

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HOW FAR ARE LLMS FROM PROFESSIONAL POKER PLAYERS? REVISITING GAME-THEORETIC REASON- ING WITH AGENTIC TOOL USE

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

As Large Language Models (LLMs) are increasingly applied in high-stakes domains, their ability to reason strategically under uncertainty becomes critical. Poker provides a rigorous testbed, requiring not only strong actions but also principled, game-theoretic reasoning. In this paper, we conduct a systematic study of LLMs in multiple realistic poker tasks, evaluating both gameplay outcomes and reasoning traces. Our analysis reveals LLMs fail to compete against traditional algorithms and identifies three recurring flaws: reliance on heuristics, factual misunderstandings, and a “knowing–doing” gap where actions diverge from reasoning. An initial attempt with behavior cloning and step-level reinforcement learning improves reasoning style but remains insufficient for accurate game-theoretic play. Motivated by these limitations, we propose ToolPoker, a tool-integrated reasoning framework that combines external solvers for GTO-consistent actions with more precise professional-style explanations. Experiments demonstrate that ToolPoker achieves state-of-the-art gameplay while producing reasoning traces that closely reflect game-theoretic principles.

1 INTRODUCTION

Large Language Models (LLMs) are increasingly deployed in high-stakes domains such as cybersecurity (Ameri et al., 2021) and strategic decision-making (Jiang et al., 2023), where success requires not only factual recall but also reasoning under uncertainty and informed decision-making. A natural testbed for these abilities is *game-playing*, which combines reasoning, planning, and opponent modeling. Poker is especially suitable as a canonical incomplete-information game (Harsanyi, 1995), requiring players to act with hidden information, estimate opponents’ ranges, and anticipate future outcomes. Importantly, professional players succeed not only by choosing strong actions, but by *reasoning in a game-theoretic manner* (Brown & Sandholm, 2019), grounding decisions in equilibrium principles while adapting to opponents. Thus, to play like professionals, one must not only act optimally but also *think strategically*. Evaluating LLMs in poker requires going beyond win rate and examining whether their *reasoning traces* reflect principled strategic thinking.

Motivated by this, we ask: *How far are LLMs from professional poker players?* Several recent studies have explored LLMs in such game-theoretic games. For instance, GTBench (Duan et al., 2024) and PokerBench (Zhuang et al., 2025) focus on gameplay outcomes and show that LLMs struggle to compete. Suspicion-Agent (Guo et al., 2023) uses theory-of-mind prompting in Leduc Hold’em, with GPT-4 surpassing neural baselines such as NFSP (Heinrich & Silver, 2016), but still falls short of equilibrium-based methods like CFR+ (Zinkevich et al., 2007). GameBot (Lin et al., 2025) examines reasoning steps but only measures correctness. While insightful, these works focus narrowly on outcomes, offering limited understandings of *why* LLMs succeed or fail.

To fill this gap, we conduct a systematic study of LLMs in poker, analyzing both gameplay and reasoning traces. Our analysis shows that LLMs consistently underperform traditional baselines, such as NFSP (Heinrich & Silver, 2016) and CFR+ Tammelin (2014), ranging from reinforcement learning (RL) to equilibrium-based solvers, due to three key reasoning flaws: (i) *Heuristic reasoning*: LLMs often rely on shallow heuristics rather than rigorous game-theoretic principles. (ii) *Factual misunderstanding*: LLMs sometimes misjudge fundamental aspects of the game, such as

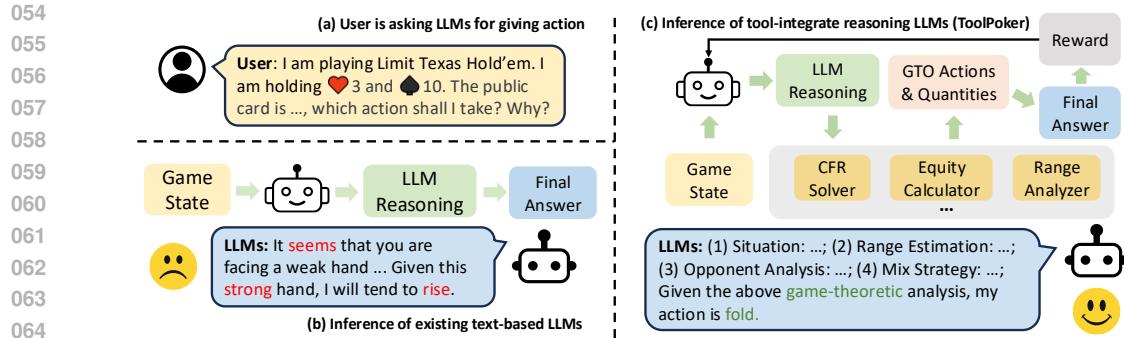


Figure 1: Illustration of ToolPoker and its advantages over LLMs using internal policies.

hand strength, pot odds, or opponent range estimation, leading to systematically flawed reasoning and (iii) *Knowing–doing gap*: even when LLMs articulate sound reasoning, their final actions often deviate from it, exposing a gap between knowledge expression and decision execution.

To investigate whether these flaws can be mitigated internally, we attempt a two-stage framework: (i) behavior cloning (BC) on expert reasoning traces to instill game-theoretic principles, and (ii) RL fine-tuning with step-level rewards. While this improves fluency and expert-like reasoning style, it remains insufficient for precise derivations or competitive gameplay, underscoring LLMs’ fundamental limitations in game-theoretic tasks.

Motivated by these limitations, we pursue an alternative direction: leveraging LLMs’ strength in *tool use*. However, achieving this integration in poker is non-trivial and challenging: (i) *Multi-tool dependency*. Accurate game-theoretic reasoning often requires multiple solvers (e.g., action and equity solvers), and naively teaching LLMs to invoke these tools across multi-turn poker scenarios leads to error propagation and unstable training. (ii) *High data cost*. Collecting large-scale reasoning traces augmented with solver calls requires expensive LLM annotation and careful domain-specific tool invocation, making it prohibitively costly to build.

To address these challenges, we introduce **ToolPoker**, the first tool-integrated reasoning (TIR) framework for *imperfect-information games* (Fig. 1), which teaches LLMs to call external poker solvers to provide game-theoretic optimal (GTO) actions and supporting quantities such as equity and hand ranges for accurate expert-level explanations. (i) We design a *unified tool interface* that consolidates solver functionalities into a single API, returning all quantities in one query to simplify tool use and stabilize training. (ii) We construct a *small-scale expert-level reasoning dataset* (Sec. 4.1) inspired by the thought process of professional players, and programmatically augment it with standardized tool invocation templates and execution outputs, ensuring high-quality and reducing annotation cost. This also provides a robust foundation for the following RL training in TIR. By combining GTO-guaranteed computation with human-like reasoning, ToolPoker overcomes fundamental weaknesses of policy-only training and moves LLMs closer to professional-level play. Experiments across multiple poker tasks demonstrate that ToolPoker achieves both state-of-the-art gameplay performance and produces reasoning traces that align much more closely with game-theoretic principles.

Our **main contributions** are summarized as follows: (i) We conduct the first systematic study of LLMs in poker, revealing fundamental reasoning flaws such as *heuristic bias*, *factual misunderstanding*, and *knowing–doing gaps*. (ii) We make an initial attempt to improve LLMs’ internal policies through a two-stage RL framework. While effective at improving reasoning style, this approach remains insufficient for GTO reasoning and accurate game-theoretic derivation. (iii) We introduce ToolPoker, a tool-integrated reasoning framework that leverages external solvers to guarantee GTO-consistent actions while enabling LLMs to generate precise, professional-style explanations. (iv) Extensive experiments show that ToolPoker achieves state-of-the-art gameplay performance and produces reasoning traces that align closely with professional game-theoretic principles.

2 BACKGROUNDS AND PRELIMINARIES

Two-Player Imperfect Information Poker Games. In this paper, we explore using LLMs to play poker with imperfect information. Following prior work (Guo et al., 2023; Huang et al., 2024),

108 we focus on three widely studied two-player variants of increasing complexity: Kuhn Poker, Leduc
 109 Hold'em, and Limit Texas Hold'em, where their backgrounds and rules are in Appendix B.
 110

111 **Game-theoretic Reasoning.** In poker, professional players go beyond heuristics or pattern recognition by
 112 systematically evaluating equity, ranges, and pot odds within a game-theoretic framework, guiding them toward actions that converge to Nash equilibrium. An example of such professional-
 113 style reasoning is in Appendix B.6, with further details on Nash equilibrium in Appendix B.5.
 114

115 **Problem Statement.** We model a two-player poker game as a partially observable Markov de-
 116 cision process (POMDP) $(\mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \Omega, O)$, where $\mathcal{S} = \{s^t : 1 \leq t \leq T\}$ is the set of true
 117 states, T is the maximum turns, \mathcal{A} is the action space, \mathcal{T} is the transition function, \mathcal{R} is the re-
 118 ward function, Ω denotes the observation space, and O represents the observation function. At
 119 time t , the state is $s^t = \{s_{pub}^t, s_{pri(i)}^t, s_{pri(-i)}^t\}$, where s_{pub}^t denotes public information (e.g.,
 120 community cards, betting), and $s_{pri(i)}^t$ and $s_{pri(-i)}^t$ are the private cards of player i and the op-
 121 ponent, respectively. Each player i partially observes $o_i^t = (s_{pub}^t, s_{pri(i)}^t) \in \Omega$ and conditions on
 122 its history $h_i^t = (o_i^1, a_i^1, \dots, o_i^t)$ to choose an action $a_i^t \sim \mu_\theta^i(\cdot \mid f(h_i^t))$, where f is a prompt
 123 template that converts game states into natural language task descriptions. A full trajectory is
 124 $\tau = (s^1, a_1^1, a_2^1, r_1^1, r_2^1, \dots, s^T, a_1^T, a_2^T, r_1^T, r_2^T)$. The objective for player i is to learn a policy μ_θ^i
 125 that maximizes the cumulative reward $\sum_{t=1}^T r_i^t$ in the game.
 126

127 3 ARE LLMs GOOD AT POKER? A PRELIMINARY ANALYSIS 128

129 In this section, to understand the capabilities of LLMs in playing poker games, we conduct a prelim-
 130 inary analysis to provide initial evidence regarding the strengths and weaknesses of LLMs compared
 131 to traditional algorithms for imperfect-information games.
 132

133 3.1 EXPERIMENTAL SETUP 134

135 **Tasks.** To quantitatively evaluate the performance of LLMs in poker, we consider two widely stud-
 136 ied and popular poker games, Leduc Hold'em and Limit Texas Hold'em (Brown et al., 2019; Stein-
 137 berger, 2019; Guo et al., 2023), both implemented in the RLCard environment (Zha et al., 2021a).
 138

139 **Comparison Methods.** Following (Guo et al., 2023), we consider four traditional baselines for
 140 imperfect information games: NFSP (Heinrich & Silver, 2016), DQN (Mnih et al., 2015), DMC (Zha
 141 et al., 2021b), and CFR+ (Tammelin, 2014). NFSP and DMC are self-play RL methods tailored to
 142 imperfect information games, while CFR+ provides a game-theoretic guarantee of convergence to
 143 the Nash equilibrium. For the more complex Limit Texas Hold'em environment, where CFR+ is
 144 computationally prohibitive, we instead adopt DeepCFR (Brown et al., 2019), a scalable neural
 145 extension of CFR+. These baselines cover diverse strategic paradigms, allowing us to assess LLMs
 against a broad range of opponent types. Details are provided in Appendix C.1.
 146

147 **Evaluation Protocol.** To ensure the robustness of our evaluation metrics, in our experiment, we run
 148 a series of 50 games with fixed random seeds and fixed player positions. We then rerun the 50 games
 149 with the same fixed random seeds but switched positions for the compared methods. To evaluate
 150 the gameplay performance in poker games, we choose the earned chips as the evaluation metric.
 151 Specifically, for each individual poker game, each player starts with 100 chips, the small blind is 1
 152 chip, and the big blind is 2 chips.
 153

154 3.2 COMPARISON WITH TRADITIONAL METHOD

155 **Setting.** We evaluate a suite of representative LLMs spanning a wide range of parameter scales,
 156 including Qwen2.5-3B, Qwen2.5-7B, Qwen2.5-72B (Qwen, 2024), Qwen3-8B (Yang et al., 2025),
 157 Llama3-8B (Grattafiori et al., 2024), GPT-4.1-mini (OpenAI, 2025), GPT-4o Hurst et al. (2024), and
 158 o4-mini (OpenAI, 2024), where the instruction-following versions of these open-source models are
 159 adopted. These models are evaluated against the aforementioned traditional baselines.
 160

161 **Results Analysis.** Table 1 reports the average chip gain of different LLMs against traditional meth-
 162 ods in both Leduc Hold'em and Limit Texas Hold'em. From the table, we observe that (i) Most
 163 vanilla LLMs, particularly open-source models with smaller scales, underperform relative to tra-

162 Table 1: Comparison of various vanilla LLMs against different traditional algorithms trained in
 163 Leduc Hold’em and Limit Texas Hold’em environments. Each method plays 100 games with vary-
 164 ing random seeds and alternated player positions. Results report net chip gains. In Leduc Hold’em,
 165 values range from 1 to 14 chips; in Limit Texas Hold’em, they range from 1 to 99 chips. **Bold** and
 166 underline indicate the best and worst performance in each column, respectively. The “Avg.” columns
 167 summarize LLMs’ mean performance across the four traditional baselines.

	Leduc Hold’em					Limit Texas Hold’em				
	NFSP	DQN	DMC	CFR+	Avg.	NFSP	DQN	DMC	DeepCFR	Avg.
Qwen2.5-3B	<u>-143.5</u>	<u>-161</u>	<u>-124</u>	<u>-114</u>	<u>-135.5</u>	<u>-131.5</u>	<u>-232.5</u>	<u>-136</u>	<u>-323.5</u>	<u>-205.8</u>
Qwen2.5-7B	-57.5	-93	-73	-68.5	-73.0	-53.5	-188	-144	-101.0	-121.6
Qwen2.5-72B	+24.5	-18	-18	-25	-9.1	+6	-53.5	-73.5	-57.5	-44.6
Qwen3-8B	-72	-75	-75	-54	-69.0	-69	-73.5	-69	-73.5	-71.2
LLama3-8B	-77.5	-108.5	-90	-71	-86.7	+8	-177.5	-58	-206.5	-108.5
GPT-4.1-mini	+41.5	+60.5	-22	-24	+14.0	+43	+0	-24	-205.0	-46.7
GPT-4o	+34	+53	-43	-8	+9.0	-40.5	-45.5	-32	-167.0	-71.2
o4-mini	+11	+20	-33.5	-8	-2.6	-105	+111	-58	-117.0	-42.2

175 ditional methods. This highlights the limited effectiveness of state-of-the-art LLMs in poker. (ii)
 176 CFR+ consistently outperforms all LLMs, including strong closed-source models such as GPT-4o
 177 and o4-mini. This is expected, as CFR+ explicitly targets Nash equilibrium strategies, underscor-
 178 ing the importance of game-theoretic reasoning in imperfect-information games. (iii) Against non-
 179 equilibrium baselines (i.e., NFSP, DQN, DMC), some large-scale and closed-source LLMs demon-
 180 strate competitive or superior performance. For instance, GPT-4o achieves +41.5, +60.5, and -22
 181 chip outcomes against NFSP, DQN, and DMC, respectively. In contrast, small open-source LLMs
 182 (e.g., Qwen2.5-3B) exhibit severe losses across all baselines (e.g., -143.5, -161, and -124 chips).
 183 These results suggest that while LLMs cannot approximate Nash equilibrium strategies, sufficiently
 184 large models can exploit non-equilibrium opponents.

186 3.3 IN-DEPTH ANALYSIS: DECOMPOSING REASONING FLAWS OF LLMs

188 To understand why LLMs fail to compete with traditional methods in poker, we conduct an in-
 189 depth analysis of their reasoning processes. Specifically, we first present several case studies that
 190 highlight three key flaws in LLM reasoning, followed by a quantitative analysis to further validate
 191 and interpret these observations.

