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ABSTRACT

As Large Language Models (LLMs) are increasingly applied in high-stakes do-
mains, their ability to reason strategically under uncertainty becomes critical.
Poker provides a rigorous testbed, requiring not only strong actions but also prin-
cipled, game-theoretic reasoning. In this paper, we conduct a systematic study of
LLMs in multiple realistic poker tasks, evaluating both gameplay outcomes and
reasoning traces. Our analysis reveals LLMs fail to compete against traditional al-
gorithms and identifies three recurring flaws: reliance on heuristics, factual misun-
derstandings, and a “knowing–doing” gap where actions diverge from reasoning.
An initial attempt with behavior cloning and step-level reinforcement learning im-
proves reasoning style but remains insufficient for accurate game-theoretic play.
Motivated by these limitations, we propose ToolPoker, a tool-integrated reasoning
framework that combines external solvers for GTO-consistent actions with more
precise professional-style explanations. Experiments demonstrate that ToolPoker
achieves state-of-the-art gameplay while producing reasoning traces that closely
reflect game-theoretic principles.

1 INTRODUCTION

Large Language Models (LLMs) are increasingly deployed in high-stakes domains such as cyberse-
curity (Ameri et al., 2021) and strategic decision-making (Jiang et al., 2023), where success requires
not only factual recall but also reasoning under uncertainty and informed decision-making. A natural
testbed for these abilities is game-playing, which combines reasoning, planning, and opponent mod-
eling. Poker is especially suitable as a canonical incomplete-information game (Harsanyi, 1995),
requiring players to act with hidden information, estimate opponents’ ranges, and anticipate future
outcomes. Importantly, professional players succeed not only by choosing strong actions, but by
reasoning in a game-theoretic manner (Brown & Sandholm, 2019), grounding decisions in equilib-
rium principles while adapting to opponents. Thus, to play like professionals, one must not only act
optimally but also think strategically. Evaluating LLMs in poker requires going beyond win rate and
examining whether their reasoning traces reflect principled strategic thinking.

Motivated by this, we ask: How far are LLMs from professional poker players? Several recent
studies have explored LLMs in such game-theoretic games. For instance, GTBench (Duan et al.,
2024) and PokerBench (Zhuang et al., 2025) focus on gameplay outcomes and show that LLMs
struggle to compete. Suspicion-Agent (Guo et al., 2023) uses theory-of-mind prompting in Leduc
Hold’em, with GPT-4 surpassing neural baselines such as NFSP (Heinrich & Silver, 2016), but still
falls short of equilibrium-based methods like CFR+ (Zinkevich et al., 2007). GameBot (Lin et al.,
2025) examines reasoning steps but only measures correctness. While insightful, these works focus
narrowly on outcomes, offering limited understandings of why LLMs succeed or fail.

To fill this gap, we conduct a systematic study of LLMs in poker, analyzing both gameplay and
reasoning traces. Our analysis shows that LLMs consistently underperform traditional baselines,
such as NFSP (Heinrich & Silver, 2016) and CFR+ Tammelin (2014), ranging from reinforcement
learning (RL) to equilibrium-based solvers, due to three key reasoning flaws: (i) Heuristic rea-
soning: LLMs often rely on shallow heuristics rather than rigorous game-theoretic principles. (ii)
Factual misunderstanding: LLMs sometimes misjudge fundamental aspects of the game, such as
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User: I am playing Limit Texas Hold’em. I 
am holding 3 and 10. The public 
card is …, which action shall I take? Why?

LLMs: It seems that you are 
facing a weak hand ... Given this 
strong hand, I will tend to rise.

                 
                     

Game 
State

LLM 
Reasoning

Game 
State

LLM 
Reasoning

Final 
Answer

(a) User is asking LLMs for giving action

(b) Inference of existing text-based LLMs

(c) Inference of tool-integrate reasoning LLMs (ToolPoker)

CFR 
Solver

Equity 
Calculator

Range 
Analyzer

…

GTO Actions 
& Quantities Final 

Answer

LLMs: (1) Situation: …; (2) Range Estimation: …; 
(3) Opponent Analysis: …; (4) Mix Strategy: …; 
Given the above game-theoretic analysis, my 
action is fold.

                 
                     

Reward

Figure 1: Illustration of ToolPoker and its advantages over LLMs using internal policies.

hand strength, pot odds, or opponent range estimation, leading to systematically flawed reasoning
and (iii) Knowing–doing gap: even when LLMs articulate sound reasoning, their final actions often
deviate from it, exposing a gap between knowledge expression and decision execution.

To investigate whether these flaws can be mitigated internally, we attempt a two-stage framework:
(i) behavior cloning (BC) on expert reasoning traces to instill game-theoretic principles, and (ii) RL
fine-tuning with step-level rewards. While this improves fluency and expert-like reasoning style, it
remains insufficient for precise derivations or competitive gameplay, underscoring LLMs’ funda-
mental limitations in game-theoretic tasks.

Motivated by these limitations, we pursue an alternative direction: leveraging LLMs’ strength in
tool use. However, achieving this integration in poker is non-trivial and challenging: (i) Multi-tool
dependency. Accurate game-theoretic reasoning often requires multiple solvers (e.g., action and
equity solvers), and naively teaching LLMs to invoke these tools across multi-turn poker scenarios
leads to error propagation and unstable training. (ii) High data cost. Collecting large-scale reasoning
traces augmented with solver calls requires expensive LLM annotation and careful domain-specific
tool invocation, making it prohibitively costly to build.

To address these challenges, we introduce ToolPoker, the first tool-integrated reasoning (TIR)
framework for imperfect-information games (Fig. 1), which teaches LLMs to call external poker
solvers to provide game-theoretic optimal (GTO) actions and supporting quantities such as equity
and hand ranges for accurate expert-level explanations. (i) We design a unified tool interface that
consolidates solver functionalities into a single API, returning all quantities in one query to sim-
plify tool use and stabilize training. (ii) We construct a small-scale expert-level reasoning dataset
(Sec. 4.1) inspired by the thought process of professional players, and programmatically augment
it with standardized tool invocation templates and execution outputs, ensuring high-quality and re-
ducing annotation cost. This also provides a robust foundation for the following RL training in TIR.
By combining GTO-guaranteed computation with human-like reasoning, ToolPoker overcomes fun-
damental weaknesses of policy-only training and moves LLMs closer to professional-level play.
Experiments across multiple poker tasks demonstrate that ToolPoker achieves both state-of-the-art
gameplay performance and produces reasoning traces that align much more closely with game-
theoretic principles.

Our main contributions are summarized as follows: (i) We conduct the first systematic study of
LLMs in poker, revealing fundamental reasoning flaws such as heuristic bias, factual misunder-
standing, and knowing–doing gaps. (ii) We make an initial attempt to improve LLMs’ internal poli-
cies through a two-stage RL framework. While effective at improving reasoning style, this approach
remains insufficient for GTO reasoning and accurate game-theoretic derivation. (iii) We introduce
ToolPoker, a tool-integrated reasoning framework that leverages external solvers to guarantee GTO-
consistent actions while enabling LLMs to generate precise, professional-style explanations. (iv)
Extensive experiments show that ToolPoker achieves state-of-the-art gameplay performance and
produces reasoning traces that align closely with professional game-theoretic principles.

2 BACKGROUNDS AND PRELIMINARIES

Two-Player Imperfect Information Poker Games. In this paper, we explore using LLMs to play
poker with imperfect information. Following prior work (Guo et al., 2023; Huang et al., 2024),
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we focus on three widely studied two-player variants of increasing complexity: Kuhn Poker, Leduc
Hold’em, and Limit Texas Hold’em, where their backgrounds and rules are in Appendix B.

Game-theoretic Reasoning. In poker, professional players go beyond heuristics or pattern recog-
nition by systematically evaluating equity, ranges, and pot odds within a game-theoretic framework,
guiding them toward actions that converge to Nash equilibrium. An example of such professional-
style reasoning is in Appendix B.6, with further details on Nash equilibrium in Appendix B.5.

