Under review as a conference paper at ICLR 2023

/GYM: NATURAL LANGUAGE VISUAL REASONING
WITH REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present /Gym, a new benchmark for language-conditioned reinforcement
learning in visual environments. /Gym is based on 2,661 human-written natural
language statements grounded in an interactive visual environment, and empha-
sizing compositionality and semantic diversity. We annotate all statements with
Python programs representing their meaning. The programs are executable in an
interactive visual environment to enable exact reward computation in every pos-
sible world state. Each statement is paired with multiple start states and reward
functions to form thousands of distinct Markov Decision Processes of varying dif-
ficulty. We experiment with /Gym with different models and learning regimes.
Our results and analysis show that while existing methods are able to achieve
non-trivial performance, /Gym forms a challenging open problem.

1 INTRODUCTION

Reinforcement learning (RL) with natural language context poses important opportunities and chal-
lenges. Language provides an expressive and accessible conduit for task specification, so that RL
agents can address a broad set of tasks, rather than learn a single behavior. For natural language
processing (NLP), RL is a promising avenue for language use and acquisition through world in-
teraction. However, language is a challenging medium for learning to reason. The RL agent must
reason about high-level language concepts, low-level actions, and the relations between them, and
it must learn to do so efficiently because language data is inherently limited due to requiring human
interaction.

Despite significant interest and promising approaches, it has been challenging to create expressive
RL benchmarks with natural language. A core challenge is accurately computing a reward that is
dependent on natural language semantics. Existing approaches adopt different strategies to address
this issue, such as using synthetic language (Coté et al.| |2018}; |[Co-Reyes et al., |2019) or heuristic
approximation, for example using demonstration data (Misra et al., [2017). While these approaches
open new avenues for research, they either do not explore the full complexity of human language or
introduce unexpected artifacts into learning through meaning approximations.

We present EGymP_-] a reinforcement learning benchmark for natural language visual reasoning that
addresses the above issues. ¢Gym implements the standard OpenAl Gym API (Brockman et al.}
2016), and aims to bring natural language into the suite of commonly used RL benchmarks.

{Gym is focused on spatial reasoning environments, where an agent manipulates a visual environ-
ment by adding and removing objects conditioned on a natural language statement. The agent’s
goal is to modify the environment so that a given statement will have a pre-specified truth-value
with regard to the environment (i.e., the constraints specified in the language are either satisfied
or violated). /Gym includes 2,661 highly-compositional and semantically-diverse natural language
statements from the NLVR corpus (Suhr et al. 2017)), that combine with a configurable environ-
ment backbone to create thousands of Markov Decision Processes (MDP) of varying complexity,
for example with different sizes of the state and action spaces.

A key challenge in constructing /Gym is accurate reward computation. Because of the flexibility of
the environments and language, there are many possible equally correct termination states for each

'¢Gym is a temporary placeholder name for submission anonymity.

Under review as a conference paper at ICLR 2023

MDP. Correctly evaluating reward at every possible state requires taking into account the meaning
nuances of the highly-compositional language. We address this problem by annotating all statements
with executable Python programs representing their meaning, effectively creating a supervised se-
mantic parsing dataset (Zelle & Mooneyl 1996} Zettlemoyer & Collins| |2005; |Suhr et al.| [2018).
The programs are executable in a structured representation of the environment, and allow for exact
and reliable reward computation at every possible state.

Our experiments with /Gym show that existing models can provide non-trivial performance given
sufficient training time, with multi-modal pre-training providing further benefit. However, our re-
sults show that there remains significant room for improvement. For example, on the simplest
configuration, our agents can solve 76.54% of the test environments, but performance drops sig-
nificantly to only 6.09% on the most complex configuration. This is partially due to the challenging
exploration problem of the most complex configuration, where performance climbs from 6.09% to
29.95% when we provide additional guidance on when tasks are completed during learning. The
{Gym framework and trained models will be released upon publication.

2 RELATED WORK

There is significant and increasing interest in RL conditioned on natural language. Various strategies
are deployed to resolve language semantics for reward computation, mostly by strict control of the
language or through approximations.

Potentially the most common approach is to control the language by using synthetic language backed
by a formal representation (Narasimhan et al., 2015; Johnson et al., 2017azbj (Coté et al., 2018;
Chevalier-Boisvert et al [2019; [Co-Reyes et all [2019; Jiang et al., 2020). Although synthetic lan-
guage allows studying the problem of learning high-level concepts, many of the complexities of
natural language are stripped away, and such approaches run the risk of reducing the language learn-
ing challenge to reverse engineering the hand-crafted generation process.

An alternative that allows for natural language that attempts to retain the control of its semantics is
to generate the target sequence of decisions (i.e., task demonstration), and solicit post-hoc language
instructions (Shridhar et al.,[2020;/2021; |Hanjie et al.|[2021)). While this process uses human-written
language, it potentially implicitly retains the regularities of the demonstration generation procedure.

Others have carefully designed the underlying environment to simplify termination state evaluation
given demonstrations, for example, with a sparse graph-based structure (Anderson et al., 2018} |Chen
et al.;,2019; Ku et al., |2020). However, recent work shows the potential for evaluation fidelity issues
even in these settings (Jain et al.,[2019)).

We emphasize human-written natural language, and opt to not use underlying hand-crafted proce-
dures as stimuli for the writing. /Gym prioritizes exact reward computation rather than automated
approximations to allow for relatively clean benchmarking of learning methods.

Our annotation of natural language statements with programs is inspired by the annotation of data for
supervised learning of semantic parsers (Zelle & Mooney, 1996} Zettlemoyer & Collins| 2005; Suhr,
et al.|[2018). The ontology that we use to define the Python API of our environments is based on the
semantic parsing work of |(Goldman et al.| (2018). Robust semantic parsers can assist in automating
our annotation process.

3 THE /GYM BENCHMARK

£{Gym consists of a collection of environments that share a common backbone. The backbone is a
2D plane that is manipulated by placing and removing objects of different types. Each environment
instance is a Markov Decision Process (MDP) created by pairing a natural language statement and a
target boolean value with a configuration of the shared backbone. The goal of the agent in each en-
vironment is to manipulate it by adding and removing objects so that the truth-value of the statement
with regard to the environment is the target boolean.

