
MFCL Vision: Benchmarking Tool Use in Multimodal Large Language Models for Visual Reasoning Tasks

Huanzhi Mao*

University of California, Berkeley
huanzhimao@berkeley.edu

Jad Bendaraki*

Princeton University
jadb@alumni.princeton.edu

Evan Turner*

University of Maryland, Baltimore County
eturner1@umbc.edu

Ritesh Chavan*

Stony Brook University
riteshsunil.chavan@stonybrook.edu

Abstract

1 As multimodal large language models become tool-using agents, the field still lacks
2 a standardized metric for translating visual inputs into correct tool invocations.
3 We introduce **MFCL Vision**, the first large-scale benchmark for *vision-based*
4 *function calling*, comprising 250 expert-verified tasks across five image domains
5 (*Places, Events, Media, Sports, Shopping*) and five query types (*Locate, Temporal,*
6 *Select, Identify, Quantify*). Each task comprises (1) a textual user query, (2) an
7 accompanying image, (3) a ground-truth answer obtained from the web, and (4)
8 a human-produced reasoning trace for comparative error analysis. To constrain
9 the task, we expose a singular web-search tool to each model. To examine the
10 robustness of multimodal LLMs’ perception-to-tool-use pipeline, we introduce
11 controlled visual perturbations, including crops, resizes, and color channel removal.
12 Our automatic grader computes exact-match scores on model final answers, re-
13 moving dependence on brittle and potentially biased LLM judges. We evaluate
14 leading models and present a taxonomy of failure modes, including visual reason-
15 ing, keyword selection, and tool avoidance errors. By releasing MFCL Vision’s
16 dataset, taxonomy, and diagnostics, we aim to accelerate progress towards versatile
17 multimodal agents capable of intelligent tool usage in complex visual contexts.

18

1 Introduction

19 Recent advances in multimodal LLMs have demonstrated their potential in agentic, long-horizon use
20 cases. However, effective real-world deployment necessitates the ability to synthesize and leverage
21 visual and textual information in order to reason about the world and autonomously pursue goals.
22 Increasingly, use cases require agents to interface with external tools (e.g. robotic controllers, database
23 lookups, API endpoints, etc.) to either retrieve up-to-date information or enact actions that have
24 real-world consequences. This paradigm, known as *function calling*, has emerged as the fundamental
25 driver in transitioning LLMs from reasoning engines into actionable agents.

26 Despite the commercial excitement surrounding AI agents, robust *vision-based* function calling
27 remains an open challenge. This perception-to-tool-use capability is especially pertinent for models
28 deployed in accuracy-critical domains like analyzing medical imagery or interpreting enterprise
29 data visualizations. Also, standing perception problems in LLMs are further exacerbated by a lack
30 of systematic evaluation for how effectively existing models execute vision-based function calling
31 end-to-end. Current benchmarks evaluate either (i) text-only tool use—e.g., BFCL [Patil et al.,

*Equal Contribution.

32 2025], T-Eval [Chen et al., 2024], and τ -BENCH [Yao et al., 2024]—or (ii) general multi-modal
 33 understanding such as MMMU [Yue et al., 2024]. These frameworks overlook real-world settings in
 34 which tools must be utilized deliberately and productively despite sparse visual information.

35 We introduce **MFCL Vision** (Multimodal Function Calling EvaLuation – Vision Suite), the first
 36 benchmark to address this gap. MFCL Vision is a framework containing 250 expert-verified vision-
 37 based function calling tasks. Each task specifies (1) a user query, (2) a contextualizing image, (3)
 38 a ground-truth answer and (4) a human-produced reasoning trace to validate correct application of
 39 the tool. The human-produced reasoning traces are used to manually analyze model traces against a
 40 validated example to identify root causes for task failure. Our annotation protocol yields **exact-match**
 41 references, enabling automatic grading without relying on fragile or biased LLM judges.

Figure 1: Data construction pipeline for MFCL Vision. We curate both user-contributed and public-source images (Google, Reddit, Pexels, etc), filter for salient visual cues, and write queries requiring external knowledge. We optionally tune queries to enforce multi-step visual reasoning or provide additional context or hints.

