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Ivan Gogić1 ·Martina Manhart1 · Igor S. Pandžić1 · Jörgen Ahlberg2

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Facial expression recognition applications demand accurate and fast algorithms that can run in real time on platforms with
limited computational resources. We propose an algorithm that bridges the gap between precise but slow methods and fast
but less precise methods. The algorithm combines gentle boost decision trees and neural networks. The gentle boost decision
trees are trained to extract highly discriminative feature vectors (local binary features) for each basic facial expression around
distinct facial landmark points. These sparse binary features are concatenated and used to jointly optimize facial expression
recognition through a shallow neural network architecture. The joint optimization improves the recognition rates of difficult
expressions such as fear and sadness. Furthermore, extensive experiments in both within- and cross-database scenarios have
been conducted on relevant benchmark data sets for facial expression recognition: CK+, MMI, JAFFE, and SFEW 2.0. The
proposed method (LBF-NN) compares favorably with state-of-the-art algorithms while achieving an order of magnitude
improvement in execution time.

Keywords Facial expression recognition · Neural networks · Decision tree ensembles · Local binary features

1 Introduction

Facial expression recognition (FER) is one of the basic chal-
lenges in the field of affective computing with potential
applications in entertainment,marketing research, retail, psy-
chology, and other fields. It has been widely expected that
affect-sensitive applications may change the way we inter-
act with computers [56], yet it still remains a challenge to
build such systems. Facial expression recognition is an espe-
cially important part of these systems since a large part of
human interactions are conveyed non-verbally [38]. There-
fore, extensive efforts have recently been invested by the
research community to produce methods that can robustly
extract expressions from images or videos.

However, numerous challenges still lay ahead primar-
ily due to the complex nature of the problem at hand in
the form of large cultural and personal variations as well
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as variations in imaging conditions (face pose, lighting,
occlusions etc.). With the proliferation of mobile and other
low-powered “smart” devices within the Internet of Things
(IoT) framework, the computing efficiency of computer
vision algorithms becomes an increasingly important param-
eter along with standard accuracy measurements. Therefore,
an accurate yet highly efficient algorithm is needed.

Traditional FER systems consist of three steps: face detec-
tion, feature extraction, and classification. However, with
recent advances in deep learning algorithms, end-to-end con-
volutional neural networks have become prevalent in many
computer vision fields. Their distinct, competitive advantage
is the joint optimization of both feature extraction (through
convolution filters’ weights) and classification (through fully
connected layers’ weights). The largest obstacle, however, is
the need for extremely large data sets in order to prevent
over-fitting of deep networks. To continue, FER data sets are
especially hard to collect due to the ethical issues of eliciting
negative emotions (fear, anger, sadness) and the difficulty to
act and annotate accompanying expressions. Recently, trans-
fer learning [34,42] has been successfully used to solve such
problems [9,30,54]. Nevertheless, an algorithm that can learn
to extract custom task-specific features from a limited num-
ber of samples per expression would be beneficial.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-018-1585-8&domain=pdf
http://orcid.org/0000-0003-1295-017X


I. Gogić et al.

Fig. 1 The detected landmark points used for LBF extraction regions

As recently demonstrated, appearance features extracted
around facial landmarks (i.e., mouth, eyes, and nose) greatly
contribute to the classification accuracy [20,61]. It is, there-
fore, important to accurately locate the facial landmarks, a
process commonly referred to as face alignment [28,46,62]
(Fig. 1). Given the positions of important facial regions,
extracting features from local patches can help reduce the
extremely large pool of possible features and focus the algo-
rithm on discriminative regions of the face.

With the above-mentioned concerns in mind, we present
a fast facial expression recognition algorithm which uses
simple and efficient pixel difference features (PDF) cou-
pled with ensembles of decision trees [2] to train and extract

highly discriminative shape-indexed local binary features.
The extracted features represent relevant patterns for each
expression which are used together with a shallow neural
network to model their nonlinear interactions. The overview
of the whole system is depicted in Fig. 2.

The main contributions of our work are as follows:

– We propose expression-specific feature extraction train-
ing framework using pixel difference features and ensem-
bles of decision trees to produce highly discriminative
sparse local binary features.

– We jointly optimize expression classification using a
shallow neural network in order to model dependencies
between classes.

– We demonstrate state-of-the-art recognition rates on the
most widely used CK+ data set and competitive accuracy
on other data sets (JAFFE, MMI, SFEW 2.0). State-of-
the-art generalization ability is also demonstrated.

– An order of magnitude improvement in execution time
(1ms) while running on a single CPU core.

The rest of the paper is organized as follows. Section 2 intro-
duces a research background on the topic of facial expression
recognition. Our proposed method is described in Sect. 3.
Section 4 presents the experimental validation of the con-
tributions on benchmark data sets. Finally, conclusions are
drawn in Sect. 5.

