
A Multilingual Intelligent Document
Question-Answering System

Rohit Singh;*, Santosh Grampurohit, Keshav Kumar, Chandan Kumar Singh, Sk Mohammad Arif and
Sourajit Bhar

Indian Institute of Science (IISc)

Abstract. As global organizations increasingly work with multilin-
gual document collections, there is a growing need for systems that
can process and query documents across language barriers. While
some document QA systems have been developed for specific lan-
guages, most operate only in English, and few can handle multilin-
gual document repositories effectively. If configured correctly, multi-
lingual document QA systems have the potential of providing a digi-
tal information extraction solution that transcends language barriers.

For our project, we developed a multilingual document process-
ing system that enables users to upload documents in various lan-
guages and interact with their content through natural language
queries. The system leverages RAG architecture combined with mul-
tilingual language models to provide accurate, contextually relevant
answers extracted from user-provided documents, regardless of the
source language. This solution addresses the growing need for ef-
ficient multilingual document analysis in global academic, profes-
sional, and research contexts. By combining cross-lingual NLP tech-
niques with user-friendly interfaces, the system democratizes ac-
cess to complex multilingual document analysis, enabling users to
quickly extract insights from diverse document collections without
manual translation or language-specific searching. Source code at:
https://github.com/rohitlee/document-chatbot

1 Introduction
1.1 Background and Motivation

The proliferation of multilingual document collections and the grow-
ing demand for cross-lingual question-answering systems have posi-
tioned Retrieval-Augmented Generation (RAG) as a critical technol-
ogy in natural language processing. Large language models such as
OpenAI’s GPT-4 and Meta’s Llama-70B have demonstrated excep-
tional capabilities in multilingual RAG applications, leveraging ex-
tensive context windows (up to 128K tokens in GPT-4o and 32K in
enhanced open-source models) and comprehensive training data to
achieve superior performance metrics.

However, the practical deployment of these large models presents
significant challenges. High computational costs, with inference ex-
penses often exceeding several dollars per million tokens, combined
with privacy concerns and dependency on cloud-based infrastructure,
limit their accessibility for many organizations and applications. This
creates a compelling need for enhancing the performance of smaller,
open-source alternatives that can be deployed locally while maintain-
ing cost-effectiveness.
∗ Paper submission for IISc Deep Learning Course Project (DA225o).

1.2 Problem Statement

Smaller open-source models like Mixtral-8x7B-Instruct[1], despite
offering advantages in cost (approximately 0.70 USD per 1M to-
kens), customization flexibility, and offline deployment capabilities,
face substantial performance gaps in multilingual RAG applications.
These models typically operate with limited context windows (33K
tokens) and demonstrate lower baseline performance, with MMLU
scores around 0.387 compared to their larger counterparts.

Figure 1. Token-level pricing comparison (USD per 1M tokens) of popu-
lar language models, highlighting the cost-effectiveness of open-source mod-
els like Mixtral-8x7B and LLaMA compared to proprietary models such as
Claude and GPT-4.

The primary challenge lies in optimizing retrieval strategies to
compensate for the reduced contextual understanding and processing
capabilities of smaller models, particularly in multilingual scenarios
where linguistic diversity and cultural context variations compound
the complexity.

In this project, we first evaluated the retrieval performance of
a baseline multilingual embedding model, paraphrase-multilingual-
mpnet-base-v2, by calculating standard metrics such as Hit Rate@k
(k = 1, 3, 5, 10) and Mean Reciprocal Rank (MRR). This baseline
helped us understand how well the model could retrieve relevant doc-
uments given a user query in a multilingual context using purely se-
mantic search. To enhance retrieval accuracy, we then implemented
a hybrid search approach that combines semantic similarity with
keyword-based search, leveraging the complementary strengths of
both methods. The results from each retrieval strategy were merged

https://github.com/rohitlee/document-chatbot


and re-ranked using Reciprocal Rank Fusion (RRF), a simple yet ef-
fective late-fusion technique. This hybrid RRF method significantly
improved retrieval performance across all evaluated metrics, demon-
strating its effectiveness in capturing both the deep semantic intent
and surface-level keyword overlap in user queries, especially in com-
plex or multilingual scenarios.