42 Our analysis uncovers three overarching failure modes: (i) **Avoiding Tool Use**, in which models make
 43 an unsubstantiated guess, abstain, or ask follow-up questions; (ii) **Poor Keyword Selection**, where
 44 generated queries are overly simplistic, vague or irrelevant; and (iii) **Visual Reasoning Errors**, which
 45 range from misreading text to misinterpreting spatial elements. We further present auxiliary failure
 46 modes that fall within these three broader error categories. To disentangle perception from reasoning,
 47 and to study the effectiveness of different image-training paradigms, we run controlled ablations on
 48 each image, including grayscale conversions, canny-edge filters, color jittering, and partial occlusion.
 49 Through our study, we formulate and present the first error taxonomy for vision-based function
 50 calling to guide future research towards robust and versatile multimodal AI agents.

51 In summary, this work makes the following contributions:

52 1. We propose **MFCL Vision**, the first benchmark to systematically evaluate vision-based
 53 function calling in multimodal LLMs under real-world visual constraints.
 54 2. We curate and release 250 image-query tasks with ground-truths and automated grading.
 55 3. We conduct a large-scale study of models and identify and analyze dominant failure modes,
 56 providing actionable insights to accelerate progress toward reliable multimodal AI agents.

57 2 Related Work

58 2.1 Tool Calling Benchmarks

59 Given the growing recognition of tool-calling capabilities as crucial in ensuring LLM agents generalize
 60 across application domains outside of text, various works have proposed evaluation techniques and
 61 targeted benchmarks. Early benchmarks such as TOOLBENCH [Qin et al., 2023], API-Bank [Li
 62 et al., 2023], and GORILLA API BENCH [Patil et al., 2023] focus on text-only scenarios, where
 63 the model must map a prompt with text-only tokens to a corresponding function-calls in various
 64 languages. More recent efforts like BFCL [Patil et al., 2025] and τ -Bench [Yao et al., 2024, Barres

65 et al., 2025] broaden the scope to include multi-turn and multi-step tool-use with intermediate user
66 interactions. These datasets are limited in scope by pertaining solely to text, which constrains the
67 amount of context available to the model. MFCL Vision builds upon and extends existing tool-calling
68 research by accounting for the vision modality along with perturbations that highlight failures at the
69 boundaries of perception, grounding, and formatting.

70 2.2 Vision-based Tool Calling Benchmarks

71 Robust and reproducible evaluations for tool use in vision-related tasks remains nascent. A handful
72 of works have explored letting language models plan or execute tools to solve visual problems. For
73 example, VISPROG [Gupta and Kembhavi, 2022] and VIPERGPT [Surís et al., 2023] employ LLMs
74 to generate Python-like code plans that invoke vision models step-by-step, and then execute these
75 plans to answer visual queries. Systems like HUGGINGGPT and VISUAL-CHATGPT similarly use
76 an LLM to orchestrate external models (e.g. image captioning) as tools [Shen et al., 2023, Wu et al.,
77 2023, Huang et al., 2025]. The OSWORLD benchmark [Xie et al., 2024] evaluates how effectively
78 multimodal LLMs operate software environments. Conditioned with user screenshots and filtered
79 a11y trees with coordinates, models were tasked with executing the correct sequence of actions to
80 accomplish a certain task. MFCL Vision diverges from OSWorld’s approach in its emphasis on
81 naturalistic, real world images rather than constraining the visual context strictly to computer use.

82 We build on the previous literature by (1) intentionally designing MFCL Vision tasks to go beyond
83 simple visual reasoning, stressing perception-to-tool-use capabilities under real-world noise, occlu-
84 sion, and distractors and (2) establishing a reproducible, unified evaluation protocol that quantifies
85 tool-augmented reasoning through consistent metrics applicable across models and tasks.

86 3 The MFCL Vision Dataset

87 The MFCL Vision dataset comprises 250 image-query tasks spanning five image domains (*Places*,
88 *Events*, *Media*, *Sports*, *Shopping*) and five query types (*Locate*, *Temporal*, *Select*, *Identify*, *Quantify*)
89 (Figure 2). Successful completion of each task requires synthesizing user intent with image informa-
90 tion to conduct external web search. For each task, there are a number of valid pathways the model
91 can take to find the correct answer. This open-endedness enables models to demonstrate their agentic
92 capabilities, as it requires them to balance avoidance under uncertainty with confidence in potentially
93 overrepresented search results.