The learning problem /Gym presents is to induce a policy that generalizes across MDPs. We split
the MDPs to training, development, and held-out testing sets. The training environments are to be

Under review as a conference paper at ICLR 2023

Table 1: Data statistics per CMDP configuration and data split. The number of MDPs corresponds
to the number of contexts under each CMDP. For FLIPIT, “Init.” corresponds to the total number
of initial states across all MDPs for this CMDPEI

TOWER-SCRATCH TOWER-FLIPIT SCATTER-SCRATCH SCATTER-FLIPIT

MDPs MDPs Init. MDPs MDPs Init.
Train 989 1,910 5,704 1,241 2,340 6,696
Dev 163 317 676 87 164 313
Test 324 619 1,383 155 285 591
Total 1,476 2,846 7,763 1,483 2,789 7,600

used for parameter estimation, while the two other sets are for testing during development and for
final held-out testing to report approach performance

There are two dimensions of configuration: appearance and starting condition. The appearance
determines the state space, transition function, and action space. The starting condition determines
the agent’s goal. The appearance of the environment can be (a) TOWER: the objects include squares
only, and they can be stacked into towers only; or SCATTER: objects of different types can be freely
distributed. TOWER gives a more constrained problem with much smaller state and action spaces
compared to SCATTER.

The starting condition and agent’s objective can be: (a) SCRATCH: the environment starts with-
out any objects and the goal is to modify it so that the statement’s truth-value is True; or (b)
FLIPIT: the environment starts with a set of objects and the agent’s goal is to flip the truth-value
of the statement. SCRATCH generally only requires adding objects, except in cases of correcting for
agent’s errors, while FLIPIT requires both adding and removing, because there are already objects
present. The four configurations are TOWER-SCRATCH, TOWER-FLIPIT, SCATTER-SCRATCH,
and SCATTER-FLIPIT. In our experiments (Section 3)), we observe the different configurations
provide different levels of difficulty. For example, SCATTER configurations are generally much
harder than TOWER, as expected with the much larger state and action spaces.

Each configuration forms a Contextual Markov Decision Process (CMDP; Hallak et al.l [2015)).
CMDP is an abstraction over a set of Markov Decision Processes (MDPs) to account for a context
that remains constant throughout the interaction with an MDP. We set the context to include the state-
ment and the target boolean the interaction is conditioned on. A CMDP is a tuple (C, S, A, M(c)),
where C is the context space, S the state space, A the action space, and M a function mapping a
context ¢ € C to an MDP M(c) = (S, A, T, R, 3°). Here, T : S x A — S is a transition function,
R : S x A — R areward function, and (¢ an initial state distribution. This means a CMDP is a
collection of MDPs that share the same state and action spaces. The learning problem is to estimate
parameters 6 for a policy mg : S xC — A, which takes as input both the current state and the context
underlying the MDP.

Table T| shows the number of MDPs under each configuration. shows example action
trajectories in MDPs for each of the four CMDPs. Depending on the context, different types of
reasoning are required from the agent. For example, in the second column of the statement
there is no black block as the top of a tower with at most three blocks requires the agent to reason
about negation, soft cardinality, color, and position, while the statement in the third column there is
a box with 2 triangles of same color nearly touching each other requires a comparison and to reason
about several object attributes (shape, color, position). Both require the agent to perform high-level
relational reasoning about single objects or sets.

Contexts A context ¢ € C is a pair ¢ = (Z,b), where T is a natural language statement and
b € {True,False} is a target boolean value for the statement Z with respect to the state s. The set

2We recommend reporting both development and held-out test results in future work for easy comparison.

*NLVR includes a total of 18,322 images. This allows expanding the number of initial states to 92,179
initial states through box element permutations. We do not manipulate this property in this work, but future
work could take advantage of it.

Under review as a conference paper at ICLR 2023

TOWER-SCRATCH

TOWER-FLIPIT

SCATTER-SCRATCH

SCATTER-FLIPIT

There is a blue block as
the base of a tower
with only two blocks.

o

There is no black block as
the top of a tower with
at most three blocks.

There is a box with 2
triangles of same color
nearly touching each other.

There is a grey box where
none of the black objects
are touching the edge

True True True False
S
N -1 1. i1 1.1
ag = ADD(ap = ADD(
ao = ADD
ao ~(s0,¢) | yIporE (ao = REMOVE(X0, Yo, X0, Yo
7o ~ R®(s0, ao) BLUE) RIGHT) TRIANGLE, SQUARE,
YELLOW, LARGE) BLACK, LARGE)
- .1 -1 1 11 - 1.1
a1 = ADD(a1 = ADD(
L=
ay ~ 7(s1,¢) _ X1, Y1, _
n~ R Gstan) | Yarow a1 =S10P() TRIANGLE, a1 = STOP()
YELLOW, SMALL

)
= 1.1 - 0.0

az ~ Tr(527 C) —
ro ~ R°(s2,a2) az = STOP()

|

Figure 1: Overview of the four CMDP configurations, with an example for each. Every example
is conditioned on a context ¢ = (Z,b), and starts with a state sy, sampled from the initial state
distribution 3¢. For example, for TOWER-SCRATCH (left column), the top image depicts the initial
state sy with the context c. The context ¢ includes the statement there is a blue block as the base
of a tower with only two blocks and the target boolean True. The initial state sq is an image with
three empty light grey box regions separated by dark grey separators. The agent 7 is presented with
(so, ¢), and samples an action ag ~ 7(sg, ¢). The environment transitions to the next state s;, while
the context remains the same. This process continues until the termination condition is filled.

as = STUP()

of statements is predefined for TOWER and SCATTER based on the NLVR data, but identical across
the choice of SCRATCH and FLIPIT. The target boolean value in SCRATCH is always True. In
FLIPIT, the target boolean value can be either True or False.

States A state s € S is an RGB image. Images in /Gym are divided into three box regions
of identical dimensions by two dark gray separators (Figure I). The objects in /Gym have three
properties, each can take multiple values: shape (CIRCLE, SQUARE or TRIANGLE), color (BLACK,
BLUE, or YELLOW), and size (SMALL, MEDIUM or LARGE). In TOWER, states are constrained to have
stacks of up to four SQUAREs of MEDIUM size and any color at the center of each box. SCATTER states
support all object shapes, sizes, and colors, and they may be positioned freely. In both conditions,
objects cannot cross image boundaries or into the separators. The choice between SCRATCH or
FLIPIT does not influence the state space.

Actions and Transitions There are three action types STOP, ADD, and REMOVE. STOP terminates
the episode and does not require any parameters. The truth-value of the statement is only evalu-
ated and compared to the target boolean after the STOP action is taken. ADD adds objects to the
environment, and REMOVE removes objects.

They take arguments that differ between TOWER and SCATTER:

TOWER: Similar to the state space of TOWER, the actions are also constrained. Both ADD and
REMOVE take a position argument, which has three possible values corresponding to the
three box regions. Objects are always added or removed at the top of the stack. Adding
an object on top of a stack of four objects or removing an object from an empty box are
both invalid actions. ADD also takes a color argument. For example, the first action on

Under review as a conference paper at ICLR 2023

the left trajectory in[Figure T]is adding a blue square in an empty box. Including STOP,
there are 1 4+ (3 4+ 1) x 3 = 13 actions.

