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Abstract

Self-supervised learning (SSL) learns general visual representations without the
need of labels. However, large-scale unlabeled datasets in the wild often have
long-tailed label distributions, where we know little about the behavior of SSL. We
investigate SSL under dataset imbalance, and find out that existing self-supervised
representations are more robust to class imbalance than supervised representations.
The performance gap between balanced and imbalanced pre-training with SSL is
much smaller than the gap with supervised learning. Second, to understand the
robustness of SSL, we hypothesize that SSL learns richer features from frequent
data: it may learn label-irrelevant-but-transferable features that help classify the
rare classes. In contrast, supervised learning has no incentive to learn features
irrelevant to the labels of frequent examples. We validate the hypothesis with
semi-synthetic experiments and theoretical analysis on a simplified setting.

1 Introduction

Self-supervised learning (SSL) is an important paradigm of machine learning, because it can leverage
the availability of large-scale unlabeled datasets to learn representations for a wide range of down-
stream tasks and datasets [16, 8, 13, 7, 9]. Current SSL algorithms are mostly trained on curated,
balanced datasets, but large-scale unlabeled datasets in the wild are inevitably imbalanced with
a long-tailed label distribution [27, 24]. Curating a class-balanced unlabeled dataset requires the
knowledge of labels, which defeats the purpose of leveraging unlabeled data by SSL.

The behavior of SSL algorithms under dataset imbalance remains largely underexplored in the
literature, but extensive studies do not bode well for supervised learning (SL) with imbalanced
datasets. The performance of vanilla supervised methods degrades significantly on class-imbalanced
datasets [11, 5, 3], posing challenges to practical applications such as instance segmentation [29]
and depth estimation [37]. Many recent works address this issue with various regularization and
re-weighting/re-sampling techniques [1, 33, 18, 11, 5, 6, 30, 17, 32].

In this work, we systematically investigate the representation quality of SSL algorithms under class
imbalance. Perhaps surprisingly, we find out that off-the-shelf SSL representations are already more
robust to dataset imbalance than the representations learned by supervised pre-training. We evaluate
the representation quality by linear probe on in-domain (ID) data and finetuning on out-of-domain
(OOD) data. We compare the robustness of SL and SSL representations by computing the gap
between the performance of the representations pre-trained on balanced and imbalanced datasets of
the same sizes. We observe that the balance-imbalance gap for SSL is much smaller than SL, under a
variety of configurations with varying dataset sizes and imbalance ratios and with both ID and OOD
evaluations (see Figure 1 and Section 2 for more details). This robustness holds even with the same
number of samples for SL and SSL, although SSL does not require labels and hence can be more
easily applied to larger datasets than SL.

Why is SSL more robust to dataset imbalance? We identify the following underlying cause to
answer this fundamental question: SSL learns richer features from the frequent classes than SL does.
These features may help classify the rare classes under ID evaluation and are transferable to the
downstream tasks under OOD evaluation. For simplicity, consider the situation where rare classes
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Figure 1: Relative performance gap (lower is better) between imbalanced and balanced represen-
tation learning. The gap is much smaller for self-supervised (MoCo v2) representations (ASSL in
blue) vs. supervised ones (AS" in red) on long-tailed ImageNet with various number of examples 7,
across both ID (a) and OOD (b) evaluations. See Equation (1) for the precise definition of the relative
performance gap and and Figure 2 for the absolute performance.

have so limited data that both SL and SSL models overfit to the rare data. In this case, it is important
for the models to learn diverse features from the frequent classes which can help classify the rare
classes. Supervised learning is only incentivized to learn those features relevant to predicting frequent
classes and may ignore other features. In contrast, SSL may learn the structures within the frequent
classes better—because it is not supervised or incentivized by any labels, it can learn not only the
label-relevant features but also other interesting features capturing the intrinsic properties of the input
distribution, which may generalize/transfer better to rare classes and downstream tasks.

We empirically validate this intuition by visualizing the features on a semi-synthetic dataset where
the label-relevant features and label-irrelevant-but-transferable features are prominently seen by
design (cf. Section 3.1). In addition, we construct a toy example where we can rigorously prove the
difference between self-supervised and supervised features in Section 3.2.

We sum up our contributions as follows. (1) We are the first to systematically investigate the
robustness of self-supervised representation learning to dataset imbalance. (2) We propose and
validate an explanation of this robustness of SSL, empirically and theoretically.

2 Exploring the Effect of Class Imbalance on SSL

2.1 Problem Formulation

Class-imbalanced pre-training datasets. x denotes the input and y denotes the label. Supervised
pre-training has access to x and y, whereas self-supervised pre-training only observes x. Given
a pre-training distribution P, let r denote the ratio of class imbalance, i.e. the ratio between the

probability of the rarest and the most frequent class: 7 = “MECIPW=1) 1 e yse P to denote
max;c (o] P(y=j5)

the dataset with ratio 7. We also use P for the case where r = 1, i.e. the dataset is balanced. We
assume that for any class j € [C], the class-conditional distribution P (x|y = j) is the same across

datasets for all r. The pre-training dataset 73; consists of n i.i.d. samples from P".