Problem Statement. We model a two-player poker game as a partially observable Markov de-
cision process (POMDP) (S,A, T ,R,Ω, O), where S = {st : 1 ≤ t ≤ T} is the set of true
states, T is the maximum turns, A is the action space, T is the transition function, R is the re-
ward function, Ω denotes the observation space, and O represents the observation function. At
time t, the state is st = {stpub, stpri(i), s

t
pri(¬i)}, where stpub denotes public information (e.g.,

community cards, betting), and stpri(i) and stpri(¬i) are the private cards of player i and the op-
ponent, respectively. Each player i partially observes oti = (stpub, s

t
pri(i)) ∈ Ω and conditions on

its history ht
i = (o1i , a

1
i , . . . , o

t
i) to choose an action ati ∼ µi

θ(· | f(ht
i)), where f is a prompt

template that converts game states into natural language task descriptions. A full trajectory is
τ = (s1, a11, a

1
2, r

1
1, r

1
2, . . . , s

T , aT1 , a
T
2 , r

T
1 , r

T
2 ). The objective for player i is to learn a policy µi

θ

that maximizes the cumulative reward
∑T

t=1 r
t
i in the game.

3 ARE LLMS GOOD AT POKER? A PRELIMINARY ANALYSIS

In this section, to understand the capabilities of LLMs in playing poker games, we conduct a prelim-
inary analysis to provide initial evidence regarding the strengths and weaknesses of LLMs compared
to traditional algorithms for imperfect-information games.

3.1 EXPERIMENTAL SETUP

Tasks. To quantitatively evaluate the performance of LLMs in poker, we consider two widely stud-
ied and popular poker games, Leduc Hold’em and Limit Texas Hold’em (Brown et al., 2019; Stein-
berger, 2019; Guo et al., 2023), both implemented in the RLCard environment (Zha et al., 2021a).

Comparison Methods. Following (Guo et al., 2023), we consider four traditional baselines for
imperfect information games: NFSP (Heinrich & Silver, 2016), DQN (Mnih et al., 2015), DMC (Zha
et al., 2021b), and CFR+ (Tammelin, 2014). NFSP and DMC are self-play RL methods tailored to
imperfect information games, while CFR+ provides a game-theoretic guarantee of convergence to
the Nash equilibrium. For the more complex Limit Texas Hold’em environment, where CFR+ is
computationally prohibitive, we instead adopt DeepCFR (Brown et al., 2019), a scalable neural
extension of CFR+. These baselines cover diverse strategic paradigms, allowing us to assess LLMs
against a broad range of opponent types. Details are provided in Appendix C.1.

Evaluation Protocol. To ensure the robustness of our evaluation metrics, in our experiment, we run
a series of 50 games with fixed random seeds and fixed player positions We then rerun the 50 games
with the same fixed random seeds but switched positions for the compared methods. To evaluate
the gameplay performance in poker games, we choose the earned chips as the evaluation metric.
Specifically, for each individual poker game, each player starts with 100 chips, the small blind is 1
chip, and the big blind is 2 chips.

3.2 COMPARISON WITH TRADITIONAL METHOD

Setting. We evaluate a suite of representative LLMs spanning a wide range of parameter scales,
including Qwen2.5-3B, Qwen2.5-7B, Qwen2.5-72B (Qwen, 2024), Qwen3-8B (Yang et al., 2025),
Llama3-8B (Grattafiori et al., 2024), GPT-4.1-mini (OpenAI, 2025), GPT-4o Hurst et al. (2024), and
o4-mini (OpenAI, 2024), where the instruction-following versions of these open-source models are
adopted. These models are evaluated against the aforementioned traditional baselines.

Results Analysis. Table 1 reports the average chip gain of different LLMs against traditional meth-
ods in both Leduc Hold’em and Limit Texas Hold’em. From the table, we observe that (i) Most
vanilla LLMs, particularly open-source models with smaller scales, underperform relative to tra-
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Table 1: Comparison of various vanilla LLMs against different traditional algorithms trained in
Leduc Hold’em and Limit Texas Hold’em environments. Each method plays 100 games with vary-
ing random seeds and alternated player positions. Results report net chip gains. In Leduc Hold’em,
values range from 1 to 14 chips; in Limit Texas Hold’em, they range from 1 to 99 chips. Bold and
underline indicate the best and worst performance in each column, respectively. The “Avg.” columns
summarize LLMs’ mean performance across the four traditional baselines.

Leduc Hold’em Limit Texas Hold’em

NFSP DQN DMC CFR+ Avg. NFSP DQN DMC DeepCFR Avg.

Qwen2.5-3B -143.5 -161 -124 -114 -135.5 -131.5 -232.5 -136 -323.5 -205.8
Qwen2.5-7B -57.5 -93 -73 -68.5 -73.0 -53.5 -188 -144 -101.0 -121.6

Qwen2.5-72B +24.5 -18 -18 -25 -9.1 +6 -53.5 -73.5 -57.5 -44.6
Qwen3-8B -72 -75 -75 -54 -69.0 -69 -73.5 -69 -73.5 -71.2

LLama3-8B -77.5 -108.5 -90 -71 -86.7 +8 -177.5 -58 -206.5 -108.5
GPT-4.1-mini +41.5 +60.5 -22 -24 +14.0 +43 +0 -24 -205.0 -46.7

GPT-4o +34 +53 -43 -8 +9.0 -40.5 -45.5 -32 -167.0 -71.2
o4-mini +11 +20 -33.5 -8 -2.6 -105 +111 -58 -117.0 -42.2

ditional methods. This highlights the limited effectiveness of state-of-the-art LLMs in poker. (ii)
CFR+ consistently outperforms all LLMs, including strong closed-source models such as GPT-4o
and o4-mini. This is expected, as CFR+ explicitly targets Nash equilibrium strategies, underscor-
ing the importance of game-theoretic reasoning in imperfect-information games. (iii) Against non-
equilibrium baselines (i.e., NFSP, DQN, DMC), some large-scale and closed-source LLMs demon-
strate competitive or superior performance. For instance, GPT-4o achieves +41.5, +60.5, and −22
chip outcomes against NFSP, DQN, and DMC, respectively. In contrast, small open-source LLMs
(e.g., Qwen2.5-3B) exhibit severe losses across all baselines (e.g., −143.5, −161, and −124 chips).
These results suggest that while LLMs cannot approximate Nash equilibrium strategies, sufficiently
large models can exploit non-equilibrium opponents.

3.3 IN-DEPTH ANALYSIS: DECOMPOSING REASONING FLAWS OF LLMS

To understand why LLMs fail to compete with traditional methods in poker, we conduct an in-
depth analysis of their reasoning processes. Specifically, we first present several case studies that
highlight three key flaws in LLM reasoning, followed by a quantitative analysis to further validate
and interpret these observations.

Case Study of LLMs’ Reasoning Flaw. To probe LLMs’ decision-making, we examine their rea-
soning traces in specific scenarios against baseline opponents. Representative cases from Qwen2.5-
3B and GPT-4o are shown in Table 13 and 14 in Appendix C.2. From these examples, we identify
three recurrent flaws: (i) Heuristic Reasoning. LLMs frequently rely on heuristic-driven reasoning,
making decisions based on surface-level patterns or intuitive analogies rather than on rigorous game-
theoretic principles. In contrast, the Nash-equilibrium algorithm CFR+ consistently achieves the
strongest performance, underscoring the value of game-theoretic reasoning in imperfect-information
games like poker. The absence of such equilibrium-oriented reasoning substantially constrains the
gameplay performance of LLMs. These two findings indicate that while LLMs are capable of articu-
lating plausible strategic reasoning, their actual decision-making remains constrained by executional
inconsistencies and heuristic biases. These limitations ultimately hinder their effectiveness in com-
plex poker games that require advanced strategic reasoning capabilities. (ii) Factual Misunderstand-
ing. LLMs often ground their reasoning in intuitive analogies, making them prone to misjudging
fundamental aspects of the game, such as hand strength or opponent range estimation. These factual
inaccuracies can cascade into flawed reasoning chains and ultimately suboptimal actions. For ex-
ample, as shown in Tab. 14, GPT-4o incorrectly judged (♠K,♣10) as weak and preferred folding.
However, an equity calculator shows this hand has about 60% equity, indicating it is relatively strong.
(iii) Knowing–Doing Gap. LLMs often exhibit a mismatch between articulated reasoning and final
actions. For instance, in Tab. 13, Qwen2.5-3B correctly reasons that (♣3 ♡10) is not a strong hand
and fold is optimal, while it yet proceeds to raise. Such inconsistencies reveal a breakdown between
reasoning and execution. Additional case studies are provided in Appendix C.2.

Quantitative Analysis of LLMs’ Reasoning Flaws. To validate the reasoning flaws observed in
case studies, we adopt the LLM-as-a-Judge framework (Dubois et al., 2023). We design three met-
rics: heuristic reasoning (HR), factual alignment (FA), and action–reasoning consistency (AC), and
score each reasoning trace on a 0–2 scale using GPT-4.1-mini as the judge. Metric definitions, judge
prompts, and human–LLM agreement are in Appendix C.3 and C.5. For each model, we sample 20
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traces and evaluate Qwen2.5-3B/7B/72B, GPT-4.1-mini, and o4-mini. To ensure reliability of LLM-
based judging, we manually curate 20 professional-style reasoning traces and score them by LLMs.
We observe high agreement with human judgement and include it as a reference (see Appendix C.5).