2 Related Work
The core of our system is the Retrieval-Augmented Generation
(RAG) framework, first proposed by Lewis et al. [5]. RAG combines
the strengths of pre-trained language models with non-parametric
memory from a retriever, which addresses the limitations of fixed
model knowledge and reduces hallucination. This paradigm was a
natural evolution from earlier open-domain QA systems like DrQA
[2], which separated the retriever and reader components. A compre-
hensive survey by Zhang et al. [9] provides an extensive overview of
the RAG landscape, highlighting its versatility.

Central to any RAG system is the retriever, which has been the
subject of extensive research. The move from sparse, keyword-based
retrieval to dense passage retrieval (DPR) marked a significant mile-
stone [4]. DPR uses dual-encoder architectures based on transform-
ers like BERT [3] to embed questions and passages into a shared
vector space for semantic search. The effectiveness of these embed-
dings is crucial, with models like Sentence-BERT [6] specifically
fine-tuned to produce semantically meaningful sentence embeddings
for tasks like semantic search, which directly inspired the embedding
models used in our project.

The challenge intensifies in a multilingual context, where a sin-
gle model must understand and retrieve information across different
languages. While our work uses general-purpose multilingual mod-
els, more specialized cross-lingual retrieval models like ColBERT-
X [7] have been developed to improve performance on such tasks.
Our project’s contribution lies not in proposing a new model archi-
tecture, but in the practical, systematic evaluation of existing open-
source components for multilingual RAG. We demonstrate how ar-
chitectural choices, such as implementing a hybrid search with Re-
ciprocal Rank Fusion, and component upgrades, like switching to a
more modern embedding model, can significantly enhance the per-
formance of a cost-effective, locally deployable system. Our eval-
uation methodology, while custom, is in the spirit of standardized
benchmarks like BEIR [8], which advocate for robust evaluation of
IR models.

3 Methodology
3.1 System Architecture Overview

The architecture of our multilingual document-based question-
answering system, illustrated in the figure 2 below, is based on the
Retrieval-Augmented Generation (RAG) framework. This design en-
ables efficient, multilingual question-answering using smaller open-
source models through a hybrid retrieval strategy and context-aware
generation.

3.2 Document Ingestion and Indexing

This process builds the knowledge base that the chatbot will use to
answer questions. It is represented by the upper flow in the figure.

• Document Input: The process begins when a user uploads a
source document.

• Processing and Chunking: The document processor ingests the
raw document. It parses the text and splits it into smaller, over-
lapping chunks of a predefined size (e.g., 1000 characters). This
ensures that the semantic meaning of each unit is coherent and
digestible for the embedding model.

• Embedding: Each text chunk is passed to the embedding model.
The model converts the text into a high-dimensional vector, cap-
turing its semantic meaning.

• Indexing and Storage: The original text chunk, its vector embed-
ding, and relevant metadata (like the source filename and chunk
ID) are stored together in the Vector Database (ChromaDB). This
indexed database is now ready to be queried.

3.3 Query-Response Cycle

This process is triggered every time a user asks a question. It is rep-
resented by the central flow from left to right in the figure.

• User Query: The User submits a question in any supported lan-
guage. This becomes the initial user query / prompt.

• Query Pre-processing: The system first processes the query.
In our multilingual implementation, this involves translating the
query into a pivot language (English) to standardize the search
process.

• Retrieval: The processed query is sent to the retriever. The query
is first embedded into a vector using the same embedding model.
The Retriever then performs a hybrid search against the vector
database, fetching a list of the most relevant document chunks.

• Context Augmentation: The text content from the retrieved
chunks is collected. This context is combined with the processed
user query to form a single, detailed prompt. This is the "Augmen-
tation" step in RAG, where the model’s knowledge is augmented
at inference time.

• Generation: The augmented prompt is sent to the Generator
(LLM). The LLM’s sole task is to read the provided context and
generate a helpful, accurate answer to the question based on that
information alone. This grounding in retrieved facts is what mini-
mizes hallucination.

• Final Response: The answer generated by the LLM is post-
processed (e.g., translated back to the user’s desired language) and
then presented to the user, completing the cycle.

Figure 2. Architectural Overview of the Multilingual RAG System

4 Experiments and Results
To quantitatively evaluate and iteratively improve our RAG system,
we designed a series of experiments focused on the performance of
the retrieval component. This section details the experimental setup,
the datasets created, the metrics used, and the results obtained at each
stage of improvement.