Pre-trained models. A feature extractor maps the input to the representations. A linear head
classifier is composed with the feature extractor to produce the prediction. SSL algorithms learn the
representations from unlabeled data. SL pre-training learns the feature extractor and the linear head
from labeled data. We drop the head and only evaluate the quality of feature extractor. Following the
standard protocol in prior works [16, 8], we measure the quality of representations on both in-domain
and out-of-domain datasets with either linear probe or fine-tuning, as detailed below.

In-domain (ID) evaluation tests the performance of representations on the balanced in-domain
distribution 7P°? with linear probe. Given a feature extractor pre-trained on a pre-training dataset
’ﬁfl with n data points and imbalance ratio , we train a linear classifier on a balanced dataset and
evaluate the representation quality with the accuracy of the learned linear head on P**. We denote
the ID accuracy of supervised pre-trained representations by ApL(n, 7). Note that AYL(n, 1) stands
for the result with balanced pre-training dataset. For SSL, we denote the accuracy by ASSt(n, 7).
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Figure 2: Representation quality on balanced and imbalanced ImageNet. The gap between
balanced and imbalanced datasets with the same n is larger for SL. The accuracy of SL is better with
reasonably large n in ID evaluation, while SSL representations perform better in OOD evaluation.

Out-of-domain (OOD) evaluation tests the performance of representations by fine-tuning the feature
extractor and the head on the downstream target distribution P;. Starting from a feature extractor
(pre-trained on a dataset of size n and imbalance ratio ) and a randomly initialized classifier, we

fine-tune the whole model on the target dataset P;, and evaluate the representation quality by the
expected top-1 accuracy on P;. We use Agy (n, ) and AL (n, 7) to denote the resulting accuracies

of supervised and self-supervised representations, respectively.

Summary of varying factors. We aim to study the effect of class imbalance to feature qualities on
a diverse set of configurations with the following varying factors: (1) the number of examples in
pre-training n, (2) the imbalance ratio of the pre-training dataset 7, (3) ID or OOD evaluation, and (4)
self-supervised learning algorithms: MoCo v2 [16], or SimSiam [9].

Experimental Setup. We pre-train the representations on ImageNet [28] with a wide range of
numbers of examples and ratios of imbalance. Following Liu et al. [24], we consider the long-tailed
Pareto label distributions with imbalance ratio in {1, 0.004, 0.0025}. For each imbalance ratio, we
further downsample the dataset with a sampling ratio in {0.75,0.5,0.25,0.125} to form datasets
with varying sizes. For ID evaluation, we use the original ImageNet training set for the training phase
of linear probe and use the original validation set for the final evaluation. For OOD evaluation, we
fine-tune the pre-trained feature extractors on the downstream tasks. For self-supervised pre-training,
we consider MoCo v2 [16] and SimSiam [9]. Implementation details are deferred to Section A.1.

2.2 Results: SSL is More Robust than SL to Dataset Imbalance

In Figure 2, for both ID and OOD evaluations, the gap of SSL representations learned on balanced and
imbalanced datasets with the same number of pre-training examples, i.e., ASS4(n, 1) — ASSE(n, ), is
smaller than the gap of SL representations, i.e., AS“(n, 1) — ASY(n, r). Furthermore, we compute
the relative accuracy gap to balanced dataset ASSt(n, r) £ (ASSH(n, 1) — ASSE(n, 1))/ ASSE(n, 1) in
Figure 1. With the same number of pre-training examples, the relative gap of SSL representations
between balanced and imbalanced datasets is smaller than that of SL representations,

ASSL 1) — ASSL ASL 1) — ASL
ASSL(TL,’I“) AL (Tl, ) (n’ T) < ASL(TL,T‘) L (’I’L, ) (n,r)- (1)
ASSE(n, 1) Ak (n, 1)
We also note that comparing the robustness with the same number of data is actually in favor of SL,
because SSL is more easily applied to larger datasets without the need of collecting labels.

ID vs. OOD. As shown in Figure 2, representations from SSL perform better than SL pre-training
in ID evaluation with reasonably large n, while SSL pre-training is better in OOD evaluation. This
phenomenon is orthogonal to the observation that SSL is more robust to dataset imbalance, and
is consistent with recent works (e.g., Chen et al. [8], He et al. [16]) which also observed that SSL.
performs slightly worse than SL on balanced ID evaluation but better on OOD tasks.