Fig. 2 The proposed method takes an image of a face with detected
landmark points. Local patches are used to train the gentle boosted deci-
sion trees for each expression in a one-vs-allmanner. The tree ensembles
are encoded into local binary features which are concatenated into a sin-

gle sparse binary feature vector. The sparse feature vector is used as an
input into a simple 2-layer neural network which outputs the expression
probabilities
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2 Related work

In order to automatically recognize emotions and their related
expressions, an investigation on how to define those terms
needed to be done first. In [11], Ekman and Friesen dis-
covered six basic or prototypic emotions (anger, disgust,
fear, happiness, sadness, and surprise) whose facial expres-
sions are culturally and racially invariant and are, therefore,
great candidates for automatic systems which need clear cat-
egories. However, one important drawback of this model
became evident. It is too crude to accurately model the com-
plexity of emotions people experience in everyday lives.
As a response, facial action coding system (FACS) [10]
was developed in order to define atomic facial muscle
movements named action units (AU) spanning the whole
spectrum of human facial expressions. Its aim is objectiv-
ity in the signal measurement which is separated from the
final expression classification often influenced by the con-
text. Consequentially, a group of researchers [18,22–24,49]
tried to develop algorithms that recognize these simpler,
intermediate categories and synthesize the final expression
afterward. However, FACS annotation is a very tedious pro-
cess which requires expert knowledge few people possess.
Therefore, few data setswith full FACS annotations are avail-
able to the community. In this paper, we opted for the six
basic expressions classification approach as it is currently the
most widely used categorization in computer vision commu-
nity.

Asmentioned in Introduction, FER is traditionally divided
into three steps: face detection, feature extraction, and clas-
sification. In most papers, face detection is not discussed in
detail since the face location and size are assumed as a pri-
ori knowledge. The greatest emphasis is put on the feature
selection and extraction which is often considered to be the
critical part of the system while standard machine learning
techniques are mostly used for the classification step. The
used features can roughly be divided into appearance and
geometric-based. The appearance features are extracted from
facial image intensities to represent a discriminative textu-
ral pattern while the geometric ones need accurate landmark
positions from which different relations can be constructed.
The geometric features are, however, very sensitive to the
individual face shape configuration and are therefore less
consistent in person independent scenarios. It is important to
note that these two types of features have recently been shown
to be complementary [52]; hence, hybrid systems similar to
the one we propose are gaining popularity.

An additional direction of research is to integrate temporal
dimension into both appearance and geometric featureswhen
working with image sequences [19,21,32,48,60]. However,
this paper focuses on single static image recognition since it
is a natural first step that can be extended in future work.

2.1 Hand-crafted features

Well-known and widely successful hand-crafted features
such as variations of Local Binary Patterns (LBP) [12,16,17,
20,21,25,50,55,59–61] and Histogram of Oriented Gradients
(HoG) [6,12,16,59], Gabor filters [17,31,41,51,55,58] and
Local Phase Quantization (LPQ) [6,12] descriptors have also
been considered for FER. While most approaches consid-
ered a regular grid of patches [16,17,21,47,50,55,59,60,63]
or the whole face region [6,31,41] for feature extraction,
there have been advances in determining common and spe-
cific salient facial regions for each expression. In [20], Happy
and Routray demonstrated the importance of facial landmark
detection in order to find the salient patches from which they
extract features. Through the use of one-vs-one SVM classi-
fier for each patch and each expression pair, they were able
to find the most discriminative patches for each expression.
A similar idea was adopted in [61]; however, a regular grid of
patches was used without landmark detection which resulted
in lower accuracy than in [20]. In [25], Khan et al. performed
a psycho-visual experiment to track the participant’s gaze and
determine which regions of the face are salient for specific
expression. Rivera et al. designed a novel descriptor called
Local Directional Number Pattern to differentiate between
bright and dark transitions which occur often in faces [47].

2.2 Feature fusion

On the other hand, a number of researchers [6,12,55,59]
tried to fuse different texture encoding features in order to
extract complementary information that would benefit the
FER. For instance, Zhang et al. used multiple kernel learning
to combine two different feature representations: HoG and
LBP [59]. A different approach to feature fusion was taken
in [55] where a pool of SVM classifiers was trained using
either Gabor filters or LBPs as features. A genetic algorithm
was then used to find the optimal ensemble of classifiers in
terms of both size and accuracy. The fusion idea was tested
with geometric features as well [44,51]. Wan et al. used con-
strained local model (CLM) to detect the facial landmarks
and used their positions normalized to the mean shape as
geometrical features which they concatenated to Gabor fea-
tures as input to Robust Metric Learning [51]. The method
was developed to recognize spontaneous expressions.

2.3 Deep learning

While all of the previously mentioned methods use hand-
crafted and heuristically determined features, experiments
with deep learning using convolutional neural networks
(CNN) [27] on the FER problem were recently conducted
as well [4,9,26,30,33,35,39,40,45,54,57]. As already men-
tioned in Introduction, deep learning methods have serious
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over-fitting problems with small datasets that are typical for
the FER. Several different approaches have recently been
examined in order to cope with the mentioned problem:
artificial data augmentation, data set merging, and transfer
learning. For a more in-depth review of FER methods using
CNN, we refer the reader to a recent survey by Pramerdor-
fer and Kampel [45]. Additionally, they demonstrate that
modern architectural changes in deep networks reduce the
over-fitting problem on a moderately large FER 2013 data
set (35k images) [15].