Table 2: LLM-as-a-Judge score (0-2) evaluating rea-
soning traces of various LLMs in Leduc Hold’em and
Limit Texas Hold’em. Bold and underlined numbers
indicate the best and worst performance, respectively.

Leduc Hold’em Limit Texas Hold’em

HR FA AC Avg. HR FA AC Avg.

Professional 2 2 2 2 2 2 2 2

Qwen2.5-3B 0.53 0.18 1.53 0.74 0.55 0.30 1.60 0.81
Qwen2.5-7B 0.95 0.86 1.68 1.16 1.00 0.87 1.70 1.19
Qwen2.5-72B 1.03 1.23 1.78 1.34 1.03 1.52 1.85 1.46
GPT-4.1-mini 0.98 1.73 1.87 1.52 0.95 1.61 1.87 1.47
o4-mini 1.80 1.56 1.85 1.73 1.57 1.65 1.88 1.70

We report results in Tab. 2. Three key
findings are observed: (i) Reasoning flaws
persist across all models. Qwen2.5-3B
scores only 0.53 HR, 0.18 FA, and 1.53
AC, while o4-mini, the strongest model,
reaches 1.80/1.56/1.85, still below perfect
consistency. This shows systemic heuris-
tic, factual, and knowing–doing flaws in
LLMs. (ii) Scaling improves but does not
eliminate flaws. Larger models (Qwen2.5-
72B, o4-mini) improve all metrics, but sig-
nificant FA and AC gaps remain, showing
scale alone cannot achieve professional-
level reasoning. (iii) Action–reasoning
consistency remains imperfect. AC stabilizes around 1.53–1.87, below the professional baseline
of 2.0, with o4-mini still exhibiting knowing–doing mismatches. Full details are in Appendix C.4.

Overall, these findings quantitatively reinforce our case studies: despite improvements in scale and
instruction tuning, current LLMs remain far from professional-level poker reasoning. They con-
tinue to exhibit heuristic biases, factual misunderstandings, and executional inconsistencies that
fundamentally limit their game-theoretic reasoning capabilities.

4 CAN WE IMPROVE LLMS IN POKER? FAILURES AND INSIGHTS

Building on the preliminary analysis of LLM limitations in poker, we next explore how to improve
their ability to both act and reason like professional players. A natural starting point is supervised
fine-tuning (SFT) on expert gameplay. However, while obtaining expert actions is straightforward
using established solvers such as CFR+, constructing large-scale datasets with high-quality reason-
ing traces is extremely costly, making pure SFT impractical at scale. For instance, Wang et al.
(2025) report that mastering even simplified poker games like Leduc Hold’em requires at least 400k
action-only instances. Adding reasoning traces would multiply both time and financial costs, ren-
dering such datasets infeasible to construct. To address this, inspired by recent progress in RL for
enhancing LLM reasoning (Guo et al., 2025) and by traditional RL for poker (Heinrich & Silver,
2016), we make an initial attempt to propose a two-stage framework, BC-RIRL, that combines be-
havior cloning (BC) with regret-inspired policy optimization (RIRL). In the first stage, BC aims to
provide a small but valuable foundation of expert play and reasoning. In the second stage, RIRL
refines these policies toward GTO play under Nash–equilibrium–based supervision.

4.1 BEHAVIOR CLONING

We first leverage BC to expose LLMs to professional-style reasoning. Following recent ad-
vances in reasoning-augmented datasets (Muennighoff et al., 2025) and inspired by professional
players’s thought process (Appendix B.6), we curate a dataset of professional-level trajectories
Db = {(ht, at, rt)}, where ht is the full interaction history up to time t and at is the corresponding
expert response. Expert actions at are obtained by querying the state-of-the-art CFR+ solver (Tam-
melin, 2014) with ht, ensuring alignment with Nash-equilibrium play. Reasoning traces rt are
generated using an LLM guided by domain-specific prompt templates covering key concepts such
as hand equity, pot odds, and opponent ranges, to mimic the explanatory style of professional play-
ers. The construction prompts and dataset examples are in Appendix D.3. To ensure dataset quality,
we implement an automated pipeline that (i) checks consistency between the annotated actions and
CFR+ outputs, and (ii) filters out low-quality samples using our HR/FA/AC metrics. After filtering,
we obtain a compact dataset of approximately 5k reasoning-augmented samples, which is then used
to fine-tune the LLM policy πθ via supervised fine-tuning (SFT) to imitate expert responses:

LBC = −E(ht,at)∼Db
[log πθ(a

t|ht)]. (1)
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This imitation phase grounds the LLM in domain knowledge and equips it with basic game-theoretic
reasoning capability. As shown in Sec. 4.3, BC primarily serves as a warm start, providing a crucial
foundation for the subsequent RL stage.

4.2 REGRET-INSPIRED RL FINE-TUNING

As an initial attempt to refine policies beyond imitation, we attempt a regret-inspired reinforcement
learning (RIRL) framework. To overcome the sparse and noisy outcome-based rewards in multi-turn
poker games such as Leduc Hold’em and Texas Hold’em, we experiment with a step-level regret-
guided reward that leverages signals from a pre-trained CFR solver to guild LLMs minimize cumu-
lative regret and convergence to the Nash equilibrium. Full details of RIRL are in Appendix D.1.

Regret-guided Reward Design. Motivated by CFR’s success in poker playing by approaching
Nash equilibrium from Sec. 3.2, we optimize LLMs via regret minimization. Our key idea is to
compute cumulative regrets from a pre-trained CFR solver and normalize them into fine-grained
reward signals that capture each action’s relative contribution. For a policy πθ as player i, the
reward of action ati is defined as:

R(at
i) =

Rt(a
t
i)− mean({rt(aj)}|A|

j=1)

Fnorm({rt(aj)}|A|
j=1)

, (2)

where Fnorm denotes a normalization factor, chosen as the standard deviation in our implementa-
tion. rt(a

t
i) is the cumulative regret of action ati, indicating how much better or worse it performs

compared to the current mixture strategy across time.

Fine-tuning Objective. Based on this signal, we fine-tune LLM policy via PPO (Schulman et al.,
2017) with the following clipped RL objective:

LPPO(θ) = −Ex∼Ds,y∼πold(·|x)[
min

(
πθ(y|x)
πold(y|x)

A, clip
(

πθ(y|x)
πold(y|x)

, 1− ϵ, 1 + ϵ

))
− βDKL(πθ(·|c)||πref (y|x))

]
,

(3)

where πθ and πold denote the current and previous policy models, respectively. ϵ is the clipping
threshold. πref is the reference policy that regularizes πθ update via a KL-divergence penalty, mea-
sured and weighted by DKL and β, respectively. Generalized Advantage Estimation (GAE) (Schul-
man et al., 2015) is used for advantage estimate A. x denotes the input samples drawn from D,
which is composed of trajectories generated by the current policy πθ. y is the generated outputs via
policy LLMs πθ(·|x). The trajectory collection procedure is introduced in Appendix D.4.

4.3 EXPERIMENT ANALYSIS

Experimental Setup. Following the settings in Sec. 3.1, we implement BC-RIRL by fine-tuning
LLMs with both BC and RIRL, and compare against traditional algorithms as well as LLM-based
approaches. For traditional baselines, we adopt NFSP, DQN, DMC, and CFR+, consistent with
Sec. 3.1. For LLM-based baselines, in addition to direct prompting without fine-tuning, we con-
sider two variants: (i) BC-SPRL, which fine-tunes LLMs through BC and self-play RL with sparse
outcome-based rewards, and (ii) RIRL, which fine-tunes LLMs with RIRL alone, without the BC
stage. Further details of SPRL are in Appendix E. Other settings follow these in Sec. 3.1, including
the evaluation metrics. The implementation details are in Appendix D.5.

Comparison Results. We fine-tune Qwen2.5-7B with BC-RIRL and compare against traditional
algorithms and vanilla LLMs. The gameplay and reasoning results are reported in Tab. 3 and Tab. 4.