3 Analysis

Where does the robustness stem from? In this section, we propose a possible reason and justify
it with theoretical and empirical analyses. SSL learns richer features from frequent data that
are transferable to rare data. The rare classes of the imbalanced dataset can contain only a few
examples, making it hard to learn proper features from them. In this case, one may want to resort to
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Figure 3: Visualization of the semi-synthetic setting. Left: The semi-synthetic dataset. Middle:
Visualization of feature activations with Grad-CAM. Right: Accuracies evaluated on rare classes.
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the features from the frequent classes. Due to the supervised nature of classification, SL mainly learns
the features for classifying the frequent classes and may neglect features which can transfer to the rare
classes. In contrast, in SSL, without the bias from the labels, the models learn richer features—both
features for classifying the frequent classes and features transferable to the rare classes.

3.1 Illustrative Semi-synthetic Experiments

Dataset. We consider an imbalanced pre-training dataset with label-relevant and label-irrelevant-but-
transferable features modified from CIFAR-10 as shown in Figure 3 (Left). Classes 1-5 (frequent)
each contains 5000 examples. Classes 6-10 (rare) each has 10 examples. The left half of an image of
classes 1-5 is from classes 1-5 of the original CIFAR-10 and corresponds to the label of that example.
The right half is from a random label-irrelevant image of CIFAR-10. In contrast, the left half of
an example from classes 6-10 is blank, whereas the right half is label-relevant and from classes
6-10 of the original CIFAR-10. In this setting, features from the left halves are correlated to the
classification of the frequent classes, while features from the right halves are label-irrelevant for the
frequent classes, but can help classify the rare classes. Note that features from the right halves cannot
be directly learned from the rare examples with only 10 examples per class.

Pre-training. We pre-train the representations on the aforementioned dataset. We use SimCLR with
ResNet-50. After pre-training, we fix the representations evaluate with linear probe on the 5 rare
classes to test if the model learns proper features for the rare classes.

Results. As a sanity check, we also include a supervised model trained on only the 50 rare examples
(Supervised-rare in Figure 3 (Right)). As expected, the accuracy is 36.5%, which is almost the same
as random representations, indicating the model cannot learn the features for the rare classes due to
lack of data. We then compare supervised learning with self-supervised learning on the imbalanced
dataset. SSL representations performs much better than supervised representations on the rare classes
(70.1% vs 44.3%). In Figure 3 (Middle), SL mostly activate the left halves on frequent and rare
examples, indicating it learns features on the left. In sharp contrast, SSL activates the whole image on
the frequent examples and the right halves on the rare, indicating it learns features from both parts.

3.2 Rigorous Analysis on A Toy Setting

To justify the above conjecture, we instantiate supervised and self-supervised learning in a setting
where the features helpful to classify the frequent classes and features transferable to the rare classes
can be clearly separated. In this case, we prove that self-supervised learning learns better features
than supervised learning.

Data distribution. Let e, es be two orthogonal unit-norm vectors in the d-dimensional Euclidean
space. Consider the following pre-training distribution P of a 3-way classification problem, where
the class label y € [3]. The input x is generated as follows. Let 7 > 0 and p > 0 be hyperparameters
of the distribution. First sample g uniformly from {0, 1} and £ ~ N(0, I') from Gaussian distribution.
For the first class (y = 1), set x = e; — qres + p&. For the second class (y = 2), set z =
—ey — qres + p€. For the third class (y = 3), set x = es + p€. Classes 1 and 2 are frequent classes,

, ggzjg, ggzzgg = o(1). See Figure 8 for an illustration of this

data distribution. In this case, both e; and es are features from the frequent classes 1 and 2. However,
only e helps classify the frequent classes and only e5 can be transferred to the rare classes.

while class 3 is the rare class, i.e.

Algorithm formulations. For supervised learning, we train a two-layer linear network fy, w, () =
W,oWyx with weight matrices W; € R™*? and W, € R3*™ for some m > 3, and then use the first
layer W1, = W as the feature for downstream tasks. Given a linearly separable labeled dataset,
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Figure 4: Explaining SSL’s robustness in a toy setting. e; and e are two orthogonal directions
in the d-dimensional Euclidean space that decides the labels, and es.4 represents the other d — 2
dimensions. Classes 1 and 2 are frequent classes and the third class is rare. To classify the three
classes, the representations need to contain both e; and e, directions. Supervised learning learns
direction e; from the frequent classes (which is necessary and sufficient to identify classes 1 and 2)
and some overfitting direction v from the rare class which has insufficient data. Note that v might be
mostly in the es.4 directions due to overfitting. In contrast, SSL learns both e; and e, directions from
the frequent classes because they capture the intrinsic structures of the inputs (e.g., e; and e are the
directions with the largest variances), even though e, does not help distinguish the frequent classes.
The direction es learned from frequent data by SSL can help classify the rare class.

we learn such a network with minimal norm ||W;||% + ||Wa||% subject to the margin constraint
Twy ws (T)y > fw, w, (), + 1 for all data (z, y) in the dataset and 3’ # y.! For self-supervised
learned, similar to SimSiam [8], we construct positive pairs (z 4+ &,z 4+ £’) where z is from the
empirical dataset, & and ¢’ are independent random perturbations. We learn a matrix Wsgp, € R™*9
which minimizes —E[(W (z +&))T (W (z +¢'))] + | W T W%, where the expectation E is over the
empirical dataset and the randomness of ¢ and ¢’. The regularization term £ ||W "W ||% is introduced
only to make the learned features more mathematically tractable. We use Wsgpx as the feature of
data x in the downstream task.

