaysgys model was pre-trained in a two-stage strategy. We
first train the encoder part to construct a strong embedding space representation for all molecular
modalities. Finally, the decoder is trained using the contextual representation of the encoder to
correctly predict the next token generation. We used 396 and 8 NVIDIA A100 (40GB) GPUs to train
phase 1 and phase 2, respectively. Each phase is described in the following:

 Phase 1 consists of training only the encoder to better learn to encode and align different
molecular formats. We employ a similar strategy defined in (42)) using token and sentence
embedding. The token embedding processes the molecular tokens, while the sentence
embedding handles a boolean value for each token to assess whether a molecular format B is
equivalent to format A for depicting the same molecule. We also used the masked language
model from (42) to train in a self-supervised way. Thus, the objective of encoder training
is to learn to correctly classify masked tokens and to determine if the different molecular
formats A and B are the same molecule or not.

* Phase 2 consists of training only the decoder by generating a valid molecular representation
given the contextual embeddings of the encoder. To achieve this, we build a batch consist-
ing of reconstructing the input molecule format with the addition of two representations
randomly selected of the same molecule. Representations that do not have more than one
format are trained to only reconstruct the input text.

3 Experiments

To evaluate the capability of the STR-Bambayo63s model in harnessing all molecular modalities, we
performed a series of experiments for all types of molecular notation. An analysis of the latent space
is performed to evaluate the effectiveness of the encoder in representing each molecular modality
appropriately. For this, we plotted the latent space with t-SNE using 2000 random samples of each
modality, except for the electrolyte formulation, we used all 258 samples. A K-means algorithm was
used to cluster the semantic regions by varying the number of clusters from 2 to 10. The goal is to
evaluate whether a clustering algorithm is capable of recognizing the seven different representations
the model supports. For this experiment, we evaluated it using the following clustering metrics:
Davies-Bouldin Index, Adjusted Rand Index, V-Measure, and Fowlkes-Mallows Score.

We also evaluated the performance of the STR-Bamba,a6, model on a wide range of property predic-
tion tasks on 27 datasets, giving a total of 97 tasks. To assess the performance of the model on the data
trained in the PubChem database in downstream tasks, we used the MoleculeNet benchmark. To take
advantage of the multimodal setting of molecular representations, we assessed each individual and a
combination of modalities in the same input text combining the molecular information strengths of
each. Thus, we determined all possible combinations between formats and performed an optimization
with the Tree-Structured Parzen Estimator (TPE) algorithm using the validation set to find the top-3
combinations for each task.

To evaluate the performance of property predictions for polymer structures, we employed a variety
of benchmark datasets sourced from the existing literature. All experiments were carried out with
five different seeds to ensure the statistical relevance of the results. In addition, to ensure an
unbiased assessment, we maintained consistency with the original benchmark by adopting identical
train/validation/test splits for all tasks. Detailed specification for each benchmark dataset and
evaluation metrics used is provided in the Supplementary Materials.

Finally, the encoder-decoder architecture of STR-Bamba enables a wide range of tasks. Therefore,
we also assessed the ability of the decoder to translate a molecular representation into another in the
same molecule. For this, we evaluated the model on 3007 random molecules from the training data to
generate valid and structure similarity SMILES and SELFIES using the RDKiﬂ library and tanimoto
similarity, respectively. Additionally, the generation of the [IUPAC name text and the molecular
formula was assessed using the BLEU-1, BLEU-2 and Jaccard similarity.

“https://www.rdkit.org
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4 Results and Discussion

In this section, we provide a wide range of experimental results for the STR-Bambayogp; architecture,
accompanied by a discussion. The experiments consist of: i) A latent space analysis of multiple
molecular representation; ii) Performance assessment on various property prediction tasks; iii)
Translation of different representations of the same molecule.

4.1 Latent space study
To evaluate the effectiveness of the encoder in learning the seven molecular representations, the
K-means clustering algorithm is used to delimit the different regions in the latent space. Figure@

shows the projection of the t-SNE of the encoder embeddings for each molecular format and Fig.
shows seven clusters determined by the K-means algorithm.
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(a) Latent space of the 7 different molecular modalities. (b) Identified clusters using the K-means algorithm.

Figure 2: Latent space analysis of multiple molecular representation.

Table 2: Performance of K-means latent space clustering.
Number of clusters (n) n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
Davies-Bouldin Index 1.18 0.87 0.73 075 081 070 0.69 0.71 0.71
Adjusted Rand Index 1 026 041 061 074 084 091 0.84 079 0.79
V-Measure 1 043 057 074 0.82 088 092 0.88 087 0.87
Fowlkes-Mallows Score + | 0.51 0.58 0.71 0.80 086 0.92 087 0.83 0.83

In Table [2]the number of clusters is varied between distinct clustering metrics to systematic determine
the best number of regions. The Davies-Boulding Index shows that eight clusters yield the most
perfect match followed by seven, nine, and ten regions, respectively. Similarly, the Adjusted Rand
Index, V-Measure, and Fowlkes-Mallows Score exhibit the best delimitation by seven clusters. This
shows that by clustering the latent space achieves the same number of molecular representations as
STR-Bambaysgps supports.