192 **Case Study of LLMs’ Reasoning Flaw.** To probe LLMs’ decision-making, we examine their rea-
 193 soning traces in specific scenarios against baseline opponents. Representative cases from Qwen2.5-
 194 3B and GPT-4o are shown in Table 13 and 14 in Appendix C.2. From these examples, we identify
 195 three recurrent flaws: (i) *Heuristic Reasoning*. LLMs frequently rely on heuristic-driven reasoning,
 196 making decisions based on surface-level patterns or intuitive analogies rather than on rigorous game-
 197 theoretic principles. In contrast, the Nash-equilibrium algorithm CFR+ consistently achieves the
 198 strongest performance, underscoring the value of game-theoretic reasoning in imperfect-information
 199 games like poker. The absence of such equilibrium-oriented reasoning substantially constrains the
 200 gameplay performance of LLMs. These two findings indicate that while LLMs are capable of articu-
 201 lating plausible strategic reasoning, their actual decision-making remains constrained by executional
 202 inconsistencies and heuristic biases. These limitations ultimately hinder their effectiveness in com-
 203 plex poker games that require advanced strategic reasoning capabilities. (ii) *Factual Misunder-
 204 standing*. LLMs often ground their reasoning in intuitive analogies, making them prone to misjudging
 205 fundamental aspects of the game, such as hand strength or opponent range estimation. These factual
 206 inaccuracies can cascade into flawed reasoning chains and ultimately suboptimal actions. For ex-
 207 ample, as shown in Tab. 14, GPT-4o incorrectly judged ($\spadesuit K, \clubsuit 10$) as weak and preferred folding.
 208 However, an equity calculator shows this hand has about 60% equity, indicating it is relatively strong.
 209 (iii) *Knowing-Doing Gap*. LLMs often exhibit a mismatch between articulated reasoning and final
 210 actions. For instance, in Tab. 13, Qwen2.5-3B correctly reasons that ($\clubsuit 3 \heartsuit 10$) is not a strong hand
 211 and fold is optimal, while it yet proceeds to raise. Such inconsistencies reveal a breakdown between
 212 reasoning and execution. Additional case studies are provided in Appendix C.2.

212 **Quantitative Analysis of LLMs’ Reasoning Flaws.** To validate the reasoning flaws observed in
 213 case studies, we adopt the LLM-as-a-Judge framework (Dubois et al., 2023). We design three met-
 214 rics: heuristic reasoning (HR), factual alignment (FA), and action-reasoning consistency (AC), and
 215 score each reasoning trace on a 0–2 scale using GPT-4.1-mini as the judge. Metric definitions, judge
 216 prompts, and human–LLM agreement are in Appendix C.3 and C.5. For each model, we sample 20

traces and evaluate Qwen2.5-3B/7B/72B, GPT-4.1-mini, and o4-mini. To ensure reliability of LLM-based judging, we manually curate 20 professional-style reasoning traces and score them by LLMs. We observe high agreement with human judgement and include it as a reference (see Appendix C.5).

We report results in Tab. 2. Three key findings are observed: (i) *Reasoning flaws persist across all models*. Qwen2.5-3B scores only 0.53 HR, 0.18 FA, and 1.53 AC, while o4-mini, the strongest model, reaches 1.80/1.56/1.85, still below perfect consistency. This shows systemic heuristic, factual, and knowing-doing flaws in LLMs. (ii) *Scaling improves but does not eliminate flaws*. Larger models (Qwen2.5-72B, o4-mini) improve all metrics, but significant FA and AC gaps remain, showing scale alone cannot achieve professional-level reasoning. (iii) *Action-reasoning consistency remains imperfect*. AC stabilizes around 1.53–1.87, below the professional baseline of 2.0, with o4-mini still exhibiting knowing-doing mismatches. Full details are in Appendix C.4.

Overall, these findings quantitatively reinforce our case studies: despite improvements in scale and instruction tuning, current LLMs remain far from professional-level poker reasoning. They continue to exhibit heuristic biases, factual misunderstandings, and executional inconsistencies that fundamentally limit their game-theoretic reasoning capabilities.

4 CAN WE IMPROVE LLMs IN POKER? FAILURES AND INSIGHTS

Building on the preliminary analysis of LLM limitations in poker, we next explore how to improve their ability to both *act* and *reason* like professional players. A natural starting point is supervised fine-tuning (SFT) on expert gameplay. However, while obtaining expert actions is straightforward using established solvers such as CFR+, constructing large-scale datasets with high-quality reasoning traces is extremely costly, making pure SFT impractical at scale. For instance, Wang et al. (2025) report that mastering even simplified poker games like Leduc Hold’em requires at least 400k action-only instances. Adding reasoning traces would multiply both time and financial costs, rendering such datasets infeasible to construct. To address this, inspired by recent progress in RL for enhancing LLM reasoning (Guo et al., 2025) and by traditional RL for poker (Heinrich & Silver, 2016), we make an initial attempt to propose a two-stage framework, BC-RIRL, that combines behavior cloning (BC) with regret-inspired policy optimization (RIRL). In the first stage, BC aims to provide a small but valuable foundation of expert play and reasoning. In the second stage, RIRL refines these policies toward GTO play under Nash-equilibrium-based supervision.

4.1 BEHAVIOR CLONING

We first leverage BC to expose LLMs to professional-style reasoning. Following recent advances in reasoning-augmented datasets (Muennighoff et al., 2025) and inspired by professional players’s thought process (Appendix B.6), we curate a dataset of professional-level trajectories $\mathcal{D}_b = \{(h^t, a^t, r^t)\}$, where h^t is the full interaction history up to time t and a^t is the corresponding expert response. Expert actions a^t are obtained by querying the state-of-the-art CFR+ solver (Tammelin, 2014) with h^t , ensuring alignment with Nash-equilibrium play. Reasoning traces r^t are generated using an LLM guided by domain-specific prompt templates covering key concepts such as hand equity, pot odds, and opponent ranges, to mimic the explanatory style of professional players. The construction prompts and dataset examples are in Appendix D.3. To ensure dataset quality, we implement an automated pipeline that (i) checks consistency between the annotated actions and CFR+ outputs, and (ii) filters out low-quality samples using our HR/FA/AC metrics. After filtering, we obtain a compact dataset of approximately 5k reasoning-augmented samples, which is then used to fine-tune the LLM policy π_θ via supervised fine-tuning (SFT) to imitate expert responses:

$$\mathcal{L}_{BC} = -\mathbb{E}_{(h^t, a^t) \sim \mathcal{D}_b} [\log \pi_\theta(a^t | h^t)]. \quad (1)$$

270 This imitation phase grounds the LLM in domain knowledge and equips it with basic game-theoretic
 271 reasoning capability. As shown in Sec. 4.3, BC primarily serves as a warm start, providing a crucial
 272 foundation for the subsequent RL stage.
 273

274 4.2 REGRET-INSPIRED RL FINE-TUNING

275 As an initial attempt to refine policies beyond imitation, we attempt a regret-inspired reinforcement
 276 learning (RIRL) framework. To overcome the sparse and noisy outcome-based rewards in multi-turn
 277 poker games such as Leduc Hold’em and Texas Hold’em, we experiment with a step-level regret-
 278 guided reward that leverages signals from a pre-trained CFR solver to guild LLMs minimize cumu-
 279 lative regret and convergence to the Nash equilibrium. Full details of RIRL are in Appendix D.1.
 280

281 **Regret-guided Reward Design.** Motivated by CFR’s success in poker playing by approaching
 282 Nash equilibrium from Sec. 3.2, we optimize LLMs via regret minimization. Our key idea is to
 283 compute cumulative regrets from a pre-trained CFR solver and normalize them into fine-grained
 284 reward signals that capture each action’s relative contribution. For a policy π_θ as player i , the
 285 reward of action a_i^t is defined as:

$$286 R(a_i^t) = \frac{R_t(a_i^t) - \text{mean}(\{r_t(a_j)\}_{j=1}^{|\mathcal{A}|})}{F_{\text{norm}}(\{r_t(a_j)\}_{j=1}^{|\mathcal{A}|})}, \quad (2)$$

287 where F_{norm} denotes a normalization factor, chosen as the standard deviation in our implemen-
 288 tation. $r_t(a_i^t)$ is the cumulative regret of action a_i^t , indicating how much better or worse it performs
 289 compared to the current mixture strategy across time.
 290

291 **Fine-tuning Objective.** Based on this signal, we fine-tune LLM policy via PPO (Schulman et al.,
 292 2017) with the following clipped RL objective:

$$293 \mathcal{L}_{\text{PPO}}(\theta) = -\mathbb{E}_{x \sim \mathcal{D}_s, y \sim \pi_{\text{old}}(\cdot|x)} \left[\min \left(\frac{\pi_\theta(y|x)}{\pi_{\text{old}}(y|x)} A, \text{clip} \left(\frac{\pi_\theta(y|x)}{\pi_{\text{old}}(y|x)}, 1 - \epsilon, 1 + \epsilon \right) \right) - \beta \mathbb{D}_{\text{KL}}(\pi_\theta(\cdot|c) \parallel \pi_{\text{ref}}(y|x)) \right], \quad (3)$$

294 where π_θ and π_{old} denote the current and previous policy models, respectively. ϵ is the clipping
 295 threshold. π_{ref} is the reference policy that regularizes π_θ update via a KL-divergence penalty, mea-
 296 sured and weighted by \mathbb{D}_{KL} and β , respectively. Generalized Advantage Estimation (GAE) (Schul-
 297 man et al., 2015) is used for advantage estimate A . x denotes the input samples drawn from \mathcal{D} ,
 298 which is composed of trajectories generated by the current policy π_θ . y is the generated outputs via
 299 policy LLMs $\pi_\theta(\cdot|x)$. The trajectory collection procedure is introduced in Appendix D.4.
 300

301 4.3 EXPERIMENT ANALYSIS

302 **Experimental Setup.** Following the settings in Sec. 3.1, we implement BC-RIRL by fine-tuning
 303 LLMs with both BC and RIRL, and compare against traditional algorithms as well as LLM-based
 304 approaches. For traditional baselines, we adopt NFSP, DQN, DMC, and CFR+, consistent with
 305 Sec. 3.1. For LLM-based baselines, in addition to direct prompting without fine-tuning, we con-
 306 sider two variants: (i) **BC-SPRL**, which fine-tunes LLMs through BC and self-play RL with sparse
 307 outcome-based rewards, and (ii) **RIRL**, which fine-tunes LLMs with RIRL alone, without the BC
 308 stage. Further details of SPRL are in Appendix E. Other settings follow these in Sec. 3.1, including
 309 the evaluation metrics. The implementation details are in Appendix D.5.
 310

311 **Comparison Results.** We fine-tune Qwen2.5-7B with BC-RIRL and compare against traditional
 312 algorithms and vanilla LLMs. The gameplay and reasoning results are reported in Tab. 3 and Tab. 4.
 313

314 **Gameplay.** (i) All RL-based fine-tuning variants improve performance in Kuhn Poker, showing that
 315 both outcome- and regret-based feedback provide useful signals in simple environments. (ii) BC-
 316 RIRL outperforms direct prompting and BC-SPRL (e.g., +17.0 chips vs. GPT-4.1-mini) but still
 317 trails CFR+ (-34.0 chips) In Leduc Hold’em, indicating dense regret feedback is more effective
 318 than sparse outcome rewards in complex poker games, yet **insufficient** for equilibrium-level play.
 319 (iii) Pure RIRL without the BC stage does not yield improvements in Leduc Hold’em (-64.5 chips
 320 vs. GPT-4.1-mini), highlighting BC as a necessary foundation.
 321

322 **Reasoning.** (i) RIRL consistently improves HR and AC (e.g., 1.93 HR and 1.90 AC in Leduc
 323 Hold’em vs. 1.80/1.85 for o4-mini), reducing heuristic flaws and the knowing-doing gap. (ii) RIRL

324
 325
 326
 327 Table 3: Results of comparison fine-tuning methods against various traditional-based and vanilla
 328 LLMs in Kuhn and Leduc Hold’em environment. Other settings follow these in Tab. 1. **Bold** and
 329 underlined numbers indicate the best and worst performance, respectively.

Method	Traditional Methods				Vanilla LLMs				
	NFSP	DQN	DMC	CFR+	Qwen2.5-3B	Qwen2.5-7B	GPT4.1-mini	o4-mini	Avg.
<i>Kuhn</i>									
Qwen2.5-7B	-22.0	-53.0	-33.0	-36.0	+26	-	-41	-43	-28.8
Qwen2.5-7B _{RIRL}	-14.0	+3.0	+10.0	-5.0	+43.0	+8.0	-1.0	-11.0	+4.1
Qwen2.5-7B _{BC-SPRL}	+6.0	-6.0	+13.0	-14.0	+32.0	+23.0	+22.0	+10.0	+10.7
Qwen2.5-7B _{BC-RIRL}	+4.0	+8.0	+11.0	-2.0	+57.0	+27.0	+21.0	+11.0	+17.1
<i>Leduc Hold’em</i>									
Qwen2.5-7B	-57.5	-93.0	-73.0	-68.5	+48.5	-	-59.5	-32.5	-47.9
Qwen2.5-7B _{RIRL}	-42.5	-80	-59.5	-55.0	+52.0	+12.0	+2.5	-18.5	-23.6
Qwen2.5-7B _{BC-SPRL}	-93.0	-154.5	-95.5	-103.5	+2.0	-18.0	-64.5	-54.5	-72.6
Qwen2.5-7B _{BC-RIRL}	-37.0	-64.5	-43.5	-34.0	+54.0	+28.5	+17.0	+1.0	-9.8

335
 336 Table 4: LLM-as-a-Judge score (0-2) evaluating reasoning traces of various LLMs in two realistic
 337 poker tasks. **Bold** and underlined numbers indicate the best and worst performance, respectively.

	Leduc Hold’em				Limit Texas Hold’em			
	HR	FA	AC	Avg.	HR	FA	AC	Avg.
Qwen2.5-7B	0.95	<u>0.86</u>	1.68	1.16	1.00	<u>0.87</u>	1.70	<u>1.19</u>
GPT4.1-mini	0.98	1.73	1.87	1.52	0.95	1.61	1.87	1.47
o4-mini	1.80	1.56	1.85	1.73	1.57	1.65	1.88	1.70
Qwen2.5-7B _{RIRL}	<u>0.94</u>	0.89	<u>1.64</u>	<u>1.15</u>	<u>0.98</u>	0.93	1.71	1.20
Qwen2.5-7B _{BC-SPRL}	1.89	0.88	1.66	1.47	1.87	0.86	<u>1.64</u>	1.45
Qwen2.5-7B _{BC-RIRL}	1.93	1.06	1.86	1.61	1.88	1.12	1.87	1.59

343 gains only marginal improvement in FA (1.12, 0.87 and 1.65 for RIRL, Qwen2.5-7B and o4-mini),
 344 showing that factual misunderstandings remain the main limitation. Together with the case studies,
 345 these results indicate that while BC-RIRL improves strategic reasoning and action–reasoning align-
 346 **ment, factual misunderstandings** remain a notable challenge. Full analysis are in Appendix D.2.

347 **Takeaway.** Our experiments validate that current LLMs are inherently weak at strategic reasoning
 348 in game-theoretic tasks. RL fine-tuning with step-level or outcome-based rewards yields modest
 349 gameplay gains but still lags behind traditional methods like CFR. Importantly, while our two-stage
 350 approach helps LLMs imitate professional reasoning styles, they continue to struggle with precise
 351 derivation such as equity and hand ranges. This reveals a fundamental *limitation*: LLMs alone
 352 cannot yet achieve both GTO actions and precise reasoning. To bridge this gap, we next explore
 353 augmenting LLMs with *tool use*, leveraging their natural strength in tool invocation to support GTO-
 354 consistent actions and precise game-theoretic reasoning.

356 5 TOOLPOKER: GAME-THEORETIC REASONING WITH AGENTIC TOOL USE

357 Building on our analysis in Sec. 4, which highlights the limitations of LLMs in producing GTO
 358 actions and precise game-theoretic reasoning, we propose ToolPoker, a tool-integrated reasoning
 359 (TIR) framework to leverage LLMs’ strength in *tool use* to empower LLMs to leverage external
 360 poker solvers to refine their actions and reasoning qualities, which is shown in Fig. 1. To make this
 361 tool usage stable and effective, we introduce a unified tool interface that consolidates multiple poker
 362 solvers (e.g., CFR and equity calculators) into a single API to simplify this into a single-turn tool
 363 use. On the training side, we adopt a two-stage strategy: first, behavior cloning on a code-augmented
 364 dataset to teach the model when and how to call external tools; and second, reinforcement learning
 365 with a composite reward to further optimize solver integration and reasoning quality.

