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Abstract

As multimodal large language models become tool-using agents, the field still lacks1

a standardized metric for translating visual inputs into correct tool invocations.2

We introduce MFCL Vision, the first large-scale benchmark for vision-based3

function calling, comprising 250 expert-verified tasks across five image domains4

(Places, Events, Media, Sports, Shopping) and five query types (Locate, Temporal,5

Select, Identify, Quantify). Each task comprises (1) a textual user query, (2) an6

accompanying image, (3) a ground-truth answer obtained from the web, and (4)7

a human-produced reasoning trace for comparative error analysis. To constrain8

the task, we expose a singular web-search tool to each model. To examine the9

robustness of multimodal LLMs’ perception-to-tool-use pipeline, we introduce10

controlled visual perturbations, including crops, resizes, and color channel removal.11

Our automatic grader computes exact-match scores on model final answers, re-12

moving dependence on brittle and potentially biased LLM judges. We evaluate13

leading models and present a taxonomy of failure modes, including visual reason-14

ing, keyword selection, and tool avoidance errors. By releasing MFCL Vision’s15

dataset, taxonomy, and diagnostics, we aim to accelerate progress towards versatile16

multimodal agents capable of intelligent tool usage in complex visual contexts.17

1 Introduction18

Recent advances in multimodal LLMs have demonstrated their potential in agentic, long-horizon use19

cases. However, effective real-world deployment necessitates the ability to synthesize and leverage20

visual and textual information in order to reason about the world and autonomously pursue goals.21

Increasingly, use cases require agents to interface with external tools (e.g. robotic controllers, database22

lookups, API endpoints, etc.) to either retrieve up-to-date information or enact actions that have23

real-world consequences. This paradigm, known as function calling, has emerged as the fundamental24

driver in transitioning LLMs from reasoning engines into actionable agents.25

Despite the commercial excitement surrounding AI agents, robust vison-based function calling26

remains an open challenge. This perception-to-tool-use capability is especially pertinent for models27

deployed in accuracy-critical domains like analyzing medical imagery or interpreting enterprise28

data visualizations. Also, standing perception problems in LLMs are further exacerbated by a lack29

of systematic evaluation for how effectively existing models execute vision-based function calling30

end-to-end . Current benchmarks evaluate either (i) text-only tool use—e.g., BFCL [Patil et al.,31
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2025], T-Eval [Chen et al., 2024], and τ -BENCH [Yao et al., 2024]—or (ii) general multi-modal32

understanding such as MMMU [Yue et al., 2024]. These frameworks overlook real-world settings in33

which tools must be utilized deliberately and productively despite sparse visual information.34

We introduce MFCL Vision (Multimodal Function Calling EvaLuation – Vision Suite), the first35

benchmark to address this gap. MFCL Vision is a framework containing 250 expert-verified vision-36

based function calling tasks. Each task specifies (1) a user query, (2) a contextualizing image, (3)37

a ground-truth answer and (4) a human-produced reasoning trace to validate correct application of38

the tool. The human-produced reasoning traces are used to manually analyze model traces against a39

validated example to identify root causes for task failure. Our annotation protocol yields exact-match40

references, enabling automatic grading without relying on fragile or biased LLM judges.41

Figure 1: Data construction pipeline for MFCL Vision. We curate both user-contributed and public-
source images (Google, Reddit, Pexels, etc), filter for salient visual cues, and write queries requiring
external knowledge. We optionally tune queries to enforce multi-step visual reasoning or provide
additional context or hints.

Our analysis uncovers three overarching failure modes: (i) Avoiding Tool Use, in which models make42

an unsubstantiated guess, abstain, or ask follow-up questions; (ii) Poor Keyword Selection, where43

generated queries are overly simplistic, vague or irrelevant; and (iii) Visual Reasoning Errors, which44

range from misreading text to misinterpreting spatial elements. We further present auxiliary failure45

modes that fall within these three broader error categories. To disentangle perception from reasoning,46

and to study the effectiveness of different image-training paradigms, we run controlled ablations on47

each image, including grayscale conversions, canny-edge filters, color jittering, and partial occlusion.48

Through our study, we formulate and present the first error taxonomy for vision-based function49

calling to guide future research towards robust and versatile multimodal AI agents.50