Kim et al. used a combination of both aligned and non-
aligned faces to train their ensemble of deep CNNs (DCNNs)
making themethodmore robust to face registration problems
on faces in the wild [26]. Levi et al. also used an ensemble of
20DCNNs each having a differently preprocessed input [30].
They designed a novel transformation of image intensities
to 3D spaces called mapped LBP in order to reduce the
illumination variation in the training set. The mapped LBP
transformationswith different parameterswere used as oneof
the inputs in the ensemble along with ordinary RGB inten-
sities. Lopes et al. tried standard preprocessing techniques
(image normalizations, synthetic samples etc.) and were able
to achieve state-of-the-art results on the CK+ benchmark
dataset [35]. In [39], the authors combined seven different
data sets in order to have enough samples for each expres-
sion to train on, making it hard to compare to other methods
which restricted their training samples to those available in
the individual benchmark data sets.

Finally, transfer learning has recently emerged as themost
effective approach to small data set sizes [34,42]. Ng et al.
used a general object recognition pre-trained DCNN model
and fine-tuned it in two stages. In the first stage, they used
the large FER 2013 data set and finally the SFEW 2.0 train-
ing set. However, both Levi et al. and Zhai et al. achieved
better results by using a model pre-trained on a related face
recognition task with extremely large data sets (millions of
images) [30,57]. State-of-the-art results on the SFEW 2.0
data set were achieved by Yu et al. using an ensemble of
DCNNs, data augmentation (random affine transformations)
and pre-training on the larger FER 2013 data set. An interest-
ing approach to transfer learning was presented in [9]. The
authors trained a DCNN for FER using a face recognition
model’s convolutional weights as regularization. Next, they
appended fully connected layers and fine-tuned the network
for a specific data set. Since they used a single DCNN, the
authors were able to achieve an impressive run-time speed
(3ms); however, they require a high-endGPU(TitanX)which
is not viable for mobile and embedded platforms.

Even though deep learning methods achieve good results,
problems with over-fitting and slow run-time still remain,
confirming the need for an effective and fast FER method.

3 Proposedmethod

The aim of the proposed method is to identify six prototype
facial expressions (anger, disgust, fear, happiness, sadness,
and surprise) [11] from a single static 2D image. The method
uses appearance-based features due to greater robustness to
face shape variations when compared to geometric-based
ones [20].

As already mentioned, appearance features are extracted
around facial landmarks (i.e., mouth and eyes, depicted in
Fig. 1); therefore, the first step is to detect the face and its
landmarks. Fortunately, face alignment has recently reached
a mature state, especially in controlled laboratory condi-
tions [28,46,62]. We exploit this fact and use a recently
proposed fast method which served as an inspiration for our
work [46]. It is a cascaded regression method that introduced
the trainable local binary features (LBF).

3.1 Local feature learning

The key concept of this paper is the task-specific learning
process for feature extraction which encodes highly discrim-
inative texture patterns for each facial expression around the
detected facial landmarks (Fig. 1). Ensembles of gentle boost
decision trees [14] are trained with pixel difference features
indexed to facial landmarks in order to maximize the one-vs-
all posteriori probability for each expression e around each
landmark l. The number of trees within an ensemble and tree
depth is specified in advance.

Let E and L denote the number of basic facial expressions
and landmark points, respectively. For each facial expression
e ∈ {e1, . . . , eE }, we train an ensemble of gentle boost deci-
sion trees around each landmark point l ∈ {l1, . . . , lL} as can
be seen on the left side of Fig. 2. Let C represent the sample
patches of an expression e and landmark l at the decision tree
node n. Each candidate split θ = (p1, p2, tn) from a random
pool of generated parameters, divides the training samples in
the following way:

Cleft(θ) = I (p1) − I (p2) ≤ tn (1)

Cright(θ) = C\Cleft(θ) (2)

where p1 and p2 represent the local patch positions, tn rep-
resents the threshold, and I represents the image intensities.
The positions are placed relative to corresponding landmark
location as depicted on the left part of Fig. 3.

The cost function Q that is minimized consists of a Gini
impurity measure:
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Fig. 3 The decision trees use
shape-indexed Pixel Difference
Features to split the training set.
When encoding a sample into a
local binary feature vector, a
binary 1 is placed at the index of
the vector corresponding to the
leaf node where the sample
ended up after traversing the
tree

G(Xn) = pn(1 − pn) (3)

where pn represents the proportion of expression e observa-
tions at node n:

pn = 1

Nn

∑

xi∈Rn

I (yi = e) (4)

Rn and Nn represent the sample space and number of samples
at node n, respectively. yi and xi represent the current ground
truth label (one-vs-all binary label) and sample patch, respec-
tively. The full cost function is a weighted sum of impurity
measures for both data partitions:

Q(C, θ) = nleft
Nn

G(Cleft(θ)) + nright
Nn

G(Cright(θ)) (5)

The described decision trees are organized into ensembles
with gentle boosting algorithm [14] in place. The algorithm
ensures more emphasis is put on misclassified samples from
the previous tree in the ensemble. In practice, each sample i
has aweightwi assigned to it which is increased or decreased
depending on the output of the previous tree oi :

wi := wi e
−(yi oi ) (6)

By doing this, each successive tree in the ensemble is forced
to find even more discriminative features compared to the
previous trees.

Once gentle boost ensembles for each facial expression
and each landmark point are trained, local binary features
are extracted as depicted in Fig. 3. Each tree of an ensemble
yields in a tree vector of size equal to the number of the
leaves in that tree. All elements in that tree vector are equal
to 0 except the one that corresponds to the leaf in which
the given sample ended up while traversing that tree. This
element is equal to 1. The tree vectors are concatenated into
an ensemble vector with respect to the order of the trees.