Figure 2: MFCL Vision category distributions. Left: image categories—*Places* and *Events* are most
prevalent. Right: query categories—*Identify* dominates, followed by *Temporal* and *Locate*.

94 3.1 Dataset Construction

95 We create the dataset based on the following principles: **Salient visual hints:** Each image contains
96 visual clues the model can link with details in the user prompt to conduct a promising first search step.
97 By using images with sufficient resolution and naturalistic composition, our benchmark evaluates each
98 model’s baseline visual reasoning capabilities. **Dependent on external evidence:** For web search
99 tasks, queries are designed such that the answer cannot be obtained without consulting up-to-date

100 external sources. Additionally, these do not collapse into pure visual reasoning tasks (e.g., OCR,
101 object recognition, or simple counting). **Dependent on the image context:** The image provides
102 essential disambiguation. Without it, the query is unanswerable (e.g., asking “Who owns this team?”
103 without showing a logo). This ensures that both visual understanding and query specifications must
104 interact to produce productive search queries. **Solvability:** Each task is constructed such that a
105 non-expert human with access to web-search could answer the question correctly.

106 **3.2 Entry Tuning and Validation**

107 Each task undergoes iterative tuning (Figure 3) to calibrate difficulty. We noted a trade-off between
108 creating prompts that are not artificially contrived for difficulty yet still require the models to
109 accurately synthesize subtle image and textual details in order to construct web searches. As such,
110 our tuning process includes adding conversational context to emulate user personas, enforcing multi-
111 step search chains, injecting lightweight hints, or selectively cropping the image. We only retain
112 entries that are solvable by humans yet consistently defeat state-of-the-art LLMs. These entries
113 produced phenomena including repeated incorrect answers, excessively long reasoning traces, verbose
non-answers, expressions of uncertainty, and outright refusals to attempt a solution.

Figure 3: Anatomy of an image-query entry that received several tuning treatments. The query is decomposed into distinct components: orange—auxiliary context, blue—the actual information request, green—query hints to constrain the search space, and pink—return format for string matching.

114

115 **4 Evaluation Methodology**

116 The MFCL Vision evaluation pipeline extends the BFCL framework [Patil et al., 2025] by incorpo-
117 rating image inputs into API calls for all integrated models and exposing a singular search tool.
118 This design enables plug-and-play compatibility for new models, straightforward integration for the
119 open-source community, and scalable benchmarking for rapid iteration.

120 **Exact-match accuracy.** Each model receives a system prompt specifying the expected output format
121 (Appendix A.2). We compute exact match on the `answer` field only, after lower-casing and removing
122 punctuation, thereby avoiding false positives from partial matches.

123 **Ablations.** We conduct three ablations: (i) *color manipulations*—conversion to grayscale or
124 red-green only; (ii) *edge-based transformations*—standard edge detection; and (iii) *aspect-ratio
125 changes*—cropping or resizing to 4:3 or 16:9. Crops preserve key regions, while resizing maintains
126 full content at the cost of possible distortion.

127 **Large-scale model support.** Models with native function calling (e.g., GPT-5, Gemini-2.5-Pro,
128 Claude-4.1-Opus) execute MFCL Vision directly by receiving all function definitions via the `tools`
129 field. Prompt-only models lack such interfaces and instead generate structured function calls through
130 system-prompt-based emulation, following BFCL [Patil et al., 2025].

131 **5 Results and Error Analysis**

132 Our discussion centers on six recurring failure modes that underscore core obstacles must be overcome
133 for LLMs with vision-based function calling to achieve reliable performance in real-world contexts.
134 For Model Performance results, refer to Table 1. See Appendix A.1 for a distribution of prominent
135 error types across a sample of select models.

Table 1: Model performance on MFCL Vision across all 8 variations.