It is noteworthy that the metrics employed suggest that eight clusters also have a good clustering
determination. This can be seen as the PSMILES represented by the SPG notation and SMILES have
an intersection, which is seen to be natural since both have similar textual appearances with slightly
different notation.

4.2 Comparison with SOTA on property prediction benchmarking tasks

MoleculeNet benchmark: An assessment of the learned multimodal latent space for property
prediction is conducted for small molecules using the MoleculeNet benchmark across various tasks.
For our model, we individually tested each molecular representation and the top-3 combination of
formats. Detailed results for all individual and combined notations tested, and a full comparison with
SOTA models can be found in the Supplementary Materials.

For classification tasks, the STR-Bambayog 3, model outperformed five of the six downstream tasks
compared to the SOTA models. The ClinTox dataset was the only task surpassed by another model,
which is the MetaGIN architecture, a graph-based model. Although the MetaGIN model achieved the
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best performance in the ClinTox task, our model reached the second-best performance. Furthermore,
the variation in MetaGIN results is considerable high with a ROC-AUC average of 90.8%. In contrast,
the STR-Bamba model achieved an ROC-AUC average of 96.44% with a very slight variation between
different seeds. This can demonstrate some instability of the MetaGIN model in this task, which can
occasionally outperform STR-Bamba on the ClinTox task.

Although the STR-Bambays6, model outperformed two of five regression tasks, the model obtained
very close results compared to the SOTA models. Our model achieved outstanding performance in
the ESOL and FreeSolv tasks. Additionally, it achieved the second best performing model for the
ESOL task with the pre-trained model and QM9 dataset with the fine-tuned model.

These results demonstrate the ability of the hybrid approach to perform better or have performance
comparable to Transformer-based or SSM-based only models by leveraging multiple formats. Finally,
in nine out of 11 downstream tasks evaluated on the MoleculeNet benchmark, the combination
of molecular representations obtained the best results with the STR-Bambayssy; model. This
demonstrates the importance of taking advantage of the strengths of each modality in a unified model.

Polymer benchmarks: The STR-Bamba,s6,; model was also evaluated in a wide range of polymer
property prediction tasks from the literature. Thus, Figure [3 shows the results in 17 downstream
tasks in which the normalized error is considered to assess the model compared to the SOTA models.
Similarly, we conducted more 9 polymer property prediction tasks in which the R? metric was used,
resulting in a total of 26 downstream tasks for polymer structures. The results obtained from Fig.
[l and the results of the 9 mentioned polymer prediction tasks are detailed in the Supplementary
Materials.

STR-Bambayags Benchmarks: Equal to or Better than SOTA Reference (SOTA) mam STR-Bambagagnr

=

I 10

g

L o8 IN I8 1

@

<

2

I 06

=

[

Eooa

]

@

202

©

£

IS

g 0.0

19 ¢e? a“e\ 3(‘e\ » @ L\e\\\ o \)\b. 1/§L \\l‘d - V\(_ \e‘l\ 0
‘\.L\DY\h\‘O A\ (,07” (,0 & &
o \o°.' \c&

Figure 3: Comparison of the STR-Bambays6), model with state-of-the-art models across various
polymer property predictions. The results show that STR-Bambaysg s outperforms SOTA models in
10 out of 17 properties. The errors are normalized such that a value of 1 represents the maximum
error observed in the comparison.

In all 26 polymer tasks, the STR-Bambayo6s model outperformed or reached near-state-of-the-art
results in 17 downstream tasks. In Fig. 3| with the tasks in which the error was used to evaluate the
models, the green area on the left shows that the model was equal or better than the SOTA models
in 10 of 17 property prediction tasks. In the nine remaining polymer tasks, especially for polymer
membrane tasks, the STR-Bambaysg,; model notably outperformed the models documented in the
literature. In tasks Td% and log(Pco,), the pre-trained model achieved a better performance than
SOTA models with an additional improvement from fine-tuned models.

Finally, for the gas permeability of polymer tasks (CalTech), the STR-Bambayogys model was
capable of outperforming or achieving SOTA results in 4 out of 6 tasks and achieved the second
best performance for the remaining two tasks. Although STR-Bamba did not surpass the DNN
ensemble(MFFs) model on the O, task with a R? of 0.92, it reached a very close performance with a
R? average of 0.91. Similarly, for the CO, task, our model achieved an average R? of 0.90, while
the SPG-TEDogg s obtained a R? of 0.91. This may illustrate the richness capability of the latent
space of STR-Bamba in learning multiple molecular formats. Therefore, the shared common space
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of diverse chemical representations may enhance the molecular prediction, in which the SMILES
share some properties with SPG as seen in the latent space study.

4.3 Representation translation

The encoder-decoder architecture setting of STR-Bamba gives flexibility to a range of downstream
tasks. Hence, we also evaluated the performance of the STR-Bambayssys model in translating
between different representations of the same molecule. The results of translating a representation
to SMILES and SELFIES are shown in Fig. while the translation of a representation to TUPAC
name and molecular formula are shown in Fi%
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(a) Translation to SMILES and SELFIES. (b) Translation to IUPAC and molecular formula.

Figure 4: Translation of different molecular representations.