2



4.1 Experimental Setup

Our experiments were conducted on a local machine with the primary
goal of measuring the effectiveness of different retrieval strategies
in a multilingual context. All evaluations were automated using a
dedicated script to ensure consistency and reproducibility.

• Key Libraries: sentence-transformers (v2.2.2), chromadb
(v0.4.0), pandas (v2.1.0).

• LLM for Generation: The dataset generation was performed us-
ing the llama-3.1-8b-instant model via the Groq API.

• Translation Service: All multilingual translations were handled
by the Sarvam AI API.

4.2 Dataset Creation

A custom evaluation dataset was created to serve as the ground truth
for our retrieval experiments. The process was as follows:

1. Corpus Curation: A diverse corpus of five documents was as-
sembled, with each document in a different language relevant to
the Indian subcontinent: English, Hindi, Bengali, Punjabi, and
Kannada. The topics covered a range of subjects to ensure the
evaluation was not biased towards a single domain.

2. Document Processing: The five source documents were pro-
cessed using our system’s DocumentProcessor. This involved
splitting the text into chunks of 1000 characters with a 150-
character overlap. Each chunk was assigned a unique, determin-
istic ID based on its source file and position.

3. Q&A Pair Generation: We leveraged a powerful Large Lan-
guage Model (llama-3.1-8b-instant) to generate a high-quality
dataset. For each text chunk, the LLM was prompted to create
exactly one question and a concise answer that could be derived
solely from the provided chunk’s content. This automated process
resulted in a dataset of 258 unique (question, ground-truth an-
swer, ground-truth chunk ID) triplets. This file, evaluation dataset,
formed the basis for all subsequent retrieval evaluations.

4.3 Evaluation Metrics

To measure the performance of our retriever, we used the following
standard information retrieval metrics:

• Hit Rate @k: The proportion of queries for which the correct
ground_truth_chunk_id was found within the top k re-
trieved documents. This measures the recall of the system.

• Mean Reciprocal Rank (MRR): The average of the reciprocal
of the rank at which the first correct document was found. MRR
heavily penalizes results where the correct document is ranked
lower and provides a single, comprehensive score for ranking
quality.

4.4 Iterative Retrieval Experiments

We conducted three distinct experiments to measure the impact of
architectural and model improvements.

Experiment 1: Baseline Semantic Search
Our initial experiment established a baseline using a simple semantic
search retriever.

• Embedding Model: sentence-transformers/paraphrase-
multilingual-mpnet-base-v2

• Retrieval Method: A standard vector similarity search.

The results, shown in Table 1, indicate a modest performance, with
the correct document being missed entirely in the top 10 results for
nearly 40% of queries.

Experiment 2: Hybrid Search with Reciprocal Rank Fusion
(RRF)
Observing the limitations of pure semantic search, particularly with
queries involving specific keywords, we hypothesized that a hybrid
approach would improve precision.

• Embedding Model: sentence-transformers/paraphrase-
multilingual-mpnet-base-v2

• Retrieval Method: A hybrid strategy combining semantic search
and keyword search. The results from both were fused using Re-
ciprocal Rank Fusion (RRF) to produce a single, reranked list.

As seen in Table 1, this architectural change yielded a significant
improvement in top-ranked results, with a 10.5% relative increase in
MRR.

Experiment 3: Upgrading the Embedding Model
While hybrid search improved ranking, the overall recall (Hit Rate
@10) remained unchanged, suggesting that the core semantic un-
derstanding of the embedding model was the next bottleneck. We
noted that many of the remaining "hard" queries were complex and
required a deeper understanding of intent rather than lexical overlap.
To address this, we upgraded the foundational embedding model to
a modern, retrieval-focused model.

• Embedding Model: intfloat/multilingual-e5-base
• Retrieval Method: The same Hybrid Search with RRF from Ex-

periment 2.

This change targets the system’s ability to better comprehend com-
plex queries and bridge the semantic gap between a user’s question
and the document’s language.

4.5 Results and Discussion

The consolidated results from all three experiments are presented in
Table 1.