Each facial expression e gets ensemble vectors φe,l where
l ∈ {l1, . . . , lL}.

These ensemble vectors are concatenated to acquire a
global binary feature vector �e for each sample (Fig. 2). It
represents relevant pattern information for each expression:

�e = [φe,1, . . . , φe,L]. (7)

3.2 Expression classification

Feature vectors �e for each expression e are concate-
nated into a single feature vector � which is used as
an appearance-based representation of the face specifically
tuned for expression differentiation in a completely auto-
matic supervised manner:

� = [�1, . . . ,�E] (8)

A shallow neural network with one hidden layer is used on
the described sparse binary feature vector�. This simple net-
work architecture (Fig. 4) has demonstrated enough capacity
tomodel the nonlinear relationship between different expres-
sions as shown in Sect. 4.1. The network is trained using a
cross-entropy criterion which is minimized over the data set:

�N = argmin
θ

(
−

E∑

e=1

log P(e)

)
(9)

where P(e) represents the probability of each expression e
obtained by appending a soft-max layer at the end of the
network:

P(e) = exe
∑E

k=1 e
xk

(10)

The optimized network parameters �N are obtained using a
quasi-Newton method for optimization called limited mem-
ory BFGS which approximates the Hessian matrix inverse

Fig. 4 The diagram of the simple neural network architecture used to predict the expression probabilities
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when searching for the optimal descent direction [5]. Since
all of the data sets are quite small, the whole training set is
used in each iteration of the optimization. In order to improve
the convergence speed,Wolfe conditionswere used tomodify
the step length of the descent direction at each iteration [53].

4 Experiments

We evaluated our system on the four most commonly used
data sets for FER: CK+ [36], MMI [43], JAFFE [37], and
SFEW 2.0 [8]. Due to the small size of the data sets, all of the
experiments (except SFEW2.0which has a defined protocol)
were conducted using a 10-fold cross-validation procedure
which randomly divides the data sets into 10 training and
validation subsets. By doing this, every sample has both been
in the training and validation set in one of the folds. The
results were averaged across folds.

Furthermore, our experiments were strictly divided into
person-independent (PI) and person-dependent (PD) scenar-
ios. The PI scenario assures a strict subject division between
the training andvalidation sets,meaning the sameperson can-
not appear in both sets with different expressions. Naturally,
the PI scenario is more complex; however, many researchers
do not explicitly state their experimental procedure which
makes comparisons difficult. Both six and seven class results
are reported since all of the data sets include a neutral expres-
sion also.

Face detection and alignment were first applied to all sam-
ples in the data sets. Since shape-indexed local features were
used, no face registration and image transformations were
needed as a preprocessing step. The only operation applied
to the images was a conversion to gray-scale format since
only pixel intensities are relevant and sampled by the deci-
sion trees.

4.1 Experiments on CK+

The Extended Cohn-Kanade (CK+) [36] data set is a widely
recognized benchmark data set for FER. It contains 593
sequences from 123 subjects posing six prototypical expres-
sions and contempt, additionally. All sequences start with a
neutral expression and end with the peak of the requested
expression. The peak frames are fully FACS annotated.
Unlike other data sets, each expression label was verified
using the FACS manual by certified FACS coders. Using the
requested labels as the ground truth proved to be unreliable
by the authors, thus they added an additional validation step.
After the validation, 327 of 593 sequences were determined
to be of sufficient quality. Due to the comprehensiveness of
the data set, we used it for the bulk of our experiments for
parameter and architecture investigation.

According to the usual practice in static image FER, one
neutral and three peak frames were used from each validated
sequence. This amounts to the following number of samples
per expression: 135 (An), 177 (Di), 75 (Fe), 207 (Ha), 84
(Sa), 249 (Su), 327 (Ne).

4.1.1 Decision tree parameters analysis

We explored the decision tree parameters (tree depth TD—
and tree count in the ensembles TC) using the PI scenario
on the 7-class problem from the described CK+ data set. A
simple logistic regression with one-vs-all objective was used
to train separate expression classifiers to set a baseline. Fur-
thermore, the analysis using a simple logistic regression was
suitable to narrow down the decision tree parameter space
before analyzing the neural network architecture. The dimen-
sionality of the final feature vector is calculated as follows:

D = 2TD ∗ TC ∗ L ∗ E (11)

The tree parameters TC and TD directly affect the feature
vector size, and since the dimensionality is quite high, regu-
larization was needed to prevent over-fitting.

It is evident from Fig. 5 that TD = 2 gives the overall best
results regardless of the number of trees in the ensemble.
Given the large dimensionality of the feature vector and the
relatively small size of the data set, it comes as no surprise
that such simple trees are enough to capture relevant textural
information. It is also clear from the graph that there is little
or no added value in increasing the number of trees in the
ensemble beyond 30. The best accuracy was achieved with
TD = 2 and TC = 35, averaging 93.77%. We shall call this
method LBF-LR.

Fig. 5 The accuracies and corresponding standard deviations plotted
with error bars for different tree count TC and tree depth TD parameters
trained with one-vs-all logistic regression on the PI scenario with 7
classes from the CK+ data set

123



Fast facial expression recognition using local binary features...