In summary, this work makes the following contributions:51

1. We propose MFCL Vision, the first benchmark to systematically evaluate vision-based52

function calling in multimodal LLMs under real-world visual constraints.53

2. We curate and release 250 image-query tasks with ground-truths and automated grading.54

3. We conduct a large-scale study of models and identify and analyze dominant failure modes,55

providing actionable insights to accelerate progress toward reliable multimodal AI agents.56

2 Related Work57

2.1 Tool Calling Benchmarks58

Given the growing recognition of tool-calling capabilities as crucial in ensuring LLM agents generalize59

across application domains outside of text, various works have proposed evaluation techniques and60

targeted benchmarks. Early benchmarks such as TOOLBENCH [Qin et al., 2023], API -Bank [Li61

et al., 2023], and GORILLA API BENCH [Patil et al., 2023] focus on text-only scenarios, where62

the model must map a prompt with text-only tokens to a corresponding function-calls in various63

languages. More recent efforts like BFCL [Patil et al., 2025] and τ -Bench [Yao et al., 2024, Barres64
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et al., 2025] broaden the scope to include multi-turn and multi-step tool-use with intermediate user65

interactions. These datasets are limited in scope by pertaining solely to text, which constrains the66

amount of context available to the model. MFCL Vision builds upon and extends existing tool-calling67

research by accounting for the vision modality along with perturbations that highlight failures at the68

boundaries of perception, grounding, and formatting.69

2.2 Vision-based Tool Calling Benchmarks70

Robust and reproducible evaluations for tool use in vision-related tasks remains nascent. A handful71

of works have explored letting language models plan or execute tools to solve visual problems. For72

example, VISPROG [Gupta and Kembhavi, 2022] and VIPERGPT [Surís et al., 2023] employ LLMs73

to generate Python-like code plans that invoke vision models step-by-step, and then execute these74

plans to answer visual queries. Systems like HUGGINGGPT and VISUAL-CHATGPT similarly use75

an LLM to orchestrate external models (e.g. image captioning) as tools [Shen et al., 2023, Wu et al.,76

2023, Huang et al., 2025]. The OSWORLD benchmark [Xie et al., 2024] evaluates how effectively77

multimodal LLMs operate software environments. Conditioned with user screenshots and filtered78

a11y trees with coordinates, models were tasked with executing the correct sequence of actions to79

accomplish a certain task. MFCL Vision diverges from OSWorld’s approach in its emphasis on80

naturalistic, real world images rather than constraining the visual context strictly to computer use.81

We build on the previous literature by (1) intentionally designing MFCL Vision tasks to go beyond82

simple visual reasoning, stressing perception-to-tool-use capabilities under real-world noise, occlu-83

sion, and distractors and (2) establishing a reproducible, unified evaluation protocol that quantifies84

tool-augmented reasoning through consistent metrics applicable across models and tasks.85

3 The MFCL Vision Dataset86

The MFCL Vision dataset comprises 250 image-query tasks spanning five image domains (Places,87

Events, Media, Sports, Shopping) and five query types (Locate, Temporal, Select, Identify, Quantify)88

(Figure 2). Successful completion of each task requires synthesizing user intent with image informa-89

tion to conduct external web search. For each task, there are a number of valid pathways the model90

can take to find the correct answer. This open-endedness enables models to demonstrate their agentic91

capabilities, as it requires them to balance avoidance under uncertainty with confidence in potentially92

overrepresented search results.93

Figure 2: MFCL Vision category distributions. Left: image categories—Places and Events are most
prevalent. Right: query categories—Identify dominates, followed by Temporal and Locate.

3.1 Dataset Construction94

We create the dataset based on the following principles: Salient visual hints: Each image contains95

visual clues the model can link with details in the user prompt to conduct a promising first search step.96

By using images with sufficient resolution and naturalistic composition, our benchmark evaluates each97

model’s baseline visual reasoning capabilities. Dependent on external evidence: For web search98

tasks, queries are designed such that the answer cannot be obtained without consulting up-to-date99
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external sources. Additionally, these do not collapse into pure visual reasoning tasks (e.g., OCR,100

object recognition, or simple counting). Dependent on the image context: The image provides101

essential disambiguation. Without it, the query is unanswerable (e.g., asking “Who owns this team?”102

without showing a logo). This ensures that both visual understanding and query specifications must103

interact to produce productive search queries. Solvability: Each task is constructed such that a104

non-expert human with access to web-search could answer the question correctly.105