366 5.1 TOOL-INTEGRATED GAME-THEORETIC REASONING IN POKER

367 **Rollout Process.** To enable GTO-consistent TIR, we design a structured prompt template in
 368 Tab. 21 to guide LLM to leverage external poker solvers for game-theoretic reasoning. Con-
 369 cretely, given a policy LLM π_θ as player i at time t , π_θ generates a reasoning trace enclosed
 370 in $\langle\text{think}\rangle\langle/\text{think}\rangle$ tags. To obtain GTO actions and other quantities, π_θ issues a query in
 371 $\langle\text{tool}\rangle\langle/\text{tool}\rangle$ tags, which calls the unified solver interface and returns results wrapped in
 372 $\langle\text{output}\rangle\langle/\text{output}\rangle$ tags. These outputs are then incorporated into the reasoning trace before
 373 π_θ produces the final action a_i^t within $\langle\text{answer}\rangle\langle/\text{answer}\rangle$ tags.

374 **Unified Tool Inference.** Obtaining GTO actions and supporting quantities (e.g., equity, pot odds,
 375 and range distributions) often requires multiple tool calls, such as a CFR solver and an equity cal-

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 5: Comparison of various LLM-based methods against different traditional algorithms trained in Leduc Hold’em and Limit Texas Hold’em environments. Other settings follow these in Tab. 1. **Bold** and underline indicate the best and worst performance in each column, respectively.

	Leduc Hold’em					Limit Texas Hold’em				
	NFSP	DQN	DMC	CFR+	Avg.	NFSP	DQN	DMC	DeepCFR	Avg.
Qwen2.5-7B	-57.5	-93	-73	-68.5	-73.0	-53.5	-188	-144	-101.0	-121.6
Qwen2.5-72B	+24.5	-18	-18	-25	-9.1	+6	-53.5	-73.5	-57.5	-44.6
o4-mini	+11	+20	-33.5	-8	-2.6	-105	+111	-58	-117.0	-42.2
Qwen2.5-7B _{BC-RIRL}	-37.0	-64.5	-43.5	-34.0	-40.5	-77.5	-82.5	-80.5	-70.2	-77.6
Qwen2.5-7B _{ToolPoker}	+11.5	+18.0	+1.0	-3.0	+6.8	+60.5	+63.0	61.5	-5.0	+45.0

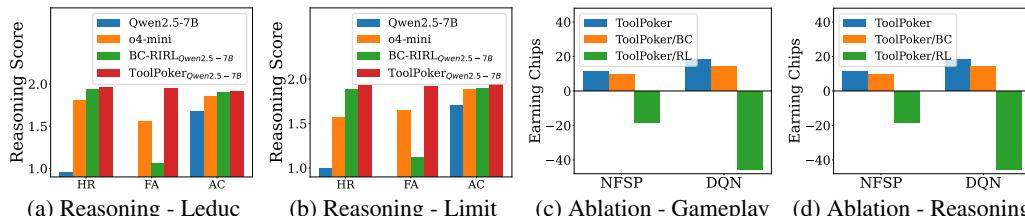


Figure 2: Results for ToolPoker: (a) and (b) present reasoning analysis in Leduc Hold’em and Limit Texas Hold’em; (c) and (d) show ablation studies on gameplay and reasoning in Leduc Hold’em.

culator. To simplify and stabilize training, we unify these functionalities into a single standardized interface that provides both the solver’s actions and auxiliary statistics for game-theoretic reasoning.

5.2 TRAINING ALGORITHM

BC for TIR. To construct high-quality TIR data without incurring prohibitive annotation cost, we build an automated pipeline that programmatically augments the reasoning dataset from Sec. 4.1 with standardized tool invocation templates (e.g., `<tool></tool>`) and execution outputs (e.g., `<output></output>`). This resulting dataset \mathcal{D}_c is then used to train ToolPoker via SFT, providing a foundation for LLMs to know how to invoke tools for game-theoretic reasoning. The realistic example and the details of the automatic pipeline are in Tab. 22 in Appendix G.2.

RL Fine-tuning. We train ToolPoker with PPO (Schulman et al., 2017), where the objective function is defined in Eq. (8). To better support TIR, we follow ReTool (Feng et al., 2025a) and integrate external poker solvers into the LLM policy π_θ , enabling multi-turn real-time tool use that provides GTO-consistent actions and supporting quantities from external tools. To guide the training, we design a composite reward function. Formally, given player i at time step t , the reward is defined as

$$R(a_i^t, \hat{a}_i^t, \rho_i^t) = R_{\text{answer}}(a_i^t, \hat{a}_i^t) + \alpha_f \cdot R_{\text{format}}(\rho_i^t) + \alpha_t \cdot R_{\text{tool}}(\rho_i^t), \quad (4)$$

where a_i^t is the ground-truth action from the CFR solver, \hat{a}_i^t is the model-predicted action, and ρ_i^t is the generated reasoning trace. Here, R_{answer} , R_{format} , and R_{tool} correspond to the answer reward, format reward, and tool-execution reward, respectively, ensuring that ToolPoker not only outputs GTO-consistent actions but also generates structured reasoning traces with effective tool usage. α_f and α_t are the weights to balance the impact of format and tool execution rewards. More details of these reward functions are in Appendix G.3. The fine-tuning algorithm is in Alg. 1 of Appendix G.4.

5.3 EXPERIMENTAL RESULTS

Evaluation Setup. We conduct evaluations on two realistic and complex poker tasks, Leduc Hold’em and Limit Texas Hold’em. We compare ToolPoker with the following baselines: (i) Traditional algorithms: NFSP, DQN, DMC, and CFR; (ii) Vanilla LLMs: Qwen2.5-7B, Qwen2.5-72B, and o4-mini; (iii) Fine-tuning-based baseline: BC-RIRL. Other settings follow these in Sec. 4.3. More Implementation details of ToolPoker are in Appendix G.5.

Gameplay Performance. We first explore the gameplay performance of ToolPoker. Qwen2.5-7B is the base model for fine-tuning. We compare ToolPoker with BC-RIRL and three vanilla LLMs, Qwen2.5-7B, Qwen2.5-72B and o4-mini, where the comparison results are reported in Tab. 5. Two key findings emerge: (i) ToolPoker achieve state-of-the-art game performance against traditional algorithms. For instance, ToolPoker gains +60.5, +63.0 and +61.5 chips against NFSP, DQN and DMC in Limit Texas Hold’em, while BC-RIRL gains -77.5, -82.5 and -80.5 chips against them. This indicates the effectiveness of ToolPoker in calling CFR solver to obtain GTO-consistent

432 actions. (ii) ToolPoker *slightly underperforms CFR but is still comparable in both poker environments*. Specifically, ToolPoker gain -3.0 and -5.0 chips against CFR+ and DeepCFR in both Leduc Hold'em and Limit Texas Hold'em, which are minor. We analyze the reason is that while ToolPoker provides a high success rate in executing the CFR solver to provide GTO-consistent action, it is inevitable that occasional errors occur in tool calling.

437 **Reasoning Quality.** To assess whether ToolPoker also improves *reasoning*, we employ the LLM-
 438 as-a-Judge framework following the settings in Sec. 4.3. Fig. 2 (a) and (b) summarize the results
 439 across three metrics. Two observations emerge: (i) ToolPoker *achieves near-perfect across all three*
 440 *scores*, outperforming all baselines and approaching professional levels. This indicates that, beyond
 441 delivering state-of-the-art gameplay performance, ToolPoker also enables LLMs to generate precise
 442 and logically consistent reasoning traces grounded in game-theoretic principles. (ii) Compared with
 443 BC-RIRL, ToolPoker *yields substantially higher FA scores*. This demonstrates the importance of
 444 leveraging external solvers: while BC-RIRL can articulate plausible reasoning, it often lacks ac-
 445 curate auxiliary quantities (e.g., equities, ranges). In contrast, ToolPoker grounds its reasoning in
 446 solver-derived calculations, ensuring rigor and internal consistency.

447 **Ablation Studies.** To understand the impact of each component in ToolPoker, we implement two ab-
 448 lated variants: (i) **ToolPoker/BC**: removes BC and learns tool use only via RL; (ii) **ToolPoker/RL**:
 449 discards RL fine-tuning and relies solely on BC. We measure both gameplay performance (against
 450 NFSP and DQN) and reasoning quality in Leduc Hold'em, with results shown in Fig. 2 (c) and (d).
 451 The full ToolPoker achieves the strongest overall performance, while the variants reveal comple-
 452 mentary weaknesses. Specifically: (i) ToolPoker/BC *suffers from lower HR and weaker gameplay*,
 453 suggesting it can query the solver but fails to internalize game-theoretic reasoning patterns; (ii)
 454 ToolPoker/RL *attains higher HR but performs poorly in gameplay and FA/AC*, indicating it imitates
 455 reasoning superficially without aligning with GTO-consistent actions. These results highlight that
 456 BC provides the foundation for TIR, while RL fine-tuning aligns solver execution with GTO actions
 457 and precise derivation. Together, they enable ToolPoker to learn not only how to call the solver, but
 458 also how to integrate outputs into coherent, professional-style reasoning traces. More discussions
 459 are in Appendix G.6.

460 6 RELATED WORK

463 **Strategic Reasoning in LLMs.** Recent studies have examined LLMs in game-theoretic settings,
 464 including poker (Duan et al., 2024; Zhai et al., 2024; Zhuang et al., 2025; Wang et al., 2025). Unlike
 465 prior work that primarily evaluates gameplay outcomes, we also analyze the *reasoning process*,
 466 identifying why LLMs fail to achieve GTO play. Moreover, we introduce the first TIR framework
 467 that leverages poker solvers for professional-level gameplay. Further discussion is in Appendix A.1.

468 **Tool Learning on LLMs.** TIR equips LLMs with external tools for domains such as math and web
 469 search (Gao et al., 2023; Jin et al., 2025), which are typically fully observed and single-agent. In
 470 contrast, ToolPoker extends TIR to imperfect-information games, integrating poker solvers to ensure
 471 GTO actions and rigorous reasoning. Full details on RL and TIR are in Appendix A.2 and A.3.

473 7 CONCLUSIONS AND FUTURE WORKS

476 In this paper, we revisit strategic reasoning in LLMs through poker with imperfect information. Our
 477 analysis shows that current LLMs fall short of professional-level play, exhibiting heuristic biases,
 478 factual misunderstandings, and a knowing–doing gap between their reasoning and actions. An ini-
 479 tial attempt with BC and RIRL partially reduces heuristic flaws but is still not enough for precise
 480 game-theoretic derivations or competitive gameplay. To address this, we introduce **ToolPoker**, a
 481 TIR framework that leverages LLMs' strength in tool use to incorporate external poker solvers.
 482 ToolPoker enables models not only to call solvers for GTO actions but also to ground their rigor-
 483 ous and accurate game-theoretic reasoning in solver outputs. Experiments across multiple poker
 484 tasks show that ToolPoker achieves state-of-the-art gameplay performance and produces reasoning
 485 traces that align closely with professional game-theoretic principles. Our research paves the way
 for further exploration of TIR in more complex strategic settings, shifting the focus beyond solely
 improving models' internal policies. Further discussion of future works is provided in Appendix I.

486 **8 ETHICS STATEMENT**
 487

488 This paper studies LLMs in the context of poker as a rigorous benchmark for strategic reasoning
 489 under uncertainty. While poker involves gambling in practice, our experiments are conducted en-
 490 tirely in simulated environments without any financial transactions or human participants. Thus, this
 491 research does not pose risks related to gambling addiction or monetary harm.

492 Our contributions focus on methodology and evaluation. We study the reasoning capabilities of
 493 LLMs, propose new training frameworks, and benchmark them against both traditional algorithms
 494 and LLM-based methods. These findings aim to deepen understanding of LLM reasoning in
 495 imperfect-information games, with potential implications for broader domains such as cybersecurity
 496 and negotiation. We acknowledge that advanced poker agents could, if misused, be deployed in
 497 real-money contexts. To mitigate this risk, we release code and datasets solely for research purposes,
 498 emphasizing their use as benchmarks for safe and reproducible evaluation.

499 Finally, we ensured that no personally identifiable or sensitive human data were used in this work.
 500 All datasets are synthetically generated using poker solvers or LLMs. We believe the potential
 501 benefits of this paper, including advancing understanding of the limitations of LLMs' reasoning, im-
 502 proving the design of tool-augmented AI, and supporting safer deployment in high-stakes domains,
 503 clearly outweigh the minimal risks.

505 **9 REPRODUCIBILITY STATEMENT**
 506

507 We have made every effort to ensure reproducibility. The details of our proposed methods, including
 508 model architectures, training objectives, and hyperparameters, are provided in Sec. 4 and Sec. 5.
 509 Experimental setups, including datasets, preprocessing steps, and evaluation protocols, are described
 510 in Sec. 3.1, Sec. 4.3, and Sec. 5.3, with additional details in the Appendix. Our code is publicly
 511 available at <https://anonymous.4open.science/r/ToolPoker-797E>.

513 **REFERENCES**
 514

515 Kimia Ameri, Michael Hempel, Hamid Sharif, Juan Lopez Jr., and Kalyan Perumalla. Cybert: Cy-
 516 bersecurity claim classification by fine-tuning the bert language model. *Journal of Cybersecurity
 517 and Privacy*, pp. 615–637, 2021.

519 Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit hold’em
 520 poker is solved. *Science*, 347(6218):145–149, 2015.

522 Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. *Science*, 365(6456):
 523 885–890, 2019.

524 Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. Deep counterfactual regret mini-
 525 mization. In *International conference on machine learning*, pp. 793–802. PMLR, 2019.

527 Wenhua Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
 528 ing: Disentangling computation from reasoning for numerical reasoning tasks. *arXiv preprint
 529 arXiv:2211.12588*, 2022.

531 Yongchao Chen, Yueying Liu, Junwei Zhou, Yilun Hao, Jingquan Wang, Yang Zhang, and Chuchu
 532 Fan. R1-code-interpreter: Training llms to reason with code via supervised and reinforcement
 533 learning. *arXiv preprint arXiv:2505.21668*, 2025.

534 Anthony Costarelli, Mat Allen, Roman Hauksson, Grace Sodunke, Suhas Hariharan, Carlson Cheng,
 535 Wenjie Li, Joshua Clymer, and Arjun Yadav. Gamebench: Evaluating strategic reasoning abilities
 536 of llm agents. *arXiv preprint arXiv:2406.06613*, 2024.

538 Debrup Das, Debopriyo Banerjee, Somak Aditya, and Ashish Kulkarni. Mathsensei: a tool-
 539 augmented large language model for mathematical reasoning. *arXiv preprint arXiv:2402.17231*,
 2024.

540 Jinhao Duan, Renming Zhang, James Diffenderfer, Bhavya Kailkhura, Lichao Sun, Elias Stengel-
 541 Eskin, Mohit Bansal, Tianlong Chen, and Kaidi Xu. Gtbench: Uncovering the strategic reasoning
 542 capabilities of llms via game-theoretic evaluations. *Advances in Neural Information Processing
 543 Systems*, 37:28219–28253, 2024.

544 Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
 545 Guestrin, Percy Liang, and Tatsunori Hashimoto. Alpacafarm: A simulation framework for
 546 methods that learn from human feedback. In *Thirty-seventh Conference on Neural Information
 547 Processing Systems*, 2023. URL <https://openreview.net/forum?id=4hturzLcKX>.

548 Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
 549 Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
 550 *arXiv preprint arXiv:2504.11536*, 2025a.

551 Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
 552 agent training. *arXiv preprint arXiv:2505.10978*, 2025b.

553 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
 554 Graham Neubig. Pal: Program-aided language models. In *International Conference on Machine
 555 Learning*, pp. 10764–10799. PMLR, 2023.

556 Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Minlie Huang, Nan Duan, and
 557 Weizhu Chen. ToRA: A tool-integrated reasoning agent for mathematical problem solving. In
 558 *The Twelfth International Conference on Learning Representations*, 2024.

559 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 560 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 561 of models. *arXiv preprint arXiv:2407.21783*, 2024.