Main intuitions. We compare the features learned by SSL and supervised learning on an imbalanced
dataset that contains an abundant (poly in d) number of data from the frequent classes but only a
small (sublinear in d) number of data from the rare class. The key intuition behind our analysis is
that supervised learning learns only the e; direction (which helps classify class 1 vs. class 2) and
some random direction that overfits to the rare class. In contrast, self-supervised learning learns both
e; and ey directions from the frequent classes. Since how well the feature helps classify the rare
class (in ID evaluation) depends on how much it correlates with the e5 direction, SSL provably learns
features that help classify the rare class, while supervised learning fails. This intuition is formalized
by the following theorem.

Theorem 3.1. Let nq,ns,ng be the number of data from the three classes respectively. Let p = d=s
and T = ds in the data generative model. For ny,ny = ©(poly(d)) and ns < d5, with probability

1
at least 1 — O(e=4"°), the following statements hold for any feature dimension m > 3:
o Let Wsp = [wy,wy, - ,wy,] " be the feature learned by SL, then |{es, w;)| < O(d~2) for
i€ m].

o Let WsgL = [y, W, -+ , W] be the feature learned by SSL, then ||Tley||y > 1 — O(d™5),
where 11 projects e4 onto the row span of Wil

4 Conclusion

We discover that self-supervised representations are more robust to class imbalance than supervised
representations and explore the underlying cause of this phenomenon. We hope our study can inspire
analysis of self-supervised learning in broader environments in the wild such as domain shift.

"Previous work shows that deep linear networks trained with gradient descent using logistic loss converge to
this min norm solution in direction [19].
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Figure 5: Visualization of the label distributions. We visualize the label distributions of the
imbalanced CIFAR-10 and ImageNet. We consider two imbalance ratios r for each dataset.

A Details of Section 2

A.1 Implementation Details

Generating Pre-training Datasets. CIFAR-10 [22] contains 10 classes with 5000 examples per
class. We use exponential imbalance, i.e. for class ¢, the number of examples is 5000 x efle=1) we
consider imbalance ratio r € {0.1,0.01}, i.e. the number of examples belonging to the rarest class
is 500 or 50. The total n, is therefore 20431 or 12406. ImageNet-LT is constructed by Liu et al.
[24], which follows the Pareto distribution with the power value 6. The number of examples from the
rarest class is 5. We construct a long tailed ImageNet following the Pareto distribution with more
imbalance, where the number of examples from the rarest class is 3. The total number of examples
ng is 115846 and 80218 respectively. For each ratio of imbalance, we further downsample the dataset
with the sampling ratio in {0.75, 0.5,0.25,0.125} to formulate different number of examples. To
compare with the balanced setting fairly, we also sample balanced versions of datasets with the same
number of examples. Note that each variant of the dataset is fixed after construction for all algorithms.
See the visualization of label distributions of dataset variants in Figure 5.

Training Procedure. We use ResNet-50 as backbones. For supervised pre-training, we follow the
standard protocol of He et al. [15] and Kang et al. [20]. On the standard ImageNet-LT, we train
the models for 90 epochs with step learning rate decay. For down-sampled variants, the training
epochs are selected with cross validation. Fo self-supervised learning, the initial learning rate on
the standard ImageNet-LT is set to 0.025 with batch-size 256. We train the model for 300 epochs
on the standard ImageNet-LT and adopt cosine learning rate decay following [16, 9]. We train the
models for more epochs on the down sampled variants to ensure the same number of total iterations.
The code on CIFAR-10 LT is adapted from https://github.com/Reza-Safdari/SimSiam-91.
9-topl-acc-on-CIFAR10. We run each evaluation experiment with 3 seeds and report the average
and standard deviation in the figures.

Evavluation. For in-domain evaluation (ID), we first train the the representations on the aforemen-
tioned dataset variants, and then train the linear head classifier on the full balanced CIFAR10 or
ImageNet. We set the initial learning rate to 30 when training the linear head with batch-size 4096
and train for 100 epochs in total. For in-domain out-of-domain evaluation (OOD) on ImageNet, we
first train the the representations on the aforementioned dataset variants, and then fine-tune the model
to CUB-200 [31], Stanford Cars [21], Oxford Pets [26], and Aircrafts [25]. The number of examples
of these target datasets ranges from 2k to 10k, which is a reasonable scale as the number of examples
of the pre-training dataset variants ranges from 10k to 110k. The representation quality is evaluated
with the average performance on the four tasks. We set the initial learning rate to 0.1 in fine-tuning
train for 150 epochs in total. For in-domain out-of-domain evaluation (OOD) on CIFAR-10, we use
STL-10 as the downstream target tasks and perform linear probe.