SCATTER: Unlike TOWER, objects of any type can be placed freely in the box regions. Both ADD
and REMOVE take 2D coordinates that specify the pixel location. Adding an object places
it so that its top-left coordinates are the given coordinates. Removing an object will
remove the object at the given coordinates. Adding also requires specifying the shape,
color, and size. The action is invalid if adding results in objects’ overlap or boundary
crossing with the separators or image boundaries. Removing from a position that does
not include an object is also an invalid action. The native resolution of images in /Gym
is 380% 100 pixels. Including STOP, there are 1 4+ (380 x 100) x ((3 x 3 x 3) +1) =
1,064,001 actions. Because of the extremely large action space, /Gym also allows
acting with a coarser grid system for SCATTER that is automatically mapped to the
original resolution (Appendix A.T). In our experiments (Section 5)), we use a grid of
19x35, giving a total of 2,661 actions. In general, the coarser the grid, the more MDPs
are not solvable.

The transition function 7" : & x A — & depends on the choice between TOWER and SCATTER
configurations, because this choice determines the action space. Similar to the action spaces, the
transitions in TOWER are more constrained compared to SCATTER. The transition function does not
modify the context, which is fixed for a given MDP.

Reward Function The reward function R€ is computed with respect to the context pair ¢ = (Z,),
where T is a natural language statement and b is the target boolean value. The reward is based
on evaluating the truth-value of the natural language statement & with respect to a state s, and
comparing it to the target boolean b. /Gym includes an executable evaluation function £* : S x A —
{True,False} for every statement 7. describes how we create the evaluation functions.

The agent receives a positive reward for terminating the episode using the STOP action with the
statement evaluation £ () equal to the target boolean value b. If the statement boolean value £7(s)
does not equal the target boolean b value when taking the STOP action, the agent receives a negative
reward. If the episode terminated because the current time step ¢ reached the action horizon H or
because of an invalid action, the agent also receives a negative reward. Action validity depends on
the current state s and on the configuration, because TOWER and SCATTER have different action
spaces. For example, in TOWER, adding an object to a box (e.g., ADD(MIDDLE, BLUE)) is only valid
if the box has less than four objects, because towers have a maximum height of four. There is also a
verbosity penalty of § for every other action. Formally, the reward is:

1.0 a=STOPAE"(s)=b
—1.0 a=STOPAE(s)#b
—1.0 (aisinvalidins)V (t = H)
—§ otherwise

R¢(s,a) =

Initial State Distribution The initial state distribution 3¢ is parameterized by the context ¢ € C,
which is different between SCRATCH and FLIPIT. In SCRATCH, the agent modifies an empty
environment to satisfy the truth-condition of the statement z in the context ¢, so the initial state
sp is always an empty image. The set of initial states 5¢ for every context ¢ € C is the set of
images associated with the statement z in the NLVR data. In practice, for FLIP IT, this set includes
between 1 to 43 images. shows the total number of initial states in each configuration.

4 THE /GYM DATA

The data used for /Gym is based on the NLVR corpus (Suhr et al., [2017). The NLVR data was
initially collected as a supervised learning benchmark. We formalize an interactive task on top of
the NLVR data and collect additional annotations for reward computation.

4.1 BACKGROUND: THE NLVR CORPUS

NLVR includes human-written natural language statements paired with synthetic images. Each pair
is annotated with the boolean truth-value of the statement with regard to the image (i.e., True if

Under review as a conference paper at ICLR 2023

the statement is true with regard to the image, or False otherwise). The images are designed to
support complex reasoning, including about spatial and set relations. The original learning task
posed by NLVR is to classify statement-image pairs as True to indicate the statement is true with
regard to the image, or False otherwise. Various approaches were developed to address the NLVR
challenge (Suhr et al} 2017; Tan & Bansal, |2018}; |Goldman et al.| 2018; [Pavez et al.l 2018; [Yao
et al., 2018} |Hudson & Manning, 2018} |Perez et al., [2018}; Dasigi et al.; [Zheng et al., 2020; |Gupta;
et al.| 2021), and a separate version using photos was also released (Suhr et al.| 2019)E]

Qualitative analysis of the data (Table 2 in|Suhr et al.|(2017)) shows a more diverse representation of
semantic and compositional phenomena compared to related corpora (Antol et al., 2015), including
requiring joint visual-linguistic reasoning about spatial relations, quantities, and sets of objects.
NLVR also provides an underlying structured representation for every image, which supports easy
manipulation of images. The combination of simple interface for image manipulation with complex
reasoning via natural language makes NLVR ideal to support an interactive benchmark environment.

The original dataset has four splits for training, development, public testing, and hidden testing. We
follow the original splits for the training and development sets. Following the rest public release of
the hidden testing set, we merge the public and hidden testing sets into a single public test split.

4.2 ANNOTATIONS FOR REWARD COMPUTATION

The NLVR annotations include the truth-value of each statement with regard to the images paired
with it in the data. Once we manipulate the image (i.e., change the state in our interactive environ-
ment), the truth-value annotation does hold. A key challenge for creating an interactive environment
using the NLVR data is the need for an accurate evaluation of the natural language statement for
every possible state (i.e., image), as required for reward computation (Section 3).

We address this challenge by annotating each statement with an executable boolean Python pro-
gram representing its meaning, £ (Section 3). The Python program operates on the underlying
structured representation. It returns True for every image that satisfies the constraints specified in
the corresponding statement, and False otherwise. In general, there are many states that satisfy
any given statement, many more than provided with the original NLVR images.

The programs are written using an API defined over the structured representations. We base the API
design on the logical ontology designed for NLVR’s structured representations by |Goldman et al.
(2018)), which we extend to include a total of 66 functions. [Figure 4] in [Appendix B|shows two
examples of logical forms paired with a corresponding image.

We use the freelancing platform Upworkﬂ for annotation. We recruit three annotators based on
preliminary screening of their fluency in English and competency in Python. We de-duplicate the
naturally occurring sentences in the data, collect 2,666 annotations at a total cost of $3,756, and
keep 2,661 valid annotations.

All the sentences in the dataset are randomly distributed to the annotators, each with an example
image. Every sentence is annotated with a logical form by one annotator. Each logical form is
evaluated against a corresponding hidden validation set, and must pass all the tests.
describes our annotation and validation process.

5 EXPERIMENTS

5.1 METHODS

We experiment with each of the four CMDPs separately, training on the training data and testing on
the development and held-out test splits. We sample a validation set from the training data for model
selection. For SCATTER we use a grid of 19x5 (Section 3). Each grid cell is of size 20x20 pixels.
We set the action horizon H = 12. |Appendix A.I|and[Appendix C|provide more details about our
setup.