562 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 563 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 564 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

565 Jiaxian Guo, Bo Yang, Paul Yoo, Bill Yuchen Lin, Yusuke Iwasawa, and Yutaka Matsuo. Suspicion-
 566 agent: Playing imperfect information games with theory of mind aware gpt-4. *arXiv preprint
 567 arXiv:2309.17277*, 2023.

568 Akshat Gupta. Are chatgpt and gpt-4 good poker players?—a pre-flop analysis. *arXiv preprint
 569 arXiv:2308.12466*, 2023.

570 John C. Harsanyi. Games with incomplete information. *The American Economic Review*, pp. 291–
 571 303, 1995.

572 Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-
 573 information games. *arXiv preprint arXiv:1603.01121*, 2016.

574 Nathan Herr, Fernando Acero, Roberta Raileanu, Maria Perez-Ortiz, and Zhibin Li. Large language
 575 models are bad game theoretic reasoners: Evaluating performance and bias in two-player non-
 576 zero-sum games. In *ICML 2024 Workshop on LLMs and Cognition*.

577 Chenghao Huang, Yanbo Cao, Yinlong Wen, Tao Zhou, and Yanru Zhang. Pokergpt: An end-to-
 578 end lightweight solver for multi-player texas hold'em via large language model. *arXiv preprint
 579 arXiv:2401.06781*, 2024.

580 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 581 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
 582 arXiv:2410.21276*, 2024.

583 Haitao Jiang, Lin Ge, Yuhe Gao, Jianian Wang, and Rui Song. Large language model for causal
 584 decision making. *arXiv preprint arXiv:2312.17122*, 2023.

585 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 586 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 587 learning. *arXiv preprint arXiv:2503.09516*, 2025.

594 Harold W Kuhn. A simplified two-person poker. *Contributions to the Theory of Games*, 1:97–103,
 595 2016.

596

597 Wenye Lin, Jonathan Roberts, Yunhan Yang, Samuel Albanie, Zongqing Lu, and Kai Han. GAME-
 598 BoT: Transparent assessment of LLM reasoning in games. In Wanxiang Che, Joyce Nabende, and
 599 Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for
 600 Computational Linguistics (Volume 1: Long Papers)*, pp. 7656–7682, 2025.

601

602 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
 603 reference-free reward. *Advances in Neural Information Processing Systems*, 37:124198–124235,
 604 2024.

605

606 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
 607 mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
 608 control through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

609

610 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 611 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 612 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

613

614 John F Nash Jr. Equilibrium points in n-person games. *Proceedings of the national academy of
 615 sciences*, 36(1):48–49, 1950.

616

617 OpenAI. Openai o3 and o4-mini system card, 2024. URL <https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf>.

618

619 OpenAI. Gpt-4.1 system card, April 2025. URL <https://platform.openai.com/docs/models/gpt-4.1>.

620

621 Qwen. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

622

623 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 624 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 625 in neural information processing systems*, 36:53728–53741, 2023.

626

627 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro,
 628 Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
 629 teach themselves to use tools. *Advances in Neural Information Processing Systems*, 36:68539–
 68551, 2023.

630

631 John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
 632 dimensional continuous control using generalized advantage estimation. *arXiv preprint
 633 arXiv:1506.02438*, 2015.

634

635 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 636 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

637

638 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 639 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 640 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

641

642 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 643 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint
 644 arXiv: 2409.19256*, 2024.

645

646 Eric Steinberger. Single deep counterfactual regret minimization. *arXiv preprint arXiv:1901.07621*,
 647 2019.

648

649 Oskari Tammelin. Solving large imperfect information games using cfr+. *arXiv preprint
 650 arXiv:1407.5042*, 2014.

648 Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry Wei, Jason Wei, Chris Tar, Yun-Hsuan
 649 Sung, Denny Zhou, Quoc Le, et al. Freshllms: Refreshing large language models with search
 650 engine augmentation. *arXiv preprint arXiv:2310.03214*, 2023.

651 Wei Wang, Fuqing Bie, Junzhe Chen, Dan Zhang, Shiyu Huang, Evgeny Kharlamov, and Jie Tang.
 652 Can large language models master complex card games? *arXiv preprint arXiv:2509.01328*, 2025.

653 Zhepei Wei, Wenlin Yao, Yao Liu, Weizhi Zhang, Qin Lu, Liang Qiu, Changlong Yu, Puyang Xu,
 654 Chao Zhang, Bing Yin, et al. Webagent-r1: Training web agents via end-to-end multi-turn rein-
 655 force learning. *arXiv preprint arXiv:2505.16421*, 2025.

656 Teng Xiao, Yige Yuan, Zhengyu Chen, Mingxiao Li, Shangsong Liang, Zhaochun Ren, and Vasant G
 657 Honavar. Simper: A minimalist approach to preference alignment without hyperparameters. *arXiv
 658 preprint arXiv:2502.00883*, 2025.

659 Zhichao Xu, Zongyu Wu, Yun Zhou, Aosong Feng, Kang Zhou, Sangmin Woo, Kiran Ramnath,
 660 Yijun Tian, Xuan Qi, Weikang Qiu, et al. Beyond correctness: Rewarding faithful reasoning in
 661 retrieval-augmented generation. *arXiv preprint arXiv:2510.13272*, 2025.

662 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 663 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 664 arXiv:2505.09388*, 2025.

665 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
 666 Cao. React: Synergizing reasoning and acting in language models. In *The eleventh international
 667 conference on learning representations*, 2022.

668 Tarik Zaciagic, Aske Plaat, and K Joost Batenburg. Analysis of bluffing by dqn and cfr in leduc
 669 hold'em poker. *arXiv preprint arXiv:2509.04125*, 2025.

670 Daochen Zha, Kwei-Herng Lai, Songyi Huang, Yuanpu Cao, Keerthana Reddy, Juan Vargas, Alex
 671 Nguyen, Ruzhe Wei, Junyu Guo, and Xia Hu. Rlcard: a platform for reinforcement learning
 672 in card games. In *Proceedings of the Twenty-Ninth International Joint Conference on Artificial
 673 Intelligence*, 2021a.

674 Daochen Zha, Jingru Xie, Wenye Ma, Sheng Zhang, Xiangru Lian, Xia Hu, and Ji Liu. Douzero:
 675 Mastering doudizhu with self-play deep reinforcement learning. In *international conference on
 676 machine learning*, pp. 12333–12344. PMLR, 2021b.

677 Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann
 678 LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents via
 679 reinforcement learning. *Advances in neural information processing systems*, 37:110935–110971,
 680 2024.

681 Ruize Zhang, Zelai Xu, Chengdong Ma, Chao Yu, Wei-Wei Tu, Wenhao Tang, Shiyu Huang, Deheng
 682 Ye, Wenbo Ding, Yaodong Yang, et al. A survey on self-play methods in reinforcement learning.
 683 *arXiv preprint arXiv:2408.01072*, 2024.

684 Enmin Zhao, Renye Yan, Jinqiu Li, Kai Li, and Junliang Xing. Alphaholdem: High-performance
 685 artificial intelligence for heads-up no-limit poker via end-to-end reinforcement learning. In *Pro-
 686 ceedings of the AAAI conference on artificial intelligence*, volume 36, pp. 4689–4697, 2022.

687 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
 688 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
 689 ments. *arXiv preprint arXiv:2504.03160*, 2025.

690 Richard Zhuang, Akshat Gupta, Richard Yang, Aniket Rahane, Zhengyu Li, and Gopala Anu-
 691 manchipalli. Pokerbench: Training large language models to become professional poker players.
 692 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 26175–26182,
 693 2025.

694 Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret minimization
 695 in games with incomplete information. *Advances in neural information processing systems*, 20,
 696 2007.

702 A FULL DETAILS OF RELATED WORKS
703704 A.1 STRATEGIC REASONING IN LLMs
705

706 With the rapid progress of LLMs' cognitive capabilities, recent studies have begun to investigate
707 their potential for strategic reasoning in game-theoretic settings (Duan et al., 2024; Gupta, 2023;
708 Huang et al., 2024; Zhuang et al., 2025; Wang et al., 2025). GTBench (Duan et al., 2024) introduces
709 a comprehensive benchmark covering a variety of games to assess LLMs' ability to follow equilibrium
710 principles. Gupta (2023) provide one of the first empirical evaluations of GPT-4 and ChatGPT
711 in poker, revealing systematic deviations from GTO gameplay. Guo et al. (2023) explore theory-of-
712 mind (ToM) prompting in Leduc Hold'em, showing that GPT-4 with ToM reasoning can outperform
713 neural baselines such as NFSP (Heinrich & Silver, 2016). PokerGPT (Huang et al., 2024) fine-tunes
714 LLMs on poker-specific data and observes improvements in gameplay, while PokerBench (Zhuang
715 et al., 2025) constructs a benchmark on No-Limit Hold'em. More recently, Wang et al. (2025) curate
716 large-scale action-only datasets (more than 400k+ examples) and demonstrate gains in card games
717 by fine-tuning LLMs on such data. Additional works (Costarelli et al., 2024; Herr et al.) also in-
718 vestigate gameplay performance and biases of LLMs in other strategic games, such as Tic-Tac-Toe
719 and Prisoner's Dilemma. In addition to exploring strategic reasoning in text-based settings, Zhai
720 et al. (2024) extend this line of work to the multimodal domain by fine-tuning large vision-language
721 models (VLMs) with RL. This paper leverages CoT-style intermediate reasoning to guide VLMs
722 through multi-step decision-making tasks, including poker. This demonstrates that RL can enable
723 VLMs to effectively explore and execute visual-textual reasoning sequences.

724 Our work differs in two key aspects: (i) unlike prior works that mainly evaluate or improve LLMs'
725 *actions*, we further analyze their *reasoning process*, asking how LLMs think before acting and why
726 they fail to achieve GTO play; and (ii) rather than relying on internal policies alone, we propose the
727 first tool-integrated reasoning framework that leverages poker solvers, enabling both equilibrium-
728 consistent actions and professional-style game-theoretic reasoning.

729 A.2 REINFORCEMENT LEARNING
730

731 Reinforcement Learning (RL) has emerged as a powerful mechanism for enhancing the reasoning
732 abilities of LLMs. In context of LLMs, RL was first introduced through Reinforcement Learn-
733 ing from Human Feedback (RLHF) to align outputs with human preferences via algorithms such
734 as Proximal Policy Optimization (PPO) (Schulman et al., 2017). Subsequent works proposed
735 more advanced techniques such as Direct Preference Optimization (DPO) (Rafailov et al., 2023),
736 SimPO (Meng et al., 2024), and SimPER (Xiao et al., 2025), which improve the stability and effi-
737 ciency of RL training. More recently, researchers have explored both outcome-based rewards (Guo
738 et al., 2025) and step-level rewards (Feng et al., 2025b) to improve problem-solving in domains
739 such as mathematical reasoning (Guo et al., 2025), code generation (Chen et al., 2025), and web
740 retrieval (Wei et al., 2025). In this work, we investigate RL for imperfect-information games, where
741 sparse outcomes, hidden states, and adversarial dynamics make reward design particularly chal-
742 lenging. Our analysis shows that *both outcome-based and step-level RL signals are ineffective at*
743 *improving LLMs' internal policies in poker*, motivating the use of solver-derived, regret-inspired
744 signals as more reliable feedback.

745 A.3 TOOL-INTEGRATED REASONING OF LLMs
746

747 Tool-integrated reasoning (TIR) has emerged as a promising approach to extend the capabilities of
748 LLMs. Prior works demonstrate improvements in domains requiring precise computation or exter-
749 nal knowledge, including mathematical calculation (Das et al., 2024), programming (Chen et al.,
750 2022), and web search (Vu et al., 2023). Early studies such as PAL (Gao et al., 2023) prompt LLMs
751 to generate code for execution, while ToRA (Gou et al., 2024) curate tool-use trajectories and ap-
752 ply imitation learning to train tool invocation. More recently, RL has been explored as an effective
753 framework to improve TIR (Jin et al., 2025; Feng et al., 2025a; Zheng et al., 2025). For instance,
754 Search-R1 (Jin et al., 2025) enables search-engine queries for QA, ReTool (Feng et al., 2025a) im-
755 proves mathematical reasoning with a code sandbox, and DeepResearcher (Zheng et al., 2025) scales
multi-hop retrieval and tool orchestration. Despite these advances, existing TIR research largely tar-
gets fully observed, single-agent tasks. In contrast, poker involves stochasticity, hidden information,

756 and adversarial dynamics, where tools must compute equilibrium-consistent strategies and counter-
 757 factual values rather than deterministic answers. To the best of our knowledge, ToolPoker is the first
 758 TIR framework for imperfect-information games. It integrates external poker solvers into LLMs,
 759 teaching them how to invoke solvers, and grounding their reasoning traces in solver outputs. This
 760 ensures rigorous, precise game-theoretic reasoning and GTO-consistent play, bridging prior works
 761 on strategic reasoning, RL, and TIR.

762 B BACKGROUND AND RULES OF POKER

763
 764 In this section, we introduce the poker variants studied in our work. These games are widely used in
 765 the literature as benchmarks for imperfect-information reasoning because they balance tractability
 766 with the core challenges of hidden information, sequential decision-making, and stochasticity.

767 B.1 KUHN POKER

768 Kuhn poker (Kuhn, 2016) is a minimalistic poker game designed to capture the essence of imperfect-
 769 information decision-making in a tractable form. The game is played with only three cards (e.g.,
 770 Jack, Queen, King) and two players. Each player antes one chip, and a single betting round follows.
 771 Each player receives one private card, and the third card remains hidden.

772 Players can either check/bet (if no bet has been made) or call/fold (if a bet has been made). Because
 773 of its small size—only a handful of information sets—Kuhn poker admits closed-form solutions,
 774 including simple Nash equilibrium strategies that mix between bluffing with weak hands and value
 775 betting with strong hands. Despite its simplicity, it highlights the central strategic dilemma of poker:
 776 balancing deception and value extraction under hidden information.

782 B.2 LEDUC HOLD’EM

783 Leduc Hold’em (Zaciragic et al., 2025) is a widely studied poker variant that extends Kuhn by
 784 introducing multiple betting rounds and public information. The game is played with a small deck
 785 of six cards consisting of two suits and three ranks. Each player antes one chip and receives a single
 786 private card. A first round of betting occurs, after which a single public card is revealed. A second
 787 round of betting then follows.

788 The addition of the public card dramatically increases strategic depth: players must update beliefs
 789 about opponents’ ranges as new information is revealed, balance bluffing and value bets across
 790 streets, and plan actions that maximize long-term expected value. Although still small enough for
 791 exact or approximate equilibrium computation (e.g., via CFR (Zinkevich et al., 2007)), Leduc cap-
 792 tures essential poker phenomena such as semi-bluffing, slow-playing, and range narrowing, making
 793 it a standard benchmark for algorithmic and LLM-based poker research.

796 B.3 LIMIT TEXAS HOLD’EM

797 Limit Texas Hold’em Bowling et al. (2015) is a more realistic and complex poker variant that is
 798 closely related to the full game of Texas Hold’em, which is the most popular poker format in practice.
 799 The deck consists of 52 standard playing cards. Each player is dealt two private hole cards, and up
 800 to five public community cards are revealed in stages: the flop (three cards), the turn (one card), and
 801 the river (one card). At each stage, players take turns acting in one of several betting rounds.

802 Unlike No-Limit Hold’em, bet sizes in Limit Hold’em are fixed and restricted to small or big bets
 803 depending on the round. Each hand therefore unfolds as a sequence of structured betting decisions,
 804 but the state space remains extremely large compared to Kuhn or Leduc. The presence of multiple
 805 streets, large range interactions, and complex pot-odds considerations make Limit Hold’em a sig-
 806 nificantly more challenging testbed for LLMs and reinforcement learning algorithms. Professional-
 807 level play in this environment demands mastery of equilibrium-based reasoning as well as opponent
 808 exploitation—skills that current LLMs struggle to replicate.