Table 1. Retrieval Performance Comparison Across Different Strategies
Metric Baseline Stage 2 Stage 3
Hit Rate @1 32.17% 38.37% 44.19%
Hit Rate @3 44.96% 49.61% 59.69%
Hit Rate @5 51.55% 53.49% 67.44%
Hit Rate @10 60.85% 60.85% 75.97%
MRR 0.4048 0.4471 0.5342

The results clearly demonstrate the value of our iterative approach.
The architectural shift to hybrid search (Stage 2) provided a notable
boost in precision (MRR). However, the most substantial improve-
ment came from upgrading the core embedding model (Stage 3).
The multilingual-e5-base model improved the MRR by 32% over the
baseline and, critically, increased the Hit Rate @10 by 15.12%, suc-
cessfully retrieving answers for a significant portion of the previously
"hard" queries. This confirms our hypothesis that a more powerful
embedding model is the most critical factor for improving retrieval
on complex, nuanced, and multilingual queries.

3



5 Conclusion

In this project, we successfully designed and evaluated a multilin-
gual RAG chatbot, demonstrating that high-performance RAG sys-
tems can be built exclusively with open-source models. Our iterative
evaluation process, beginning with a baseline semantic search (MRR
0.4048), first showed that a hybrid search architecture using Recip-
rocal Rank Fusion could improve ranking precision (MRR 0.4471).
The most significant performance gain, however, was achieved
by upgrading to a modern intfloat/multilingual-e5-base embedding
model, which boosted the MRR to 0.5342—a 32% improvement over
the baseline. This result confirms that while sophisticated retrieval
architecture is beneficial, the foundational quality of the embedding
model is the most critical factor for successfully handling complex,
multilingual queries. Our findings affirm that thoughtful model selec-
tion within the open-source ecosystem is a powerful and accessible
path to creating effective and reliable AI systems.

6 Contribution of members

The project was a collaborative effort, with responsibilities divided
among team members to ensure comprehensive development and
evaluation. The contributions are outlined below:

• Rohit Singh led the project management, overseeing code inte-
gration and ensuring project cohesion. Implemented the hybrid
search architecture and was primarily responsible for creating the
evaluation framework to test its performance. This included gen-
erating the custom multilingual dataset and conducting the it-
erative retrieval experiments detailed in this paper. He also au-
thored this manuscript and developed the main application inter-
face (app.py).

• Santosh Grampurohit served as the Backend and Ingestion En-
gineer. His work focused on the document_processor.py
component, where he implemented the logic for loading, parsing,
and chunking source documents. He was responsible for handling
various file formats and implementing text-splitting strategies to
prepare data for indexing in the vector database.

• Keshav Kumar worked on the retrieval and search system
(retrieval_system.py). As part of a joint effort, he con-
tributed to the implementation of the hybrid search architecture,
combining semantic and keyword-based retrieval. His key contri-
butions include implementing Reciprocal Rank Fusion (RRF) for
re-ranking and integrating different multilingual embedding mod-
els.

• Chandan Kumar Singh acted as the LLM and Prompt Engi-
neer, managing the generation component of the RAG pipeline
(response_generator.py). His work involved engineering
the prompts sent to the Large Language Model to ensure accu-
rate and contextually grounded answers. He also experimented
with various open-source LLMs to select the optimal model for
the generation task.

• Sk Mohammad Arif and Sourajit Bhar jointly handled the
integration of external cloud and API services through the
nlp_processor.py module. Their responsibilities included
managing API calls for translation and language modeling, im-
plementing robust error handling with retry mechanisms, and de-
veloping a caching system to optimize performance and reduce
costs.

• All team members actively participated in the quality assurance
and documentation process. This included thorough testing of new

features, writing clear code comments and docstrings, maintain-
ing the project’s documentation, and conducting peer reviews to
ensure the overall reliability and robustness of the final system.

References
[1] Artificial Analysis. Mixtral-8x7b-instruct model details. https://

artificialanalysis.ai/models/mixtral-8x7b-instruct, 2024. Accessed: May
21, 2024.

[2] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes, ‘Reading
wikipedia to answer open-domain questions’, Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics, 1870–
1879, (2017).

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova,
‘Bert: Pre-training of deep bidirectional transformers for language under-
standing’, in Proceedings of NAACL-HLT 2019, pp. 4171–4186, (2019).

[4] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell
Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih, ‘Dense passage
retrieval for open-domain question answering’, in Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6769–6781, (2020).

[5] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Mandar Kulkarni, Mike Lewis, Wen-tau
Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela, ‘Retrieval-
augmented generation for knowledge-intensive nlp tasks’, Advances in
Neural Information Processing Systems, 33, 9459–9474, (2020).