Model	Overall	Base	Crop16:9	Crop4:3	Resize16:9	Resize4:3	B&W	Edge	Red&Green
GPT-5-2025-08-07 (FC)	29.3	34.7	31.9	31.1	30.7	32.7	27.1	17.1	29.1
Gemini-2.5-Pro (FC)	26.6	29.9	31.1	28.7	25.9	29.5	25.5	14.3	27.9
Gemini-2.5-Flash (FC)	23.1	25.5	26.7	23.1	25.5	24.3	23.1	12.4	23.9
Grok-4-0709 (FC)	22.7	25.1	25.1	25.5	21.1	25.5	22.3	11.6	25.1
o4-mini-2025-04-16 (FC)	20.0	23.1	22.7	23.5	18.7	20.7	19.9	11.2	20.3
Claude-Opus-4.1 (FC)	15.9	16.7	18.3	17.5	15.9	17.5	15.5	11.6	13.9
Claude-Sonnet-4 (FC)	14.9	16.7	17.5	17.9	13.9	18.3	12.4	8.4	14.3
GPT-4o-2024-11-20 (FC)	11.7	12.0	14.3	15.5	10.4	12.8	12.0	4.8	11.6
Llama-4-Maverick (FC)	10.6	12.8	11.2	9.6	10.8	12.4	11.6	6.8	10.0
Amazon-Nova-Pro-v1.0 (FC)	10.1	12.8	10.4	9.6	9.6	10.4	9.6	6.8	11.6
GPT-4o-mini-2024-07-18 (FC)	9.0	10.0	11.2	8.4	10.0	9.2	9.2	6.4	8.0
Mistral-Medium-2508 (FC)	8.7	10.4	10.8	8.4	10.8	11.2	9.2	1.2	8.0
Pixtral-Large-2411 (Prompt)	8.4	9.6	10.0	7.6	8.8	11.2	6.0	6.0	8.0
GLM-4.5V (Prompt)	7.9	10.0	5.2	9.2	7.2	10.4	8.8	3.6	8.8
Command-A-Vision-07-2025 (Prompt)	6.2	6.8	6.0	6.0	7.2	6.0	7.2	4.4	6.0

136 **FM 1A: Visual Reasoning Errors** Failures largely stemmed from known weaknesses of VLMs
 137 that were deliberately targeted during image curation and tuning. Models often struggle to balance
 138 textual with visual information and face challenges with distinct spatial arrangements.

139 **FM 1B: Subset Confusion** Faced with many look-alike objects, models often misidentify subsets.
 140 In overloaded scenes they tend to omit items or hallucinate extras, skewing keywords (Figure 4).

Figure 4: Example images that induced subset confusion. Green boxes mark target subsets, but models often hallucinate extra items or miss targets, especially in the *Shopping* category.

141 **FM 1C: Myopia** In images with significant depth of field, models over-attend to salient foreground
 142 objects at the expense of more relevant background cues—even when named in the query (Figure 5).
 143 This foreground bias skews search, with distractors driving keyword selection.

Figure 5: Example images that induced myopic behavior. The green box indicates the key clue and the red box highlights the foreground distractor. Both examples had associated queries that explicitly informed the model to reason on something further back in the image (e.g. referring to the “cafe with orange signage” or “chessboard in the back”).

144 **FM 2: Avoiding Tool Use** Sometimes models avoid searching when uncertain. Instead, they either
 145 ask clarifying questions (Figure 6) or provide best-guess answers based solely on internal reasoning
 146 despite having access to search tools (Figure 7).

Figure 6: Example of avoiding tools use via refusal. This entry displays the player’s team logo and jersey number, which are major clues the models should recognize before making any tool calls. Despite this, the model stalled and requested more input.

Figure 7: Example of avoiding tool use via search-blind reasoning. Rather than reasoning about the image or leveraging search, the model simply makes a blind guess, offering meta-reasoning about what might be a “plausible” answer given the query text.

147 **FM 3: Poor Keyword Selection** Models generate vague or irrelevant search queries. Rather than
 148 extracting specific visual details (e.g., text, symbols, spatial cues) into targeted keywords, they default
 149 to generic phrases (Figure 8), yielding irrelevant search results.

Figure 8: Example of poor keyword selection. This entry implicates analog clock reading and spatial orientation relative to the sun to determine the exact time. The model failed to combine any of this nuance to produce specific keywords for search.

150 **FM 4: First-hop Bias** Models latch onto an initial assumption and resist updating, even when
 151 faced with contradictory evidence (sometimes rationalized away as “*misremembering*”, Figure 9).
 152 In other cases, models reason correctly during the trace, but the final output reverts to the initial
 153 incorrect guess, discarding their own reasoning.

Figure 9: Example of first-hop bias. Even with clear visual evidence of teams, players, and year, the model fixates on a Qatar Airways ad during its first reasoning step. This anchors it to an incorrect path and leads it to dismiss the correct temporal evidence.