810 B.4 ADDITIONAL DETAILS OF BACKGROUND AND PRELIMINARY
811812 B.5 GAME-THEORETIC REASONING
813814 In poker, game-theoretic reasoning grounded in Nash Equilibrium is essential for professional-level
815 play. A Nash Equilibrium represents a stable outcome in which each player’s strategy is an optimal
816 response to the others. Formally:817 **Definition B.1** (Nash Equilibrium (Nash Jr, 1950)). *A Nash Equilibrium is a strategy profile in*
818 *a game where no player can unilaterally improve their payoff by deviating from their current*
819 *strategy, assuming the other players’ strategies remain unchanged. Formally, a strategy profile*
820 *($a_1^*, a_2^*, \dots, a_n^*$) is a Nash Equilibrium if, for every player i :*

821
$$U_i(a_i^*, a_{-i}^*) \geq U_i(a_i, a_{-i}^*), \quad \forall a_i \in A_i \quad (5)$$

822 where A_i denotes the set of feasible actions for player i , U_i is the utility function (expected payoff)
823 of player i , and a_{-i}^* represents the equilibrium strategies of all players other than i .824 Rather than relying solely on heuristics or pattern recognition, professional players systematically
825 evaluate equity, ranges, and pot odds within a game-theoretic framework, thereby providing an opti-
826 mal action. An illustrative example of such game-theoretic reasoning in practice is in Appendix B.6.
827828 B.6 PROFESSIONAL PLAYERS IN POKER
829830 To illustrate how professional poker players think, we provide a real example from the blog of
831 a well-known Texas Hold’em professional player¹. Unlike casual players who rely on intuition,
832 professionals systematically evaluate a wide range of factors before acting, including:833

- **Game context:** What are the stack sizes, pot size, and stack-to-pot ratio?
- **Ranges:** What range of hands should I continue with? What range does my opponent have? How
834 does the board interact with these ranges, and which player benefits most?
- **Board texture and big hands:** Who holds the larger share of strong hands in this spot?
- **Mixed strategies:** What is my optimal mix between actions (e.g., 3-betting vs. calling, check-
835 calling vs. check-raising)?
- **Bet sizing:** How many bet sizes do I need here (e.g., two sizes such as 30% pot and 90% pot)?
836 Which size does my hand prefer relative to my overall range?
- **Randomization:** How do I randomize between actions to stay balanced (e.g., using a chip marker
837 to decide frequencies)?
- **Opponent modeling:** What is my opponent’s likely response to my bet? What physical tells,
838 history, or reads do I have? At what strategic level are they operating, and what exploits should I
839 consider?

840 This example shows that professional play is grounded in equilibrium-based reasoning, probabilistic
841 mixing, and careful opponent modeling, far beyond heuristic or surface-level decision making.
842843 Our behavior datasets are designed with these principles in mind, encouraging LLMs to reason
844 through such questions. Details of the text-only BC dataset curation and TIR-enable BC dataset
845 curation are provided in Appendix D.3 and Appendix G.2, respectively.
846847 C ADDITIONAL DETAILS OF PRELIMINARY ANALYSIS IN SEC. 3
848849 C.1 COMPARISON METHODS
850851 To comprehensively evaluate the performance of LLMs in playing poker, we consider both *tradi-*
852 *tional RL-based baselines* and *rule-based solver baselines*. RL methods serve as learning-based
853 references that have been widely applied to imperfect-information games, while rule-based solvers
854 provide near-equilibrium strategies that approximate ground truth. Specifically, we include the fol-
855 lowing methods:
856857 ¹<https://www.partypoker.com/blog/en/its-the-same-game-but-it-isnt.html>

- NFSP (Heinrich & Silver, 2016): Neural Fictitious Self-Play is a pioneering framework for learning approximate Nash equilibria in imperfect-information games. It combines reinforcement learning to approximate best responses with supervised learning to approximate average strategies, enabling agents to learn directly from self-play experience.
- DQN Mnih et al. (2015): Deep Q-Network was one of the first breakthroughs in deep RL for sequential decision-making. Although originally designed for perfect-information environments such as Atari, subsequent works (Zha et al., 2021b; Guo et al., 2023) have adopted it as a baseline for imperfect-information games, including poker.
- DMC Zha et al. (2021b): The Deep Monte Carlo (DMC) algorithm is originally proposed for the Chinese card game DouDizhu. It leverages large-scale self-play with Monte Carlo policy optimization and demonstrates strong performance in complex imperfect-information card games. Following prior works (Zha et al., 2021b; Guo et al., 2023), we adapt DMC as a baseline for poker.
- CFR+ (Tammelin, 2014): Counterfactual Regret Minimization (CFR) (Zinkevich et al., 2007) is a foundational algorithm for solving imperfect-information games, converging to Nash equilibrium by iteratively minimizing counterfactual regret at each information set. CFR+ enhances CFR with linear regret updates and warm-start averaging, greatly accelerating convergence. It has become the de facto standard solver in large-scale poker domains and serves as a strong rule-based baseline in our evaluation.
- DeepCFR Brown et al. (2019): Building on CFR, DeepCFR employs neural function approximation to replace tabular regret tables, thereby generalizing across information sets. While CFR+ is provably effective, its computational cost grows prohibitively in large games such as Texas Hold'em. DeepCFR addresses this limitation by learning regret values via neural networks, making it applicable to larger domains and forming the basis of superhuman agents such as Libratus (Brown & Sandholm, 2019).

889 C.2 CASE STUDIES OF LLMs’ REASONING FLAWS

890 We provide the examples from Qwen2.5-3B and GPT-4o in Tab. 13 and 14 to illustrate why LLMs
 891 fail in playing poker. From these tables, we consistently observe three limitations of LLMs in
 892 playing poker: (1) Heuristic Reasoning; (ii) Factual Misunderstanding; and (iii) Knowing-Doing
 893 Gap. The detailed analysis of these case studies can be found in Sec. 3.3.
 894

895 C.3 EVALUATION METRICS OF THE LLM-AS-A-JUDGE FOR LLMs’ REASONING

896 In the LLM-as-a-Judge approach used in quantitative analysis of LLMs’ reasoning traces in Sec. 3.3,
 897 we use the following three metrics to validate the identified three reasoning flaws:
 898

- **Heuristic Reasoning Score (HR):** The judge prompt template is provided in Tab. 15.
- **Factual Alignment Score (FA):** The judge prompt template is provided in Tab. 16.
- **Action-reasoning Consistency Score (AC):** The judge prompt template is provided in Tab. 17.

904 C.4 FULL DETAILS OF QUANTITATIVE ANALYSIS

905 To further validate the reasoning flaws observed in case studies, we adopt an LLM-as-a-Judge framework (Dubois et al., 2023). Specifically, we design three metrics: heuristic reasoning (HR), factual
 906 alignment (FA), and action-reasoning consistency (AC). Each generated reasoning trace is scored
 907 by three independent LLM judges on a 0–2 scale for each metric. GPT-4.1-mini (OpenAI, 2025) is
 908 used as the judge model. The metric definitions and judge prompts are in Appendix C.3.
 909

910 From the table, we observe that (i) *Reasoning flaws persist across all models*. All evaluated LLMs
 911 demonstrate varying degrees of heuristic reasoning, factual misunderstanding, and knowing-doing
 912 gaps. For instance, Qwen2.5-3B obtains only 0.53 HR, 0.18 FA, and 1.53 AC, indicating weak fac-
 913 tual grounding and limited strategic reasoning. Even the strongest model, o4-mini, while achieving
 914 the 1.80 HR, 1.56 FA, and 1.85 AC, still falls short of perfect action-reasoning consistency (1.85).
 915 This confirms that these flaws are systemic and persist across models. (ii) *Scaling improves but does*
 916 *not eliminate reasoning flaws*. Large and more powerful models, such as Qwen2.5-72B and o4-mini,
 917 generally achieve higher scores across all these metrics compared to their lightweight variants. This

suggests that increased scale and instruction tuning enhance the ability of LLMs to approximate game-theoretic reasoning and avoid factual mistakes. Nevertheless, the persistence of non-trivial gaps, particularly in FA and AC, indicates that scaling alone is insufficient to reach professional-level game-theoretic reasoning. (iii) *Action-reasoning consistency remains imperfect*. AC scores are stable across models (1.53–1.87) yet below the professional baseline of 2.0. Even the strongest model, o4-mini, reaches 1.85 but still shows knowing–doing gaps where reasoning diverges from action. To directly assess this, we compute mismatch proportions in Appendix C.5, which align with AC values and confirm it as both a valid proxy for and evidence of the *knowing–doing gap*.

C.5 HUMAN-IN-THE-LOOP EVALUATION FOR LLMs’ REASONING

To validate the reliability of LLM-based judging, we conduct a human-in-the-loop evaluation. Drawing on professional-style reasoning (Appendix B.6) and our behavior cloning prompt template (Appendix D.3), we use GPT-5 to curate 20 reasoning traces and have them scored by LLMs. These traces achieve perfect scores (all achieve maximum 2), showing strong alignment with human judgments, which we include as a reference for our analysis.

C.6 CALIBRATION AND VALIDATION OF OUR LLM-AS-A-JUDGE SCORE

In this subsection, we provide the details of how to calibrate and validate our LLM-as-a-Judge Score. **Judge calibration.** In Appendix C.3, we apply the LLM-as-a-Judge approach and use three metrics: *Heuristic Reasoning (HR)*, *Factual Alignment (FA)*, and *Action-reasoning Consistency (AC)* in the scale of 0–2. To calibrate this scale, we iteratively refined the HR/FA/AC rubrics and judge prompts using a small pilot set of representative hands.

- **General procedure.** We collect a small set of clearly *good*, *medium*, and *poor* reasoning traces for each dimension, manually assign target scores (0/1/2), and refine the textual criteria until the judge consistently reproduces the correct scores.
- **HR calibration.** We anchor the “0/1/2” rubric using examples that are (i) purely heuristic, (ii) partially grounded but inconsistent, and (iii) strongly aligned with game-theoretic principles (e.g., pot odds, range interactions).
- **FA calibration.** We provide objective poker quantities (equities, ranges, pot odds) from external solvers and instruct the judge to score *only factual correctness*.
- **AC calibration.** We explicitly instruct the judge to verify that the reasoning logically implies the same action as the final decision.

Judge validation. Following the protocol in Sec. 3.3, we manually curate 20 professional-style reasoning traces to use them and score them by LLMs. These traces achieve perfect scores (all achieve maximum 2), showing strong alignment with human judgments.

Sensitivity and inter-rater LLM agreement. Our LLM-as-a-Judge results in Tab. 2, Tab. 4, and Fig. 2 are consistent across two distinct poker environments (Leduc and Limit Hold’em), indicating that the judge is *not domain-sensitive*.

To further assess inter-rater agreement, we re-evaluate ToolPoker’s Limit Hold’em reasoning traces using **GPT-5** as the judge (instead of the GPT-4.1-mini judge used in the main paper). All settings follow Section 5.3. The results are reported in Tab. 6. From the table, we observe close agreement between the two judge models, validating the robustness of our evaluation and reducing concerns about prompt sensitivity or model-specific bias.

Table 6: Inter-rater agreement: LLM-as-a-Judge scores (0–2) on ToolPoker’s reasoning traces in Limit Texas Hold’em. We compare the original judge (GPT-4.1-mini) with another judge (GPT-5).

Method	HR	FA	AC	Avg.
GPT-5	1.94	1.89	1.90	1.91
GPT-4.1-mini	1.93	1.92	1.94	1.94

972 **D FULL DETAILS OF BC-RIRL**
973974 **D.1 FULL DETAILS OF REGRET-INSPIRED RL FINE-TUNING**
975

976 While BC helps LLMs imitate expert play, its limited dataset size and imitation-based nature make
977 it insufficient for professional-level performance. As an initial attempt to refine policies beyond
978 imitation, we explore a regret-inspired reinforcement learning (RIRL) framework. Prior approaches
979 in both traditional RL (Heinrich & Silver, 2016; Zhao et al., 2022) and LLM-based RL (Guo et al.,
980 2025) typically rely on outcome-based rewards (e.g., win/loss). However, in poker, especially in
981 multi-round games such as Leduc Hold’em and Texas Hold’em—these sparse and noisy signals fail
982 to capture the contribution of individual actions. To address this, we experiment with a step-level
983 regret-guided reward that leverages signals from a pre-trained CFR solver, aligning fine-tuning with
984 the principle that minimizing cumulative regret drives convergence to the Nash equilibrium.
985

986 **Regret-guided Reward Design.** Inspired by our analysis in Sec. 3.2, which highlights CFR as
987 the state-of-the-art algorithm for approaching Nash equilibrium in imperfect-information games,
988 we explore optimizing LLMs through regret minimization. Our key idea is to compute cumulative
989 regrets with CFR and transform them into fine-grained reward signals that estimate each action’s
990 contribution. For a policy π_θ as player i , the cumulative regret of action a_i^t at time t is defined as:
991

$$990 \quad r_t(a_i^t) = r_{t-1}(a_i^t) + I_t(a_i^t), \quad I_t(a_i^t) = u(\sigma_t^{a_i^t}, \sigma_t^{-a_i^t}) - u(\sigma_t), \quad (6)$$

992 where σ_t denotes the strategy profile at time t , σ_t^{-i} is the opponents’ strategy, $u(\sigma_t)$ the expected
993 utility under σ_t , and $u(\sigma_t^{a_i^t}, \sigma_t^{-a_i^t})$ is the utility when player i deviates to action a_i^t . The instantaneous
994 regret $I_t(a_i^t)$ measures how much better or worse a_i^t performs relative to the current mixture strategy,
995 while $R_t(a_i^t)$ aggregates this over time. To compare actions within the same decision point, we
996 normalize regrets into a relative reward signal:
997

$$998 \quad R(a_i^t) = \frac{R_t(a_i^t) - \text{mean}(\{r_t(a_j)\}_{j=1}^{|\mathcal{A}|})}{F_{\text{norm}}(\{r_t(a_j)\}_{j=1}^{|\mathcal{A}|})}, \quad (7)$$

1000 where F_{norm} denotes a normalization factor, chosen as the standard deviation in our implementation.
1001

1002 **Fine-tuning Objective.** Based on this signal, we fine-tune LLM policy via PPO (Schulman et al.,
1003 2017) with the following clipped RL objective:
1004

$$1004 \quad \mathcal{L}_{\text{PPO}}(\theta) = -\mathbb{E}_{x \sim \mathcal{D}_s, y \sim \pi_{\text{old}}(\cdot|x)} \left[\min \left(\frac{\pi_\theta(y|x)}{\pi_{\text{old}}(y|x)} A, \text{clip} \left(\frac{\pi_\theta(y|x)}{\pi_{\text{old}}(y|x)}, 1 - \epsilon, 1 + \epsilon \right) \right) - \beta \mathbb{D}_{\text{KL}}(\pi_\theta(\cdot|c) \parallel \pi_{\text{ref}}(y|x)) \right], \quad (8)$$

1005 where π_θ and π_{old} denote the current and previous policy models, respectively. ϵ is the clipping-
1006 related hyperparameter. π_{ref} is the reference policy that regularizes π_θ update via a KL-divergence
1007 penalty, measured and weighted by \mathbb{D}_{KL} and β , respectively. Generalized Advantage Estimation
1008 (GAE) (Schulman et al., 2015) is used as the advantage estimate A . x denotes the input samples
1009 drawn from \mathcal{D} , which is composed of trajectories generated by the current policy π_θ . y is the
1010 generated outputs via policy LLMs $\pi_\theta(\cdot|x)$. The procedures of trajectory collection are detailed in
1011 Appendix D.4.
1012

1013 **D.2 FULL DETAILS OF COMPARISON RESULTS**
1014

1015 We evaluate whether BC-RIRL improves LLMs’ poker performance by fine-tuning Qwen2.5-7B
1016 and comparing against both traditional methods and vanilla LLMs. Results in Kuhn and Leduc
1017 Hold’em are reported in Tab. 3. We highlight three key findings: (i) *All RL-based fine-tuning variants*
1018 *improve performance in Kuhn Poker*. This suggests that both outcome-based and regret-guided
1019 feedback provide useful learning signals in simple environments with limited strategy space. (ii)
1020 *BC-RIRL surpasses direct prompting and BC-SPRL in Leduc Hold’em, though it still trails traditional*
1021 *algorithms such as CFR+*. For example, BC-RIRL gains 17.0 chips against GPT-4.1-mini,
1022 while still losing 34.0 chips against CFR+. This indicates that regret-guided dense feedback is more
1023 effective than sparse outcome-based rewards in complex tasks, but is sufficient to reach equilibrium-
1024 level play. (iii) *Pure RIRL without the BC stage does not yield improvements in Leduc Hold’em*. For
1025 instance, BC-RIRL and BC-SPRL gain +17.0 and -64.5 chips against GPT-4.1-mini, respectively.