*We do no use the photographic NLVR2 in this work.
Shttps://www.upwork.com

https://www.upwork.com

Under review as a conference paper at ICLR 2023

We use PPO (Schulman et al.,[2017) for parameter estimationE] with a separate network as a critic.
The critic network is identical to the policy, except that we add a tanh activation for the value out-
put. Because of the large action space, especially for SCATTER, the agent rarely observes positive
reward, which requires taking a STOP action at an appropriate state. We design a simple variant of
PPO called PPO+SF (PPO with stop forcing) to address this issue. PPO+SF is identical to PPO,
except that during training, we mask all actions except STOP when the agent reaches a state where
selecting STOP will give a positive reward. This modification is present only during training. All
testing is done under the same conditions, without stop forcing.

We experiment with two models:

C+BERT We process the statement z using BERT (Devlin et al.), and do mean pooling across
all layers and tokens to get the statement representation. We use a three-layer CNN (Fukushima
& Miyake, [1982) to embed the image of the current state s. We concatenate the statement repre-
sentation, image representation, and an embedding for the target boolean b, and process the vector
through a multi-layer perceptron (MLP) to compute the action distribution.

VIiLT ViLT is a pretrained multi-modal Transformer that jointly processes text and image in-
puts (Kim et al., 2021). We create a sequence of tokens by concatenating the statement, a token
for the target boolean, and image patches, separated by special tokens. The image patches are the
same size as the 19x5 grid cells, including in TOWER, where the action space does not use a grid.

5.2 RESULTS AND QUANTITATIVE ANALYSIS

shows development and test set accuracies for all CMDPs. shows development
set accuracies for FLIPIT CMDPs broken down by the target boolean, and shows de-
velopment rollout statistics. VILT outperforms C+BERT, except on SCATTER-SCRATCH. This is
relatively expected given the joint reasoning architecture and multi-modal pre-training of ViLT.

Generally, policies do better on FLIPIT examples with a False target boolean, except when
learning largely does not work (Figure 2)). The set of states that invalidate a statement is usually
larger than the set that validates it, and it generally requires fewer actions to invalidate a statement.

We observe more rollouts that are terminated by reaching the action horizon H (i.e., without STOP)
on TOWER CMDPs compared to SCATTER (Figure 3] left). This difference is partially explained
by a higher rate of invalid actions in SCATTER (Figure 3] center left), which immediately terminate
the rollout. In general, ViLT has a higher rate of invalid actions, except on SCATTER-FLIPIT
with PPO, where overall performance is extremely low. We also see more non-stopped rollouts for
TOWER-FLIPIT when training with PPO+SF. These rollouts often correspond to the model getting
stuck in add-remove loops. There is no consistent difference in the length of rollouts between the

two models and agents center right).

In general, we observe no significant effective learning of using REMOVE actions. TOWER-FLIPIT
is an exception with REMOVE dominating the rollouts, potentially because removing objects generally
provides a more efficient path to flip the boolean value. While PPO policies generate REMOVE actions
for SCATTER CMDPs, the much higher performance of PPO+SF policies indicates that the use of
these actions is ineffective.

5.3 QUALITATIVE ANALYSIS

We sample 50 development examples for each CMDP, and annotate them with experﬂ trajectories to
estimate the expert reward (Table 3). For each model, we compute the mean reward on all develop-
ment examples. The analysis indicates that there is significant room to improve model performance
and efficiency. For example, on TOWER-FLIPIT, the estimated expert mean reward is 0.83, while
VIiLT trained with PPO, the best of our models, gets a reward of 0.22, or 0.83 for the subset that is
completed successfully.

SWe use the PPO implementation of [Kostrikov|(2018).
"The expert is an author of this paper.

Under review as a conference paper at ICLR 2023

Table 2: Accuracies for all the four CMDP. Evaluation is always without stop forcing.

TOWER-SCRATCH TOWER-FLIPIT SCATTER-SCRATCH SCATTER-FLIPIT

Dev Test Dev Test Dev Test Dev Test
PPO C+BERT 71.78 63.27 3595 3478 39.08 48.39 0.00 0.00
ViLT 81.60 76.54 67.60 65.80 35.63 41.29 3.51 6.09
PPO+SF C+BERT 80.98 78.70 27.22 26.75 70.12 74.84 8.31 8.46
ViLT 84.05 82.41 65.09 6291 64.37 70.97 27.48 29.95
Tower-Fliplt, PPO Tower-Fliplt, PPO + SF Scatter-Fliplt, PPO Scatter-Fliplt, PPO + SF
100 100 T
80 80 307 30
g 60 = g 60 g 20 g 20
< < I < 10 4 < g9 I
20 20
o - 0 0 "—I_Iz— 0

C+BERT ViLT C+BERT ViLT C+BERT ViLT C+BERT ViLT
B True [False

Figure 2: Development set accuracies for FLIPIT CMDPs, reported according to the value of the
context target boolean. Red: target is True. Gray: target is False. Dashed gray line: accuracy on
the full development set.

Non-stopped rollouts (4) Invalid actions (4) # non-STOP actions Type of actions
20 5
100 4

v 95 [) 4 4 o
=) o 75 9] =4
8 8 234 2
c c © c
PPO g 10 3 50 g,]

2 5
o S < o

0 - T T T 0 T T 0-

20 5
100 4

v 95 [) 4 4)
=) o 75 9] o
8 8 234 2
c c © c
PPO+SF § 10 & 50 A 5 @
I~ =4 > 2 =4
7} o < o
a 5 a 25 1 4 a

0 -‘-!J] T T 0 ——F—=% 0-

g \4 3
R T A R R AN R R SO
& < PO & < @ K « < @ K
& /\0@ g &7 /\o\,‘é & g & @‘é e
) &5 (& W &5 (& S S
o 6@‘ E) <0 ‘)@‘) <0 ‘,_};o‘k B

W C+BERT [VILT

Figure 3: Development rollout statistics, from left to right: percentage of rollouts that reach the
action horizon without a STOP action; percentage of rollouts with an invalid action; mean actions
per rollout; percentage of ADD/REMOVE actions. J. shows the preferred direction.

uhr et al. released a set of 200 development examples annotated for semantic phenomena.

able 4|shows the performance of policies on the different CMDPs trained with PPO on this data. We
only include categories with more than 10 instances across all CMDPs. includes the
complete tables with examples, including for PPO+SF. In most cases, we observe the two models
to follow similar trends with respect to the categories on which they perform above and below
average performance. A notable exception is on coordination, where ViLT performs above general
performance on 2/4 cases, and C+BERT always performs below. A notable difference between
TOWER and SCATTER is on soft cardinality (e.g., ...at least two ...), where we observe above
average performance on TOWER and below average on SCATTER.