3.2 Entry Tuning and Validation106

Each task undergoes iterative tuning (Figure 3) to calibrate difficulty. We noted a trade-off between107

creating prompts that are not artificially contrived for difficulty yet still require the models to108

accurately synthesize subtle image and textual details in order to construct web searches. As such,109

our tuning process includes adding conversational context to emulate user personas, enforcing multi-110

step search chains, injecting lightweight hints, or selectively cropping the image. We only retain111

entries that are solvable by humans yet consistently defeat state-of-the-art LLMs. These entries112

produced phenomena including repeated incorrect answers, excessively long reasoning traces, verbose113

non-answers, expressions of uncertainty, and outright refusals to attempt a solution.

Figure 3: Anatomy of an image-query entry that received several tuning treatments. The query is
decomposed into distinct components: orange–auxiliary context, blue–the actual information request,
green–query hints to constrain the search space, and pink–return format for string matching.

114

4 Evaluation Methodology115

The MFCL Vision evaluation pipeline extends the BFCL framework [Patil et al., 2025] by incorpo-116

rating image inputs into API calls for all integrated models and exposing a singular search tool.117

This design enables plug-and-play compatibility for new models, straightforward integration for the118

open-source community, and scalable benchmarking for rapid iteration.119

Exact-match accuracy. Each model receives a system prompt specifying the expected output format120

(Appendix A.2). We compute exact match on the answer field only, after lower-casing and removing121

punctuation, thereby avoiding false positives from partial matches.122

Ablations. We conduct three ablations: (i) color manipulations—conversion to grayscale or123

red-green only; (ii) edge-based transformations—standard edge detection; and (iii) aspect-ratio124

changes—cropping or resizing to 4:3 or 16:9. Crops preserve key regions, while resizing maintains125

full content at the cost of possible distortion.126

Large-scale model support. Models with native function calling (e.g., GPT-5, Gemini-2.5-Pro,127

Claude-4.1-Opus) execute MFCL Vision directly by receiving all function definitions via the tools128

field. Prompt-only models lack such interfaces and instead generate structured function calls through129

system-prompt-based emulation, following BFCL [Patil et al., 2025].130

5 Results and Error Analysis131

Our discussion centers on six recurring failure modes that underscore core obstacles must be overcome132

for LLMs with vision-based function calling to achieve reliable performance in real-world contexts.133

For Model Performance results, refer to Table 1. See Appendix A.1 for a distribution of prominent134

error types across a sample of select models.135
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Table 1: Model performance on MFCL Vision across all 8 variations.

Model Overall Base Crop16:9 Crop4:3 Resize16:9 Resize4:3 B&W Edge Red&Green

GPT-5-2025-08-07 (FC) 29.3 34.7 31.9 31.1 30.7 32.7 27.1 17.1 29.1
Gemini-2.5-Pro (FC) 26.6 29.9 31.1 28.7 25.9 29.5 25.5 14.3 27.9
Gemini-2.5-Flash (FC) 23.1 25.5 26.7 23.1 25.5 24.3 23.1 12.4 23.9
Grok-4-0709 (FC) 22.7 25.1 25.1 25.5 21.1 25.5 22.3 11.6 25.1
o4-mini-2025-04-16 (FC) 20.0 23.1 22.7 23.5 18.7 20.7 19.9 11.2 20.3
Claude-Opus-4.1 (FC) 15.9 16.7 18.3 17.5 15.9 17.5 15.5 11.6 13.9
Claude-Sonnet-4 (FC) 14.9 16.7 17.5 17.9 13.9 18.3 12.4 8.4 14.3
GPT-4o-2024-11-20 (FC) 11.7 12.0 14.3 15.5 10.4 12.8 12.0 4.8 11.6
Llama-4-Maverick (FC) 10.6 12.8 11.2 9.6 10.8 12.4 11.6 6.8 10.0
Amazon-Nova-Pro-v1:0 (FC) 10.1 12.8 10.4 9.6 9.6 10.4 9.6 6.8 11.6
GPT-4o-mini-2024-07-18 (FC) 9.0 10.0 11.2 8.4 10.0 9.2 9.2 6.4 8.0
Mistral-Medium-2508 (FC) 8.7 10.4 10.8 8.4 10.8 11.2 9.2 1.2 8.0
Pixtral-Large-2411 (Prompt) 8.4 9.6 10.0 7.6 8.8 11.2 6.0 6.0 8.0
GLM-4.5V (Prompt) 7.9 10.0 5.2 9.2 7.2 10.4 8.8 3.6 8.8
Command-A-Vision-07-2025 (Prompt) 6.2 6.8 6.0 6.0 7.2 6.0 7.2 4.4 6.0