Fig. 6 The accuracies and corresponding standard deviations plotted
with error bars for different hidden layer sizes with selected decision
tree configurations trained with the described neural network on the PI
scenario with 7 classes from the CK+ data set

Fig. 7 The confusion matrix for LBF-LR obtained on the CK+ data set
using 7 classes and the PI scenario

4.1.2 Neural network parameters analysis

As already described, our neural network has one hidden
layer whose size needed to be determined experimentally.
We used the same scenario as in the previous section. We
varied the size of the hidden layer HU while keeping the
decision tree parameters fixed to three configurations with
the same three depth TD = 2: TC = 20, TC = 25 and
TC = 30.

The results can be seen in Fig. 6 where the optimal con-
figuration is visible for parameters TD = 2, TC = 25 and
HU = 48. When compared with the separate optimization
using logistic regression from Sect. 4.1.1, there is a boost
in accuracy from 93.77 to 96.48% which demonstrates the
need for joint optimization to recognize facial expressions.
We shall call this method LBF-NN.

Upon closer examination of the confusion matrices for
both LBF-LR and LBF-NN shown in Figs. 7 and 9, we can

Fig. 8 The confusion matrix for the proposed LBF-NN method on the
CK+ data set using 6 classes with the PI scenario

Fig. 9 The confusion matrix for the proposed LBF-NN method on the
CK+ data set using 7 classes with the PI scenario

see that themost important boosts in accuracy are obvious for
the most difficult expressions: fear and sadness. Incidentally,
these two expressions have the least amount of samples in
the data set due to the difficulty of truthfully portraying these
emotions. Having a joint nonlinear optimization process, fea-
tures from other expressions can prove complementary and
helpful to increase the recognition rate for these difficult
expressions. The recognition rate increase for fear is 20%,
while for sadness is 9.52%.

4.1.3 Comparison

It is quite difficult to compare our results to previous work
since there is no official protocol described for the CK+ data
set. We conducted experiments on both 6 and 7 class (includ-
ing neutral expression) problems with PD and PI scenario
using the best configuration described in Sect. 4.1.2. The
confusion matrices for the PI scenario are shown in Figs. 8
and 9. It is clear that the PD scenario is an easier task produc-
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Table 1 Comparison with previous work on the CK+ data set

Method No. of folds No. of subjects Scenario No. of classes Recognition rate (%)

Boughrara et al. [1] 10 97 PI 6 96.66

Gritti et al. [16] 10 95 Not stated 7 92.90

Gu et al. [17] 10 94 PI 7 91.51

Happy and Routray [20] 10 118 Not stated 6 94.09

Khan et al. [25] 10 Not stated PI 6 96.70

Lee et al. [29] 118 118 PI 7 (contempt) 90.47

Zhong et al. [61] 10 96 Not stated 6 89.89

Littlewort et al. [31] 90 90 PI 7 93.30

Lopes et al. [35] 8 100 PI 6 96.76

PI 7 95.75

Zhang et al. [59] 10 109 PI 6 95.50

PI 7 93.60

Poursaberi et al. [44] 10 not stated PI 6 86.10

PD 6 90.37

Zhang and Tjondronegro [58] 10 92 PI 6 94.48

Liu et al. [33] 8 118 PI 6 96.70

Shan et al. [50] 10 96 PI 6 95.10

PI 7 91.40

Mollahosseini et al. [39] 5 Not stated PI 6 93.20

Zavaschi et al. [55] 10 not stated PI 7 88.90

PD 7 99.40

Rivera et al. [47] 10 118 PI 7 (contempt) 89.30

Burkert et al. [4] 10 210 PD 7 (contempt) 99.60

Ding et al. [9] 10 Not stated PI 6 98.60

Proposed LBF-NN 10 118 PI 6 98.08

PI 7 96.48

PD 6 99.89

PD 7 99.68

The bold results are the best (state-of-the-art) results for each experiment scenario

ing accuracies of 99.89% and 99.68% when compared to the
PI scenario with accuracies of 98.08% and 96.48% for 6 and
7 class problems, respectively. It is, therefore, very important
to clearly and explicitly state the protocol of the experiments
when comparing to other works. Upon closer inspection of
the confusion matrices, we can see that by introducing the
neutral expression, overall recognition rate drops due to con-
fusion between sadness and neutral expressions.

As we can see from Table 1, most of the previous methods
differ in the number of classes, folds, and subjects used in the
experiments. However, there is a positive trend of adopting
the more difficult PI scenario. Our method is very competi-
tive with other works for all experiment setups and sets a new
state-of-the-art recognition rate for the CK+ data set with
96.48% for the 7 class problem. The previous best result was
from Lopes et al. [35] where a CNN was used with various
preprocessing methods to artificially increase the training
set size and prevent over-fitting. The nature of our simpler

LBF features makes it easier to train on smaller data sets
and proves to be a viable alternative to heavy-weight convo-
lutional features. Similarly, current state-of-the-art method
for the 6 class problem uses a trained face recognition net-
work to regularize and prevent over-fitting of the expression
DCNN [9].

4.2 Results onMMI

MMI [43] data set contains more than 2900 videos and
images of 75 subjects. It is an ongoing work to provide large
volumes of data of facial expressions to the research com-
munity. Along with 6 basic emotions, it also contains single
FACSActionUnit activation samples and naturalistic expres-
sions. All of the videos include the starting neutral expression
alongwith the onset, apex andoffset phases.Amajor problem
is that the apex frames are not indexed; therefore, it is hard
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Fig. 10 The confusion matrix for the proposed LBF-NNmethod on the
MMI data set using 6 classes with the PI scenario

Fig. 11 The confusion matrix for the proposed LBF-NNmethod on the
MMI data set using 7 classes with the PI scenario

to compare since researchers manually choose the frames to
include into the training and validation sets.