We diagnose the errors that PPO makes by sampling 50 erroneous development examples for each
of the two SCATTER CMDPs. In SCATTER-SCRATCH with C+BERT, 76% of the errors are due
to invalid actions, and 24% due to early termination. Among the invalid actions, 58% are due to
trying to put an item that cannot fit in the box, 24% are due to trying to perform an action on a

Under review as a conference paper at ICLR 2023

Table 3: Mean development set rewards. Expert reward are estimated on 50 examples.

TOWER-SCRATCH TOWER-FLIPIT SCATTER-SCRATCH SCATTER-FLIPIT

Expert 0.79 0.83 0.79 0.89
PPO C+BERT 0.27 -0.42 -0.27 -1.00
ViLT 0.45 0.22 -0.33 -0.95
PPO+SF C+]$ERT 0.42 -0.57 0.26 -0.86
VILT 0.49 0.13 0.16 -0.50

Table 4: Performance on a set of development examples annotated for semantic categories by [Suhr,
et al. (2017) for both models (C+BERT | ViLT) when trained with PPO. Dev performance refers to
the performance on the respective full development set. Results outperforming the average perfor-
mance are in bold.

TOWER-SCRATCH TOWER-FLIPIT SCATTER-SCRATCH SCATTER-FLIPIT

Total Correct % Total Correct % Total Correct % Total Correct %

Cardinality (hard) 98 67.3 78.6 480 36.7 70.8 35 314 371 119 0.0 5.0

Cardinality (soft) 21 81.0 85.7 82 439 659 11 9.1 182 42 00 24
Existential 122 73.8 83.6 577 37.6 70.7 55 36.4 32.7 192 00 3.6
Coordination 19 31.6 52.6 8 29.1 70.9 15 20.0 40.0 55 0.0 0.0

Spatial Relations 93 77.4 87.1 438 39.7 69.2 39 41.0 30.8 128 0.0 5.5
Presupposition 17 47.1 58.8 74 35.1 68.9 22 40.9 40.9 78 0.0 5.1

Dev performance 71.78 81.60 35.95 67.60 39.08 35.63 0.00 3.51

separator, and 18% due to trying to remove an object from a position that does not include an object.
For other configurations, the causes of errors are similar, and details about the distribution are in

6 CONCLUSION

We introduce /Gym, a reinforcement learning benchmark that focuses on natural language visual
reasoning. {Gym is designed to be accessible for RL researchers, while still displaying the reason-
ing richness of natural language. It is relatively easy to deploy using the standard OpenAl Gym
API (Brockman et al., 2016)), and has light compute requirements. Our data annotation approach al-
lows including expressive and diverse natural language, while still providing accurate and automatic
reward computation. This allows /Gym to balance between posing a challenging research prob-
lem and avoiding engineering challenges or approximation costs. Our strong baselines illustrate the
range of challenges /Gym presents, showing that existing methods can achieve non-trivial perfor-
mance, but that there remains significant progress to be made. Our analysis lays out the framework
for studying and reporting these future results.

¢{Gym also holds significant potential beyond RL. Our annotations form a new semantic parsing
corpus with annotated executable meaning representations. The semantic diversity of the data, its
executability, and the focus on visual reasoning make it a unique asset in the landscape of corpora
for semantic parsing. /Gym also holds potential for program synthesis, where there is recent focus
on using language to guide synthesis from examples (Wong et al.| [2021])), data that /{Gym provides.

Under review as a conference paper at ICLR 2023

REFERENCES

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Siinderhauf, Ian Reid,
Stephen Gould, and Anton van den Hengel. Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In The IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 3674-3683, 2018.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence
Zitnick, and Devi Parikh. VQA: Visual question answering. In IEEE International Conference
on Computer Vision, pp. 2425-2433, 2015.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. Touchdown: Natural
language navigation and spatial reasoning in visual street environments. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12538-12547, 2019.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. In 7th International Conference on Learning Representations, ICLR,
2019.

John D. Co-Reyes, Abhishek Gupta, Suvansh Sanjeev, Nick Altieri, John DeNero, P. Abbeel, and
Sergey Levine. Guiding policies with language via meta-learning. In 7th International Conference
on Learning Representations, ICLR, 2019.

Marc-Alexandre Co6té, Akos Kédar, Xingdi Yuan, Ben A. Kybartas, Tavian Barnes, Emery Fine,
James Moore, Matthew J. Hausknecht, Layla El Asri, Mahmoud Adada, Wendy Tay, and Adam
Trischler. Textworld: A learning environment for text-based games. In CGW@IJCAI, 2018.

Pradeep Dasigi, Matt Gardner, Shikhar Murty, Luke Zettlemoyer, and Eduard Hovy. Iterative search
for weakly supervised semantic parsing. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pp. 2669-2680.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171-4186.

Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network model for
a mechanism of visual pattern recognition. In Competition and cooperation in neural nets, pp.
267-285. Springer, 1982.

Omer Goldman, Veronica Latcinnik, Ehud Nave, Amir Globerson, and Jonathan Berant. Weakly
supervised semantic parsing with abstract examples. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1809—-1819, 2018.

Nitish Gupta, Sameer Singh, and Matt Gardner. Enforcing consistency in weakly supervised se-
mantic parsing. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume
2: Short Papers), pp. 168—174, 2021.

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes. arXiv
preprint arXiv:1502.02259, 2015.

Austin W Hanjie, Victor Y Zhong, and Karthik Narasimhan. Grounding language to entities and
dynamics for generalization in reinforcement learning. In International Conference on Machine
Learning, pp. 4051-4062. PMLR, 2021.

Drew A. Hudson and Christopher D. Manning. Compositional attention networks for machine rea-
soning. In 6th International Conference on Learning Representations, ICLR, 2018.

10

Under review as a conference paper at ICLR 2023

Vihan Jain, Gabriel Magalhaes, Alexander Ku, Ashish Vaswani, Eugene Ie, and Jason Baldridge.
Stay on the path: Instruction fidelity in vision-and-language navigation. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics, pp. 1862-1872, July 2019.

Minqi Jiang, Jelena Luketina, Nantas Nardelli, Pasquale Minervini, Philip HS Torr, Shimon White-
son, and Tim Rocktidschel. Wordcraft: An environment for benchmarking commonsense agents.
arXiv preprint arXiv:2007.09185, 2020.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp- 2901-2910, 2017a.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Judy Hoffman, Li Fei-Fei, C. Lawrence
Zitnick, and Ross B. Girshick. Inferring and executing programs for visual reasoning. 2017 IEEE
International Conference on Computer Vision (ICCV), pp. 3008-3017, 2017b.

Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without con-
volution or region supervision. In Proceedings of the 38th International Conference on Machine
Learning, pp. 5583-5594, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR, 2015.

Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms, 2018.

Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge. Room-across-room:
Multilingual vision-and-language navigation with dense spatiotemporal grounding. In Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp- 4392-4412, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR, 2019.

Dipendra Kumar Misra, John Langford, and Yoav Artzi. Mapping instructions and visual observa-
tions to actions with reinforcement learning. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, EMNLP7, pp. 1004-1015, 2017.

Karthik Narasimhan, Tejas D. Kulkarni, and Regina Barzilay. Language understanding for text-
based games using deep reinforcement learning. In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing, EMNLP, pp. 1-11, 2015.

Juan Pavez, Héctor Allende, and Héctor Allende-Cid. Working memory networks: Augmenting
memory networks with a relational reasoning module. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1000—1009, 2018.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. ALFRED: A benchmark for interpreting grounded instructions
for everyday tasks. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR, 2020.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre C6té, Yonatan Bisk, Adam Trischler, and Matthew J.
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. In 9th
International Conference on Learning Representations, ICLR, 2021.

11

Under review as a conference paper at ICLR 2023

Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi. A corpus of natural language for visual
reasoning. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 217-223, 2017.

Alane Suhr, Srinivasan Iyer, and Yoav Artzi. Learning to map context-dependent sentences to ex-
ecutable formal queries. In Proceedings of the Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 2238-2249,
2018.

Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, Huajun Bai, and Yoav Artzi. A corpus for
reasoning about natural language grounded in photographs. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pp. 6418-6428, 2019.

Hao Tan and Mohit Bansal. Object ordering with bidirectional matchings for visual reasoning.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 444—
451, 2018.

Catherine Wong, Kevin Ellis, Joshua B. Tenenbaum, and Jacob Andreas. Leveraging language
to learn program abstractions and search heuristics. In Proceedings of the 38th International
Conference on Machine Learning, ICML, pp. 11193-11204, 2021.

Yiqun Yao, Jiaming Xu, Feng Wang, and Bo Xu. Cascaded mutual modulation for visual reasoning.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pp- 975-980, 2018.

J.M. Zelle and Raymond J. Mooney. Learning to parse database queries using inductive logic pro-
gramming. In Proceedings of the National Conference on Artificial Intelligence, 1996.

Luke S. Zettlemoyer and Michael Collins. Learning to map sentences to logical form: Structured
classification with probabilistic categorial grammars. In Proceedings of the Conference on Un-
certainty in Artificial Intelligence, 2005.

Wenbo Zheng, Lan Yan, Chao Gou, and Fei-Yue Wang. Webly supervised knowledge embedding
model for visual reasoning. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 1244212451, 2020.

12

Under review as a conference paper at ICLR 2023

A ADDITIONAL /GYM DESIGN DETAILS

A.1 SCATTER GRID DETAILS

In this configuration of SCATTER, there can be objects smaller than an individual cell. Therefore,
we can add multiple items in a cell if there is enough space, and when two objects are close enough
(their closest distance is smaller than €), we stick them by making them touch.

For ADD actions, we search for a pixel in the grid box where we can add the object starting from the
upper left corner. For REMOVE, we remove the largest element overlapping with the given grid cell.

B ADDITIONAL DATA DETAILS

B.1 ANNOTATION EXAMPLES

Fig 4] shows two examples of text statement with their respective executable boolean Python

program.
|

There are two towers with the same height but their base is not the same in color.

exist (filter_obj(all_boxes, lambda x: x.is_tower () and exist(filter_obj(all_boxes

lambda y: vy.is_tower() and count(x.all_items_in_box()) == count(y.all_items_in_box())
and get_set_colors(filter_obj(y.all_items_in_box (), is_bottom)) !=
get_set_colors (filter_obj(x.all_items_in_box (), is_bottom))))))

A A
N

There is a box with all 3 different colors and a black triangle touching the wall with its top.
exist (filter_obj(all_boxes, lambda x: count (get_set_colors(x.all_items_in_box())) == 3
and exist (filter_obj(x.all_items_in_box(), lambda y: 1is_black(y) and is_triangle (y)
and is_touching_wall(y, Side.TOP)))))

Figure 4: Example sentences, a corresponding logical form annotation under the format of a Python
program, and an example image from the dataset. The sentence and logical form are True for the
top statement, and False for the bottom statement.

B.2 ANNOTATION AND VALIDATION PROCESS

We provide the annotators with a web-based annotation interface (Figure 3)), a tutorial and an ap-
plication programming interface (API) presenting a set of functions, classes and objects that they
can use for annotation. We ask the annotators to prioritize the faithfulness of the program to the
natural language sentence and to prefer shorter annotations. We also provide them with examples
of spurious logical forms and ask them to avoid such expressions. Annotators can raise questions in
case of doubts.

For every sentence, annotators are provided with an example image and an associated boolean value.
The program written is executed online, and the annotators can only submit their annotation after
passing the online Python syntax checker, the visible example and all the hidden validation exam-
ples. The annotators can assign a confidence score to their annotation and provide a comment.
Annotators can also skip examples in case of doubt. When skipping, they need to explicitly provide
the reason. We assess the annotations by batch, then randomly redistribute the skipped examples or
examples with problematic annotations to the annotators after the questions have been solved. An
iterative communication has been followed throughout the annotation process.

13

Under review as a conference paper at ICLR 2023

Utility info Annotation zone

You may also directly check the Documentation website. Hello,

Datastructure Variables
Mode (test / tasks): test B3l Confirm
= NLVR annotation docs Instructions: Please ook at the sentence in the box below describing the image, and write a correct python expression for this sentence. In case of doubt, please refer to
the Tutorial or the Documentation

Example 5/6

Docs » Utility-functions Image ID 1670
A o A e
Utility functions o N A A
: AN A

There is a box with 3 blue, 2 black, and 1 yellow item.
Please opt for shorter code when possible, (Boolean: true)

since it usually aligns better with the language
of the sentence.

sign out

Code Output

General Validation results:

exist(_set)
Check f a set is empty or not.
Parameters

- _set (sel) — a set of objects
Returns

Aboolean (True if it is not empty).

unique(_set)

e Vali
Checkif there is only one element in the set and il

return this element if it's the case. Otherwise, it

‘will raise an error. Conﬁdence score

Paramet ters Please select your confidence on this example, from 1 (least confident) - 5 (most confident): (1 v

set (sel) — a set of objects C
omment

Returns

The first element of the set.

Figure 5: Annotation interface for collecting the Python program annotations in /Gym, as seen by
the annotators.