As the decoder training was conducted without using the entire training data, all results show
with a few-shot learning approach. For translating from SMILES to SELFIES and vice versa, the
representations achieved the best structural and validity generation, which can be explained that
SELFIES is a notation derived from SMILES notation. Similarly, the IUPAC name format may
generate a similar SMILES notation but with less structure and valid molecules guarantees. In
addition, the model was tasked with generating SMILES and SELFIES from the molecular formula
notation. This can be a challenging task due to multiple valid molecules with different structure
properties that can be composed from the molecular formula. However, it is noteworthy that the
SELFIES notation generated a considerable number of valid molecules compared to SMILES since
this representation was developed to be a robust molecular representation.

The task of generating the molecular formula from SMILES and SELFIES achieved results very close
to the original formula. In particular, the translation from the SELFIES notation was slightly better
compared to SMILES representation. However, generating the [UPAC name was a more difficult task.
The SMILES notation achieved the best results from this task, whereas the InChl achieved the lowest.
In general, the performance achieved in the representation translation task shows the potential ability
of the STR-Bambayo63, model to generate similar and valid molecular representations in the same
molecule. The proposed architecture of multiple molecular formats in a unified latent space helps the
model align the different modalities in generation tasks.

5 Conclusion

This paper introduces the STR-Bambayo, model, a multimodal textual molecular representation
foundation model of a hybrid Transformer and Mamba-2 architecture capable of encoding multiple
molecular notations in a single model. A custom tokenizer was developed to allow the encoding of
each modality appropriately for the model. Additionally, the STR-Bamba architecture allows for the
aggregation of multiple representations in a single text input, as it does not contain any token length
limitation, except for hardware limitations.

Extensive experimentation with prediction of the molecule properties of small molecules, and
polymers achieved competitive results by leveraging the multimodal setting compared to state-of-the-
art models. Furthermore, the latent space analysis demonstrates the model’s capability to represent
each molecular format. Finally, the encoder-decoder architecture allows multiple tasks, such as
translating between representations of the same molecule, showing the potential to walk between
modalities.
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A Supplementary Materials

A.1 Property prediction benchmarks details

Here, we provide detailed results for all the property prediction experiments conducted in this paper. To ensure
the robustness of our claims, we conducted all experiments with five different seeds. For training models with
pre-trained weights, we utilized XGBoost (43)) as the learner and Optuna (44) for hyper-parameter optimization.
All experiments with pre-trained models were conducted using a single NVIDIA A100 (40G) GPU.

For fine-tuning STR-Bambauae s, we used a fully connected network with 2 layers using a single NVIDIA A100
(40G) GPU. Tables 3] and[] provide a detailed overview of small and polymer molecules benchmark datasets
used in our experiments, respectively.

Table 3: Evaluated small molecular datasets description

Dataset Description # compounds  # tasks Metric
BBBP Blood brain barrier penetration dataset 2039 1 ROC-AUC
HIV Ability of small molecules to inhibit HIV replication 41127 1 ROC-AUC
BACE Binding results for a set of inhibitors for 3 — secretase 1 1513 1 ROC-AUC
Clintox Clinical trial toxicity of drugs 1478 2 ROC-AUC
SIDER Drug side effect on different organ classes 1427 27 ROC-AUC
Tox21 Toxicity measurements on 12 different targets 7831 12 ROC-AUC
QM9 12 quantum mechanical calculations 133885 12 Average MAE
QM8 12 excited state properties of small molecules 21786 12 Average MAE
ESOL Water solubility dataset 1128 1 RMSE
FreeSolv Hydration free energy of small molecules in water 642 1 RMSE
Lipophilicity Octanol/water distribution coefficient of molecules 4200 1 RMSE

Table 4: Evaluated polymer molecular datasets description

Dataset Description Metric Source
Copolymers (MIT) DFTB computed electron affinity and ionization potential of copolymers. ~ RMSE 28)
IBM-Membrane Computed thermal and gas permeability properties of polymers. R? 33)
ACS-AMI-Homopolymer-Tg Tg of homopolymers RMSE (45)
Polymer-Refractive-Index Polymer refractive index RMSE 36)
Polymer-Electrolyte-Conductivity (MIT) Conductivity of polymers and polymer formulations MAE 38)
Polymer-Gas-Permeability (NETL) Gas permeability and selectivity of polymers MAE 32)
Polymer-Gas-Permeability (CalTech) Gas permeability of polymers R? 29)
Polyimide-Tg Tg of polyimides MAE 30)
Polymer-Chain-Bandgap-(Egc) DFT computed polymer chain bandgap RMSE  (46:139)
Polymer-Electron-Affinity-(Eea) DFT computed electron affinity of polymers RMSE  (46:139)
Polymer-Bulk-Bandgap-(Egb) DFT computed bulk bandgap of polymers RMSE  (46:139)
Polymer-Ionization-Energy-(Ei) DFT computed ionization energy of polymers RMSE  (46:139)
Polymer-Dielectric-Constant-(EPS) DFT computed dielectric constant of polymers RMSE  (46:139)
Polymer-Refractive-Index-(Nc) DFT computed refractive index of polymers RMSE  (46:139)
Polymer-Crystallization-Tendency-(Xc) DFT computed crystallization tendency of polymers RMSE  (46:139)
Polymer-Conductivity-(PE-IT) Conductivity of polymers RMSE 39)

A.2 Detailed results - full comparison with SOTA models in MoleculeNet benchmark

We provide the detailed comparison with the SOTA models in the MoleculeNet benchmark. Thus, Table[5]and []
show the full comparison with the STR-Bambasoens pre-trained and fine-tuned models in the classification and
regression tasks, respectively. These tables show the best performing results.