We filtered the data set to frontal view and 7 basic expres-
sions (including neutral) which resulted in 208 sequences
(one sequence was corrupted) and 31 subjects. One neutral
frame and three manually selected apex frames were used
totaling with the following number of samples per expres-
sion: 99 (An), 96 (Di), 84 (Fe), 126 (Ha), 96 (Sa), 123
(Su), 208 (Ne). Again, no preprocessing was applied to the
images except for the gray-scale conversion and the face
detection/alignment to find the facial landmarks used in our
method.

Four experiments were conducted similarly to the CK+
experiments, including 6 and 7 class recognition in both PI
and PD scenarios. The confusion matrices for the PI scenario
are presented in Figs. 10 and 11. Once again, the PD scenario
was easily solved with 99.84% and 99.88% recognition rates
for 6 and 7 class problems, respectively.However, PI scenario
proved to be much more difficult with recognition rates of

Table 2 Optimal parameters for the PI scenario on the MMI, JAFFE
and SFEW 2.0 data sets

Data set No. of classes TD TC HU L2

MMI 6 2 20 16 0

MMI 7 2 25 24 0.0001

JAFFE 6 2 25 48 0

JAFFE 7 2 25 24 0

SFEW 2.0 7 2 30 24 0.0001

78.88% and 73.73% with optimal parameters presented in
Table 2. A small L2 regularization coefficient was used on
the 7-class problem in the PI scenario that helped prevent
over-fitting.

There are a number of reasons for these results. First of
all, the MMI data set is much more challenging than the
CK+ data set due to a large age span between subjects (19–
62years) and the fact thatmany subjectswore accessories like
glasses and hats. Secondly, the sequences were not filtered
by expert annotators; therefore, there is no guarantee that
challenging expressions such as fear and sadness were acted
out correctly and consistently across subjects. It is evident
from the confusion matrices that it is very difficult to discern,
i.e., fear from surprise and sadness from disgust. Thirdly, the
results are very dependent on the peak frames used in the data
set which needed to bemanually selected since the sequences
are of varying length and different expression dynamics.

We compared ourselves with previous work in Table 3.
Again, comparison on this data set is even harder since the
data acquisition is an ongoing process. Also, as can be seen
from Table 3, there is a large variation in the number of
subjects and sequences used for training and testing. Some
of the authors manually discarded sequences with poorly
acted expressions. The method from Zhang et al. [59] uses
an almost identical set in their experiments and achieve state-
of-the-art recognition rate. However, they use hand-crafted
features (fusion of LBPH and HOG) coupled with a multi-
kernel SVM. Due to the hand-crafted features making their
model less complex, it is also less prone to over-fitting on
small data sets. Another important point to note is that they
fine-tuned their hyper-parameters on each fold in the cross-
validation tests making the models highly specialized for
combinations of specific fold training and test sets. Our
tests were done with hyper-parameters optimized using the
average accuracy across folds, not at the fold level. Fur-
thermore, no cross-database experiments were conducted by
the authors to test the generalization ability of their models.
Another hand-crafted features method fromRivera et al. [47]
achieves the state-of-the-art performance in the PI scenario
with 7 classes. The problem compared to this method is that
only 168 sequences are available now from the 238 sessions
they used.
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Table 3 Comparison with previous work on the MMI data set

Method No. of folds No. of sequences/subjects Scenario No. of classes Recognition rate (%)

Lee et al. [29] 20 150/21 PD 6 93.81

Zhong et al. [61] 10 205/Not stated Not stated 6 77.39

Fang et al. [13] 10 203/Not stated Not stated 6 75.96

Zhang et al. [59] 10 209/Not stated PI 6 93.60

PI 7 92.80

Poursaberi et al. [44] 10 Not stated PI 6 86.10

PD 6 90.37

Shan et al. [50] 10 96/20 PI 7 86.90

Mollahoseini et al. [39] 5 Not stated/not stated PI 6 77.60

Rivera et al. [47] 10 238/28 PI 6 95.80

Burkert et al. [4] 10 187/? PD 6 98.63

Proposed LBF-NN 10 208/31 PI 6 78.88

PI 7 73.73

PD 6 99.84

PD 7 99.88

The bold results are the best (state-of-the-art) results for each experiment scenario

Fig. 12 The confusion matrix for the proposed LBF-NNmethod on the
JAFFE data set using 6 classes with the PI scenario

4.3 Results on JAFFE

The Japanese Female Facial Expression database (JAFFE)
[37] contains images of 10 Japanese female models posing
7 basic emotions. The total number of images is 213 which
makes it the smallest data set by far on which we tested our
method. An additional problem is that the data set obviously
lacks diversity with respect to gender, age, and race.

