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Abstract

As multimodal large language models become tool-using agents, the field still lacks
a standardized metric for translating visual inputs into correct tool invocations.
We introduce MFCL Vision, the first large-scale benchmark for vision-based
function calling, comprising 250 expert-verified tasks across five image domains
(Places, Events, Media, Sports, Shopping) and five query types (Locate, Temporal,
Select, Identify, Quantify). Each task comprises (1) a textual user query, (2) an
accompanying image, (3) a ground-truth answer obtained from the web, and (4)
a human-produced reasoning trace for comparative error analysis. To constrain
the task, we expose a singular web-search tool to each model. To examine the
robustness of multimodal LLMs’ perception-to-tool-use pipeline, we introduce
controlled visual perturbations, including crops, resizes, and color channel removal.
Our automatic grader computes exact-match scores on model final answers, re-
moving dependence on brittle and potentially biased LLM judges. We evaluate
leading models and present a taxonomy of failure modes, including visual reason-
ing, keyword selection, and tool avoidance errors. By releasing MFCL Vision’s
dataset, taxonomy, and diagnostics, we aim to accelerate progress towards versatile
multimodal agents capable of intelligent tool usage in complex visual contexts.

1 Introduction

Recent advances in multimodal LLMs have demonstrated their potential in agentic, long-horizon use
cases. However, effective real-world deployment necessitates the ability to synthesize and leverage
visual and textual information in order to reason about the world and autonomously pursue goals.
Increasingly, use cases require agents to interface with external tools (e.g. robotic controllers, database
lookups, API endpoints, etc.) to either retrieve up-to-date information or enact actions that have
real-world consequences. This paradigm, known as function calling, has emerged as the fundamental
driver in transitioning LLLMs from reasoning engines into actionable agents.

Despite the commercial excitement surrounding Al agents, robust vison-based function calling
remains an open challenge. This perception-to-tool-use capability is especially pertinent for models
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deployed in accuracy-critical domains like analyzing medical imagery or interpreting enterprise
data visualizations. Also, standing perception problems in LLMs are further exacerbated by a lack
of systematic evaluation for how effectively existing models execute vision-based function calling
end-to-end . Current benchmarks evaluate either (i) text-only tool use—e.g., BFCL [Patil et al.,
2025|], T-Eval [Chen et al., 2024]], and 7 -BENCH [Yao et al.| [2024]]—or (ii) general multi-modal
understanding such as MMMU [Yue et al., | 2024]]. These frameworks overlook real-world settings in
which tools must be utilized deliberately and productively despite sparse visual information.

We introduce MFCL Vision (Multimodal Function Calling EvaLuation — Vision Suite), the first
benchmark to address this gap. MFCL Vision is a framework containing 250 expert-verified vision-
based function calling tasks. Each task specifies (1) a user query, (2) a contextualizing image, (3)
a ground-truth answer and (4) a human-produced reasoning trace to validate correct application of
the tool. The human-produced reasoning traces are used to manually analyze model traces against a
validated example to identify root causes for task failure. Our annotation protocol yields exact-match
references, enabling automatic grading without relying on fragile or biased LLM judges.
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Figure 1: Data construction pipeline for MFCL Vision. We curate both user-contributed and public-
source images (Google, Reddit, Pexels, etc), filter for salient visual cues, and write queries requiring
external knowledge. We optionally tune queries to enforce multi-step visual reasoning or provide
additional context or hints.

Our analysis uncovers three overarching failure modes: (i) Avoiding Tool Use, in which models make
an unsubstantiated guess, abstain, or ask follow-up questions; (ii) Poor Keyword Selection, where
generated queries are overly simplistic, vague or irrelevant; and (iii) Visual Reasoning Errors, which
range from misreading text to misinterpreting spatial elements. We further present auxiliary failure
modes that fall within these three broader error categories. To disentangle perception from reasoning,
and to study the effectiveness of different image-training paradigms, we run controlled ablations on
each image, including grayscale conversions, canny-edge filters, color jittering, and partial occlusion.
Through our study, we formulate and present the first error taxonomy for vision-based function
calling to guide future research towards robust and versatile multimodal AI agents.