A.3 Detailed results - individual and combined molecular representations in MoleculeNet
benchmark

Here we detail the results in the MoleculeNet benchmark for each molecular representation and the top-3

combination of small molecule notations. The results for each modality using pre-trained and fine-tuned models
are shown in Tables[7]and [§]for classification and regression tasks, respectively.
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Table 5: Methods and Performance for the classification tasks of MoleculeNet benchmark datasets.

Blue and indicates best and second-best performing model, respectively.
Dataset

Method BBBP ClinTox HIV BACE SIDER Tox21
GraphMVP (@7) T24E16 79.1£28 770£12 812£09 639£12 75.9%0.5
GEM (48) 724404 90.1£1.3 80.6£0.9 85.6£1.1 67.2£0.4 78.1£0.1
GROVER ;. (49) 69.50.1 76.243.7 68.21.1 81.0£1.4 65.40.1 73.540.1
ChemBerta (6) 64.3 90.6 622 - - -
ChemBerta2 (50) 71.94 90.7 - 85.1 - -
Galatica 30B (51 59.6 82.2 75.9 72.7 61.3 68.5
Galatica 120B (51) 66.1 82.6 74.5 61.7 632 68.9
Uni-Mol (52) 72.940.6 91.9+1.8 80.840.3 85.7+0.2 65.9+1.3 79.6+0.5
MolCLRgy (33) 73.6£0.5 93.2+1.7 80.61.1 79.80.7
MolFM (52) 72.940.1 79.7£1.6 78.8+1.1 83.941.1 64.2£0.9 77.240.7
Mol Former (54) 73.6£0.8 912414  805+1.65 863406 655402 804602
MetaGIN (55) 91.7£1.8 90.8+8.1 - - 64.54£2.4 83.0£0.1
SMI-TED289M (9) 92264057  9427+1.83 80514134 88244050  66.014+0.88  81.85+1.42
SMI-SSED336 s (I7) 92.814£027  90.0240.5  83.1440.34  86.1240.96  63.1740.75
STR-Bambazsas (Pre-trained) 9332£0.9 85.6£0.67 66421038  81.57£037
STR-Bambayog s (Fine-tuned)  94.30--0.61 84.7740.46  89.84+0.23  69.41+0.62  85.02-0.65

Table 6: Methods and Performance for the regression tasks of MoleculeNet benchmark datasets. Blue

and indicates best and second-best performing model, respectively.
Dataset

Method QM9 QM3 ESOL FreeSolv Lipophilicity
D-MPNN (56) 3241£0.119  0.0143£0.0022 0.98£0.26 2.18£091 0.65£0.05
N-Gram (57) 2.5140.19 0.03240.003 1.07440.107 2.688£0.085 0.81240.028
PretrainGNN (38) - - 1.100+0.006 2.764£0.002 0.73940.003
GROVER yrge 49) - - 0.895+0.017 2.272+40.051 0.823-£0.010
ChemBERTa-2 (50) - - 0.89 - 0.80
SPMM (54) - - 0.8180.008 1.907+0.058 0.69240.008
MolCLRgy (53) 235740118 0.0174+0.0013 1.110.01 2.2040.20 0.65+0.08
Hu et al. (59) 434940061 0.019140.0003 1.2240.02 2.8340.12 0.7440.00
MoLFormer (54) 1.5894+0.0567 0.880-0.028 2.342+40.052 0.700-£0.012
MetaGIN (55) - - 0.780-£0.061 1.39740.062 0.532-0.013
SMI-TED289M (9) 1.3246+0.0157  0.009540.0001  0.6112+0.0096
SMI-SSED336 s (I7) 2217540.3194  0.01040.0001  0.72224+0.0139  1.637440.0682  0.604840.0023
STR-Bambaasg ar (Pre-trained)  6.8618F0.0538  0.017620.0002 1.3989+0.0837  0.68250.0061
STR-Bambaazgas (Fine-tuned) 0.0104£0.0001  0.558540.0201  0.9426+0.0412  0.574120.0073

We used TPE optimization by evaluating the validation set to find the top-3 combinations of molecular represen-
tations that demonstrate the best performance for each task. The optimization process was repeated with three
different seeds for each task to ensure the statistical validity of the results. To obtain a single combination for the
repeated optimization steps, we performed an intersection of the top combinations between each optimization
execution. Hence, combination 1 shows the top-1 combination, combination 2 show the top-2 and combination
3 show the top-3 combination. To separate each chemical representation for the fused molecular input, we used
the <sep> special token between them. Furthermore, in the sentence embedding from the encoder embedding
layer, the first molecule notation was represented as the molecule A and the remaining notations as the molecule
or a series of molecules B.

Finally, we also provide each molecular combination for the top combinations used in the evaluated tasks
in the MoleculeNet benchmark. Tables [0] [I0] and [[1] show the combinations for top-1, top-2, and top-3,
respectively. For molecular combinations, we tried all the possible combinations where the order was considered
and individual representations are also included, yielding 325 possible combinations.