The same experiments were conducted as with the other
two data sets, and similarly, the PD scenario recognition rates
were extremely high above 98% for both 6 and 7 class prob-
lems. However, as can be seen from the confusionmatrices in
Figs. 12 and 13, in the PI scenario ourmethod struggled again
to discern difficult and similar expressions such as fear and
sadness. This can again be explained by the difficulty of sin-

Fig. 13 The confusion matrix for the proposed LBF-NNmethod on the
JAFFE data set using 7 classes with the PI scenario

cerely portraying such emotions on demand. Nevertheless,
in the easier 6 class task, our method achieves recognition
rates above 80% for each expression.

Table 4 compares our method to previous work on this
data set. We achieve the state-of-the-art results in the PD
scenario due to the high flexibility of our method to adapt
its feature extraction process. In the PI scenario, we achieve
competitive recognition rates of 87.22% and 85.88% for the
6 and 7 class problems, respectively.

4.4 Results on SFEW 2.0

The Static Facial Expressions in the Wild (SFEW) [7] data
set aims to benchmark the performance of FER methods in
realistic conditions with unconstrained lighting, head poses,
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Table 4 Comparison with the previous work on the JAFFE data set

Method No. of folds No. of images Scenario No. of classes Recognition rate (%)

Gu et al. [17] 10 213 PI 7 89.67

Happy and Routray [20] 10 183 Not stated 6 91.80

Lee et al. [13] 20 213 PD 6 94.70

Lopes et al. [35] 10 213 PI 6 53.44

PI 7 53.57

Poursaberi et al. [44] 10 213 PI 7 91.12

PD 7 95.04

Zhang and Tjondronegoro [58] 10 213 PI 6 92.93

Liu et al. [33] 10 213 PI 7 91.80

Shan et al. [50] 10 213 PI 7 81.00

Owusu et al. [41] 10 213 PD 6 96.83

Zavaschi et al. [55] 10 213 PI 7 70.00

PD 7 96.20

Rivera et al. [47] 10 213 PI 6 93.40

PI 7 90.60

Proposed LBF-NN 10 213 PI 6 87.22

PI 7 85.88

PD 6 98.33

PD 7 98.10

The bold results are the best (state-of-the-art) results for each experiment scenario

and occlusions. The second version of the data set that we
used in our experiments was released as part of the EmotiW
2015 challenge [8]. The images were extracted and anno-
tated semi-automatically from movies and, even though the
emotions are acted, the data set can be considered as a spon-
taneous one since professional actors were involved.

The data set has a well-defined protocol with a strict divi-
sion of training (958 images), validation (436 images), and
test (372 images) sets. Since we could not obtain the labels
for the test set, we report the results on the validation set only.
The division of the data set is strictly person independent, and
it contains 7 basic expressions with the following number of
samples (training and validation sets combined): 255 (An),
89 (Di), 145 (Fe), 271 (Ha), 236 (Ne), 245 (Sa), 153 (Su).

Due to the unconstrained nature of the data set, we needed
to modify the preprocessing pipeline to some extent. First,
the face detector could not detect all of the faces so wemanu-
ally annotated 8 images. Next, we used a more powerful face
alignment method [3] that was trained on unconstrained head
poses and can accurately align profile faces as well. Further-
more, we utilized the 2D landmark positions to remove the
in-plane rotations of the faces which reduced the variation of
the relevant expression patterns around landmarks. Finally,
we used horizontalmirroring to double the size of the training
set. Even though this preprocessing step did not improve the
results on other data sets, it proved to be beneficial here due
to the asymmetry caused by large variations in head pose,
illumination, and occlusions.

It is clear from the baseline results of the EmotiW 2015
challenge [8] (35.93% and 39.13% accuracy on validation
and test sets, respectively) that this is a very challenging
benchmark. The optimal parameters for this data set are
shown in Table 2 and the confusion matrix in Fig. 14. It is
evident once again that happiness is the easiest expression to
recognize even in the unconstrained environment (80.82%);
however, neutral and anger achieve respectable recognition
rates as well (69.77% and 53.25%, respectively). Disgust and
fear are traditionally very difficult to identify.

Fig. 14 The confusion matrix for the proposed LBF-NNmethod on the
SFEW 2.0 validation set
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Table 5 Comparison with the
previous work on the SFEW 2.0
data set

Method No. of images Recognition rate (%) External data

Train Val Test Val Test

Zong et al. [63] 958 436 372 38.07 50.00 Yes

Mollahosseini et al. [39] 332 331 – 47.70 – Yes

Ng et al. [40] 958 436 372 48.50 55.60 Yes

Zhai et al. [57] 958 436 – 48.51 – Yes

Levi and Hassner [30] 891 431 372 51.75 54.56 Yes

Ding et al. [9] 891 431 – 55.15 – Yes

Yu and Zhang [54] 958 436 371 55.96 61.29 Yes

Ding et al. [9] 891 431 – 48.19 – No

Proposed LBF-NN 958 436 – 49.31 – No

The bold results are the best (state-of-the-art) results for each experiment scenario

The proposedmethod achieves an average recognition rate
of 49.31% without using any additional training data which
is the state-of-the-art result in such conditions. However, the
best results are achieved by leveraging transfer learning with
large related data sets (usually face recognition sets) and large
ensembles of DCNNs [30,54]. As it can be seen fromTable 5,
all of the deep learning methods need auxiliary data sets and,
even then, our method is very competitive. The displayed
results demonstrate good robustness of the proposed method
to unconstrained conditions. Furthermore, the method has
once again shown an excellent ability to learn relevant infor-
mation from very limited amount of data.