1026 This underscores the importance of BC in establishing a strong foundation of expert-like reasoning
 1027 before RL fine-tuning.

1028 To further assess whether BC-RIRL enhances reasoning quality, we adopt the LLM-as-a-Judge pro-
 1029 tocol from Sec. 3.3 and compute three reasoning-trace scores. Results in Leduc Hold’em and Limit
 1030 Texas Hold’em are reported in Tab. 4, with additional case studies provided in Appendix F.1. Two
 1031 findings are observed: (i) *RIRL consistently surpasses the baselines on HR and AC*. For example,
 1032 BC-RIRL fine-tuned on Qwen2.5-7B reaches 1.93 HR and 1.90 AC in Leduc Hold’em, outperform-
 1033 ing the strongest vanilla LLM, o4-mini, which achieves 1.80 HR and 1.85 AC. This shows that
 1034 BC-RIRL effectively mitigates heuristic reasoning flaws and reduces the knowing–doing gap. (ii)
 1035 *RIRL yields only marginal improvements in FA*. For instance, in Limit Texas Hold’em, BC-RIRL
 1036 achieves 1.12 FA, only slightly higher than vanilla Qwen2.5-7B (0.87 FA) and still far behind o4-
 1037 mini (1.65 FA). Together with the case studies, these results indicate that while BC-RIRL improves
 1038 strategic reasoning and action–reasoning alignment, factual misunderstandings remain a notable
 1039 challenge.

1040 D.3 ADDITIONAL DETAILS OF BEHAVIOR CLONING

1041 We provide the BC data construct prompt template, which is shown in Tab. 18. GPT-5-mini is used
 1042 as the target model for annotation. The detailed actions and other auxiliary quantities (e.g., winning
 1043 probability and hand range) are obtained from a pre-trained CFR solver, equity calculator and other
 1044 tools. These tools are implemented in Python.

1045 D.4 TRAJECTORY COLLECTION PROCEDURE

1046 To collect trajectories for RL fine-tuning, we adopt an on-policy setting where the LLM policy
 1047 competes against a random agent. At each iteration, the LLM plays a batch of N games against the
 1048 random agent ($N = 64$ in our setting). The LLM’s actions from each round are stored as individual
 1049 data samples. Formally, for an LLM policy π_θ with partial observation o_i^t and action history h_i^t at
 1050 time step t , a sample is represented as (o_i^t, h_i^t, a_i^t) , where a_i^t is the chosen action of player i . After
 1051 each batch, the collected trajectories are used to fine-tune the LLM policy π_θ , producing an updated
 1052 policy π'_θ that is then used for subsequent data collection.

1053 D.5 IMPLEMENTATION DETAILS OF BC-RIRL

1054 In the behavior cloning stage, we construct 5,000 data samples with both reasoning traces and
 1055 actions for behavior cloning. Specifically, to generate actions, we use CFR+ Tammelin (2014) to
 1056 compete against a random player that randomly selects actions from the action space, and extract the
 1057 actions from CFR+ as the ground-truth actions. The GPT-5-mini is then used to generate reasoning
 1058 traces of these actions, where the prompt is provided in Appendix D.3. In the RL stage, we set
 1059 Qwen2.5-7B-Instruct as the base model for fine-tuning.

1060 E METHODOLOGY OF SPRL

1061 Inspired by traditional RL in imperfect-information games (Heinrich & Silver, 2016; Zhang et al.,
 1062 2024), we conduct δ -uniform self-play by letting a single policy LLM π_θ play both sides. In each
 1063 round, we (i) clone the current policy to obtain a fixed opponent $\pi_{\bar{\theta}}$; (ii) sample N self-play games
 1064 between $\pi_\theta(\cdot | f(o_1^t))$ and $\pi_{\bar{\theta}}(\cdot | f(o_2^t))$, alternating positions and random seeds, to collect trajec-
 1065 tories \mathcal{T}_θ ; (iii) update π_θ with RL on \mathcal{T}_θ for δ steps while keeping $\pi_{\bar{\theta}}$ fixed; and (iv) refresh $\pi_{\bar{\theta}}$ with
 1066 the latest π_θ to start the next cycle.

1067 **Fine-tuning Objective.** To fine-tune LLMs via RL, we then formulate the RL objective function as
 1068 follows:

$$1069 \max_{\theta} \mathbb{E}_{x \sim \mathcal{D}_s, y \sim \pi_{\theta}(\cdot | x)} [r_\phi(x, y)] - \beta \mathbb{D}_{KL}[\pi_\theta(y|x) || \pi_{ref}(y|x)], \quad (9)$$

1070 where π_θ is the policy LLM being trained. π_{ref} is the reference LLM (typically the initial pretrained
 1071 LLM) that regularizes the policy update via a KL-divergence penalty, measured and weighted by
 1072 \mathbb{D}_{KL} and β , respectively. x denotes the input samples drawn from \mathcal{D}_s , which is composed of
 1073 trajectories generated by the current policy π_θ in a self-play setting. y represents the generated

1080 outputs via policy LLMs $\pi_\theta(\cdot|x)$. In this paper, we choose a commonly used Proximal Policy
 1081 Optimization (PPO) (Schulman et al., 2017) as the backbone RL algorithm, which optimizes LLMs
 1082 by maximizing the following objective:

$$1084 \mathcal{L}_{\text{PPO}}(\theta) = -\mathbb{E}_{x \sim \mathcal{D}_s, y \sim \pi_{\text{old}}(\cdot|x)} \left[\min \left(\frac{\pi_\theta(y|x)}{\pi_{\text{old}}(y|x)} A_{\text{adv}}, \text{clip} \left(\frac{\pi_\theta(y|x)}{\pi_{\text{old}}(y|x)}, 1 - \epsilon, 1 + \epsilon \right) A_{\text{adv}} \right) - \beta \mathbb{D}_{KL}(\pi_\theta(\cdot|c) || \pi_{\text{ref}}(y|x)) \right], \quad (10)$$

1087 where π_θ and π_{old} denote the current and previous policy models, respectively. ϵ is the clipping-
 1088 related hyperparameter. The advantage estimate A_{adv} is computed using Generalized Advantage
 1089 Estimation (GAE) (Schulman et al., 2015). We also investigate the performance of other commonly
 1090 used RL algorithms, such as GRPO Shao et al. (2024).

1091 **Reward Design.** Poker is a sequential decision-making task with multiple turns. The reward for
 1092 player i at time step t is defined as the discounted cumulative return from t until the end of the game:
 1093

$$1094 R_i^t = \sum_{k=t}^T \gamma^{k-t} r_i^k, \quad (11)$$

1097 where $\gamma \in (0, 1]$ is the discount factor balancing immediate and long-term outcomes. Because
 1098 players only observe payoffs after a hand is completed, the task is characterized by sparse rewards:
 1099 intermediate steps yield $r_i^k = 0$, while the terminal step provides r_i^T . We consider two types of
 1100 terminal signals: (i) *binary outcome* reward, where $r_i^T = 1$ if the player wins the hand and $r_i^T = 0$
 1101 otherwise; and (ii) *normalized earnings* reward, where $r_i^T = c_{\text{earn}}/c_{\text{init}}$, with c_{earn} the final net chip
 1102 gain (or loss) and c_{init} the initial chip count.

1103

1104 F ADDITIONAL DETAILS OF INITIAL ATTEMPT IN SEC. 4

1105

1106 F.1 CASE STUDIES OF BC-RIRL

1107

1108 We present case studies of Qwen2.5-7B fine-tuned with BC-RIRL in Leduc Hold’em (Tab. 19 and
 1109 Tab. 20). The results show that after fine-tuning, the model can produce reasoning traces that re-
 1110 semble those of professional players. However, closer inspection reveals persistent factual misun-
 1111 derstandings. For example, the model claims that calling is the optimal CFR action, even though the
 1112 prompt explicitly states that calling is not a legal move. This supports our conclusion in Sec. 4.3:
 1113 while BC-RIRL improves action–reasoning consistency and professional-style imitation, factual in-
 1114 accuracies remain a significant challenge, highlighting the limitations of BC-RIRL.

1115

1116 G ADDITIONAL DETAIL OF ToolPoker

1117

1118 G.1 TIR ROLLOUT PROMPT TEMPLATE

1119

1120 The TIR rollout prompt template for poker is provided in Tab. 21.

1121

1122 G.2 TIR BC REASONING DATASET CURATION

1123

1124 To construct high-quality TIR data without incurring prohibitive annotation cost, instead of building
 1125 a TIR reasoning-augmented dataset from scratch, we build an automated pipeline to programmati-
 1126 cally augments the reasoning dataset from Sec. 4.1 with standardized tool invocation templates (e.g.,
 1127 `<tool></tool>`) and execution outputs (e.g., `<output></output>`). A detailed example of
 1128 the appended tool invocation templates is provided in Tab. 22.

1129

1130 G.3 REWARD DESIGN

1131

1132 Our hybrid reward function contain the following components:

1133

- **Answer reward:** This reward enforces the alignment of LLMs’ final action with the GTO-
 1134 guarantee action from the CFR solver. Formally, given an LLM policy π_θ as the player i with

1134 **Algorithm 1** Fine-tuning Algorithm of ToolPoker for TIR.
1135
1136 **Input:** Policy model π_θ , old policy π_{old} , task dataset \mathcal{D}_t , masking function \mathcal{M}
1137 **for** each training iteration **do**
1138 **for** each task x in \mathcal{D}_t **do**
1139 Sample ground-truth GTO action \hat{a} of x
1140 Sample a rollout y from π_{old} for x :
1141 Initialize reasoning chain
1142 **while** not end of episode **do**
1143 Generate next segment: <think> or <tool>
1144 **if** tool is invoked **then**
1145 Interact with external poker solvers, obtain <output>
1146 Append output to reasoning chain
1147 **end if**
1148 **end while**
1149 Extract model-predicted action a from final response p
1150 Compute the composite reward $R(a, \hat{a}, p)$
1151 Compute GAE advantages \hat{A} for y
1152 Apply loss masking \mathcal{M} to exclude tool output tokens
1153 Compute PPO loss \mathcal{L}_{PPO} in Eq. 10 and update π_θ
1154 **end for**
1155 **end for**
1156

1156 partial observation o_i^t and action history h_i^t at time step t , the answer reward is denoted as:

$$R_{\text{answer}}(a_i^t, \hat{a}_i^t) = \begin{cases} 1, & \text{if } \text{is_equivalent}(a_i^t, \hat{a}_i^t), \\ -1, & \text{otherwise,} \end{cases} \quad (12)$$

1157 where a_i^t and \hat{a}_i^t denote π_θ 's predicted action and CFR solver's action at time step t .
1158 $\text{is_equivalent}(\cdot)$ checks whether the model's final action matches the CFR solver's action
1159 as the ground-truth action.

- 1160 • **Format reward:** $R_{\text{format}}(\rho_i^t) \in \{0, 1\}$, which evaluates whether the reasoning
1161 trace follows the required structured schema with special tokens in the correct order:
1162 reasoning <think>/</think>, tool calling <tool>/</tool>, feedback output
1163 <output>/</output>, and final action <answer>/</answer>.
- 1164 • **Tool execution reward:** $R_{\text{tool}}(\rho_i^t) = \text{Tool}_{\text{suc}}/\text{Tool}_{\text{tot}}$, which measures the fraction of successful
1165 tool calls in the reasoning trace, encouraging the model to invoke external tools effectively and
1166 integrate their outputs into subsequent reasoning.

1167

G.4 RL FINE-TUNING ALGORITHM FOR TIR

1171 Alg. 1 summarizes the fine-tuning procedure of ToolPoker for enabling TIR in poker. Given a task
1172 dataset \mathcal{D}_t , where construction details are in Appendix G.5, the algorithm proceeds as follows.

1173 For each task $x \in \mathcal{D}_t$ with a corresponding ground-truth action \hat{a} from a CFR solver, we first obtain
1174 G rollouts y from the old policy π_{old} . Each rollout is generated step by step, where the model pro-
1175 duces either a <think> segment (internal reasoning) or a <tool> call. If a tool is invoked, the
1176 model interacts with the external poker solver, retrieves the <output>, and appends it to the rea-
1177 soning chain. This iterative process continues until the end of the episode. At the end of the rollout,
1178 we extract the model-predicted action a from the final response p . A composite reward $R(a, \hat{a}, p)$
1179 is then computed, combining answer accuracy, reasoning format, and tool-execution quality (see
1180 Appendix G.3). Using this reward, we estimate advantages \hat{A} with Generalized Advantage Estima-
1181 tion (GAE) (Schulman et al., 2015). To ensure tool outputs do not dominate training, we apply a
1182 masking function \mathcal{M} that excludes solver outputs from the loss. Finally, we compute the PPO loss
1183 \mathcal{L}_{PPO} (Eq. 8) and update the policy π_θ .

1184 Through this iterative process, the model learns not only to query solvers for GTO-consistent actions
1185 and other auxiliary quantities but also to integrate solver outputs into coherent reasoning traces,
1186 thereby aligning action selection with rigorous game-theoretic principles.

1188 G.5 IMPLEMENTATION DETAILS
1189

1190 We follow existing works (Feng et al., 2025a; Jin et al., 2025) to train ToolPoker with the
1191 VeRL (Sheng et al., 2024) framework. For RL fine-tuning, based on the existing work (Wang et al.,
1192 2025), we build an automated pipeline to curate an action-only dataset with 400,000 samples for
1193 both Leduc Hold’em and Limit Texas Hold’em. Specifically, we use a pretrained CFR solver to
1194 compete against a random agent and collect the game states and actions of CFR to build such a
1195 dataset. Note that

1196 Qwen2.5-7B-Instruct model is the base model. The max response length is set as 8,192 tokens. The
1197 rollout model’s temperature is 0.7 and top-p is 0.6. For behavior cloning, we curate a TIR dataset
1198 with 5,000 samples with both actions and tool-integrated reasoning traces. During RL fine-tuning,
1199 the rollout batch size is set to 64, and the mini update size is 16. An AdamW optimizer is utilized
1200 with an initial learning rate $1e - 6$.

1201
1202 G.6 ADDITIONAL DISCUSSION
1203

1204 **Generalization without solvers.** In realistic settings, external tools may be unavailable or only
1205 intermittently accessible. To examine this, we ablate ToolPoker by removing RL fine-tuning and
1206 retaining only BC (Sec. 5.3). This variant shows weaker tool-use capability than full ToolPoker, and
1207 under intermittent tool access we find that HR and AC remain relatively high while FA degrades first.
1208 These results suggest that ToolPoker internalizes core strategic structures (e.g., range-based reason-
1209 ing and mixed strategies), while solvers primarily supply precise numerical quantities—supporting
1210 our view that LLMs provide the reasoning framework whereas external tools ensure the accuracy of
1211 game-theoretic computations.

1212 G.7 COMPARISON WITH EXISTING TOOL-USE FRAMEWORK
12131214 G.7.1 RELATION TO EXISTING TOOL-USE FRAMEWORK
1215

1216 While ToolPoker follows the general “LLM + tools” paradigm, it is designed specifically for
1217 imperfect-information poker games with game-theoretic principles, whereas prior frameworks focus
1218 on general tasks (e.g., math, QA, web search). This difference leads to several important challenges
1219 that make existing methods difficult to directly apply.

1220 **Task difference: game-theoretic reasoning.** Prior TIR methods (Yao et al., 2022; Schick et al.,
1221 2023; Feng et al., 2025a) typically aim to obtain factual answers or execute deterministic API calls.
1222 In contrast, ToolPoker targets *strategic reasoning* in games where (i) the agent must reason under
1223 imperfect information, and optimal play requires *Nash-equilibrium (GTO) reasoning*, and (ii) expla-
1224 nations must reflect game-theoretic principles rather than surface-level logic. This setting requires
1225 multi-step strategic reasoning that goes substantially beyond previous tool-use scenarios.