In summary, this work makes the following contributions:

1. We propose MFCL Vision, the first benchmark to systematically evaluate vision-based
function calling in multimodal LL.Ms under real-world visual constraints.
2. We curate and release 250 image-query tasks with ground-truths and automated grading.

3. We conduct a large-scale study of models and identify and analyze dominant failure modes,
providing actionable insights to accelerate progress toward reliable multimodal Al agents.

2 Related Work

2.1 Tool Calling Benchmarks

Given the growing recognition of tool-calling capabilities as crucial in ensuring LLM agents generalize
across application domains outside of text, various works have proposed evaluation techniques and
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targeted benchmarks. Early benchmarks such as TOOLBENCH 2023]], API-Bank
2023]], and GORILLA API BENCH [Patil et al [2023]] focus on text-only scenarios, where

the model must map a prompt with text-only tokens to a corresponding function-calls in various
languages. More recent efforts like BFCL and 7 -Bench [[Yao et all, 2024} Barres|
2025]) broaden the scope to include multi-turn and multi-step tool-use with intermediate user
interactions. These datasets are limited in scope by pertaining solely to text, which constrains the
amount of context available to the model. MFCL Vision builds upon and extends existing tool-calling
research by accounting for the vision modality along with perturbations that highlight failures at the
boundaries of perception, grounding, and formatting.

2.2 Vision-based Tool Calling Benchmarks

Robust and reproducible evaluations for tool use in vision-related tasks remains nascent. A handful
of works have explored letting language models plan or execute tools to solve visual problems. For
example, VISPROG [[Gupta and Kembhavi,[2022]] and VIPERGPT 2023]] employ LLMs
to generate Python-like code plans that invoke vision models step-by-step, and then execute these
plans to answer visual queries. Systems like HUGGINGGPT and VISUAL-CHATGPT similarly use
an LLM to orchestrate external models (e.g. image captioning) as tools [Shen et al, [2023] [Wu et al}
[2023] [Huang et al.,[2025]]. The OSWORLD benchmark 4] evaluates how effectively
multimodal LLMs operate software environments. Conditioned with user screenshots and filtered
ally trees with coordinates, models were tasked with executing the correct sequence of actions to
accomplish a certain task. MFCL Vision diverges from OSWorld’s approach in its emphasis on
naturalistic, real world images rather than constraining the visual context strictly to computer use.

We build on the previous literature by (1) intentionally designing MFCL Vision tasks to go beyond
simple visual reasoning, stressing perception-to-tool-use capabilities under real-world noise, occlu-
sion, and distractors and (2) establishing a reproducible, unified evaluation protocol that quantifies
tool-augmented reasoning through consistent metrics applicable across models and tasks.

3 The MFCL Vision Dataset

The MFCL Vision dataset comprises 250 image-query tasks spanning five image domains (Places,
Events, Media, Sports, Shopping) and five query types (Locate, Temporal, Select, Identify, Quantify)
(Figure[2). Successful completion of each task requires synthesizing user intent with image informa-
tion to conduct external web search. For each task, there are a number of valid pathways the model
can take to find the correct answer. This open-endedness enables models to demonstrate their agentic
capabilities, as it requires them to balance avoidance under uncertainty with confidence in potentially
overrepresented search results.

Image Category Distribution Query Category Distribution

Shopping Sports Quantify

Select

13.1%  14.3% 15.5% 10.4%

Locate

Media
11.6%

Events

Identify Temporal

Places

Figure 2: MFCL Vision category distributions. Left: image categories—Places and Events are most
prevalent. Right: query categories—Identify dominates, followed by Temporal and Locate.
3.1 Dataset Construction

We create the dataset based on the following principles: Salient visual hints: Each image contains
visual clues the model can link with details in the user prompt to conduct a promising first search step.
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By using images with sufficient resolution and naturalistic composition, our benchmark evaluates each
model’s baseline visual reasoning capabilities. Dependent on external evidence: For web search
tasks, queries are designed such that the answer cannot be obtained without consulting up-to-date
external sources. Additionally, these do not collapse into pure visual reasoning tasks (e.g., OCR,
object recognition, or simple counting). Dependent on the image context: The image provides
essential disambiguation. Without it, the query is unanswerable (e.g., asking “Who owns this team?”’
without showing a logo). This ensures that both visual understanding and query specifications must
interact to produce productive search queries. Solvability: Each task is constructed such that a
non-expert human with access to web-search could answer the question correctly.