[6] Nils Reimers and Iryna Gurevych, ‘Sentence-bert: Sentence embed-
dings using siamese bert-networks’, Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing, 3982–3992,
(2019).

[7] Karthik Santhanam, Shaden Shaar, Leshem Choshen, Hadar Alon, Eyal
Shnarch, and Ido Dagan, ‘Colbert-x: A cross-lingual retrieval model
for multilingual information retrieval’, arXiv preprint arXiv:2109.07471,
(2021).

[8] Nandan Thakur, Nils Reimers, Johannes Daxenberger, and Iryna
Gurevych, ‘Beir: A heterogeneous benchmark for zero-shot evaluation
of information retrieval models’, in Advances in Neural Information Pro-
cessing Systems, volume 34, pp. 26177–26188, (2021).

[9] Yiming Zhang, Yuxuan Sun, Yujia Li, Jimmy Lin, and Xipeng Ma,
‘A comprehensive survey on retrieval-augmented generation’, arXiv
preprint arXiv:2202.01110, (2022).

4

https://artificialanalysis.ai/models/mixtral-8x7b-instruct
https://artificialanalysis.ai/models/mixtral-8x7b-instruct


A Appendix: System User Interface and Code
Implementation

This appendix provides a visual and technical supplement to the main
paper. It showcases the user interface (UI) of the developed multilin-
gual RAG chatbot and details key code snippets that implement the
core functionalities discussed in the methodology.

A.1 User Interface Showcase

The following figures illustrate the user journey, from launching the
application to performing multilingual queries.

Figure 3. The initial state of the chatbot application. The user is greeted
with a clean interface and prompted to upload documents via the sidebar to
begin the interaction.

Figure 4. The user interacts with the sidebar to upload a source document.
The uploader supports multiple file formats (PDF, DOCX, TXT). Below, the
language selection dropdown and real-time statistics (Documents, Queries)
are visible.

Figure 5. A user asks a question in English ("what is climate change").
The system retrieves the relevant context from the uploaded document and
generates a factually grounded answer in English. The statistics in the sidebar
are updated to reflect one processed document and one query.

Figure 6. Demonstrating the system’s core multilingual feature. The user
selects "Hindi" as the response language and asks a question in English. The
system correctly translates the query for internal processing, retrieves the in-
formation, and generates the final answer accurately in Hindi, as requested.

A.2 Key Code Implementation Details

This section highlights critical functions from the codebase that are
responsible for the system’s hybrid retrieval and multilingual capa-
bilities.

A.2.1 Hybrid Search with Reciprocal Rank Fusion

As discussed in the paper, improving retrieval performance was crit-
ical. The following code from retrieval_system.py imple-
ments the hybrid search strategy. The hybrid_search function
orchestrates the process, while _reciprocal_rank_fusion
merges the results from semantic and keyword searches into a sin-
gle, more accurate ranking.

1 def hybrid_search(self, query: str, k: int =
↪→ 5) -> List[Dict]:

2 """
3 Performs a robust hybrid search using

↪→ Reciprocal Rank Fusion (RRF)
4 to combine semantic and keyword search

↪→ results.
5 """
6 # 1. Fetch results from both search

↪→ methods
7 semantic_results = self.similarity_search

↪→ (query, k=20)
8 keyword_results = self.keyword_search(

↪→ query, k=20)
9

10 # 2. Fuse the results using RRF
11 fused_scores = self.

↪→ _reciprocal_rank_fusion(
12 [semantic_results, keyword_results]
13 )
14 # ... (code to fetch and normalize

↪→ documents) ...
15 return top_k_results
16

17 def _reciprocal_rank_fusion(
18 self, result_sets: List[List[Dict]],

↪→ rrf_k: int = 60
19 ) -> Dict[str, float]:
20 """
21 Combines multiple search result sets

↪→ using the RRF formula.
22 """
23 fused_scores = {}
24 # Iterate through each list of search

↪→ results

5



25 for results in result_sets:
26 # Iterate through each document in

↪→ the result list
27 for rank, doc in enumerate(results):
28 doc_id = doc.get(’id’)
29 if doc_id:
30 if doc_id not in fused_scores

↪→ :
31 fused_scores[doc_id] = 0
32 # Add the reciprocal rank

↪→ score
33 fused_scores[doc_id] += 1.0 /

↪→ (rrf_k + rank + 1)
34

35 return fused_scores

Listing 1. Hybrid Search Implementation from
retrieval_system.py

A.2.2 Multilingual Query Orchestration

The main application file, app.py, contains the logic for
handling the entire multilingual request-response cycle. The
generate_chatbot_response function is the central orches-
trator. It first translates the user’s query into a pivot language (En-
glish), performs the search, generates the answer, and finally trans-
lates the answer back into the user’s desired language. This imple-
mentation directly reflects the architecture shown in Figure 2 of the
paper.