1226 **Existing frameworks cannot be directly adapted.** *Unstable interleaved reasoning and tool use.*
1227 Poker reasoning requires LLMs to generate game-theoretic explanations while coordinating multiple
1228 solver calls for diverse quantities (e.g., actions, equities, ranges). Directly applying a ReTool-style
1229 framework (Feng et al., 2025a) to teach LLMs to invoke multiple tools during reasoning would
1230 (i) force the model to call and integrate several specialized solvers for each hand, (ii) introduce
1231 error propagation from tool calls across multi-step game-theoretic reasoning trajectories, and (iii)
1232 lead to inaccurate explanations and degraded gameplay. *High data cost.* Toolformer-style ap-
1233 proaches (Schick et al., 2023) usually require large-scale reasoning traces augmented with solver
1234 calls to fine-tune LLMs. For game-theoretic reasoning tasks, generating such traces demands ex-
1235 pensive LLM annotation and careful domain-specific tool invocation, making it prohibitively costly
1236 to scale to expert-level poker play.

1237 **ToolPoker: a design specifically addressing these challenges.** To overcome these issues,
1238 ToolPoker introduces two key design choices. *Equilibrium-oriented simplified interface.* Rather
1239 than asking the LLM to orchestrate multiple tools, ToolPoker consolidates all solver functionalities
1240 into a single API call that returns GTO actions as well as auxiliary quantities (e.g., equities, strate-
1241 gic ranges, hand distributions). This equilibrium-oriented interface stabilizes TIR-RL training and
1242 allows the LLM to focus on producing accurate, professional-level reasoning instead of managing
1243 complex tool orchestration. *Low-cost, expert-level TIR dataset.* Instead of relying on a large-scale

1242 reasoning dataset, ToolPoker deliberately constructs a small curated expert reasoning dataset aligned
 1243 with game-theoretic principles, and augments it with tool-calling templates and solver outputs. This
 1244 provides a cost-efficient way to perform behavior cloning from expert-level play, followed by rein-
 1245forcement learning fine-tuning.

1247 G.7.2 EMPIRICAL COMPARISON WITH RETOOL

1249 We then empirically compare ToolPoker with ReTool Feng et al. (2025a) to validate the effectiveness
 1250 of ToolPoker in our poker games with imperfect information. Specifically, we implement ReTool
 1251 in Leduc Hold'em (same solver, same backbone LLM). We modify our BC dataset following the
 1252 original ReTool protocol to teach the model to call multiple poker tools during reasoning, and keep
 1253 the RL stage consistent with ReTool.

1254 We compare both methods under the same settings as Section 5.3 using Qwen2.5-7B-Instruct.
 1255 Gameplay and Reasoning results are shown in Tab. 7 and 8, respectively. These results show that
 1256 while ReTool improves over prompting-only LLMs, ToolPoker achieves higher gameplay perfor-
 1257 mance and expert-level reasoning quality, demonstrating the advantages of our simple but effective
 1258 design in ToolPoker for game-theoretic reasoning tasks.

1259 Table 7: Gameplay comparison results of ToolPoker and ReTool in Leduc Hold'em. Qwen2.5-7B-
 1260 Instruct is the backbone model.

	NFSP	DQN	DMC	CFR+	Avg.
Vanilla LLM	-57.5	-93.0	-73.0	-68.5	-73.0
ReTool	+5.5	+8.5	-4.0	-8.0	+0.5
ToolPoker	+11.5	+18.0	+1.0	-3.0	+6.8

1268 Table 8: Reasoning quality comparison results of ToolPoker and ReTool in Leduc Hold'em.
 1269 Qwen2.5-7B-Instruct is the backbone model.

Method	HR	FA	AC	Avg.
Vanilla LLM	0.95	0.86	1.68	1.16
ReTool	1.84	1.65	1.88	1.79
ToolPoker	1.96	1.95	1.91	1.94

1278 G.8 IMPACT OF REWARD COMPONENT IN R

1279 To study the contribution of each component in the composite reward, we implement three ablative
 1280 variants of ToolPoker in Leduc Hold'em (Qwen2.5-7B-Instruct backbone), each removing one com-
 1281ponent from the composite reward in Eq. 4. All other settings follow Section 5.3. We report both
 1282 gameplay performance and reasoning quality in Table 9 and 10. From these tables, we observe:

- 1284 • R_{answer} is the main driver of improvement. Removing it will make reasoning traces and final
 1285 decisions less tightly aligned with solvers' outputs (e.g., GTO-consistent action), leading to worse
 1286 gameplay performance and reasoning quality (e.g., AC).
- 1287 • R_{format} mainly stabilizes format and structure, with a smaller but positive effect on performance.
 1288 Removing R_{format} keeps gameplay competitive.
- 1289 • R_{tool} benefits reliable tool use. Removing it leads to a slight drop in gameplay performance and
 1290 FA/AC scores.

1293 G.9 REWARD VISUALIZATION

1294 We plot the per-component reward trajectories of ToolPoker in Leduc Hold'em in Fig. 3. Qwen2.5-
 1295 7B-Instruct is the backbone model. From the figure, we can observe:

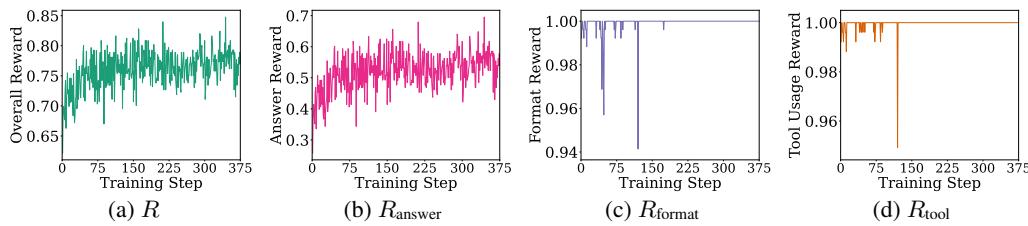
1296 Table 9: Gameplay performance of ToolPoker and ablations in Leduc Hold'em. Qwen2.5-7B-
 1297 Instruct is the backbone model.

	NFSP	DMC	CFR+
ToolPoker/ R_{answer}	-58.5	-72.0	-54.5
ToolPoker/ R_{format}	+11.5	+1.0	-4.0
ToolPoker/ R_{tool}	+9.0	+0.5	-5.5
ToolPoker	+11.5	+1.0	-3.0

1305 Table 10: Reasoning quality metrics across ablations in Leduc Hold'em. Qwen2.5-7B-Instruct is
 1306 the backbone model.

Method	HR	FA	AC	Avg.
ToolPoker/ R_{answer}	1.89	1.08	1.45	1.58
ToolPoker/ R_{format}	1.95	1.95	1.91	1.94
ToolPoker/ R_{tool}	1.95	1.89	1.87	1.90
ToolPoker	1.96	1.95	1.91	1.94

- R_{format} and R_{tool} rapidly approach near 1, indicating that the model can learn to produce correct formats and tool invocation quickly.
- R_{answer} gradually increases over training with some variance but no signs of instability or collapse.



1327 Figure 3: Reward visualization of ToolPoker in Leduc Hold'em. Qwen2.5-7B-Instruct is the back-
 1328 bone model. (a) is the overall composite reward R , (b)-(d) shows the R_{answer} , R_{format} and R_{tool} ,
 1329 respectively.

H IN-DEPTH ANALYSIS OF TOOLPOKER

H.1 TRANSFERABILITY & SCALABILITY

1336 **Extending to Other Imperfect-information Games.** Although ToolPoker is empirically evaluated
 1337 on poker in the main paper, the framework itself is not poker-specific. We choose poker as our
 1338 primary testbed because it is a canonical benchmark for imperfect-information, game-theoretic rea-
 1339 soning: it has mature equilibrium solvers (e.g., CFR+), well-established evaluation protocols, and
 1340 is widely used in prior works (Guo et al., 2023; Wang et al., 2025; Zhuang et al., 2025; Duan et al.,
 1341 2024) to study strategic reasoning.

1342 ToolPoker is architecturally game-agnostic and only requires access to a solver that, given a state
 1343 description, returns equilibrium quantities (e.g., optimal actions, values, strategy distributions). To
 1344 instantiate ToolPoker for another imperfect-information game, the required modifications are mini-
 1345 mal:

- **Build solver API.** In a new game, collect required solvers for game-theoretic reasoning, and build a unified solver API that returns all supporting quantities from these solvers.
- **State encoding.** The game history, private information, and public observations of the new game must be encoded into text suitable for the LLM and for the unified solver API.

- **TIR reasoning dataset construction.** Similar to poker, we create a small-scale expert reasoning dataset containing high-quality reasoning traces augmented with solver outputs. This teaches the model how to read and interpret solver quantities and how to produce game-theoretic explanations.
- **Two-stage training pipeline.** We apply the same training procedure used in Section 5.2, which contains SFT on the solver-augmented reasoning dataset, followed by RL fine-tuning with our composite reward to refine tool-use behavior and action quality.

As an illustrative example, consider extending ToolPoker to an imperfect-information game, Mahjong. We would:

- encode each player’s private hand, open melds, discards, and round context into text
- build an unified API such that the LLM can query this API to interface with external Mahjong solver to obtain actions (e.g., discard, call) and other supporting quantities (e.g., shanten count, tile-efficiency metrics, expected value, defensive risk), which are similar to equities and ranges in poker
- build a small solver-augmented reasoning set grounding explanations in strategic principles of Mahjong (e.g., tile efficiency, defense, hand value)
- apply the same two-stage training pipeline to finetune LLMs

Empirical Results of ToolPoker in Extending to Three-player Leduc Hold’em. To further demonstrate scalability, we adapted ToolPoker to a three-player Limit Texas Hold’em. We follow the steps above to fine-tune Qwen2.5-7B-Instruct using ToolPoker. We choose GPT-4.1-mini and vanilla Qwen2.5-7B-Instruct as the opponents, and compare the gameplay performance of the resulting model under the same settings in Section 5.3. The gameplay and reasoning quality results are reported in Tab. 11 and 12.

Table 11: Gameplay performance comparison across models in 3-player Leduc Hold’em.

Qwen2.5-7B	GPT-4.1-mini	Qwen2.5-7B _{ToolPoker}
−36.7	+5.9	+30.8

Table 12: LM-as-a-Judge score (0-2) evaluating reasoning traces of various LLMs in 3-player Leduc Hold’em.

Method	HR	FA	AC	Avg.
Qwen2.5-7B	0.93	0.88	1.60	1.14
GPT-4.1-mini	1.00	1.75	1.83	1.52
Qwen2.5-7B _{ToolPoker}	1.93	1.90	1.88	1.90

From these tables, we observe that ToolPoker consistently outperforms vanilla LLM across both gameplay performance and expert-level reasoning scores in this new game, providing empirical evidence that ToolPoker generalizes beyond poker to other imperfect-information domains.

H.2 ERROR ANALYSIS IN TOOLPOKER

In this subsection, we provide an in-depth error analysis of ToolPoker.

Error patterns discussion. As shown in Tab. 5, ToolPoker slightly underperforms CFR by 3 chips per 100 games, while still achieving comparable overall gameplay. To better understand this phenomenon, we conduct an error analysis and observe the following error patterns

- **State mis-specification.** The model may sometimes encode the game state (e.g., hand card, public card) imperfectly before querying the solver, which can lead to suboptimal actions and quantities from solvers.

1404
 1405 • **Misalignment between solvers’ outputs and final actions.** In some cases, the LLM may cor-
 1406 rectly receive solvers’ outputs (e.g., action) but does not faithfully follow them in the final answer.
 1407

1408 **Potential Mitigation.** To mitigate these errors, we consider several potential methods:
 1409

1410 • **Additional faithfulness reward term:** Inspired by recent work on faithful agentic search (Xu
 1411 et al., 2025), we can train a reward model to score how faithfully the reasoning aligns with solver
 1412 outputs, and use this as an auxiliary reward during RL fine-tune.
 1413 • **Consistency-aware signal:** Similarly, we can add an auxiliary reward during RL fine-tuning to
 1414 encourage correctly querying the external solvers with accurate states.
 1415

1416 H.3 ROBUSTNESS OF TOOLPOKER

1417 **Robustness to noisy or human-style inputs.** A natural question is how ToolPoker handles inputs
 1418 that deviate from clean CFR-style play, such as suboptimal, noisy, or human-generated trajectories.
 1419 Although our main experiments rely on solver-labeled data, we emphasize that ToolPoker is already
 1420 trained and evaluated in settings that include substantial off-equilibrium and non-expert behavior.
 1421

1422 (i) *Training already includes noisy, off-equilibrium states.* As described in Appendix G.5, our RL
 1423 dataset is constructed by letting a pretrained CFR agent play against a *random* opponent in both
 1424 Leduc and Limit Texas Hold’em. We record all states but only use the CFR agent’s actions as labels.
 1425 Because the random agent frequently deviates from equilibrium play, the resulting trajectories con-
 1426 tain diverse and imperfect state distributions far from idealized CFR self-play. Thus, ToolPoker is
 1427 trained on a broad range of noisy, non-CFR game patterns rather than purely clean solver trajectories.
 1428

1429 (ii) *Evaluation already involves diverse, non-expert opponents.* In online evaluation, ToolPoker
 1430 plays against several traditional imperfect-information algorithms (NFSP, DQN, DMC) and LLM-
 1431 based agents (e.g., prompting-only, BC+RIRL). These opponents generate highly variable and often
 1432 non-equilibrium strategies. ToolPoker’s consistent superiority across these settings demonstrates
 1433 that it does not overfit to synthetic solver traces and can robustly respond to suboptimal or noisy
 1434 play.
 1435

1436 (iii) *Why ToolPoker is expected to generalize to human gameplay.* At inference time, ToolPoker
 1437 does not rely on imitation of historical actions. Instead, it queries the unified solver API to retrieve
 1438 equilibrium-oriented quantities (e.g., optimal action, equities, ranges) for the *current* state. Because
 1439 solver outputs depend only on the observed state—regardless of whether the trajectory arose from
 1440 CFR, heuristics, or human mistakes—ToolPoker can consistently anchor its reasoning to accurate
 1441 game-theoretic guidance. This design inherently promotes robustness to out-of-distribution human-
 1442 style inputs.
 1443

1444 While we have not yet evaluated ToolPoker on real human gameplay, extending our assessment to
 1445 human or crowd-sourced datasets is an exciting direction for future work.
 1446

1447 I DISCUSSION OF FUTURE WORKS

1448 Our research paves the way for further exploration of TIR in more complex strategic settings, shifting
 1449 the focus beyond solely improving models’ internal policies. Future work may explore richer tool
 1450 ecosystems, multi-agent interactions, and principled frameworks for balancing internal reasoning
 1451 with external computation, ultimately advancing the development of reliable AI systems for high-
 1452 stakes decision making.
 1453

1454 J LLM USAGE

1455 We used an OpenAI LLM (GPT-5) as a writing and formatting assistant. In particular, it helped refine
 1456 grammar and phrasing, improve clarity, and suggest edits to figure/table captions and layout (e.g.,
 1457 column alignment, caption length, placement). The LLM did not contribute to research ideation,
 1458 experimental design, implementation, data analysis, or technical content beyond surface-level edits.
 1459 All outputs were reviewed and edited by the authors, who take full responsibility for the final text
 1460 and visuals.
 1461

1458 Table 13: Realistic Examples of Qwen2.5-3B-Instruct in playing Limit Texas Hold'em. It demon-
 1459 strates three limitations of LLMs in playing poker: (i) Heuristic reasoning; (ii) Factual Misunder-
 1460 standing; (iii) Knowing-Doing Gap. **Errors** identified during reasoning are highlighted in **red**.
 1461

1462 **Prompt**

1463 You are a professional poker player playing 2-handed limit-holdem Poker. The following will be a game
 1464 scenario and you need to make the optimal decision.
 1465

1466 Here is a game summary:

1467 In Limit Hold'em, each player receives exactly one private card, Small Blind and Big Blind ante 1 and 2
 1468 chips, respectively. Everyone started with 100 chips.
 1469

The player positions involved in this game are Small Blind, Big Blind.

1470 In this hand:

1471 Your position is Big Blind, and your holding is Your card: ['Two of Clubs', 'Ten of Hearts'].
 1472

Community card: Not yet revealed

Current betting round: pre-flop

Current pot: 6 chips

1476 Your admissible actions:

1477 fold

1478 call

1479 raise

1480 Now it is your turn to make a move.

1481 To remind you, the current pot size is 6 chips, and you are in position Big Blind, and your holding is Your
 1482 card: ['Two of Clubs', 'Ten of Hearts'].

1483 Decide on an action from the admissible actions based on the strength of your hand on this board, your
 1484 position, and actions before you.