3.2 Entry Tuning and Validation

Each task undergoes iterative tuning (Figure 3) to calibrate difficulty. We noted a trade-off between
creating prompts that are not artificially contrived for difficulty yet still require the models to
accurately synthesize subtle image and textual details in order to construct web searches. As such,
our tuning process includes adding conversational context to emulate user personas, enforcing multi-
step search chains, injecting lightweight hints, or selectively cropping the image. We only retain
entries that are solvable by humans yet consistently defeat state-of-the-art LLMs. These entries
produced phenomena including repeated incorrect answers, excessively long reasoning traces, verbose
non-answers, expressions of uncertainty, and outright refusals to attempt a solution.

I'm a food critic by trade and | love trying new
restaurants while I'm on vacation, especially when I'm
traveling abroad. Looking at this photo | took while
dining in Southeast Asia, can you tell me which French
department the restaurant’s head chef was born in?
Only return a single string.

Figure 3: Anatomy of an image-query entry that received several tuning treatments. The query is
decomposed into distinct components: orange—auxiliary context, blue—the actual information request,
green—query hints to constrain the search space, and pink—return format for string matching.

4 Evaluation Methodology

The MFCL Vision evaluation pipeline extends the BFCL framework [Patil et al., 2025]] by incorpo-
rating image inputs into API calls for all integrated models and exposing a singular search tool.
This design enables plug-and-play compatibility for new models, straightforward integration for the
open-source community, and scalable benchmarking for rapid iteration.

Exact-match accuracy. Each model receives a system prompt specifying the expected output format
(Appendix[A2). We compute exact match on the answer field only, after lower-casing and removing
punctuation, thereby avoiding false positives from partial matches.

Ablations. We conduct three ablations: (i) color manipulations—conversion to grayscale or
red-green only; (ii) edge-based transformations—standard edge detection; and (iii) aspect-ratio
changes—cropping or resizing to 4:3 or 16:9. Crops preserve key regions, while resizing maintains
full content at the cost of possible distortion.

Large-scale model support. Models with native function calling (e.g., GPT-5, Gemini-2.5-Pro,
Claude-4.1-Opus) execute MFCL Vision directly by receiving all function definitions via the tools
field. Prompt-only models lack such interfaces and instead generate structured function calls through
system-prompt-based emulation, following BFCL [Patil et al.| [2025]].

5 Results and Error Analysis

Our discussion centers on six recurring failure modes that underscore core obstacles must be overcome
for LLMs with vision-based function calling to achieve reliable performance in real-world contexts.
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For Model Performance results, refer to Table[I] See Appendix [A-T]for a distribution of prominent
error types across a sample of select models.

Table 1: Model performance on MFCL Vision across all 8 variations.