Gameplay. (i) All RL-based fine-tuning variants improve performance in Kuhn Poker, showing that
both outcome- and regret-based feedback provide useful signals in simple environments. (ii) BC-
RIRL outperforms direct prompting and BC-SPRL (e.g., +17.0 chips vs. GPT-4.1-mini) but still
trails CFR+ (−34.0 chips) In Leduc Hold’em, indicating dense regret feedback is more effective
than sparse outcome rewards in complex poker games, yet insufficient for equilibrium-level play.
(iii) Pure RIRL without the BC stage does not yield improvements in Leduc Hold’em (−64.5 chips
vs. GPT-4.1-mini), highlighting BC as a necessary foundation.

Reasoning. (i) RIRL consistently improves HR and AC (e.g., 1.93 HR and 1.90 AC in Leduc
Hold’em vs. 1.80/1.85 for o4-mini), reducing heuristic flaws and the knowing–doing gap. (ii) RIRL
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Table 3: Results of comparison fine-tuning methods against various traditional-based and vanilla
LLMs in Kuhn and Leduc Hold’em environment. Other settings follow these in Tab. 1. Bold and
underlined numbers indicate the best and worst performance, respectively.

Traditional Methods Vanilla LLMs

Method NFSP DQN DMC CFR+ Qwen2.5-3B Qwen2.5-7B GPT-4.1-mini o4-mini Avg.

Kuhn
Qwen2.5-7B -22.0 -53.0 -33.0 -36.0 +26 - -41 -43 -28.8
Qwen2.5-7BRIRL -14.0 +3.0 +10.0 -5.0 +43.0 +8.0 -1.0 -11.0 +4.1
Qwen2.5-7BBC-SPRL +6.0 -6.0 +13.0 -14.0 +32.0 +23.0 +22.0 +10.0 +10.7
Qwen2.5-7BBC-RIRL +4.0 +8.0 +11.0 -2.0 +57.0 +27.0 +21.0 +11.0 +17.1

Leduc Hold’em
Qwen2.5-7B -57.5 -93.0 -73.0 -68.5 +48.5 - -59.5 -32.5 -47.9
Qwen2.5-7BRIRL -42.5 -80 -59.5 -55.0 +52.0 +12.0 +2.5 -18.5 -23.6
Qwen2.5-7BBC-SPRL -93.0 -154.5 -95.5 -103.5 +2.0 -18.0 -64.5 -54.5 -72.6
Qwen2.5-7BBC-RIRL -37.0 -64.5 -43.5 -34.0 +54.0 +28.5 +17.0 +1.0 -9.8

Table 4: LLM-as-a-Judge score (0-2) evaluating reasoning traces of various LLMs in two realistic
poker tasks. Bold and underlined numbers indicate the best and worst performance, respectively.

Leduc Hold’em Limit Texas Hold’em

HR FA AC Avg. HR FA AC Avg.

Qwen2.5-7B 0.95 0.86 1.68 1.16 1.00 0.87 1.70 1.19
GPT-4.1-mini 0.98 1.73 1.87 1.52 0.95 1.61 1.87 1.47
o4-mini 1.80 1.56 1.85 1.73 1.57 1.65 1.88 1.70
Qwen2.5-7BRIRL 0.94 0.89 1.64 1.15 0.98 0.93 1.71 1.20
Qwen2.5-7BBC-SPRL 1.89 0.88 1.66 1.47 1.87 0.86 1.64 1.45
Qwen2.5-7BBC-RIRL 1.93 1.06 1.86 1.61 1.88 1.12 1.87 1.59

gains only marginal improvement in FA (1.12, 0.87 and 1.65 for RIRL, Qwen2.5-7B and o4-mini),
showing that factual misunderstandings remain the main limitation. Together with the case studies,
these results indicate that while BC-RIRL improves strategic reasoning and action–reasoning align-
ment, factual misunderstandings remain a notable challenge. Full analysis are in Appendix D.2.

Takeaway. Our experiments validate that current LLMs are inherently weak at strategic reasoning
in game-theoretic tasks. RL fine-tuning with step-level or outcome-based rewards yields modest
gameplay gains but still lags behind traditional methods like CFR. Importantly, while our two-stage
approach helps LLMs imitate professional reasoning styles, they continue to struggle with precise
derivation such as equity and hand ranges. This reveals a fundamental limitation: LLMs alone
cannot yet achieve both GTO actions and precise reasoning. To bridge this gap, we next explore
augmenting LLMs with tool use, leveraging their natural strength in tool invocation to support GTO-
consistent actions and precise game-theoretic reasoning.

5 TOOLPOKER: GAME-THEORETIC REASONING WITH AGENTIC TOOL USE

Building on our analysis in Sec. 4, which highlights the limitations of LLMs in producing GTO
actions and precise game-theoretic reasoning, we propose ToolPoker, a tool-integrated reasoning
(TIR) framework to leverage LLMs’ strength in tool use to empower LLMs to leverage external
poker solvers to refine their actions and reasoning qualities, which is shown in Fig. 1. To make this
tool usage stable and effective, we introduce a unified tool interface that consolidates multiple poker
solvers (e.g., CFR and equity calculators) into a single API to simplify this into a single-turn tool
use. On the training side, we adopt a two-stage strategy: first, behavior cloning on a code-augmented
dataset to teach the model when and how to call external tools; and second, reinforcement learning
with a composite reward to further optimize solver integration and reasoning quality.

5.1 TOOL-INTEGRATED GAME-THEORETIC REASONING IN POKER

Rollout Process. To enable GTO-consistent TIR, we design a structured prompt template in
Tab. 21 to guide LLM to leverage external poker solvers for game-theoretic reasoning. Con-
cretely, given a policy LLM πθ as player i at time t, πθ generates a reasoning trace enclosed
in <think></think> tags. To obtain GTO actions and other quantities, πθ issues a query in
<tool></tool> tags, which calls the unified solver interface and returns results wrapped in
<output></output> tags. These outputs are then incorporated into the reasoning trace before
πθ produces the final action ati within <answer></answer> tags.

Unified Tool Inference. Obtaining GTO actions and supporting quantities (e.g., equity, pot odds,
and range distributions) often requires multiple tool calls, such as a CFR solver and an equity cal-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Comparison of various LLM-based methods against different traditional algorithms trained
in Leduc Hold’em and Limit Texas Hold’em environments. Other settings follow these in Tab. 1.
Bold and underline indicate the best and worst performance in each column, respectively.

Leduc Hold’em Limit Texas Hold’em

NFSP DQN DMC CFR+ Avg. NFSP DQN DMC DeepCFR Avg.

Qwen2.5-7B -57.5 -93 -73 -68.5 -73.0 -53.5 -188 -144 -101.0 -121.6
Qwen2.5-72B +24.5 -18 -18 -25 -9.1 +6 -53.5 -73.5 -57.5 -44.6

o4-mini +11 +20 -33.5 -8 -2.6 -105 +111 -58 -117.0 -42.2
Qwen2.5-7BBC-RIRL -37.0 -64.5 -43.5 -34.0 -40.5 -77.5 -82.5 -80.5 -70.2 -77.6
Qwen2.5-7BToolPoker +11.5 +18.0 +1.0 -3.0 +6.8 +60.5 +63.0 61.5 -5.0 +45.0
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Figure 2: Results for ToolPoker: (a) and (b) present reasoning analysis in Leduc Hold’em and Limit
Texas Hold’em; (c) and (d) show ablation studies on gameplay and reasoning in Leduc Hold’em.

culator. To simplify and stabilize training, we unify these functionalities into a single standardized
interface that provides both the solver’s actions and auxiliary statistics for game-theoretic reasoning.

5.2 TRAINING ALGORITHM

BC for TIR. To construct high-quality TIR data without incurring prohibitive annotation cost, we
build an automated pipeline that programmatically augments the reasoning dataset from Sec. 4.1
with standardized tool invocation templates (e.g., <tool></tool>) and execution outputs (e.g.,
<output></output>). This resulting dataset Dc is then used to train ToolPoker via SFT, provid-
ing a foundation for LLMs to know how to invoke tools for game-theoretic reasoning. The realistic
example and the details of the automatic pipeline are in Tab. 22 in Appendix G.2.