A.4 Detailed results - polymer property prediction tasks

Here we provide the detailed results of the nine polymer prediction tasks in which the R? metric was used and
the results for the remaining 17 polymer property prediction tasks, resulting in a total of 26 polymer downstream
tasks.

Specifically, Tables[T2)and [T3]show the results for the polymer membranes and the gas permeability of polymers
(CalTech) datasets, respectively. The polymer membrane prediction dataset contains three different tasks.
Similarly, the gas permeability of polymers (CalTech) dataset contains six different tasks.

The latter of 17 polymer property prediction tasks comprises a total of six different datasets. Hence, Tables[T4}
[T5}[T6] [T71 [T8] and [T9) show the comparison between STR-Bambasaeas model with SOTA models for polymer
ionic conductivity, gas permeability (NETL), polymer refractive index, polymer multitask prediction, copolymer
electron affinity and ionization potential, and glass-transition temperature datasets, respectively.
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Table 7: Individual and combined molecular representations performance for the classification tasks
of MoleculeNet benchmark datasets

o Dataset
Representation Method BEBP CTinTox HIV BACE STDER Tox2T
Molccular Formula  Pre-irained  87.67E030 90225050 7186101 7749E0.16  63.6120.73  74.6720.56

Canonical SMILES ~ Pre-trained ~ 91.27+£0.37 91.0£0.71 80.98+0.69  85.60+0.67  66.42+0.38  80.331+0.39

IUPAC Name Pre-trained  93.854+0.50  85.284+1.60  83.144+0.62  69.194+1.44  65.05+0.53  80.1140.90
InChI Pre-trained  91.08+£0.32  85.4241.50  78.174+0.95  84.04+0.66  63.56+£0.65  79.0740.46
SELFIES Pre-trained ~ 90.66+0.57  93.324+090  79.914+097  85.18+0.75  65.83+0.38  79.8540.72
Combination 1 Pre-trained ~ 93.8540.50 90.69+1.0 81.30+1.37  85.35+0.58  66.42+0.38  81.571+0.37
Combination 2 Pre-trained ~ 90.73+0.46  91.794+096  81.474+0.76  85.604+0.67  65.604+0.44  81.234+0.70
Combination 3 Pre-trained ~ 91.254+1.02  91.2440.85  82.7840.86  83.824+1.40  65.164+0.31  81.2140.47

Molecular Formula Fine-tuned 87.74+£0.28  87.85+0.39  72.75+0.59  75.99+1.37  63.05+1.39  80.09+0.39
Canonical SMILES  Fine-tuned 92.4540.78  94.77+0.73  80.88+1.42  86.94+0.95  67.03+0.76  85.07+0.30

TUPAC Name Fine-tuned 92.15+£0.80  91.11+0.80  79.46+1.58  69.91+1.63  67.49+091 83.411+0.46
InChI Fine-tuned 91.31+£0.55 9030120  77.29+096  81.91+1.66  63.47+0.74  82.45+0.19
SELFIES Fine-tuned 91.85+0.74  96.06+0.31  81.91+0.37  87.15+0.31  66.41+1.06  84.391+0.33
Combination 1 Fine-tuned 92.15+0.80  94.81+1.29  84.444031 88.15+0.62  67.03+0.76  85.14%+0.51
Combination 2 Fine-tuned 92.93+0.48  96.441+0.07 84.77+0.46  86.94+0.95 69.41+0.62  85.16+0.36
Combination 3 Fine-tuned 94.301+0.61 95.32+0.93  84.46+0.65  89.84+0.23  68.19+0.55  85.024+0.65

Table 8: Individual and combined molecular representations performance for the regression tasks of
MoleculeNet benchmark datasets

Dataset

Representation Method QMO QMS ESOL FreeSolv Lipophilicity

Molecular Formula Pre-trained ~ 13.3875+0.0037 0.0297+0.0001 0.6694+0.0152 1.70054+0.0556  0.8124+0.0082
Canonical SMILES ~ Pre-trained 6.8618+0.0538 0.0176+0.0002 0.6439+0.0219 1.52694+0.0850  0.6888=+0.0066

TUPAC Name Pre-trained ~ 20.7505+0.0209 0.0245+0.0001 0.8039+0.0243 1.7784£0.0472  0.7071+0.0031
InChI Pre-trained 6.85531+0.0388 0.0210+0.0003 0.7048+0.0127 1.7284+0.0831  0.728940.0330
SELFIES Pre-trained 6.6983+0.0257 0.0178+0.0002 0.6679+0.0179 1.6113+0.0916  0.7096£0.0076
Combination 1 Pre-trained 6.5891+0.0355 0.0194+0.0008 0.61994-0.0457 1.45864-0.070 0.6950+0.0087
Combination 2 Pre-trained 6.873710.0260 0.0220+0.0020 0.6302+0.0103 1.548240.0721 0.6825+0.0061
Combination 3 Pre-trained 6.83631+0.0406 0.023240.0024 0.634610.0261 1.398940.0837  0.6867+0.0099