C EXPERIMENTAL SETUP DETAILS

C.1 LEARNING DETAILS

Hyperparameters For our experiments with C+BERT, we use Adam (Kingma & Bal, 2013) for
optimization with a learning rate of 3e-4, except on TOWER-FLIPIT trained with PPO+SF and on
SCATTER-FLIPIT, where we use 3e-5.

For ViLT’s optimization, we use AdamW (Loshchilov & Hutter,2019) with a cosine scheduler and a
base learning rate of 3e-5 for all experiments, except on SCATTER-SCRATCH trained with PPO+SF
where we use 3e-4. The learning rate is warmed up for 1% of the maximal total training steps.

For all our experiments, entropy is set to 0.3. The number of steps per batch is 2,048 and a mini-
batch size of 32 is used. We use patience for early stopping, and stop after 4 million steps regardless
of patience.

PPO+SF Setup Details PPO+SF is a simple variant of PPO, which applies masking to all the
actions except for STOP when the agent reaches a goal state, in which it will receive a positive
reward if it selects STOP. To account for issues where the STOP action has very low probability and
the gradients potentially exploding creating instability, we clip the PPO ratio. Formally, the original
PPO objective can be defined as:

L(0) = E; |min(r,(0) Ay, clip(re(6),1 — €, 1 + e)At} 1)

where r;(6) = %, A is the advantage function and € is a hyperparameter (see
(2017) for more details). For PPO+SF we clip the ratio term (), as follows:

74(6) = min (rt(ﬁ), M) ()

where M is a threshold bounding the ratio. We use 7;(6) in place of () for our experiments.

14

Under review as a conference paper at ICLR 2023

C.2 INFERENCE DETAILS

During inference, the agent 7 is presented with a given state s; and an action a ~ m(-|s¢, ¢). The
action space consist of three actions STOP, ADD and REMOVE. These actions also take a set of ar-
guments. Some actions take positional arguments, for example in TOWER, ADD(position, color) has
two arguments, REMOVE(position) has one argument, where STOP() has none.

Since not all actions arguments are used in REMOVE and STOP, we marginalize over these unspecified
action arguments.

D ADDITIONAL RESULTS AND ANALYSIS

D.1 ADDITIONAL ERROR ANALYSIS

What types of mistakes does PPO models make? We provide detailed error analysis for the con-
figurations on SCATTER-FLIPIT and SCATTER-SCRATCH CMDPs trained with PPO, following
For each configuration, we analyze 50 erroneous development examples.

In SCATTER-SCRATCH trained with PPO, for ViLT, all mistakes are due to invalid actions. Among
the invalid actions, 90% are due to trying to perform an action on a separator, and 10% due to trying
to remove an object from a position that does not include an object.

In SCATTER-FLIPIT trained with PPO, all the mistakes of C+BERT are also due to invalid ac-
tions. Among the invalid actions, 84% are due to trying to remove an object from a position that
does not include an object, 8% are due to trying to perform an action on a separator, 4% are due to
trying to put an item that cannot fit in the box, and 4% are due to trying to add an object on top of
an existing one.

For ViLT, 90% of the mistakes are due to invalid actions, and 10% due to early termination. Among
the invalid actions, 44% are due to trying to remove an object from a position that does not include
an object, 34% due to trying to perform an action on a separator, 10% due to trying to add an object
on top of an existing one, and 2% due to trying to put an item that cannot fit in the box.

D.2 ANALYSIS BY SEMANTIC AND SYNTACTIC CATEGORIES

Table 5|and [Table 6]show the complete tables of the performance of both PPO and PPO+SF policies
on all four CMDPs, on a set of development examples annotated by [Suhr et al.|(2017), per semantic
and syntactic categories. For each category, an example sentence is provided.

15

IS¢ 000 £€9°6¢ 80°6¢ 09°L9 S6°CE 09°18 8L'IL soueurioytad A

Under review as a conference paper at ICLR 2023

$420]q 2241} YJM A2M0] D J0 aSDq Y1 S 900]q YID]q D UO 3420]q ¥oV]q V S124Y[, €T 00 L €'€€ 00 4 I'TL €0 SIC TE€6 I'¥8 vy IJUdWYOENY dd
'S2|SUDLLL 2241} ISD] IV pUD 24vNDS 2UO ISDI] IV YIM X0q D S 24Y] 00 00 0T 00T 00T S VIL 1T ¥1 0°00I 0ST ¥ UONEUIPIOO))
XeJuAg
23pa ay) Supyonoy you 2)3uniy 4ov]q U0 K3ovxa st a4yl (0’0 0°0 €S 9'8C £'¢E ST L9z €€l SI 0SL OSL ¥ uonesoN
adpys ui ouns 2y3 210 SWIdR YIV]G 2214} FY) PUD SUDII UIADS YIM XOq D S1 2424 TS 00 8L 60 60F T 689 I'SE ¥L 88 I'Ly LI uonisoddnsaig
40109 Jua.2ffip v svY w1t duo Kuo pup sudyl dpduuL YN X0q D S1242Y[') 0°0 4 0°00T 07001 1 00¢ 00 0T 00C 00F S aaneredwo)
¥20]q M0]12K D 240qD 320]q MOJJ2L D YjiM 49M01 2U0 ST 2421 &S 00 STI 80¢ 0'IF 68 T69 L'6E 8¢v T'L8 ¥LL ¢6 suoneay [eneds
oIS SIYIIM DM 2yl Sulyonol 3)Supiil anjq v s1YL 00 | 00 6 €€ 00 € 00¢ 00 01 €€e 00 € 20URIRJAI0)
218upLLy 2N|q [pUD $2[0412 21]q 7 240 24YL ('O | 00 S 0°0¥ 0°0C SI 60L 16T 98 9T 9IE 6l UONEUIPIOO))
X0q L1249 uj w21 oI 0 S1242Y[00 00 9¢ 9SS v'hb 6 00S I'ce 8T €%l €% L [eSIoATU()
280G MOJIL YN JdMOI D ST20YT, 9°€ 00 T6I L'TE ¥'9¢ SS LOL 9LE LLS 9€8 8EL TTI [enuSIXy
'S2ISUDLI] 22.41y) ISDI] I pup 210NDS IUO SDI) IV YJIM XOq D S1 24Y] T (00 (4% T8I T'6 I 6S9 6€k T8 LS8 OT8 [T (Wos) Kieurpre)
28pa Kup upyonoy jou spaafgo anof &povxa 21v 21241 'S 0°0 611 I'LE V1€ S€ 80L L9E 08y 9'8L €L9 86 (prey) Aieurpre)
SdNuUBURG
odwexyg 9, 1091100 [0, 9 1091100 2101, 9% 109110) T[eI0], 9, 109110D) [eI0L,
LIdITA-YILLYDS HOLVIDS—YALLVDS LIdITA-YEMOL HOLVIODS—-YIMOL
‘PIOq

ur a1e Qoueuiojrad aferoae ayy Suruiofradino synsay -19s juswdorarap [[nJ 2andadsal oY) uo douruLIofad oY) 0} s19Ja1 9ouewIofd A "Odd UM paules) uaym
(ITIA | I¥99+D) srepouwt yoq 103 (£ 102D/ T8 12 ;yng| Aq Se11039180 O1OBIUAS pue dNUBWIAS 10J pIjejouue so[durexd Juawdo[oAap JO 195 B U0 9JUBWLIONI :G J[qeL,