1 def generate_chatbot_response(
2 query: str, nlp_processor, retriever,
3 response_generator, language: str
4 ):
5 """Orchestrate the full RAG pipeline for

↪→ a multilingual response."""
6

7 # 1. Translate user’s query to English
↪→ for searching.

8 english_query = nlp_processor.
↪→ translate_text(

9 query, source_lang="auto",
↪→ target_lang=’en-IN’

10 )
11

12 if not english_query or not english_query
↪→ .strip():

13 # Handle translation failure
14 return {"response": "...", "

↪→ confidence": 0.0}
15

16 # 2. Retrieve relevant documents using
↪→ the English query

17 retrieved_docs = retriever.hybrid_search(
↪→ english_query, k=5)

18

19 # 3. Handle the case where no relevant
↪→ documents are found

20 if not retrieved_docs:
21 # ... (translate "not found" message)

↪→ ...
22 return {"response":

↪→ translated_not_found, "confidence":
↪→ 0.0}

23

24 # 4. Generate a response using the LLM.
↪→ Pass the user’s chosen

25 # language for the final translation step
↪→ .

26 response = response_generator.
↪→ generate_response(

27 english_query, retrieved_docs,
↪→ nlp_processor,

28 target_language=language
29 )
30

31 # ... (calculate confidence and return)
↪→ ...

32 return {"response": response, "confidence
↪→ ": confidence}

Listing 2. Multilingual RAG Orchestration from app.py

A.2.3 Context-Aware Response Generation

The response_generator.py module is responsible
for communicating with the Large Language Model. The
generate_response function first calls _create_context
to format the retrieved documents. It then invokes the LLM with a
carefully crafted prompt, ensuring the model’s answer is grounded
in the provided context. If the target language is not English, it uses
the nlp_processor to translate the final response.

1 def generate_response(
2 self, query: str, retrieved_docs: list,
3 nlp_processor: NLPProcessor,

↪→ target_language: str = ’en-IN’
4 ) -> str:
5 context = self._create_context(

↪→ retrieved_docs)
6

7 english_response = self.
↪→ _generate_with_hf_api(query, context)

8

9 if target_language != ’en-IN’ and
↪→ english_response:

10 return nlp_processor.translate_text(
11 english_response, source_lang=’en

↪→ -IN’,
12 target_lang=target_language
13 )
14

15 return english_response or "Could not
↪→ generate a response."

16

17 def _generate_with_hf_api(self, query: str,
↪→ context: str) -> str:

18 system_prompt = "You are a helpful AI
↪→ assistant. Answer the user’s

19 question based *only* on the provided
↪→ context. If the context

20 does not contain the answer, state that
↪→ you could not find the

21 information in the documents. Be concise.
↪→ "

22

23 user_prompt = f"""CONTEXT:
24 {context}
25

26 QUESTION: {query}"""
27

28 prompt = f"<s>[INST] {system_prompt} \n\n
↪→ {user_prompt} [/INST]"

6



29 # ... (code to call Hugging Face API with
↪→ the prompt) ...

Listing 3. Response Generation Logic from
response_generator.py

7


	Introduction
	Background and Motivation
	Problem Statement

	Related Work
	Methodology
	System Architecture Overview
	Document Ingestion and Indexing
	Query-Response Cycle

	Experiments and Results
	Experimental Setup
	Dataset Creation
	Evaluation Metrics
	Iterative Retrieval Experiments
	Results and Discussion

	Conclusion
	Contribution of members
	Appendix: System User Interface and Code Implementation
	User Interface Showcase
	Key Code Implementation Details
	Hybrid Search with Reciprocal Rank Fusion
	Multilingual Query Orchestration
	Context-Aware Response Generation