Model Overall Base Cropl6:9 Crop4:3 Resizel6:9 Resize4:3 B&W Edge Red&Green
GPT-5-2025-08-07 (FC) 29.3 34.7 319 31.1 30.7 32.7 271 171 29.1
Gemini-2.5-Pro (FC) 26.6 29.9 31.1 28.7 25.9 29.5 25.5 14.3 27.9
Gemini-2.5-Flash (FC) 23.1 25.5 26.7 23.1 25.5 24.3 23.1 12.4 23.9
Grok-4-0709 (FC) 22.7 25.1 25.1 25.5 21.1 25.5 22.3 116 25.1
04-mini-2025-04-16 (FC) 20.0 23.1 22.7 23.5 18.7 20.7 199 11.2 20.3
Claude-Opus-4.1 (FC) 15.9 16.7 18.3 17.5 15.9 17.5 15.5 11.6 13.9
Claude-Sonnet-4 (FC) 14.9 16.7 17.5 17.9 13.9 18.3 12.4 8.4 14.3
GPT-40-2024-11-20 (FC) 11.7 12.0 14.3 15.5 10.4 12.8 12.0 4.8 11.6
Llama-4-Maverick (FC) 10.6 12.8 11.2 9.6 10.8 12.4 11.6 6.8 10.0
Amazon-Nova-Pro-v1:0 (FC) 10.1 12.8 10.4 9.6 9.6 10.4 9.6 6.8 11.6
GPT-40-mini-2024-07-18 (FC) 9.0 10.0 11.2 8.4 10.0 9.2 9.2 6.4 8.0
Mistral-Medium-2508 (FC) 8.7 10.4 10.8 8.4 10.8 11.2 9.2 1.2 8.0
Pixtral-Large-2411 (Prompt) 8.4 9.6 10.0 7.6 8.8 11.2 6.0 6.0 8.0
GLM-4.5V (Prompt) 7.9 10.0 5.2 9.2 7.2 10.4 8.8 3.6 8.8
Command-A-Vision-07-2025 (Prompt) 6.2 6.8 6.0 6.0 7.2 6.0 7.2 4.4 6.0

FM 1A: Visual Reasoning Errors Failures largely stemmed from known weaknesses of VLMs
that were deliberately targeted during image curation and tuning. Models often struggle to balance
textual with visual information and face challenges with distinct spatial arrangements.

FM 1B: Subset Confusion Faced with many look-alike objects, models often misidentify subsets.
In overloaded scenes they tend to omit items or hallucinate extras, skewing keywords (Figure [).

Figure 4: Example images that induced subset confusion. Green boxes mark target subsets, but
models often hallucinate extra items or miss targets, especially in the Shopping category.

FM 1C: Myopia Inimages with significant depth of field, models over-attend to salient foreground
objects at the expense of more relevant background cues—even when named in the query (Figure3).
This foreground bias skews search, with distractors driving keyword selection.

FM 2: Avoiding Tool Use Sometimes models avoid searching when uncertain. Instead, they either
ask clarifying questions (Figure [6) or provide best-guess answers based solely on internal reasoning
despite having access to search tools (Figure[7).

FM 3: Poor Keyword Selection Models generate vague or irrelevant search queries. Rather than
extracting specific visual details (e.g., text, symbols, spatial cues) into targeted keywords, they default
to generic phrases (Figure ), yielding irrelevant search results.

FM 4: First-hop Bias Models latch onto an initial assumption and resist updating, even when
faced with contradictory evidence (sometimes rationalized away as “misremembering”, Figure D).
In other cases, models reason correctly during the trace, but the final output reverts to the initial
incorrect guess, discarding their own reasoning.

FM 5: Over-reliance on Query Text Models prioritize keywords from the provided user query
over the information present in the image. Instead of grounding reasoning in visual evidence (e.g.,
on-screen text, logos, etc.), they issue tool calls based on phrases pulled from the query (Figure [I0).
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Figure 5: Example images that induced myopic behavior. The green box indicates the key clue and
the red box highlights the foreground distractor. Both examples had associated queries that explicitly
informed the model to reason on something further back in the image (e.g. referring to the “cafe with
orange signage” or “chessboard in the back”).

Query: I'm a big fan of this team. According to ESPN, was this
soccer player fit to play in July 20257

Model Response:

| can see this is a Real Madrid player based on the uniform, but
I cannot identify who this specific player is from the image
alone. To check their fitness status in July 2025 according to
ESPN, | would need to know which player you're asking about.
Could you please tell me the name of the soccer player?

Reason for failure: Refuses to answer + asks follow up

Figure 6: Example of avoiding tools use via refusal. This entry displays the player’s team logo and
jersey number, which are major clues the models should recognize before making any tool calls.
Despite this, the model stalled and requested more input.