16

Under review as a conference paper at ICLR 2023

8Y°LT 1€°8 LEY9 TIOL 60°S9 TTLT S0't8 86708 ddueurioyrad A
'$Y00]q 22441 YIM 120 D [0 2SDq Y1 SD Y20]q YOD]q D UO ¥20]q 3ov]q S1 2424 [G'TT 00 L 00 00 4 009 87C SIT TP8 S'S6 ¥ JuwyOEny dd
"$218uUp1i} 22413 ISD3] IV puw 240Nbs 210 ISDI] IV YHM X0q D S1 249y ('O 00 0T 0'0¥ 00 S I'LS 98T VI 0SL OSL ¥ UOLBUIPIOOD)
XeJUAS
23pa ayp Suryonoy Jou 2]Suliy yovjq 2uo 11ovxa S1 242yl 'YL 8¢ €s L'99 0°08 Sl €€ €€ Sl 0SL OSL ¥ uonesaN
"adpys ul 2uDS Y3 24D SWIFL YID]q 2944} Y PUD SWIIJ] UIAIS YN XOq D S1249Y] TQT L'L 8L LTL T'89 w 1'8S 68T VL I'v6 8'8S LI uonrsoddnsaig
10109 Jud.3ff1p v svY wa duo Kjuo pup swiagl qdumu ynm xoq v s1242YJ (ST 0°0 14 0°00T 0°00T I 00r 00 0T 008 00 S aaneredwio)
¥00]q M0]]a& D 240gD 300]q MOJ]oL D YJIM LdMO] JUO S1 24Y) H'HE 6°C 8TI1 6'9L 178 6€ €09 01T 8¢ OV8 6'€8 €6 Ssuonedy [eneds
PIS SIL YIM [P 2y) Sutyonoy a)3uvly anjq v S1 UYL €°€E 0°0 6 L'99 €¢€ ¢ 00 00T 01 L'99 €€ ¢ Q0URAIRJRI0D
2]8up1i] an]q | pup $3]941 21]q 7 240 242y] GH] 9°C S¢S €€e gge SI $09 6'vE 98 T8 TE9 61 UOBUIPIO0))
"X0q £14949 ur wia) YovIq v 1249y [9] 9SG 9¢ vy vy 6 I'LS €¥T 8T 0001 6T L [ESIOATU[)
250G MOJ1K YN JoMOI D ST YL T[T TS 261 €L9 6'0L S¢S I'Y9 86T LLS 878 698 I [eNUA)SIXH
'$2]8UD1L 22.4Y] JSDI] IV pUD 24DNDS U0 JSVI] IV YHM XOq D S1249Y] T9T T'L w €LT €LT 1 '€9 €67 T8 018 018 Iz (os) Aeurpie)
a3pa Luv Sunyonoy jou spoalqo anof &povxa auv 212y ['TT L9 611 009 9'89 ¢ L'79 9% 08y L'b8 L'€§ 86 (prey) Aifeurpie)
SdNuUBURG
odwexyg 9, 1091100 [0, 9 1091100 2101, 9% 109110) T[eI0], 9, 109110D) [eI0L,
LIdITA-¥YIALLYOS HOLWYIDS—¥ALLYOS LIdITA-9EMOL HOLYIOS—¥IMOL
‘ploq ur

are 9ouewLIo)Iad a3eIoAe o) Surioradino synsay -19s Juawdoaaap [0y 2An0adsal oY) uo douewIo}Iad ay3 03 s19fal dduewIojd A9 "HS+Odd UM paures) uaym
(ITIA | 1A 9+D) srepouwt yioq 103 (£ 102D/ T8 12 ;yng| Aq Se11039180 O1OBIUAS pue dNUBWIAS 10J pIjejouue so[durexd Juawdo[oAap JO 195 B U0 9JUBUWLIONI :9 J[qeL,

17

Under review as a conference paper at ICLR 2023

D.3 ANALYSIS OF POSITIONAL BIAS ON SCATTER

[Figure 6| and [Figure 7| show the positional bias on the development set of SCATTER-SCRATCH
and SCATTER-FLIPIT, for both PPO and PPO+SF algorithms, and for both C+BERT and ViLT
models.

For all algorithm-model pairs on both CMDPs, we can see that actions tend to be biased towards
a set of positions. When there is a bias towards positions at the bottom of the image, for instance
for VIiLT trained with PPO on SCATTER-FLIPIT upper right), the agent would hit an
invalid action if it tries to put a large item in a bottom cell that cannot fit into it. For ViLT, we can

see that training with PPO+SF bottom right and bottom right) helps to make

more varied choices of positions on both CMDPs.

C+BERT VILT
o o [|
= - — 0.10
PPO « - ~
. . - - 0.05
<- <
N ~ S -
0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 0123456 7 8 9101112131415161718
o ° Il u [|
- -
PPO+SF « - ~ . C
- - ™
- . 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 6: Frequency of choosing the cell (x,y) for SCATTER-SCRATCH, on the development set.
x-axis and y-axis respectively show the x and y position of the cells in the SCATTER grid.

C+BERT ViLT

4 3 2 10

4 3 2 1 0
L e——
o
[N)

PPO
0.1
‘n B BN 'H - ma . i,
0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 0123456 7 8 9101112131415161718
- .- W N
prosse - BN N EE -
< - < - ‘
0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18

Figure 7: Frequency of choosing the cell (x,y) for SCATTER-FLIPIT, on the development set.
x-axis and y-axis respectively show the x and y position of the cells in the SCATTER grid.

18

	Introduction
	Related Work
	The Gym Benchmark
	The Gym Data
	Background: the NLVR Corpus
	Annotations for Reward Computation

	Experiments
	Methods
	Results and Quantitative Analysis
	Qualitative Analysis

	Conclusion
	Additional Gym Design Details
	SCATTER Grid Details

	Additional Data Details
	Annotation Examples
	Annotation and Validation Process

	Experimental Setup Details
	Learning Details
	Inference Details

	Additional Results and Analysis
	Additional Error Analysis
	Analysis by Semantic and Syntactic Categories
	Analysis of Positional Bias on SCATTER