154 **FM 5: Over-reliance on Query Text** Models prioritize keywords from the provided user query
 155 over the information present in the image. Instead of grounding reasoning in visual evidence (e.g.,
 156 on-screen text, logos, etc.), they issue tool calls based on phrases pulled from the query (Figure 10).

Figure 10: Example of over-reliance on query text. Despite the clear *About This Mac* window, the model ignored the text and issued a vague search based only on the provided query.

157 **FM 6: Abandoning promising leads** Models note alternative hypotheses but settle on the first
 158 plausible answer, often reinforced by search hits, leaving correct options unexamined (Figure 11).

Figure 11: Example of abandoning a promising lead. While able to surface potential answers, the model latches onto the first plausible path and ignores the raised alternative which happened to be correct.

159 **6 Ablation Analysis**

160 Examining ablation accuracies (Table 1), the *Edge Detection* variant produces the largest performance
 161 drop; all other treatments yield only minor degradation.

162 **Edge detection removes key cues** The sharp decline from *Edge Detection* stems from its subtractive
 163 nature, causing lower contrast or fine-grained visual anchors, such as small text and thin logos, to

164 be removed or distorted. Without these key visual cues, models lose the necessary context to form
165 targeted and specific search keywords, causing performance to collapse (Figure 12).

Figure 12: Edge detection ablation example. The accompanying query for this entry reads: “*I was visiting this hotel while attending a conference. Who designed the sculpture to the left?*”. We observe that both color and textual information (e.g., “GRADUA”) are completely lost.

166 **Color ablations alter accuracy and strategy** Both Black&White (B&W) and Red&Green (R&G)
167 transformations reduce accuracy, reflecting the fact that color frequently serves as discriminative
168 evidence (e.g., differentiating flavors, products, or team jerseys). Color transformations also appear
169 to affect reasoning behavior. We discovered cases where models potentially interpret grayscale inputs
170 as “lower information” and compensate by invoking external tools. In several cases, B&W images
171 led models to use search and find correct answers, whereas color and red-green variants relied on
172 internal guesses or refusals (Figure 13). This suggests that reduced color fidelity may implicitly
173 signal uncertainty and nudge models towards tool-assisted reasoning.

Figure 13: Example entries with color ablations applied. Across both entries, original and R&G similarly ignore tools and fail while the B&W counterpart successfully uses search.

174 7 Conclusion

175 MFCL Vision provides the first large-scale vision-based benchmark for tool-augmented LLMs,
176 exposes consistent failure modes, and offers lightweight, reproducible metrics that enable rapid
177 iteration. Our analysis reveals that current state-of-the-art models still treat tool use as an optional
178 afterthought, especially under complex, real-world visual conditions, and that simple perturbations
179 such as edge detection can erase nearly all accuracy gains. We release MFCL Vision, all code, and
180 evaluation and analysis tools to spur research on robust, tool-aware reasoning. Future work will

181 expand MFCL Vision to include additional models and extend beyond the current search tool to
182 evaluate multi-tool capabilities on image inputs. This includes tools to manipulate or edit images, as
183 well as paradigms where images are produced as output.

184 **References**

185 Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. tau2-bench: Evaluating
186 conversational agents in a dual-control environment. *arXiv preprint arXiv:2506.07982*, 2025.

187 Minghao Chen et al. T-eval: Evaluating tool use in large language models. In *Proceedings of the*
188 *62nd Annual Meeting of the Association for Computational Linguistics*, 2024.

189 Tanmay Gupta and Aniruddha Kembhavi. Visual Programming: Compositional visual reasoning with-
190 out training, November 2022. URL <http://arxiv.org/abs/2211.11559>. arXiv:2211.11559
191 [cs].

192 Jingyuan Huang, Jen-tse Huang, Ziyi Liu, Xiaoyuan Liu, Wenzuan Wang, and Jieyu Zhao. VLMs
193 as GeoGuessr Masters: Exceptional Performance, Hidden Biases, and Privacy Risks, May 2025.
194 URL <http://arxiv.org/abs/2502.11163>. arXiv:2502.11163 [cs] version: 2.

195 Xiaoyang Li et al. Api-bank: A benchmark for tool-augmented reasoning. In *Proceedings of the 61st*
196 *Annual Meeting of the Association for Computational Linguistics*, 2023.