FM 1A: Visual Reasoning Errors Failures largely stemmed from known weaknesses of VLMs136

that were deliberately targeted during image curation and tuning. Models often struggle to balance137

textual with visual information and face challenges with distinct spatial arrangements.138

FM 1B: Subset Confusion Faced with many look-alike objects, models often misidentify subsets.139

In overloaded scenes they tend to omit items or hallucinate extras, skewing keywords (Figure 4).140

Figure 4: Example images that induced subset confusion. Green boxes mark target subsets, but
models often hallucinate extra items or miss targets, especially in the Shopping category.

FM 1C: Myopia In images with significant depth of field, models over-attend to salient foreground141

objects at the expense of more relevant background cues—even when named in the query (Figure 5).142

This foreground bias skews search, with distractors driving keyword selection.143

Figure 5: Example images that induced myopic behavior. The green box indicates the key clue and
the red box highlights the foreground distractor. Both examples had associated queries that explicitly
informed the model to reason on something further back in the image (e.g. referring to the “cafe with
orange signage” or “chessboard in the back”).
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FM 2: Avoiding Tool Use Sometimes models avoid searching when uncertain. Instead, they either144

ask clarifying questions (Figure 6) or provide best-guess answers based solely on internal reasoning145

despite having access to search tools (Figure 7).146

Figure 6: Example of avoiding tools use via refusal. This entry displays the player’s team logo and
jersey number, which are major clues the models should recognize before making any tool calls.
Despite this, the model stalled and requested more input.

Figure 7: Example of avoiding tool use via search-blind reasoning. Rather than reasoning about the
image or leveraging search, the model simply makes a blind guess, offering meta-reasoning about
what might be a “plausible” answer given the query text.

FM 3: Poor Keyword Selection Models generate vague or irrelevant search queries. Rather than147

extracting specific visual details (e.g., text, symbols, spatial cues) into targeted keywords, they default148

to generic phrases (Figure 8), yielding irrelevant search results.149

Figure 8: Example of poor keyword selection. This entry implicates analog clock reading and spatial
orientation relative to the sun to determine the exact time. The model failed to combine any of this
nuance to produce specific keywords for search.

FM 4: First-hop Bias Models latch onto an initial assumption and resist updating, even when150

faced with contradictory evidence (sometimes rationalized away as “misremembering”, Figure 9).151

In other cases, models reason correctly during the trace, but the final output reverts to the initial152

incorrect guess, discarding their own reasoning.153

6



Figure 9: Example of first-hop bias. Even with clear visual evidence of teams, players, and year, the
model fixates on a Qatar Airways ad during its first reasoning step. This anchors it to an incorrect
path and leads it to dismiss the correct temporal evidence.

FM 5: Over-reliance on Query Text Models prioritize keywords from the provided user query154

over the information present in the image. Instead of grounding reasoning in visual evidence (e.g.,155

on-screen text, logos, etc.), they issue tool calls based on phrases pulled from the query (Figure 10).156

Figure 10: Example of over-reliance on query text. Despite the clear About This Mac window, the
model ignored the text and issued a vague search based only on the provided query.

FM 6: Abandoning promising leads Models note alternative hypotheses but settle on the first157

plausible answer, often reinforced by search hits, leaving correct options unexamined (Figure 11).158

Figure 11: Example of abandoning a promising lead. While able to surface potential answers, the
model latches onto the first plausible path and ignores the raised alternative which happened to be
correct.

6 Ablation Analysis159

Examining ablation accuracies (Table 1), the Edge Detection variant produces the largest performance160

drop; all other treatments yield only minor degradation.161

Edge detection removes key cues The sharp decline from Edge Detection stems from its subtractive162

nature, causing lower contrast or fine-grained visual anchors, such as small text and thin logos, to163
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be removed or distorted. Without these key visual cues, models lose the necessary context to form164

targeted and specific search keywords, causing performance to collapse (Figure 12).165

Figure 12: Edge detection ablation example. The accompanying query for this entry reads: “I was
visiting this hotel while attending a conference. Who designed the sculpture to the left?”. We observe
that both color and textual information (e.g., “GRADUA”) are completely lost.