A.2 Additional Results

To validate the phenomenon observed in Section 2 is consistent for different self-supervised learn-
ing algorithms, we provide the OOD evaluation results of SimSiam trained on ImageNet variants
in Figure 6. SimSiam representations are also less sensitive to class imbalance than supervised
representations.


https://github.com/Reza-Safdari/SimSiam-91.9-top1-acc-on-CIFAR10
https://github.com/Reza-Safdari/SimSiam-91.9-top1-acc-on-CIFAR10
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Figure 6: OOD Results of SimSiam on ImageNet. Simsiam also demonstrates robustness to class
imbalance compared to supervised learning

Table 1: Numbers in Figure 2 and Figure 6.

Imbalanced Ratio r | r = 1, balanced | r = 0.004 | r = 0.0025
Data Quantity n ‘116K 87K 58K 29K 14K‘ 116K 87K 58K 29K 14K‘80K 60K 40K 20K 10K
MoCo V2, ID 50.4 43.5 40.9 37.0 30.8| 49.5 43.2 39.5 36.6 30.5|40.6 38.8 35.5 31.9 27.2

MoCo V2, 00D 80.3 79.8 79.7 77.4 77.0| 80.2 80.1 79.5 77.8 77.3|79.2 78.8 77.7 75.6 74.4
Supervised, ID 54.3 51.6 46.1 40.5 26.3| 529 49.6 44.0 37.3 24.9]46.1 42.0 36.3 27.5 203
Supervised, OOD | 76.6 74.7 71.9 67.4 59.1| 75.5 73.3 70.4 65.8 57.8|71.8 69.1 65.9 60.3 54.3
SimSiam, OOD 80.7 80.4 79.9 78.7 77.2| 80.6 79.9 79.6 78.8 76.9|79.8 79.3 78.8 77.5 76.0

We also provide the numbers of Figure 2 and Figure 6 in Table 1.

B Details of Section 3.1

We first generate the balanced semi-synthetic dataset with 5000 examples per class. The left halves
of images from classes 1-5 correspond to the labels, while the right halves are random. The left
halves of images from class 6-10 are blank, whereas the right halves correspond to the labels. We
then generate the imbalanced dataset, which consists of the 5000 examples per class from classes 1-5
(frequent classes), and 10 examples per class from classes 6-10 (rare classes). We use Grad-CAM
implementation based on https://github.com/meliketoy/gradcam.pytorch and SimCLR
implementation from https://github.com/leftthomas/SimCLR. We provide examples and
Grad-CAM of the semi-synthetic datasets in Figure 7. To avoid confusing the left and right parts, we
disable the random horizontal flip in data augmentation.

Supervised Self-supervised Supervised Self-supervised
Representations Representations Representations Representations
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Figure 7: Examples of the semi-synthetic Datasets and Grad-CAM visualizations.
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Figure 8: Explaining SSL’s robustness in a toy setting. e¢; and e, are two orthogonal directions in
the d-dimensional space that decide the labels, and es.; contains the other d — 2 dimensions. Classes
1 and 2 are frequent classes and class 3 is rare. To classify them, the representations need both e; and
eo. SL learns e; from the frequent classes to identify classes 1 and 2, and an overfitting direction v
from class 3 with limited data. In contrast, SSL learns both e; and es from the frequent classes, even
though ey does not help distinguish the frequent classes. e, can help classify the rare class.

C Proof of Theorem 3.1

Data distribution. Let e, e5 be two orthogonal unit-norm vectors in the d-dimensional Euclidean
space. Consider the following pre-training distribution P of a 3-way classification problem, where
the class label y € [3]. The input x is generated as follows. Let 7 > 0 and p > 0 be hyperparameters
of the distribution. First sample ¢ uniformly from {0, 1} and £ ~ N(0, I') from Gaussian distribution.
For the first class (y = 1), set x = e; — qres + p&. For the second class (y = 2), set z =
—ej — qTes + p&. For the third class (y = 3), set x = ea + p&. Classes 1 and 2 are frequent classes,

while class 3 is the rare class, i.e., zgzz% , ggzzg = 0(1). See Figure 8§ for an illustration of this
data distribution. In this case, both e; and es are features from the frequent classes 1 and 2. However,

only e; helps classify the frequent classes and only e5 can be transferred to the rare classes.