1485 Your optimal action is:

1487 **Model Output by Qwen2.5-3B-Instruct**

1488 <think> Let's analyze the situation:
 1489 1. Position and Pot Size: You are in the Big Blind position, which is a disadvantageous position as you are
 1490 forced to bet first. The pot size is 6 chips, and you have 50 chips in total, so you have a 90% stack to the pot.
 1491 2. Community Cards: The community cards are not yet revealed, so there is no information about the board
 1492 yet.
 1493 3. Your Hand: You have the 'Two of Clubs' and 'Ten of Hearts'. This is a suited connector, which is a decent
 1494 hand. However, **it is not a strong** hand by itself, and it is vulnerable to a flush draw or a straight draw.
 1495 4. Opponent's Hand: The opponent is in the Small Blind position, which is a more advantageous position as
 1496 they can see your bet and respond accordingly. They have 50 chips as well, so they have a 90% stack to the
 1497 pot.
 1498 5. Betting Rounds: This is the pre-flop round, and the only bet is the small blind. The big blind (you) is the
 1499 first to act.
 1500 6. Admissible Actions: You can fold, call, or raise. Given the above considerations, let's evaluate the options:
 1501 - Fold: Folding would be a safe play if you believe your hand is not strong enough to compete with the
 1502 opponent's potential hand. However, you have a decent hand, and the pot odds are favorable if you can get a
 1503 raise.
 1504 - Call: Calling would mean you are matching the small blind's bet. This is a neutral play, but it doesn't give
 1505 you any advantage or disadvantage.
 1506 - Raise: Raising would give you more information about your opponent's hand. If they call, you can see
 1507 their hand and decide whether to continue or fold. If they fold, you win the pot with your hand. **Considering**
 1508 **the strength of your hand and the pot odds, a raise is the optimal action.** You can raise to 4 chips, which is
 1509 a reasonable amount to get your opponent to consider folding or calling. Therefore, the optimal action is to
 1510 raise. </think>
 1511 <answer>raise</answer>

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521

Table 14: Realistic Examples of GPT-4o in playing Limit Texas Hold’em. It demonstrates three limitations of LLMs in playing poker: (i) Heuristic reasoning; (ii) Factual Misunderstanding. Errors identified during reasoning are highlighted in red.

1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Prompt

You are a professional poker player playing 2-handed limit-holdem Poker. The following will be a game scenario and you need to make the optimal decision.

Here is a game summary:

In Limit Hold’em, each player receives exactly one private card, Small Blind and Big Blind ante 1 and 2 chips, respectively. Everyone started with 100 chips.

The player positions involved in this game are Small Blind, Big Blind.

In this hand:

Your position is Small Blind, and your holding is Your card: [‘King of Spades’, ‘Ten of Clubs’].

Community card: Not yet revealed

Current betting round: pre-flop

Current pot: 3 chips

Your admissible actions:

fold

call

raise

Now it is your turn to make a move.

To remind you, the current pot size is 3 chips, and you are in position Small Blind, and your holding is Your card: [‘King of Spades’, ‘Ten of Clubs’].

Decide on an action from the admissible actions based on the strength of your hand on this board, your position, and actions before you.

Your optimal action is:

Model Output by GPT-4o

<think> In heads-up Limit Hold’em pre-flop, hand values are generally stronger than in full-ring games because the range of hands played is wider and aggression is more frequent. The hand King-Ten offsuit is a marginal hand. **It is not a premium hand, but it is playable in heads-up situations**, especially from the Small Blind position where you have the advantage of acting first post-flop.

Given that the pot is 3 chips (small blind 1 chip + big blind 2 chips), and it is pre-flop with no bets yet, one might consider calling to see a flop. However, **KT offsuit is not strong enough to profitably continue**, and defending too wide risks being exploited.

Raising here is not justified, as the hand lacks sufficient value and fold equity. **Folding avoids marginal spots and preserves chips for stronger hands.**

Therefore, the optimal GTO decision is to call and see the flop.</think> <answer>fold</answer>

1566

1567

1568

1569

1570

Table 15: Heuristic Reasoning (HR) Judge Prompt.

HR Judge Prompt Template

You are a judge evaluating the factual correctness of an LLM’s reasoning in a poker decision.

You will be given:

(1) The game context (hand, position, pot size, betting round, etc.)

(2) The LLM’s reasoning text

(3) The LLM’s final action

(4) Objective equity analysis from an external tool (hand strength, win probability, Monte Carlo equity, etc.)

Your task:

- Identify if the reasoning shows reliance on **heuristics** (e.g., “I feel strong,” “I have a face card,” “opponent probably bluffing”) rather than **strategic/game-theoretic principles** (e.g., pot odds, equity calculation, Nash equilibrium considerations).

- Score the reasoning on a 0–2 scale:

- 0 = Purely heuristic-driven (surface-level or intuitive analogies, no rigorous reasoning)

- 1 = Mixed (some heuristic reasoning, some strategic/game-theoretic reasoning)

- 2 = Principled (reasoning grounded mainly in sound game-theoretic or probabilistic principles)

Output format (JSON only):

{

“heuristic_reasoning_score”: 0 | 1 | 2,

“explanation”: “Brief explanation citing specific parts of the reasoning.”

}

1589

1590

1591

1592

Table 16: Factual Alignment (FA) Judge Prompt Template.

FA Judge Prompt

You are a judge evaluating the factual correctness of an LLM’s reasoning in a poker decision.

You will be given:

(1) The game context (hand, position, pot size, betting round, etc.)

(2) The LLM’s reasoning text

(3) The LLM’s final action

(4) Objective equity analysis from an external tool (win probability, hand range of both you and the opponent, etc.)

Your task:

- Compare the LLM’s reasoning with the objective ground truth.

- Identify whether the reasoning contains factual misunderstandings, such as:

- Incorrect classification of hand strength (e.g., calling AA “a weak hand”)

- Misstating probabilities or equity

- Incorrect statements about positions, betting order, pot size, or available actions

- Misinterpreting community cards, hole cards, or ranges

- Do not penalize the LLM for strategic differences (e.g., preferring raise vs. call), only for factual inaccuracies.

Scoring (0–2 scale):

- 0 = Major factual errors (core aspects wrong, e.g., misclassifying AA as weak, misstating betting order)

- 1 = Minor factual errors (some inaccuracies but overall interpretation mostly correct)

- 2 = Factually correct (no significant inaccuracies; reasoning aligns with objective equity and context)

Output format (JSON only):

{

“factual_correctness_score”: 0 | 1 | 2,

“explanation”: “Brief explanation citing specific parts of the reasoning.”

}

1619

1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636

Table 17: Action-reasoning Consistency Judge Prompt Template.

AC Judge Prompt	
1638	You are a judge evaluating the consistency between an LLM’s articulated reasoning and its final decision in
1639	a poker hand.
1640	You will be given:
1641	(1) The poker state description (public cards, private cards, pot size, etc.)
1642	(2) The LLM’s step-by-step reasoning text
1643	(3) The LLM’s final action (fold, call, raise, etc.)
1644	Your task:
1645	- Determine whether the LLM’s reasoning logically implies the same action as its final decision.
1646	- If the reasoning suggests one action (e.g., fold) but the final action differs (e.g., call or raise), this is a “knowing–doing inconsistency.”
1647	- If the reasoning and action align, mark it as “consistent.”
1648	Scoring (0–2 scale):
1649	- 0 = Inconsistent — The reasoning clearly points to one action, but the final decision is different.
1650	- 1 = Partially consistent — The reasoning is mixed, ambiguous, or suggests multiple options, with the final
1651	action aligning with only part of the reasoning.
1652	- 2 = Fully consistent — The reasoning unambiguously supports the final action and no contradictions are
1653	present.
1654	Output format (JSON only):
1655	{
1656	“factual_correctness_score”: 0 1 2,
1657	“explanation”: “Brief explanation of why reasoning matches, partially matches, or mismatches the final
1658	action.”
1659	}
1660	
1661	
1662	
1663	
1664	
1665	
1666	
1667	
1668	
1669	
1670	
1671	
1672	
1673	

1674

1675

1676

1677

1678

1679

Table 18: Behavior Cloning Dataset Construction Template.

1680

1681

AC Judge Prompt

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

You are an poker expert working on {game_name} explaining optimal CFR-based play using rigorous game theory. Your task is to generate reasoning traces to explain the action from CFR from the game-theoretic perspective like professional poker players.

You will be given the following information:

Game: {game_name}

Street: {state_name};

Position: {position_name};

Stack (remaining chips):

- my stack: {my_stack},

- opponent stack: {opponent_stack};

Pot (botted chips): {total_pot}, my pot: {my_pot}, opponent pot: {opponent_pot};

Blinds/Antes: {antes};

Board/Public Card: {public_card};

Action History: {action_history};

My Winning Probability: {my_equity}

Opponent's Winning Probability: {opponent_equity}

My Hand Histogram: {my_hand_hist}

Opponent's Hand Histogram: {opponent_hand_hist}

Mix Action Strategy from CFR: {action_dist}

<think>

1) Situation — Summarize current situation from my perspective, e.g., position, stack,

2) Range Estimatation - Explain the range estimation of my hand and opponent's hand based on the hand histogram, respectively. And compare them to see what range of hand do I continue with?

3) Board Fit — Explain how the board texture interacts with both ranges, and whether future cards are more favorable for me or the opponent.

4) Hand Quality — Judge my hand's strength given its equity compared to opponent's hand, and also utilize the hand histogram to estimate who holds more of the strongest possible combos.

5) Strategy Mix — We are given the action probabilities from CFR, explain the strategy that which action is more likely to be taken to achieve equilibrium.

6) Stack Sizes/ Pot Size - Analyze the chips remaining and the pot size to see how much room there is to maneuver.

7) Opponent strategy - Analyze the action history to predict what is my opponent's strategy facing my bet.

8) Final Action - Based on the above analysis, explain the final action that I should take.

</think>

Be concrete, mathematical, and educational. Reference specific probabilities and regret values. Write clear numbered steps (1–8)

Format your response as:

<think>

[Detailed step-by-step strategic analysis with specific numbers]

</think>

<answer> {expert action} </answer>

1728 Table 19: Case Study of BC-RIRL fine-tuned Qwen2.5-7B in Leduc Hold’em (Part I). **Errors** identified
 1729 during reasoning are highlighted in **red**.

Prompt	
1731	You are an poker expert working on Leduc Hold’em (6 cards: 2J, 2Q, 2K in two suits) explaining optimal
1732	CFR-based play using rigorous game theory. Your task is to generate reasoning traces to explain the action
1733	from CFR from the game-theoretic perspective like professional poker players.
1734	Leduc Hold’em is a simple two-player zero-sum imperfect-information poker game. The deck contains six
1735	cards: two Jacks (J), two Queens (Q), and two Kings (K). One private card is dealt to each player, and one
1736	card is placed aside unseen. There are two betting rounds: Pre-flop and Flop. In the Pre-flop stage, the
1737	community card is unseen. And in the Flop stage, a single community card is then revealed. In each round,
1738	the first player must bet or check. If a bet is made, the other player must call or fold or raise (up to one raise
1739	per round). If one player raises, the other player can only call the raise or fold. All bets are of fixed size. At
1740	showdown, a pair beats any high card; between high cards, K > Q > J.
1741	Here is a game summary:
1742	In unknown, each player receives exactly one private card, and small blind antes 1 chips and big blind
1743	antes 2 chips. Everyone started with 100 chips. The player positions involved in this game are Small Blind,
1744	Big Blind.
1745	In this hand:
1746	Your position is Small Blind, and your holding is Your card: Queen of Heart .
1747	Community card: King of Spade
1748	Current betting round: flop
1749	Current pot: 4 chips
1750	This is the historical action of the game:
1751	Small Blind call; Big Blind check;
1752	Your admissible actions:
1753	fold
1754	check
1755	raise
1756	Now it is your turn to make a move.
1757	To remind you, the current pot size is 4 chips, and you are in position Small Blind, and your holding is Your
1758	card: Queen of Heart.
1759	Decide on an action from the admissible actions based on the strength of your hand on this board, your
1760	position, and actions before you.
1761	Your optimal action is:

Model Output by BC-RIRL fine-tuned Qwen2.5-7B-Instruct (Part I)

1762	<think> 1) Situation & Game State:
1763	- Position: Small Blind (SB)
1764	- Current street: Flop
1765	- Pot size: 4 chips (SB 1 + BB 2 + previous actions)
1766	- Action history: SB called, BB checked
1767	- Effective stacks: 98 chips behind for both players
1768	- Your private card: Q♥
1769	- Board card: K♠
1770	2) Hand Quality and Board Interaction:
1771	- You hold Q♥ while the board shows K♠.
1772	- Your hand strength is currently just high card (Queen), with potential to improve to QQ.
1773	- Because one King is already on the board, the chance opponent holds KK is reduced.
1774	- Relative to the board, your equity is moderate but not strong.
1775	3) Strategy Mixing & CFR Output:
1776	- CFR equilibrium prescribes calling here with probability 1.0.
1777	- Calling is the unique optimal action.
1778	- Folding or raising has negative expected value.

continue in Tab. 20.

1782

1783

1784

1785 Table 20: Case study of BC-RIRL fine-tuned Qwen2.5-7B in Leduc Hold'em (Part II), which is
 1786 continued from Tab. 19. **Errors** identified during reasoning are highlighted in **red**.

1787

1788

Model Output by BC-RIRL fine-tuned Qwen2.5-7B-Instruct (Part II)

1789

4) Stack Sizes & Future Commitment:

1790

- Pot-to-stack ratio is small (4 vs 98).

1791

- A call costs very little and preserves flexibility.

1792

- Raising would overcommit without justification.

1793

5) Opponent Range Estimation:

1794

- BB checked, capping their range to many weak hands and some traps.

1795

- Against this range, equilibrium prefers a passive call.

1796

6) Information Set & Regret Minimization:

1797

- CFR regret tables show positive cumulative regret only for calling.

1798

- Folding/raising have negative regret, thus dominated.

1799

7) Conclusion:

1800

- The optimal action is to **call**.

1801

- This preserves equity and follows CFR equilibrium.

</think>

<answer>call</answer>

1804

1805

1806

1807

1808

1809

1810

1811

Table 21: TIR rollout structured prompt template.

1812

1813

TIR Rollout Prompt

1814

You are a helpful AI Assistant that provides expert poker analysis. You are given a partial observation from a player and admissible actions, you will need to provide the GTO action to win the game. You now have the ability to invoke external poker solvers to obtain the GTO action and other auxiliary quantities (e.g., equity, all players' possible hand ranges, and the action distribution from CFR) during the reasoning. The tool calling will be wrapped in `<tool></tool>`. The returned results will be wrapped in `<output> </output>` to help provide precise game-theoretic reasoning with GTO final actions.

1815

The reasoning process is wrapped in `<think> </think>` tags. The final action is wrapped in `<answer> </answer>`.

1816

Note that:

1817

- To invoke poker solvers, please write one JSON command inside `<tool> </tool>` tags. Each command should have a name and args key, with args being a dictionary.

1818

- Example: `<tool>solver(params.name1 = params.value1, ...)</tool>`

1819

- Tools expect specific JSON input formats. Do not make up tools or arguments that are not listed.

1820

- After you have used the tools, you will see the tool outputs inside `<output> </output>` tags in the same order from the system.

1821

For example, you can respond in the following format:

1822

```
<think>[Reasoning process]</think> <tool>[Poker solver execution arguments]</tool>
<output>[Output of poker solver]</output> <think>[Reasoning process.]</think>
<answer>[Final action]</answer>
```

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Structured Prompt

1857

(omit the prompt description here)

1858

Structured Output

1859

<think>

1860

1) Situation

1861

- You are on the turn in Limit Hold'em acting from the Small Blind with stacks remaining 90 each and the pot currently 20 (you and opponent have each contributed 10). The board is S3, SJ, HQ, SK (three spades: 3♠, J♠, K♠; also J–Q–K high cards).

1862

- The Big Blind checked to you on the turn.

1863

Let's call poker solver to get GTO actions, equities and hand ranges. <\think>

1864

```
<tool>solver(player_card=['SQ','C7'], public_card=['S3','SJ','HQ','SK'], my_pot=6, opponent_pot = 6, my_raise_num=1, opponent_raise_num=1 legal_actions=['raise', 'fold', 'check'])
```

1865

<think> (omit reasoning process here) </think>

1866

<answer>call</answer>

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889