Color ablations alter accuracy and strategy Both Black&White (B&W) and Red&Green (R&G)166

transformations reduce accuracy, reflecting the fact that color frequently serves as discriminative167

evidence (e.g., differentiating flavors, products, or team jerseys). Color transformations also appear168

to affect reasoning behavior. We discovered cases where models potentially interpret grayscale inputs169

as “lower information” and compensate by invoking external tools. In several cases, B&W images170

led models to use search and find correct answers, whereas color and red-green variants relied on171

internal guesses or refusals (Figure 13). This suggests that reduced color fidelity may implicitly172

signal uncertainty and nudge models towards tool-assisted reasoning.173

Figure 13: Example entries with color ablations applied. Across both entries, original and R&G
similarly ignore tools and fail while the B&W counterpart successfully uses search.

7 Conclusion174

MFCL Vision provides the first large-scale vision-based benchmark for tool-augmented LLMs,175

exposes consistent failure modes, and offers lightweight, reproducible metrics that enable rapid176

iteration. Our analysis reveals that current state-of-the-art models still treat tool use as an optional177

afterthought, especially under complex, real-world visual conditions, and that simple perturbations178

such as edge detection can erase nearly all accuracy gains. We release MFCL Vision, all code, and179

evaluation and analysis tools to spur research on robust, tool-aware reasoning. Future work will180

8



expand MFCL Vision to include additional models and extend beyond the current search tool to181

evaluate multi-tool capabilities on image inputs. This includes tools to manipulate or edit images, as182

well as paradigms where images are produced as output.183
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A Appendix225

A.1 Model Error Distribution226

Below we provide an error distribution of a sample of leading models run on MFCL Vision. Each227

model’s distribution gives insight into its unique characteristics. For example, we observe that Grok-4228

makes greater use of the tool than any other model, but does a poor job of selecting search keywords.229

Conversely, Claude-Opus-4.1 makes the least use of the tool, yet constructs the most productive230

search queries.

Figure 14: The chart shows the frequency of five error types—avoiding tool use, over-reliance on
the provided user query, collapsing into an overly simplistic object character recognition (OCR)
task, poor keyword selection, and visual reasoning error—across various models. Error types are
color-coded, illustrating differences in model performance.

231

A.2 System Prompt for Response Formatting232

During evaluation, the model receives explicit instructions for response formatting (via system233

prompt):234

For your final answer to the user, you must respond in this format:
’answer’: A short and precise answer to the question, ’context’: A
brief explanation of how you arrived at this answer or why it is
correct. If you do not know the answer, respond with: ’answer’: ’I
do not know’, ’context’: ’I do not know’. If you think the question
cannot be properly answered, respond with: ’answer’: ’I cannot answer
this question’, ’context’: A short reason explaining why this question
cannot be answered’.

A.3 FC Models vs Prompting Models235

Our benchmark evaluates three kinds of information that models can use when forming a search236

query: (i) text from the provided query, (ii) text found in the image, and (iii) visual features in the237

image. The way models utilize these sources differs significantly, creating a noticeable gap between238

prompt-only and FC model approaches. Prompt-only models often ignore image text and visual cues.239

Instead, they repeat or mimic the provided question in the search call, with no references to visual240

elements. For example, models searched “identify building in image square footage” when asked241

about a building’s size, or “season in image” when asked to reason about the season in a busy city242

scene. These examples demonstrate prompt-only models mistakenly assume the tool can inherently243

“see” the image, which leads to poor search results.244

Within prompt-only models, we also observe differences in how effectively they compensate for245

this limitation. Some models tend to recognize visual features but use them incorrectly, leading to246

confident but wrong queries. Other models show better use of image text by weaving it into search247

queries, however still share the same structural weakness of assuming the tool can “see”. In contrast,248

FC models are explicitly forced to separate and fill arguments for query text, image text, and visual249
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features. This design prevents the “tool sees the image” assumption and leads to more grounded and250

reliable searches overall.251
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