Algorithm formulations. For supervised learning, we train a two-layer linear network fy, w, () =
W,y W,z with weight matrices W; € R™*? and W, € R3*™ for some m > 3, and then use the first
layer Wiz as the feature for downstream tasks. Given a linearly separable labeled dataset, we learn
such a network with minimal norm || W ||% + || W2 ||% subject to the margin constraint fy, w, (), >
Jw, w, (), +1 for all data (z, y) in the dataset and y’ # y.* Notice that when the norm is minimized,
the row span of W is exactly the same as the row span of matrix Wy, S [wy, wa, w3]T c R3xd
which minimizes [|w: |3 + |lw2 |3 + [lws||3 subject to the margin constraint w, & > w2 + 1 for
all empirical data (z,y) and 3’ # y. Therefore, feature Wiz is equivalent to Wz for downstream
linear probing, so we only need to analyze the feature quality of Wy .z for supervised learning.
For self-supervised learned, similar to SimSiam [8], we construct positive pairs (z + &,z + &)
where x is from the empirical dataset, £ and &’ are independent random perturbations. We learn a
matrix Wssi, € R?*? which minimizes —E[(W (z + €))7 (W (2 + €))] + 1||W T W|[3, where the

expectation [ is over the empirical dataset and the randomness of £ and &’. The regularization term
LW TW %, is introduced only to make the learned features more mathematically tractable. We use
WssLx as the feature of data x in the downstream task.

We notate data from the first class as :cgl) =e — qfl)Teg + pfl-(l) where i € [n1] and qgl) € {0,1}.

Similarly, we notate data from the second class as :1:1(-2)

=—e; — q§2)762 + p§§2) where ¢ € [ng] and
qfl) € {0,1}. We notate data from the third class as xl(f?’) =ey+ pfi(?’) where i € [n3]. Notice that
all fi(k) are independently sampled from N(0, T).

We first introduce the following lemma, which gives some high probability properties of independent
Gaussian random variables.

Lemma C.1. Let & ~ N(0,1) for i € [n]. Then, for any n < poly(d), with probability at least

1
1 — e~ %" and large enough d, we have:

o (&, e1)| < do, (€ e2)| < dT0 and |||&||2 — d| < 4d3 for all i € [n).

?Previous work shows that deep linear networks trained with gradient descent using logistic loss converge to
this min norm solution in direction [19].
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s [, 6l < 3d3 forall i # j.

Proof of Lemma C.1. Let &,&" ~ N(0, I) be two independent random variables. By the tail bound
of normal distribution, we have

1
Pr (|<§761>‘ > d%) <d" 1 . e_%. )
By the tail bound of Xfl distribution, we have
Pr (|11 - dl > 4at) <22 )

Since the directions of £ and ¢’ are independent, we can bound their correlation with the norm of £
times the projection of £’ onto &:

c\»—A

+ 26_\[.
“4)

PW@ﬁbwﬁ<ﬁ@m>mea+m@ @m ﬁ)<lo

Since every ; and §; are independent when i # 7, by the union bound, we know that with probability

_L
2

at1east1—(n2+2n)(e +2eV4), we have |(&;, e1)| < dT5, (€, e2)| < d76 and |||&]|2 — d] <

4d% foralli € [n], and also [{&i, &) < 3d5 forall i # j. Since the error probability is exponential

1
in d, for large enough d, the error probability is smaller than e~¢"° , which finishes the proof. O

Using the above lemma, we can prove the following lemma which constructs a linear classifier of the
empirical dataset with relatively large margin and small norm.

Lemma C.2. In the setting of Theorem 3.1, let w] = e, w5 = —ey, W3 = ,Tld S fi(g). Apply
Lemma C.1 to the set of all §£k) where k € [3] and i € [ny]. When the high probability outcome of

Lemma C.1 happens, the margin of classifier {w},w}, w3} is at least 1 — O(d~10). Furthermore,
we have ||wj]|3 < O(d™5).

Proof of Lemma C.2. When the high probability outcome of Lemma C.1 happens, we give a lower

)

bound on the margin for all data in the dataset. For data = x; ’ in class 1, we have

wiTe =14 (", e1)p > 1~ pdo, 5)
wi x=—1+ (" e)p < —1+ pd, (6)

. 1 3(7+1 3n
w3Tm = ﬁ (61 — Q§1)T€2 + Pgi(l ) Z€ 7 S pd)d d3 ™

So the margin on data (z; ) , 1) is

1
wTTz—w:; z>1—pdio —

ng(TJrl)d%_

2 >1-0(@ ).
o 7 ds >1-0(d 1) ®)

Similarly, for data 3:52)

For data x = :cg3)

in class 2, the margin is at least 1 — O(dfﬁ).

in class 3, we have

T
n
- 3713 ndd 10 1

L (3) @) < Ly @2 _3ns s -t
wy ' = Zf (e2+pé} )Zdl\&; l2 = —~d° o >1-0(d"5). (9)
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On the other hand,

wi'e = (pe?, 1) < pd, (10)
wy 'z = (pelY, —e1) < pd 5. (11
So the margin is
wi'z — max{w! z,wi 2} > wh z— pdic > 1 — O(d_Tlﬂ). (12)
Finally, noticing that ||wj || < 2”;7‘/3 < 2d~10 finishes the proof. O