Molecular Formula Fine-tuned 12.9819£0.0092  0.025740.00003  0.7719£0.0348 1.722040.1481 0.8787+0.0239
Canonical SMILES ~ Fine-tuned 1.5574+0.0156 0.0107+0.0001 0.6073+0.0190 1.0909+0.0325  0.57412£0.0073

ITUPAC Name Fine-tuned 18.347+0.0110 0.0193+0.0001 0.9553+0.0207 1.698310.0366  0.6392+0.0096
InChI Fine-tuned 2.3886+0.0619 0.0161+0.0001 0.726240.0256 1.28924+0.0216  0.6988+0.0115
SELFIES Fine-tuned 1.595040.0302 0.011140.0001 0.6346+0.0317 1.25461+0.0678  0.6063£0.0104
Combination 1 Fine-tuned 1.573240.0338 0.0105+0.0001 0.56831+0.0168  0.9426+0.0412  0.5857+0.0032
Combination 2 Fine-tuned 1.737440.0262 0.0104+0.0001 0.551440.0087 1.104940.1087  0.5914£0.0021
Combination 3 Fine-tuned 1.6183+0.0267 0.0104+-0.0001 0.558540.0201 1.11054+0.0587  0.5814+0.0073
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Table 9: Top-1 molecular combinations for the MoleculeNet benchmark datasets.

Dataset Task Molecular combination
BBBP p_np IUPAC_NAME
ClinTox all INCHI + MOLECULAR_FORMULA + IUPAC_NAME + SELFIES + CANONICAL_SMILES
HIV HIV_active CANONICAL_SMILES + SELFIES + MOLECULAR_FORMULA + INCHI + [IUPAC_NAME
BACE Class TUPAC_NAME + MOLECULAR_FORMULA + SELFIES + INCHI + CANONICAL_SMILES
SIDER all CANONICAL_SMILES
Tox21 all IUPAC_NAME + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES + SELFIES
QM9 alpha IUPAC_NAME + SELFIES + MOLECULAR_FORMULA + INCHI
QM9 cv SELFIES + MOLECULAR_FORMULA + INCHI
QM9 2298 SELFIES + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES
QM9 gap CANONICAL_SMILES
QM9 h298 SELFIES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + CANONICAL_SMILES
QM9 homo CANONICAL_SMILES
QM9 lumo CANONICAL_SMILES
QM9 mu CANONICAL_SMILES
QM9 2 MOLECULAR_FORMULA + INCHI + SELFIES + CANONICAL_SMILES
QM9 u0 SELFIES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + CANONICAL_SMILES
QM9 u298 SELFIES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + CANONICAL_SMILES
QM9 zpve SELFIES + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES
QM8 E1-CAM CANONICAL_SMILES
QM8 El1-CC2 SELFIES + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES
QM8 E1-PBEO CANONICAL_SMILES
QM8 E2-CAM CANONICAL_SMILES
QM8 E2-CC2 CANONICAL_SMILES
QM8 E2-PBEO CANONICAL_SMILES
QM8 f1-CAM CANONICAL_SMILES
QM8 f1-CC2 SELFIES + CANONICAL_SMILES
QM8 f1-PBEO MOLECULAR_FORMULA + CANONICAL_SMILES + IUPAC_NAME
QM8 f2-CAM CANONICAL_SMILES
QM8 f2-CC2 CANONICAL_SMILES + IUPAC_NAME + MOLECULAR_FORMULA + SELFIES
QM8 f2-PBEO CANONICAL_SMILES
ESOL log solubility =~ [UPAC_NAME + MOLECULAR_FORMULA + SELFIES + INCHI + CANONICAL_SMILES
FreeSolv expt SELFIES + CANONICAL_SMILES + MOLECULAR_FORMULA + INCHI
Lipophilicity y SELFIES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + CANONICAL_SMILES

Table 10: Top-2 molecular combinations for the MoleculeNet benchmark datasets.