197 Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
198 Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agentic
199 evaluation of large language models. In *Forty-second International Conference on Machine*
200 *Learning*, 2025.

201 Shishir G. Patil et al. Gorilla: Large language model connected with massive apis. *arXiv preprint*
202 *arXiv:2305.15334*, 2023.

203 Guanghui Qin et al. Toolbench: A comprehensive evaluation of tool-augmented large language
204 models. In *Advances in Neural Information Processing Systems*, 2023.

205 Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueling Zhuang. Hugging-
206 GPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face, December 2023. URL
207 <http://arxiv.org/abs/2303.17580>. arXiv:2303.17580 [cs].

208 Dídac Surís, Sachit Menon, and Carl Vondrick. ViperGPT: Visual Inference via Python Execution for
209 Reasoning, March 2023. URL <http://arxiv.org/abs/2303.08128>. arXiv:2303.08128 [cs].

210 Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Visual
211 ChatGPT: Talking, Drawing and Editing with Visual Foundation Models, March 2023. URL
212 <http://arxiv.org/abs/2303.04671>. arXiv:2303.04671 [cs].

213 Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
214 Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osword: Benchmarking multimodal agents
215 for open-ended tasks in real computer environments. *Advances in Neural Information Processing*
216 *Systems*, 37:52040–52094, 2024.

217 Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
218 tool-agent-user interaction in real-world domains, 2024. URL <https://arxiv.org/abs/2406.12045>.

220 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens, Dongfu
221 Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun, Ming Yin,
222 Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and Wenhui Chen.
223 Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for expert
224 agi, 2024. URL <https://arxiv.org/abs/2311.16502>.

225 **A Appendix**

226 **A.1 Model Error Distribution**

227 Below we provide an error distribution of a sample of leading models run on MFCL Vision. Each
 228 model’s distribution gives insight into its unique characteristics. For example, we observe that Grok-4
 229 makes greater use of the tool than any other model, but does a poor job of selecting search keywords.
 230 Conversely, Claude-Opus-4.1 makes the least use of the tool, yet constructs the most productive
 231 search queries.

232 Figure 14: The chart shows the frequency of five error types—avoiding tool use, over-reliance on
 233 the provided user query, collapsing into an overly simplistic object character recognition (OCR)
 234 task, poor keyword selection, and visual reasoning error—across various models. Error types are
 235 color-coded, illustrating differences in model performance.

236

237 **A.2 System Prompt for Response Formatting**

238 During evaluation, the model receives explicit instructions for response formatting (via system
 239 prompt):

240 For your final answer to the user, you must respond in this format:
 241 'answer': A short and precise answer to the question, 'context': A
 242 brief explanation of how you arrived at this answer or why it is
 243 correct. If you do not know the answer, respond with: 'answer': 'I
 244 do not know', 'context': 'I do not know'. If you think the question
 245 cannot be properly answered, respond with: 'answer': 'I cannot answer
 246 this question', 'context': A short reason explaining why this question
 247 cannot be answered'.

248 **A.3 FC Models vs Prompting Models**

249 Our benchmark evaluates three kinds of information that models can use when forming a search
 250 query: (i) text from the provided query, (ii) text found in the image, and (iii) visual features in the
 251 image. The way models utilize these sources differs significantly, creating a noticeable gap between
 252 prompt-only and FC model approaches. Prompt-only models often ignore image text and visual cues.
 253 Instead, they repeat or mimic the provided question in the search call, with no references to visual
 254 elements. For example, models searched “*identify building in image square footage*” when asked
 255 about a building’s size, or “*season in image*” when asked to reason about the season in a busy city
 256 scene. These examples demonstrate prompt-only models mistakenly assume the tool can inherently
 257 “see” the image, which leads to poor search results.

258 Within prompt-only models, we also observe differences in how effectively they compensate for
 259 this limitation. Some models tend to recognize visual features but use them incorrectly, leading to
 260 confident but wrong queries. Other models show better use of image text by weaving it into search
 261 queries, however still share the same structural weakness of assuming the tool can “see”. In contrast,
 262 FC models are explicitly forced to separate and fill arguments for query text, image text, and visual

250 features. This design prevents the “tool sees the image” assumption and leads to more grounded and
251 reliable searches overall.