Now we are ready to prove the supervised learning part of Theorem 3.1 using our construction:

Proof of Theorem 3.1 (supervised learning part). We frist apply Lemma C.1 to the set of all fi(k)
where k € [3] and i € [ng]. We consider the situation when the high probability outcome of

1
Lemma C.1 holds (which happens with probability at least 1—e~%""). By Lemma C.2, the constructed

classifier {w?, w}, w;} has margin o > 1 — O(d~ 1) in this case. As a result, {Lwy, Lws, Lws}
is a classifier with margin 1 and norm bounded by
1 2 1 2 1 o _ 2+ will3 -
—wj —w} —wi|l5 = —-== <24 0(d"19). 13
Ha 1”2+”a 2||2+Ha 33 o? <2+0( ) (13)

Let {w1, wa, w3} be the solution of supervised learning. Since its norm cannot be larger than the
constructed one, we have ||wy[|2 + ||ws||2 + ||ws||? < 2 + O(d~10). By standard concentration

inequality, when n; > poly(d), with probability at least 1 — e? ', we have
etV —er| < a7, (14)

i

=

Eie[nqu

where the expectation is over all the data from class 1 that satisfies qgl) = 0. By the definition of
{w1, wa, w3} we know (w; — wg)T:cl(-l) > 1 forall ¢ € [n1], hence averaging over all the class 1
1)

data with ¢; * = 0 and using the above inequality gives us
(wy —ws3)Ter > 1= |jw; —wslla-d™ 10 >1—0(d ). (15)
A similar analysis for class 2 data gives us
(wy —w3) T (—e1) > 1 —O(d™ ). (16)

Now we prove that w1, ws, ws all have small correlation with e;. Without loss of generality, we
assume w;el L£¢>0.Ift > %, we have

1 2 1
(w1, e1)? + (wa, e1)? + (ws, e1)? > (t f1- O(d*ﬁ)) >225-0(d" %), (17

which contradicts with |[wy [|3 + [[wa |3 + |lws]|3 < 2 + O(d~70). Therefore, there must be t < 3,
hence

(wi,e1)? + (wa, e1)? + (ws, e1)? (18)
1 2 1 2
> (1+t-0@ %)) +(1-t-0@ ™)) +¢ (19)
>2+ 32— O(d™10) (20)
>2-0(d ). 1)
As a result,
(wr, €2>2 + (w2, €2>2 + (ws, €2>2 (22)
< w3 + w3 + lwsl3 = (wi, e1)? = (wa, e1)? = (w3, 1) (23)
< (2 n O(d‘TIO)> - (2 - O(d—%)> (24)
<O(d™ ™), (25)
which finishes the proof. O
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To prove the self-supervised learning part of Theorem 3.1, we first introduce the following lemma
which gives some helpful properties of the empirical data matrix.

Lemma C.3. In the setting of Theorem 3.1, let M = E,[xz "] where the expectation is over
empirical data. Then, when ny,ny > poly(d), with probability at least 1 — e~%"°, we have: (1)
ed Mey > Q(d3), and (2) uT Mu < O(1) for all u € R? such that u™ e3 = 0 and |ul]y = 1.

Proof of Lemma C.3. Letn = ny + na + n3. We abuse notation and let &; (¢ € [n]) be the set of all
§§k) that appears in the empirical data. Let matrix M’ = % Z?:l &£ . By standard concentration

1
inequalities and union bound, for n > poly(d), with probability at least 1 — %e‘d 9, we have that
|M; ;| < L forall i # j and |M], —1] < 1 forall i € [d]. In this case, for any vector u € R? such

that ||ul|2 = 1 and u " ey = 0, we have

u' Mu < 2||ul|3 +2u’ (0P M )u < 2+ 2p* + 20| M’ — I||p < O(1). (26)

On the other hand, by the definition of data distirbution and standard concentration inequalities, for
n > poly(d), with probability at least 1 — %e’dﬁ we have that: at least % of all data either is class 1

with ¢!" = 1 or class 2 with ¢* = 1, and [L 37, &lle < O(%). In this case,

2
1 1
ey Mey =By (e3 7)%] > (Eqleg 2])* > <3T —es <n Z&)) > Q%) =Qdf). @)
i=1
O
Using the above lemma, we can prove the self-supervised learning part of Theorem 3.1.