Dataset Task Molecular combination
BBBP p_np SELFIES + CANONICAL_SMILES
ClinTox all CANONICAL_SMILES + IUPAC_NAME + SELFIES + MOLECULAR_FORMULA
HIV HIV_active IUPAC_NAME + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES
BACE Class CANONICAL_SMILES
SIDER all TUPAC_NAME + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES + SELFIES
Tox21 all INCHI + CANONICAL_SMILES + SELFIES + IUPAC_NAME + MOLECULAR_FORMULA
QM9 alpha MOLECULAR_FORMULA
QM9 cv IUPAC_NAME + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES + SELFIES
QM9 2298 SELFIES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + CANONICAL_SMILES
QM9 gap CANONICAL_SMILES + IUPAC_NAME + MOLECULAR_FORMULA + SELFIES
QM9 h298 CANONICAL_SMILES + MOLECULAR_FORMULA + IUPAC_NAME + INCHI
QM9 homo SELFIES + CANONICAL_SMILES + INCHI + MOLECULAR_FORMULA
QM9 lumo INCHI + CANONICAL_SMILES + SELFIES + [UPAC_NAME + MOLECULAR_FORMULA
QM9 mu IUPAC_NAME + SELFIES + CANONICAL_SMILES + MOLECULAR_FORMULA
QM9 2 SELFIES + INCHI + CANONICAL_SMILES + MOLECULAR_FORMULA + IUPAC_NAME
QM9 u0 CANONICAL_SMILES + MOLECULAR_FORMULA + IUPAC_NAME + INCHI
QM9 u298 CANONICAL_SMILES + MOLECULAR_FORMULA + IUPAC_NAME + INCHI
QM9 zpve CANONICAL_SMILES + MOLECULAR_FORMULA + IUPAC_NAME + INCHI
QM8 E1-CAM CANONICAL_SMILES + IUPAC_NAME + MOLECULAR_FORMULA + SELFIES
QM8 El1-CC2 INCHI + MOLECULAR_FORMULA + IUPAC_NAME + SELFIES + CANONICAL_SMILES
QM8 E1-PBEO MOLECULAR_FORMULA + SELFIES + IUPAC_NAME + CANONICAL_SMILES
QM8 E2-CAM MOLECULAR_FORMULA + SELFIES + IUPAC_NAME + CANONICAL_SMILES
QM8 E2-CC2 MOLECULAR_FORMULA + SELFIES + IUPAC_NAME + CANONICAL_SMILES
QM8 E2-PBEO MOLECULAR_FORMULA + SELFIES + IUPAC_NAME + CANONICAL_SMILES
QM8 f1-CAM TUPAC_NAME + CANONICAL_SMILES
QM8 f1-CC2 CANONICAL_SMILES
QM8 f1-PBEO SELFIES + CANONICAL_SMILES + MOLECULAR_FORMULA + IUPAC_NAME
QM8 f2-CAM CANONICAL_SMILES + IUPAC_NAME + MOLECULAR_FORMULA + SELFIES
QM8 f2-CC2 CANONICAL_SMILES
QM8 f2-PBEO CANONICAL_SMILES + IUPAC_NAME + SELFIES + MOLECULAR_FORMULA
ESOL log solubility ~ INCHI + MOLECULAR_FORMULA + SELFIES + CANONICAL_SMILES + IUPAC_NAME
FreeSolv expt SELFIES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + CANONICAL_SMILES
Lipophilicity y MOLECULAR_FORMULA + IUPAC_NAME + INCHI + CANONICAL_SMILES + SELFIES
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Table 11: Top-3 molecular combinations for the MoleculeNet benchmark datasets.

Dataset Task Molecular combination
BBBP p_np MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES + INCHI + SELFIES
ClinTox all TUPAC_NAME + SELFIES + MOLECULAR_FORMULA
HIV HIV_active MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES + INCHI + SELFIES
BACE Class INCHI + MOLECULAR_FORMULA + IUPAC_NAME + SELFIES + CANONICAL_SMILES
SIDER all SELFIES + MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES
Tox21 all TUPAC_NAME + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES
QM9 alpha SELFIES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + CANONICAL_SMILES
QM9 cv CANONICAL_SMILES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + SELFIES
QM9 2298 CANONICAL_SMILES + MOLECULAR_FORMULA + IUPAC_NAME + INCHI
QM9 gap INCHI + MOLECULAR_FORMULA + IUPAC_NAME + SELFIES + CANONICAL_SMILES
QM9 h298 INCHI + MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES + SELFIES
QM9 homo CANONICAL_SMILES + MOLECULAR_FORMULA + IUPAC_NAME + INCHI + SELFIES
QM9 lumo INCHI + MOLECULAR_FORMULA + IUPAC_NAME + SELFIES + CANONICAL_SMILES
QM9 mu SELFIES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + CANONICAL_SMILES
QM9 2 INCHI + MOLECULAR_FORMULA + IUPAC_NAME + SELFIES + CANONICAL_SMILES
QM9 u0 INCHI + MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES + SELFIES
QM9 u298 INCHI + MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES + SELFIES
QM9 zpve TUPAC_NAME + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES + SELFIES
QM8 E1-CAM SELFIES + MOLECULAR_FORMULA + INCHI + CANONICAL_SMILES
QM8 El1-CC2 INCHI + CANONICAL_SMILES + SELFIES + IUPAC_NAME + MOLECULAR_FORMULA
QM8 E1-PBEO CANONICAL_SMILES + IUPAC_NAME + MOLECULAR_FORMULA + SELFIES
QM8 E2-CAM MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES
QM8 E2-CC2 MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES
QM8 E2-PBEO INCHI + MOLECULAR_FORMULA + IUPAC_NAME + SELFIES + CANONICAL_SMILES
QM8 f1-CAM CANONICAL_SMILES + INCHI + SELFIES + IUPAC_NAME + MOLECULAR_FORMULA
QM8 f1-CC2 CANONICAL_SMILES + IUPAC_NAME + MOLECULAR_FORMULA + SELFIES
QM8 f1-PBEO INCHI + MOLECULAR_FORMULA + IUPAC_NAME + SELFIES + CANONICAL_SMILES
QM8 f2-CAM MOLECULAR_FORMULA + SELFIES + IUPAC_NAME + CANONICAL_SMILES
QM8 f2-CC2 MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES
QM8 f2-PBEO SELFIES + CANONICAL_SMILES + MOLECULAR_FORMULA + IUPAC_NAME
ESOL log solubility ~ SELFIES + MOLECULAR_FORMULA + INCHI + IUPAC_NAME + CANONICAL_SMILES
FreeSolv expt MOLECULAR_FORMULA + IUPAC_NAME + CANONICAL_SMILES + INCHI + SELFIES
Lipophilicity y TUPAC_NAME + SELFIES + CANONICAL_SMILES + INCHI + MOLECULAR_FORMULA