Query: I'm a sustainability researcher. What is the amount of
carbon emissions produced by this bus while driving?

Model Response:

I'm considering what number might make sense for the
emissions a bus produces while driving. It seems like the most
reasonable guess could be "0 especially if we think about an
electric bus ... I think I'll go with "0" since it's the most
plausible answer given the context.

Reason for failure: False positive blind guess
Figure 7: Example of avoiding tool use via search-blind reasoning. Rather than reasoning about the

image or leveraging search, the model simply makes a blind guess, offering meta-reasoning about
what might be a “plausible” answer given the query text.

FM 6: Abandoning promising leads Models note alternative hypotheses but settle on the first
plausible answer, often reinforced by search hits, leaving correct options unexamined (Figure[TT).

6 Ablation Analysis

Examining ablation accuracies (Table[I)), the Edge Detection variant produces the largest performance
drop; all other treatments yield only minor degradation.

Edge detection removes key cues The sharp decline from Edge Detection stems from its subtractive
nature, causing lower contrast or fine-grained visual anchors, such as small text and thin logos, to



Query: | took this photo during my trip but forgot to note the
time. I'm trying to match it with my travel itinerary—can you
tell me the exact time it was taken?

Model Response:
search_engine_query(keywords=
“Big Ben time”)

Reason for failure:

The model ignored the visual evidence and issued a vague
query “Big Ben time” which only returned pages with the
current time in London or general facts about Big Ben.

Figure 8: Example of poor keyword selection. This entry implicates analog clock reading and spatial
orientation relative to the sun to determine the exact time. The model failed to combine any of this
nuance to produce specific keywords for search.

Query: | recently attended this match in person but couldn't
stick around for the outcome. Who won this match?

Model Response:

I'm analyzing the FIFA Club World Cup 2025 and wondering
about the location—could it be Qatar since the photo shows
that—but also thinking about the UAE ... I'm thinking Seattle
might have faced Al Ahly, as they were the CONCACAF
champs at the Club World Cup. They lost 1-0 to Al Ahly in
2023, possibly in the quarterfinals. The image seems unclear
about its date, but it shows 2025. | wonder if it's actually
misremembered and relates to the 2023 match ...

Reason for failure: Bias towards location distraction in first-hop

Figure 9: Example of first-hop bias. Even with clear visual evidence of teams, players, and year, the
model fixates on a Qatar Airways ad during its first reasoning step. This anchors it to an incorrect
path and leads it to dismiss the correct temporal evidence.

Query: I'm working on a competitive analysis of the laptop
market. How many other products did Apple announce at the
same launch event as this laptop?

Model Response:
search_engine_query(keywords=
"Apple product announcements")

Reason for failure:

Instead of extracting and using the image text (e.g., model
name, chip name) as specific keywords, the model ignored
the visual evidence and issued a vague search.

Figure 10: Example of over-reliance on query text. Despite the clear About This Mac window, the
model ignored the text and issued a vague search based only on the provided query.

Query: Can you identify all the items in this setup and tell me
the total cost if | want to buy the exact same ones?

Model Response:

Google describes the INZONE Buds as having black and white
colors, with earbuds being white on the outside and black
inside. I'm noticing two small buds, which look like earbuds
with a charging case nearby, possibly indicating they could
be Sony's Pulse Elite Wireless Earbuds ... I'll list the items with
their prices: PS5 DualSense Wireless Controller ($69.99).
Sony INZONE Buds Wireless Earbuds ($199.99) Succulent
Plant in Decorative Pot ($15.00).

N Reason for failure: Doesn't investigate potentially correct path

Figure 11: Example of abandoning a promising lead. While able to surface potential answers, the
model latches onto the first plausible path and ignores the raised alternative which happened to be
correct.

164 be removed or distorted. Without these key visual cues, models lose the necessary context to form
165 targeted and specific search keywords, causing performance to collapse (Figure [12).
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Figure 12: Edge detection ablation example. The accompanying query for this entry reads: “I was
visiting this hotel while attending a conference. Who designed the sculpture to the left?”. We observe
that both color and textual information (e.g., “GRADUA”) are completely lost.