4.5 Cross-database results

In order to test the generalization ability of our method, we
conducted cross-database experiments with 7 classes. We
trained our method on CK+ and tested on the MMI data
set and vice versa. We chose these two databases because
they have a similar number of samples and they are at the
opposite ends of the difficulty spectrum. The achieved results
actually confirm these presumptions. When trained on the
consistent and constrained CK+ data set and tested on the
more challenging MMI set, we achieve the average recog-
nition rate of 62.74%. When the situation is reversed, an
impressive recognition rate of 78.79% is achieved. In fact,
both results show a great generalization capacity of the pro-
posed method since results in cross-database experiments
are generally much worse than within database experi-
ments.

It is interesting to observe here that the within database
results for the MMI data set are worse (73.73%) than in the
cross-database experiment with CK+ as the test set. This
confirms the theory that the MMI data set is not consistently
annotated and is quite difficult to train on. In Table 6,we com-
pared our cross-database results with previous work which
provided similar experiments. Ourmethod achieves the state-
of-the-art result when generalizing from MMI to CK+ data

Table 6 Comparison of cross-database recognition rates with 7 classes

Method Train Test Recognition rate (%)

Zhang et al. [59] CK+ MMI 66.9

MMI CK+ 61.2

Shan et al. [50] CK MMI 51.1

Lee et al. [29] MMI CK+ 64.57

Proposed LBF-NN CK+ MMI 62.74

MMI CK+ 78.79

Thebold results are the best (state-of-the-art) results for each experiment
scenario

set with an improvement of 14.22% from the previous best
result.

4.6 Computational performance analysis

We tested the recognition run-time of our method on a PC
with an Intel Core i7-7500U CPU operating at 2.70 GHz
frequency. The method is not parallelized and uses a single
CPU core. The average computing time of our method on the
JAFFE data set is approximately 1 ms which makes it ideal
for mobile and embedded applications. Due to its simple
pixel difference features coupled with shallow decision tree
ensembles and 2-layer neural network, the online recognition
phase is extremely efficient. The first neural network layer
weight matrix is the largest one, and the multiplication with
the large input feature vector would be the bottleneck of the
system; however, due to the sparse binary nature of the feature
vector, it can be computed with a simple series of memory
lookups and additions. The run-time is written in C++ which
contributes to fast execution.

We compared our method to the previous work which
stated their execution time in Table 7. It is clear that our
method achieves an order of magnitude improvement over
all previous works. Ding et al. [9] achieve a real-time perfor-
manceof 3ms; however, theyuse a high-levelGPUoptimized
code which is impractical for mobile and embedded systems.
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Table 7 Comparison of computation time in milliseconds

Method CPU Feature extraction Classification Total

Happy and Routray [20] Intel i5 3.2 GHz ? ? 295.5

Khan et al. [25] ? 10 ? ?

Lee et al. [29] Pentium 3.50 GHz 110 40 150

Lopes et al. [35] ? – – 10

Zhang et al. [59] Intel i5 2.66 GHz ? 30 ?

Zhang and Tjondronegoro [58] Core Duo 1.66 GHz ? ? 125.8

Liu et al. [33] 6-core 2.4 GHz ? ? 210

Shan et al. [50] ? 30 ? ?

Owusu et al. [41] ? ? ? 14.5

Levi et al. [30] Amazon GPU g2.8xlarge instance ? ? 500

Ding et al. [9] Titan X GPU ? ? 3

Proposed LBF-NN Intel i7-7500U 2.70 GHz ? ? 1

The bold results are the best (state-of-the-art) results for each experiment scenario

5 Conclusion

We presented a fast facial expression recognition method
based on a trainable feature extraction process using ensem-
bles of decision trees producing sparse binary feature vectors
(LBF) and a shallow neural network. The 2-layer neural
network is capable of modeling the nonlinear relationship
between expressions as demonstrated in Sect. 4.1.2 which
boosted the recognition rates of especially difficult expres-
sions such as fear and sadness. Themethod uses static images
and achieves state-of-the-art results on the most widely used
CK+database and demonstrates great generalization abilities
in the cross-database experiments and robustness on the “in
the wild” SFEW 2.0 data set. The great accuracy results are
accompanied by an extremely fast computation time of 1 ms
on a singleCPUwhich is an order ofmagnitude improvement
in speed compared to recent work. The accuracy and speed
of the method make it ideal for FER in environments with
limited resources such as embedded and mobile platforms. It
is a viable alternative to end-to-end CNNs in scenarios with
limited data sets and run-time resources.

A number of factors contributed to the success of the
proposed method. Unlike layers of trainable convolutional
kernels used in deep learning methods, ensembles of deci-
sion trees have demonstrated great generalization ability
deduced from small data sets due to their simplistic nature.
By limiting the possible feature space to local regions around
prominent facial landmarks, their expressive power is fur-
ther boosted which resulted with highly discriminative and
specialized features. Furthermore, joint classification using
a shallow neural network utilized inter-class information
which contributed to correct classification of ambiguous
expressions.

As future work, the method could be extended to incor-
porate temporal information through the use of increasingly

popular variants of recurrent neural networks such as long
short-term memory (LSTM) networks. It would be natural
since expressions are dynamic in nature and their intensity
changes over time. Another course of actionwould be to inte-
grate occlusion and head pose information to make it more
robust on “in the wild” images and videos.
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