Table 12: Polymer membranes prediction performance. R? is used as evaluation metric, therefore, in

this case higher values is better. Blue and indicates best and second-best performing model,
respectively.
Dataset
Method
etho Td% Tg log(Pco,)
Lasso (33) 0.81 0.87
ElasticNet (33) 0.81 0.88 0.89
Ridge (33) 0.82 0.90
SPG-TED2s9n (21) 0.96 0.86 0.88
STR-Bambayog ps (Pre-trained) 0.86£0.007
STR-Bambaszens (Fine-tuned)  0.98-£0.003  0.91-£0.008  0.96--0.001

Table 13: Gas permeability of polymers (CalTech) prediction. R? is used as evaluation metric,
therefore, in this case higher values is better. Blue and indicates best and second-best
performing model, respectively.

Dataset

Method e i 0, N, 0, .
RF (descriptors) (29) 0.73 0.74 0.75 0.74 0.38 0.75
DNN ensemble(descriptors) (29) 0.87 0.88 0.89 0.90 0.90

DNN ensemble(MFFs) (29) 091 0.92 0.90 0.88
SPG-TED2gg ns (21) 0.87 0.89 0.91 0.85
STR-Bambagog s (Pre-trained) 0.7+0.02 0.7340.03 0.75+0.05 0.76+0.02 0.78+0.03  0.7840.02
STR-Bambayog s (Fine-tuned) 0.924-0.01 0.9140.01 0.9140.004 0.904-0.01

Table 14: Polymer ionic conductivity. MAE is used as evaluation metric, therefore, in this case lower

is better. Blue and indicates best and second-best performing model, respectively.
Method _Dataset
Polymer ionic
conductivity
XGBoost (36) 1.09
Chemprop (36) 1.08
ChemAurr (36) 1.00

SPG-TED2gg s (21)
STR-Bambayog ps (Pre-trained) 0.9240.001
STR-Bambayse as (Fine-tuned) 0.89+0.004
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Table 15: Gas permeability of polymers (NETL) prediction. MAE is used as evaluation metric,
therefore, in this case lower is better. Blue and

model, respectively.

indicates best and second-best performing

Dataset
Method CO; CO/CH; CH, CO2/N; Nz
SOTA (32) 0.29 5.34 0.37 4.14 0.38
SPG-TED2gg s (21) 0.29 0.35 0.31
STR-Bambayog ps (Pre-trained) 6.22+0.13 4.05+0.09
STR-Bambayog ps (Fine-tuned) 0.241+0.01 4.69+0.16 0.28+0.002 3.83+0.08 0.25+0.01

Table 16: Polymer refractive index prediction. RMSE is used as evaluation metric, therefore, in this
indicates best and second-best performing model, respectively.

case lower is better. Blue and

Dataset
Method Refractive

index (n)
GPT-4 (36) 0.0310
Boruta (36) 0.0339
SPG-TED2gg s (21)
STR-Bambayog ps (Pre-trained) 0.027610.003
STR-Bambayse ns (Fine-tuned) 0.0234+0.0057

Table 17: Polymer multi-task prediction. RMSE is used as evaluation metric, therefore, in this case

lower is better. Blue and

indicates best and second-best performing model, respectively.

Method Dataset
Polymer Polymer Polymer Polymer Polymer Polymer Polymer
Chain Electron Bulk Tonization Dielectric Refractive Crystallization
Bandgap (Egc)  Affinity (Eea)  Bandgap (Egb)  Energy (Ei)  Constant (EPS) Index (Nc)  Tendency (Xc)
SOTA (605 139) 0.49 0.52 0.09 16.57
SPG-TED2ggar (21) 0.49 0.29 0.32 0.37 0.38
STR-Bambay 26 0.55+0.01 0.3620.01 0.6340.02 0.6340.02 0.7740.03 0.15£0.01  22.26£1.02
(Pre-trained)
STR-Bambazgne 0.43-0.01 0.18-20.01 0.4440.02 0134001  18.98-£0.74

(Fine-tuned)

Table 18: Copolymer electron affinity and ionization potential. RMSE is used as evaluation metric,

therefore, in this case lower is better. Blue and
model, respectively.

indicates best and second-best performing

Dataset
Method EA (V) P EV)
Neural Networks (Monomer) (28) 0.22 0.19
Neural Networks (Polymer) (28) 0.18
wD-MPNN (28) 0.03 0.03
SPG-TED2gons (21)
STR-Bambayog s (Pre-trained) 0.2140.001 0.204-0.001
STR-Bambay2g ps (Fine-tuned) 0.1840.001 0.1740.001

Table 19: Glass-transition temperature prediction. MAE is used as evaluation metric, therefore, in this

case lower is better. Blue and

indicates best and second-best performing model, respectively.

Dataset
Method T, ©
SOTA (30) 53.02 (24.42)
SPG-TED2gons (21) 9.56
STR-Bambagyog s (Pre-trained)
STR-Bambaysg ps (Fine-tuned) 3.361+0.52
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