Color ablations alter accuracy and strategy Both Black&White (B&W) and Red&Green (R&G)
transformations reduce accuracy, reflecting the fact that color frequently serves as discriminative
evidence (e.g., differentiating flavors, products, or team jerseys). Color transformations also appear
to affect reasoning behavior. We discovered cases where models potentially interpret grayscale inputs
as “lower information” and compensate by invoking external tools. In several cases, B&W images
led models to use search and find correct answers, whereas color and red-green variants relied on
internal guesses or refusals (Figure [[3)). This suggests that reduced color fidelity may implicitly
signal uncertainty and nudge models towards tool-assisted reasoning.

Q: What parade in what year

"" ™
X

did this balloon design make its debut?
e 0T -

Il
s ; 4

Figure 13: Example entries with color ablations applied. Across both entries, original and R&G
similarly ignore tools and fail while the B&W counterpart successfully uses search.

7 Conclusion

MFCL Vision provides the first large-scale vision-based benchmark for tool-augmented LLMs,
exposes consistent failure modes, and offers lightweight, reproducible metrics that enable rapid
iteration. Our analysis reveals that current state-of-the-art models still treat tool use as an optional
afterthought, especially under complex, real-world visual conditions, and that simple perturbations
such as edge detection can erase nearly all accuracy gains. We release MFCL Vision, all code, and
evaluation and analysis tools to spur research on robust, tool-aware reasoning. Future work will
expand MFCL Vision to include additional models and extend beyond the current search tool to
evaluate multi-tool capabilities on image inputs. This includes tools to manipulate or edit images, as
well as paradigms where images are produced as output.
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A Appendix

A.1 Model Error Distribution

Below we provide an error distribution of a sample of leading models run on MFCL Vision. Each
model’s distribution gives insight into its unique characteristics. For example, we observe that Grok-4
makes greater use of the tool than any other model, but does a poor job of selecting search keywords.
Conversely, Claude-Opus-4.1 makes the least use of the tool, yet constructs the most productive
search queries.
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Error distribution across selected models
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Figure 14: The chart shows the frequency of five error types—avoiding tool use, over-reliance on
the provided user query, collapsing into an overly simplistic object character recognition (OCR)
task, poor keyword selection, and visual reasoning error—across various models. Error types are
color-coded, illustrating differences in model performance.

A.2 System Prompt for Response Formatting

During evaluation, the model receives explicit instructions for response formatting (via system
prompt):

For your final answer to the user, you must respond in this format:
’answer’: A short and precise answer to the question, ’context’: A
brief explanation of how you arrived at this answer or why it is

correct. If you do not know the answer, respond with: ‘’answer’: ’I
do not know’, ’context’: I do not know’. If you think the question
cannot be properly answered, respond with: ’answer’: ’I cannot answer

this question’, ’context’: A short reason explaining why this question
cannot be answered’.

A.3 FC Models vs Prompting Models

Our benchmark evaluates three kinds of information that models can use when forming a search
query: (i) text from the provided query, (ii) text found in the image, and (iii) visual features in the
image. The way models utilize these sources differs significantly, creating a noticeable gap between
prompt-only and FC model approaches. Prompt-only models often ignore image text and visual cues.
Instead, they repeat or mimic the provided question in the search call, with no references to visual
elements. For example, models searched “identify building in image square footage” when asked
about a building’s size, or “season in image” when asked to reason about the season in a busy city
scene. These examples demonstrate prompt-only models mistakenly assume the tool can inherently
“see” the image, which leads to poor search results.

Within prompt-only models, we also observe differences in how effectively they compensate for
this limitation. Some models tend to recognize visual features but use them incorrectly, leading to
confident but wrong queries. Other models show better use of image text by weaving it into search
queries, however still share the same structural weakness of assuming the tool can “see”. In contrast,
FC models are explicitly forced to separate and fill arguments for query text, image text, and visual
features. This design prevents the “tool sees the image” assumption and leads to more grounded and
reliable searches overall.
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