RL Fine-tuning. We train ToolPoker with PPO (Schulman et al., 2017), where the objective func-
tion is defined in Eq. (8). To better support TIR, we follow ReTool (Feng et al., 2025a) and integrate
external poker solvers into the LLM policy πθ, enabling multi-turn real-time tool use that provides
GTO-consistent actions and supporting quantities from external tools. To guide the training, we
design a composite reward function. Formally, given player i at time step t, the reward is defined as

R(ati, â
t
i, ρ

t
i) = Ranswer(a

t
i, â

t
i) + αf ·Rformat(ρ

t
i) + αt ·Rtool(ρ

t
i), (4)

where ati is the ground-truth action from the CFR solver, âit is the model-predicted action, and ρti
is the generated reasoning trace. Here, Ranswer, Rformat, and Rtool correspond to the answer reward,
format reward, and tool-execution reward, respectively, ensuring that ToolPoker not only outputs
GTO-consistent actions but also generates structured reasoning traces with effective tool usage. αf

and αt are the weights to balance the impact of format and tool execution rewards. More details of
these reward functions are in Appendix G.3. The fine-tuning algorithm is in Alg. 1 of Appendix G.4.

5.3 EXPERIMENTAL RESULTS

Evaluation Setup. We conduct evaluations on two realistic and complex poker tasks, Leduc
Hold’em and Limit Texas Hold’em. We compare ToolPoker with the following baselines: (i) Tra-
ditional algorithms: NFSP, DQN, DMC, and CFR; (ii) Vanilla LLMs: Qwen2.5-7B, Qwen2.5-72B,
and o4-mini; (iii) Fine-tuning-based baseline: BC-RIRL. Other settings follow these in Sec. 4.3.
More Implementation details of ToolPoker are in Appendix G.5.

Gameplay Performance. We first explore the gameplay performance of ToolPoker. Qwen2.5-7B
is the base model for fine-tuning. We compare ToolPoker with BC-RIRL and three vanilla LLMs,
Qwen2.5-7B, Qwen2.5-72B and o4-mini, where the comparison results are reported in Tab. 5. Two
key findings emerge: (i) ToolPoker achieve state-of-the-art gameplay perfomrance against tradi-
tional algorithms. For instance, ToolPoker gains +60.5, +63.0 and +61.5 chips against NFSP, DQN
and DMC in Limit Texas Hold’em, while BC-RIRL gains −77.5, −82.5 and −80.5 chips against
them. This indicates the effectiveness of ToolPoker in calling CFR solver to obtain GTO-consistent
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actions. (ii) ToolPoker slightly underperforms CFR but is still comparable in both poker environ-
ments. Specifically, ToolPoker gain −3.0 and −5.0 chips against CFR+ and DeepCFR in both Leduc
Hold’em and Limit Texas Hold’em, which are minor. We analyze the reason is that while ToolPoker
provides a high success rate in executing the CFR solver to provide GTO-consistent action, it is
inevitable that occasional errors occur in tool calling.

Reasoning Quality. To assess whether ToolPoker also improves reasoning, we employ the LLM-
as-a-Judge framework following the settings in Sec. 4.3. Fig. 2 (a) and (b) summarize the results
across three metrics. Two observations emerge: (i) ToolPoker achieves near-perfect across all three
scores, outperforming all baselines and approaching professional levels. This indicates that, beyond
delivering state-of-the-art gameplay performance, ToolPoker also enables LLMs to generate precise
and logically consistent reasoning traces grounded in game-theoretic principles. (ii) Compared with
BC-RIRL, ToolPoker yields substantially higher FA scores. This demonstrates the importance of
leveraging external solvers: while BC-RIRL can articulate plausible reasoning, it often lacks ac-
curate auxiliary quantities (e.g., equities, ranges). In contrast, ToolPoker grounds its reasoning in
solver-derived calculations, ensuring rigor and internal consistency.

Ablation Studies. To understand the impact of each component in ToolPoker, we implement two ab-
lated variants: (i) ToolPoker/BC: removes BC and learns tool use only via RL; (ii) ToolPoker/RL:
discards RL fine-tuning and relies solely on BC. We measure both gameplay performance (against
NFSP and DQN) and reasoning quality in Leduc Hold’em, with results shown in Fig. 2 (c) and (d).
The full ToolPoker achieves the strongest overall performance, while the variants reveal comple-
mentary weaknesses. Specifically: (i) ToolPoker/BC suffers from lower HR and weaker gameplay,
suggesting it can query the solver but fails to internalize game-theoretic reasoning patterns; (ii)
ToolPoker/RL attains higher HR but performs poorly in gameplay and FA/AC, indicating it imitates
reasoning superficially without aligning with GTO-consistent actions. These results highlight that
BC provides the foundation for TIR, while RL fine-tuning aligns solver execution with GTO actions
and precise derivation. Together, they enable ToolPoker to learn not only how to call the solver, but
also how to integrate outputs into coherent, professional-style reasoning traces. More discussions
are in Appendix G.6.

6 RELATED WORK

Strategic Reasoning in LLMs. Recent studies have examined LLMs in game-theoretic settings,
including poker (Duan et al., 2024; Zhai et al., 2024; Zhuang et al., 2025; Wang et al., 2025). Unlike
prior work that primarily evaluates gameplay outcomes, we also analyze the reasoning process,
identifying why LLMs fail to achieve GTO play. Moreover, we introduce the first TIR framework
that leverages poker solvers for professional-level gameplay. Further discussion is in Appendix A.1.

Tool Learning on LLMs. TIR equips LLMs with external tools for domains such as math and web
search (Gao et al., 2023; Jin et al., 2025), which are typically fully observed and single-agent. In
contrast, ToolPoker extends TIR to imperfect-information games, integrating poker solvers to ensure
GTO actions and rigorous reasoning. Full details on RL and TIR are in Appendix A.2 and A.3.

7 CONCLUSIONS AND FUTURE WORKS

In this paper, we revisit strategic reasoning in LLMs through poker with imperfect information. Our
analysis shows that current LLMs fall short of professional-level play, exhibiting heuristic biases,
factual misunderstandings, and a knowing–doing gap between their reasoning and actions. An ini-
tial attempt with BC and RIRL partially reduces heuristic flaws but is still not enough for precise
game-theoretic derivations or competitive gameplay. To address this, we introduce ToolPoker, a
TIR framework that leverages LLMs’ strength in tool use to incorporate external poker solvers.
ToolPoker enables models not only to call solvers for GTO actions but also to ground their rigor-
ous and accurate game-theoretic reasoning in solver outputs. Experiments across multiple poker
tasks show that ToolPoker achieves state-of-the-art gameplay performance and produces reasoning
traces that align closely with professional game-theoretic principles. Our research paves the way
for further exploration of TIR in more complex strategic settings, shifting the focus beyond solely
improving models’ internal policies. Further discussion of future works is provided in Appendix I.
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8 ETHICS STATEMENT

This paper studies LLMs in the context of poker as a rigorous benchmark for strategic reasoning
under uncertainty. While poker involves gambling in practice, our experiments are conducted en-
tirely in simulated environments without any financial transactions or human participants. Thus, this
research does not pose risks related to gambling addiction or monetary harm.

Our contributions focus on methodology and evaluation. We study the reasoning capabilities of
LLMs, propose new training frameworks, and benchmark them against both traditional algorithms
and LLM-based methods. These findings aim to deepen understanding of LLM reasoning in
imperfect-information games, with potential implications for broader domains such as cybersecu-
rity and negotiation. We acknowledge that advanced poker agents could, if misused, be deployed in
real-money contexts. To mitigate this risk, we release code and datasets solely for research purposes,
emphasizing their use as benchmarks for safe and reproducible evaluation.

Finally, we ensured that no personally identifiable or sensitive human data were used in this work.
All datasets are synthetically generated using poker solvers or LLMs. We believe the potential
benefits of this paper, including advancing understanding of the limitations of LLMs’ reasoning, im-
proving the design of tool-augmented AI, and supporting safer deployment in high-stakes domains,
clearly outweigh the minimal risks.

9 REPRODUCIBILITY STATEMENT

We have made every effort to ensure reproducibility. The details of our proposed methods, including
model architectures, training objectives, and hyperparameters, are provided in Sec. 4 and Sec. 5.
Experimental setups, including datasets, preprocessing steps, and evaluation protocols, are described
in Sec. 3.1, Sec. 4.3, and Sec. 5.3, with additional details in the Appendix. Our code is publicly
available at https://anonymous.4open.science/r/ToolPoker-797E.

REFERENCES

Kimia Ameri, Michael Hempel, Hamid Sharif, Juan Lopez Jr., and Kalyan Perumalla. Cybert: Cy-
bersecurity claim classification by fine-tuning the bert language model. Journal of Cybersecurity
and Privacy, pp. 615–637, 2021.

Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit hold’em
poker is solved. Science, 347(6218):145–149, 2015.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):
885–890, 2019.

Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. Deep counterfactual regret mini-
mization. In International conference on machine learning, pp. 793–802. PMLR, 2019.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Yongchao Chen, Yueying Liu, Junwei Zhou, Yilun Hao, Jingquan Wang, Yang Zhang, and Chuchu
Fan. R1-code-interpreter: Training llms to reason with code via supervised and reinforcement
learning. arXiv preprint arXiv:2505.21668, 2025.

Anthony Costarelli, Mat Allen, Roman Hauksson, Grace Sodunke, Suhas Hariharan, Carlson Cheng,
Wenjie Li, Joshua Clymer, and Arjun Yadav. Gamebench: Evaluating strategic reasoning abilities
of llm agents. arXiv preprint arXiv:2406.06613, 2024.

Debrup Das, Debopriyo Banerjee, Somak Aditya, and Ashish Kulkarni. Mathsensei: a tool-
augmented large language model for mathematical reasoning. arXiv preprint arXiv:2402.17231,
2024.

10

https://anonymous.4open.science/r/ToolPoker-797E


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jinhao Duan, Renming Zhang, James Diffenderfer, Bhavya Kailkhura, Lichao Sun, Elias Stengel-
Eskin, Mohit Bansal, Tianlong Chen, and Kaidi Xu. Gtbench: Uncovering the strategic reasoning
capabilities of llms via game-theoretic evaluations. Advances in Neural Information Processing
Systems, 37:28219–28253, 2024.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy Liang, and Tatsunori Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=4hturzLcKX.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
arXiv preprint arXiv:2504.11536, 2025a.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training. arXiv preprint arXiv:2505.10978, 2025b.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Minlie Huang, Nan Duan, and
Weizhu Chen. ToRA: A tool-integrated reasoning agent for mathematical problem solving. In
The Twelfth International Conference on Learning Representations, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jiaxian Guo, Bo Yang, Paul Yoo, Bill Yuchen Lin, Yusuke Iwasawa, and Yutaka Matsuo. Suspicion-
agent: Playing imperfect information games with theory of mind aware gpt-4. arXiv preprint
arXiv:2309.17277, 2023.

Akshat Gupta. Are chatgpt and gpt-4 good poker players?–a pre-flop analysis. arXiv preprint
arXiv:2308.12466, 2023.

John C. Harsanyi. Games with incomplete information. The American Economic Review, pp. 291–
303, 1995.

Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in imperfect-
information games. arXiv preprint arXiv:1603.01121, 2016.

Nathan Herr, Fernando Acero, Roberta Raileanu, Maria Perez-Ortiz, and Zhibin Li. Large language
models are bad game theoretic reasoners: Evaluating performance and bias in two-player non-
zero-sum games. In ICML 2024 Workshop on LLMs and Cognition.

Chenghao Huang, Yanbo Cao, Yinlong Wen, Tao Zhou, and Yanru Zhang. Pokergpt: An end-to-
end lightweight solver for multi-player texas hold’em via large language model. arXiv preprint
arXiv:2401.06781, 2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Haitao Jiang, Lin Ge, Yuhe Gao, Jianian Wang, and Rui Song. Large language model for causal
decision making. arXiv preprint arXiv:2312.17122, 2023.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025.

11

https://openreview.net/forum?id=4hturzLcKX


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Harold W Kuhn. A simplified two-person poker. Contributions to the Theory of Games, 1:97–103,
2016.

Wenye Lin, Jonathan Roberts, Yunhan Yang, Samuel Albanie, Zongqing Lu, and Kai Han. GAME-
BoT: Transparent assessment of LLM reasoning in games. In Wanxiang Che, Joyce Nabende, and
Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 7656–7682, 2025.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. Advances in Neural Information Processing Systems, 37:124198–124235,
2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

John F Nash Jr. Equilibrium points in n-person games. Proceedings of the national academy of
sciences, 36(1):48–49, 1950.

OpenAI. Openai o3 and o4-mini system card, 2024. URL https://
cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/
o3-and-o4-mini-system-card.pdf.

OpenAI. Gpt-4.1 system card, April 2025. URL https://platform.openai.com/docs/
models/gpt-4.1.

Qwen. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–
68551, 2023.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Eric Steinberger. Single deep counterfactual regret minimization. arXiv preprint arXiv:1901.07621,
2019.

Oskari Tammelin. Solving large imperfect information games using cfr+. arXiv preprint
arXiv:1407.5042, 2014.

12

https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://platform.openai.com/docs/models/gpt-4.1
https://platform.openai.com/docs/models/gpt-4.1
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry Wei, Jason Wei, Chris Tar, Yun-Hsuan
Sung, Denny Zhou, Quoc Le, et al. Freshllms: Refreshing large language models with search
engine augmentation. arXiv preprint arXiv:2310.03214, 2023.

Wei Wang, Fuqing Bie, Junzhe Chen, Dan Zhang, Shiyu Huang, Evgeny Kharlamov, and Jie Tang.
Can large language models master complex card games? arXiv preprint arXiv:2509.01328, 2025.

Zhepei Wei, Wenlin Yao, Yao Liu, Weizhi Zhang, Qin Lu, Liang Qiu, Changlong Yu, Puyang Xu,
Chao Zhang, Bing Yin, et al. Webagent-r1: Training web agents via end-to-end multi-turn rein-
forcement learning. arXiv preprint arXiv:2505.16421, 2025.

Teng Xiao, Yige Yuan, Zhengyu Chen, Mingxiao Li, Shangsong Liang, Zhaochun Ren, and Vasant G
Honavar. Simper: A minimalist approach to preference alignment without hyperparameters. arXiv
preprint arXiv:2502.00883, 2025.

Zhichao Xu, Zongyu Wu, Yun Zhou, Aosong Feng, Kang Zhou, Sangmin Woo, Kiran Ramnath,
Yijun Tian, Xuan Qi, Weikang Qiu, et al. Beyond correctness: Rewarding faithful reasoning in
retrieval-augmented generation. arXiv preprint arXiv:2510.13272, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The eleventh international
conference on learning representations, 2022.

Tarik Zaciragic, Aske Plaat, and K Joost Batenburg. Analysis of bluffing by dqn and cfr in leduc
hold’em poker. arXiv preprint arXiv:2509.04125, 2025.

Daochen Zha, Kwei-Herng Lai, Songyi Huang, Yuanpu Cao, Keerthana Reddy, Juan Vargas, Alex
Nguyen, Ruzhe Wei, Junyu Guo, and Xia Hu. Rlcard: a platform for reinforcement learning
in card games. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, 2021a.

Daochen Zha, Jingru Xie, Wenye Ma, Sheng Zhang, Xiangru Lian, Xia Hu, and Ji Liu. Douzero:
Mastering doudizhu with self-play deep reinforcement learning. In international conference on
machine learning, pp. 12333–12344. PMLR, 2021b.

Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann
LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents via
reinforcement learning. Advances in neural information processing systems, 37:110935–110971,
2024.

Ruize Zhang, Zelai Xu, Chengdong Ma, Chao Yu, Wei-Wei Tu, Wenhao Tang, Shiyu Huang, Deheng
Ye, Wenbo Ding, Yaodong Yang, et al. A survey on self-play methods in reinforcement learning.
arXiv preprint arXiv:2408.01072, 2024.

Enmin Zhao, Renye Yan, Jinqiu Li, Kai Li, and Junliang Xing. Alphaholdem: High-performance
artificial intelligence for heads-up no-limit poker via end-to-end reinforcement learning. In Pro-
ceedings of the AAAI conference on artificial intelligence, volume 36, pp. 4689–4697, 2022.

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
ments. arXiv preprint arXiv:2504.03160, 2025.

Richard Zhuang, Akshat Gupta, Richard Yang, Aniket Rahane, Zhengyu Li, and Gopala Anu-
manchipalli. Pokerbench: Training large language models to become professional poker players.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 26175–26182,
2025.

Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret minimization
in games with incomplete information. Advances in neural information processing systems, 20,
2007.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A FULL DETAILS OF RELATED WORKS

A.1 STRATEGIC REASONING IN LLMS

With the rapid progress of LLMs’ cognitive capabilities, recent studies have begun to investigate
their potential for strategic reasoning in game-theoretic settings (Duan et al., 2024; Gupta, 2023;
Huang et al., 2024; Zhuang et al., 2025; Wang et al., 2025). GTBench (Duan et al., 2024) introduces
a comprehensive benchmark covering a variety of games to assess LLMs’ ability to follow equilib-
rium principles. Gupta (2023) provide one of the first empirical evaluations of GPT-4 and ChatGPT
in poker, revealing systematic deviations from GTO gameplay. Guo et al. (2023) explore theory-of-
mind (ToM) prompting in Leduc Hold’em, showing that GPT-4 with ToM reasoning can outperform
neural baselines such as NFSP (Heinrich & Silver, 2016). PokerGPT (Huang et al., 2024) fine-tunes
LLMs on poker-specific data and observes improvements in gameplay, while PokerBench (Zhuang
et al., 2025) constructs a benchmark on No-Limit Hold’em. More recently, Wang et al. (2025) curate
large-scale action-only datasets (more than 400k+ examples) and demonstrate gains in card games
by fine-tuning LLMs on such data. Additional works (Costarelli et al., 2024; Herr et al.) also in-
vestigate gameplay performance and biases of LLMs in other strategic games, such as Tic-Tac-Toe
and Prisoner’s Dilemma. In addition to exploring strategic reasoning in text-based settings, Zhai
et al. (2024) extend this line of work to the multimodal domain by fine-tuning large vision–language
models (VLMs) with RL. This paper leverages CoT-style intermediate reasoning to guide VLMs
through multi-step decision-making tasks, including poker. This demonstrates that RL can enable
VLMs to effectively explore and execute visual–textual reasoning sequences.

Our work differs in two key aspects: (i) unlike prior works that mainly evaluate or improve LLMs’
actions, we further analyze their reasoning process, asking how LLMs think before acting and why
they fail to achieve GTO play; and (ii) rather than relying on internal policies alone, we propose the
first tool-integrated reasoning framework that leverages poker solvers, enabling both equilibrium-
consistent actions and professional-style game-theoretic reasoning.

A.2 REINFORCEMENT LEARNING

Reinforcement Learning (RL) has emerged as a powerful mechanism for enhancing the reasoning
abilities of LLMs. In context of LLMs, RL was first introduced through Reinforcement Learn-
ing from Human Feedback (RLHF) to align outputs with human preferences via algorithms such
as Proximal Policy Optimization (PPO) (Schulman et al., 2017). Subsequent works proposed
more advanced techniques such as Direct Preference Optimization (DPO) (Rafailov et al., 2023),
SimPO (Meng et al., 2024), and SimPER (Xiao et al., 2025), which improve the stability and effi-
ciency of RL training. More recently, researchers have explored both outcome-based rewards (Guo
et al., 2025) and step-level rewards (Feng et al., 2025b) to improve problem-solving in domains
such as mathematical reasoning (Guo et al., 2025), code generation (Chen et al., 2025), and web
retrieval (Wei et al., 2025). In this work, we investigate RL for imperfect-information games, where
sparse outcomes, hidden states, and adversarial dynamics make reward design particularly chal-
lenging. Our analysis shows that both outcome-based and step-level RL signals are ineffective at
improving LLMs’ internal policies in poker, motivating the use of solver-derived, regret-inspired
signals as more reliable feedback.

A.3 TOOL-INTEGRATED REASONING OF LLMS

Tool-integrated reasoning (TIR) has emerged as a promising approach to extend the capabilities of
LLMs. Prior works demonstrate improvements in domains requiring precise computation or exter-
nal knowledge, including mathematical calculation (Das et al., 2024), programming (Chen et al.,
2022), and web search (Vu et al., 2023). Early studies such as PAL (Gao et al., 2023) prompt LLMs
to generate code for execution, while ToRA (Gou et al., 2024) curate tool-use trajectories and ap-
ply imitation learning to train tool invocation. More recently, RL has been explored as an effective
framework to improve TIR (Jin et al., 2025; Feng et al., 2025a; Zheng et al., 2025). For instance,
Search-R1 (Jin et al., 2025) enables search-engine queries for QA, ReTool (Feng et al., 2025a) im-
proves mathematical reasoning with a code sandbox, and DeepResearcher (Zheng et al., 2025) scales
multi-hop retrieval and tool orchestration. Despite these advances, existing TIR research largely tar-
gets fully observed, single-agent tasks. In contrast, poker involves stochasticity, hidden information,
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and adversarial dynamics, where tools must compute equilibrium-consistent strategies and counter-
factual values rather than deterministic answers. To the best of our knowledge, ToolPoker is the first
TIR framework for imperfect-information games. It integrates external poker solvers into LLMs,
teaching them how to invoke solvers, and grounding their reasoning traces in solver outputs. This
ensures rigorous, precise game-theoretic reasoning and GTO-consistent play, bridging prior works
on strategic reasoning, RL, and TIR.

B BACKGROUND AND RULES OF POKER

In this section, we introduce the poker variants studied in our work. These games are widely used in
the literature as benchmarks for imperfect-information reasoning because they balance tractability
with the core challenges of hidden information, sequential decision-making, and stochasticity.

B.1 KUHN POKER

Kuhn poker (Kuhn, 2016) is a minimalistic poker game designed to capture the essence of imperfect-
information decision-making in a tractable form. The game is played with only three cards (e.g.,
Jack, Queen, King) and two players. Each player antes one chip, and a single betting round follows.
Each player receives one private card, and the third card remains hidden.

Players can either check/bet (if no bet has been made) or call/fold (if a bet has been made). Because
of its small size—only a handful of information sets—Kuhn poker admits closed-form solutions,
including simple Nash equilibrium strategies that mix between bluffing with weak hands and value
betting with strong hands. Despite its simplicity, it highlights the central strategic dilemma of poker:
balancing deception and value extraction under hidden information.

B.2 LEDUC HOLD’EM

Leduc Hold’em (Zaciragic et al., 2025) is a widely studied poker variant that extends Kuhn by
introducing multiple betting rounds and public information. The game is played with a small deck
of six cards consisting of two suits and three ranks. Each player antes one chip and receives a single
private card. A first round of betting occurs, after which a single public card is revealed. A second
round of betting then follows.

The addition of the public card dramatically increases strategic depth: players must update beliefs
about opponents’ ranges as new information is revealed, balance bluffing and value bets across
streets, and plan actions that maximize long-term expected value. Although still small enough for
exact or approximate equilibrium computation (e.g., via CFR (Zinkevich et al., 2007)), Leduc cap-
tures essential poker phenomena such as semi-bluffing, slow-playing, and range narrowing, making
it a standard benchmark for algorithmic and LLM-based poker research.

B.3 LIMIT TEXAS HOLD’EM

Limit Texas Hold’em Bowling et al. (2015) is a more realistic and complex poker variant that is
closely related to the full game of Texas Hold’em, which is the most popular poker format in practice.
The deck consists of 52 standard playing cards. Each player is dealt two private hole cards, and up
to five public community cards are revealed in stages: the flop (three cards), the turn (one card), and
the river (one card). At each stage, players take turns acting in one of several betting rounds.

Unlike No-Limit Hold’em, bet sizes in Limit Hold’em are fixed and restricted to small or big bets
depending on the round. Each hand therefore unfolds as a sequence of structured betting decisions,
but the state space remains extremely large compared to Kuhn or Leduc. The presence of multiple
streets, large range interactions, and complex pot-odds considerations make Limit Hold’em a sig-
nificantly more challenging testbed for LLMs and reinforcement learning algorithms. Professional-
level play in this environment demands mastery of equilibrium-based reasoning as well as opponent
exploitation—skills that current LLMs struggle to replicate.
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B.4 ADDITIONAL DETAILS OF BACKGROUND AND PRELIMINARY

B.5 GAME-THEORETIC REASONING

In poker, game-theoretic reasoning grounded in Nash Equilibrium is essential for professional-level
play. A Nash Equilibrium represents a stable outcome in which each player’s strategy is an optimal
response to the others. Formally:
Definition B.1 (Nash Equilibrium (Nash Jr, 1950)). A Nash Equilibrium is a strategy profile in
a game where no player can unilaterally improve their payoff by deviating from their current
strategy, assuming the other players’ strategies remain unchanged. Formally, a strategy profile
(a∗1, a

∗
2, . . . , a

∗
n) is a Nash Equilibrium if, for every player i:

Ui(a
∗
i , a

∗
−i) ≥ Ui(ai, a

∗
−i), ∀ai ∈ Ai (5)

where Ai denotes the set of feasible actions for player i, Ui is the utility function (expected payoff)
of player i, and a∗−i represents the equilibrium strategies of all players other than i.

Rather than relying solely on heuristics or pattern recognition, professional players systematically
evaluate equity, ranges, and pot odds within a game-theoretic framework, thereby providing an opti-
mal action. An illustrative example of such game-theoretic reasoning in practice is in Appendix B.6.