Proof of Theorem3.I(self-supervised learning part). Let M = E,[zx "] be the empirical data ma-
trix, where the expectation is over the dataset. Notice that self-supervised learning objective has the
same minimizer as the matrix factorization objective |M — W "W||%,, by Eckart—Young—Mirsky
theorem we know that the span of wi, ws is exactly the span of the top 2 eigenvectors of matrix
M. Let M = Zle \iv;v; where ); is the i-th largest eigenvalue of M with the corresponding

. . . . d
eigenvector v;. We decompose e in the eigenvector basis as es = Zi:l Civ;.

1
By Lemma C.3, we know that with probability at least 1 — e~4'°, we have e Mey > Q(d%) and
% < O(1) for all u orthogonal to es. To prove the result regarding self-supervised learning, we
2

only need to prove that (2 > 1 — O(d™ %) in this case.

We first show that ¢ 12 > % For contradiction, first assume C12 < % Define vector

i Givi
u= QU — T (28)
(-
which satisfies u " e3 = 0 and ||u/|2 < 4. Notice that
u Mu _ e Mey 2
= = Q(ds), (29)
[[ull3 4

. . T
which contradicts to UHTJI\I/QJ < O(1). Therefore, we have (7 > 1.
2

1

- 1 and define vector
1

To prove that ¢ is close to 1, we let scalar t =

d
u=—tGvr + Y _ G, (30)

=2
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which satisfies u ez = 0. Since (? > 1, we have ¢ < 1 and [Ju/|3 < 1. As a result, we have

u' Mu

[ull3

d
> NG+ Y N > t2e] Mey > Q(£2d5). 31)
=2

On the other hand, we know that %22t < O(1). Comparing these two bounds gives us t2 < O(d~5 ),

lTull3

which means (2 > 1 — O(d~5). O
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D Related Work

Supervised Learning with Dataset Imbalance. There exists a line of works studying supervised
imbalanced classification. Ando & Huang [1], Buda et al. [3] proposed to re-sample the data to make
the frequent and rare classes appear with equal frequency in training. Re-weighting assigns different
weights for head and tail classes and eases the optimization difficulty under class imbalance [11, 29,
33]. Byrd & Lipton [4], Xu et al. [35] studied the effect of importance weighting and found out that
importance weighting does not change the solution without regularization. Cao et al. [5] studied
reweighted regularization based on classifier margin, but these techniques are limited to supervised
imbalanced recognition. Cao et al. [6] proposed to regularize the local curvature of loss on imbalanced
and noisy datasets. Recent works also designed specific losses or training pipelines for imbalanced
recognition [18, 17, 32, 38]. Kang et al. [20] found out that the representations of supervised learning
perform better than the classifier itself with class imbalance. Yang & Xu [36] studied the effect of
self-training and self-supervised pre-training on supervised imbalanced recognition classifiers. In
contrast, the focus of our paper is the effect of class imbalance on self-supervised representations,
which is orthogonal to the self-supervised learning literature.

Self-supervised Learning. Recent works on self-supervised learning successfully learn representa-
tions that approach the supervised baseline on ImageNet and various downstream tasks. Contrastive
learning methods attract positive pairs and drive apart negative pairs [16, 8]. Siamese networks predict
the output of the other branch, and use stop-gradient to avoid collapsing [13, 9]. Clustering methods
learn representations by performing clustering on the representations and improve the representations
with cluster index [7]. Cole et al. [10] investigated the effect of data quantity and task granularity
on self-supervised representations. Goyal et al. [12] studied self-supervised methods on large scale
datasets in the wild, but they do not consider dataset imbalance explicitly. Several works have also
theoretically studied the success of self-supervised learning [2, 23, 14, 34].

Ethics Statement

Our paper is the first to study the problem of robustness to imbalanced training of self-supervised
representations. This setting is of critical importance to Al Ethics (especially fairness or bias
concerns), as large real-world datasets tend to be imbalanced in practice, for instance including less
examples from under-represented minorities. Furthermore, pre-training is a standard practice in deep
learning, especially for quickly adapting models to new domains, which corresponds to our OOD
evaluation scenario.

Our experiments and theoretical analysis show that SSL is more robust than supervised pre-training,
especially in the OOD scenario. As supervised learning is still the de facto standard for pre-training,
our work should have a wide impact, encouraging practitioners to use SSL for pre-training instead, or
at least consider evaluating the impact of imbalanced pre-training on their downstream task.

We also remark that the paper does not imply at all that the algorithms proposed or studied can
guarantee any form of fairness, and they in fact should still suffer from biases. The paper should be
considered as a step towards studying the important technical issue of dataset imbalance, which is
closely related to the fairness or biases questions.

16



	Introduction
	Exploring the Effect of Class Imbalance on SSL
	Problem Formulation
	Results: SSL is More Robust than SL to Dataset Imbalance

	Analysis
	Illustrative Semi-synthetic Experiments
	Rigorous Analysis on A Toy Setting

	Conclusion
	Details of Section 2
	Implementation Details
	Additional Results

	Details of Section 3.1
	Proof of Theorem 3.1
	Related Work