B.6 PROFESSIONAL PLAYERS IN POKER

To illustrate how professional poker players think, we provide a real example from the blog of
a well-known Texas Hold’em professional player1. Unlike casual players who rely on intuition,
professionals systematically evaluate a wide range of factors before acting, including:

• Game context: What are the stack sizes, pot size, and stack-to-pot ratio?
• Ranges: What range of hands should I continue with? What range does my opponent have? How

does the board interact with these ranges, and which player benefits most?
• Board texture and big hands: Who holds the larger share of strong hands in this spot?
• Mixed strategies: What is my optimal mix between actions (e.g., 3-betting vs. calling, check-

calling vs. check-raising)?
• Bet sizing: How many bet sizes do I need here (e.g., two sizes such as 30% pot and 90% pot)?

Which size does my hand prefer relative to my overall range?
• Randomization: How do I randomize between actions to stay balanced (e.g., using a chip marker

to decide frequencies)?
• Opponent modeling: What is my opponent’s likely response to my bet? What physical tells,

history, or reads do I have? At what strategic level are they operating, and what exploits should I
consider?

This example shows that professional play is grounded in equilibrium-based reasoning, probabilistic
mixing, and careful opponent modeling, far beyond heuristic or surface-level decision making.

Our behavior datasets are designed with these principles in mind, encouraging LLMs to reason
through such questions. Details of the text-only BC dataset curation and TIR-enable BC dataset
curation are provided in Appendix D.3 and Appendix G.2, respectively.

C ADDITIONAL DETAILS OF PRELIMINARY ANALYSIS IN SEC. 3

C.1 COMPARISON METHODS

To comprehensively evaluate the performance of LLMs in playing poker, we consider both tradi-
tional RL-based baselines and rule-based solver baselines. RL methods serve as learning-based
references that have been widely applied to imperfect-information games, while rule-based solvers
provide near-equilibrium strategies that approximate ground truth. Specifically, we include the fol-
lowing methods:

1https://www.partypoker.com/blog/en/its-the-same-game-but-it-isnt.html
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• NFSP (Heinrich & Silver, 2016): Neural Fictitious Self-Play is a pioneering framework for learn-
ing approximate Nash equilibria in imperfect-information games. It combines reinforcement
learning to approximate best responses with supervised learning to approximate average strate-
gies, enabling agents to learn directly from self-play experience.

• DQN Mnih et al. (2015): Deep Q-Network was one of the first breakthroughs in deep RL for
sequential decision-making. Although originally designed for perfect-information environments
such as Atari, subsequent works (Zha et al., 2021b; Guo et al., 2023) have adopted it as a baseline
for imperfect-information games, including poker.

• DMC Zha et al. (2021b): The Deep Monte Carlo (DMC) algorithm is originally proposed for
the Chinese card game DouDizhu. It leverages large-scale self-play with Monte Carlo policy
optimization and demonstrates strong performance in complex imperfect-information card games.
Following prior works (Zha et al., 2021b; Guo et al., 2023), we adapt DMC as a baseline for poker.

• CFR+ (Tammelin, 2014): Counterfactual Regret Minimization (CFR) (Zinkevich et al., 2007) is a
foundational algorithm for solving imperfect-information games, converging to Nash equilibrium
by iteratively minimizing counterfactual regret at each information set. CFR+ enhances CFR with
linear regret updates and warm-start averaging, greatly accelerating convergence. It has become
the de facto standard solver in large-scale poker domains and serves as a strong rule-based baseline
in our evaluation.

• DeepCFR Brown et al. (2019): Building on CFR, DeepCFR employs neural function approxima-
tion to replace tabular regret tables, thereby generalizing across information sets. While CFR+
is provably effective, its computational cost grows prohibitively in large games such as Texas
Hold’em. DeepCFR addresses this limitation by learning regret values via neural networks, mak-
ing it applicable to larger domains and forming the basis of superhuman agents such as Libra-
tus (Brown & Sandholm, 2019).

C.2 CASE STUDIES OF LLMS’ REASONING FLAWS

We provide the examples from Qwen2.5-3B and GPT-4o in Tab. 13 and 14 to illustrate why LLMs
fail in playing poker. From these tables, we consistently observe three limitations of LLMs in
playing poker: (1) Heuristic Reasoning; (ii) Factual Misunderstanding; and (iii) Knowing-Doing
Gap. The detailed analysis of these case studies can be found in Sec. 3.3.

C.3 EVALUATION METRICS OF THE LLM-AS-A-JUDGE FOR LLMS’ REASONING

In the LLM-as-a-Judge approach used in quantitative analysis of LLMs’ reasoning traces in Sec. 3.3,
we use the following three metrics to validate the identified three reasoning flaws:

• Heuristic Reasoning Score (HR): The judge prompt template is provided in Tab. 15.

• Factual Alignment Score (FA): The judge prompt template is provided in Tab. 16.

• Action-reasoning Consistency Score (AC): The judge prompt template is provided in Tab. 17.

C.4 FULL DETAILS OF QUANTITATIVE ANALYSIS

To further validate the reasoning flaws observed in case studies, we adopt an LLM-as-a-Judge frame-
work (Dubois et al., 2023). Specifically, we design three metrics: heuristic reasoning (HR), factual
alignment (FA), and action–reasoning consistency (AC). Each generated reasoning trace is scored
by three independent LLM judges on a 0–2 scale for each metric. GPT-4.1-mini (OpenAI, 2025) is
used as the judge model. The metric definitions and judge prompts are in Appendix C.3.

From the table, we observe that (i) Reasoning flaws persist across all models. All evaluated LLMs
demonstrate varying degrees of heuristic reasoning, factual misunderstanding, and knowing–doing
gaps. For instance, Qwen2.5-3B obtains only 0.53 HR, 0.18 FA, and 1.53 AC, indicating weak fac-
tual grounding and limited strategic reasoning. Even the strongest model, o4-mini, while achieving
the 1.80 HR, 1.56 FA, and 1.85 AC, still falls short of perfect action–reasoning consistency (1.85).
This confirms that these flaws are systemic and persist across models. (ii) Scaling improves but does
not eliminate reasoning flaws. Large and more powerful models, such as Qwen2.5-72B and o4-mini,
generally achieve higher scores across all these metrics compared to their lightweight variants. This
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suggests that increased scale and instruction tuning enhance the ability of LLMs to approximate
game-theoretic reasoning and avoid factual mistakes. Nevertheless, the persistence of non-trivial
gaps, particularly in FA and AC, indicates that scaling alone is insufficient to reach professional-
level game-theoretic reasoning. (iii) Action-reasoning consistency remains imperfect. AC scores
are stable across models (1.53–1.87) yet below the professional baseline of 2.0. Even the strongest
model, o4-mini, reaches 1.85 but still shows knowing–doing gaps where reasoning diverges from
action. To directly assess this, we compute mismatch proportions in Appendix C.5, which align with
AC values and confirm it as both a valid proxy for and evidence of the knowing–doing gap.

C.5 HUMAN-IN-THE-LOOP EVALUATION FOR LLMS’ REASONING

To validate the reliability of LLM-based judging, we conduct a human-in-the-loop evaluation. Draw-
ing on professional-style reasoning (Appendix B.6) and our behavior cloning prompt template (Ap-
pendix D.3), we use GPT-5 to curate 20 reasoning traces and have them scored by LLMs. These
traces achieve perfect scores (all achieve maximum 2), showing strong alignment with human judg-
ments, which we include as a reference for our analysis.

C.6 CALIBRATION AND VALIDATION OF OUR LLM-AS-A-JUDGE SCORE

In this subsection, we provide the details of how to calibrate and validate our LLM-as-a-Judge Score.
Judge calibration. In Appendix C.3, we apply the LLM-as-a-Judge approach and use three metrics:
Heuristic Reasoning (HR), Factual Alignment (FA), and Action–reasoning Consistency (AC) in the
scale of 0-2. To calibrate this scale, we iteratively refined the HR/FA/AC rubrics and judge prompts
using a small pilot set of representative hands.

• General procedure. We collect a small set of clearly good, medium, and poor reasoning traces
for each dimension, manually assign target scores (0/1/2), and refine the textual criteria until the
judge consistently reproduces the correct scores.

• HR calibration. We anchor the “0/1/2” rubric using examples that are (i) purely heuristic, (ii)
partially grounded but inconsistent, and (iii) strongly aligned with game-theoretic principles (e.g.,
pot odds, range interactions).

• FA calibration. We provide objective poker quantities (equities, ranges, pot odds) from external
solvers and instruct the judge to score only factual correctness.

• AC calibration. We explicitly instruct the judge to verify that the reasoning logically implies the
same action as the final decision.

Judge validation. Following the protocol in Sec. 3.3, we manually curate 20 professional-style
reasoning traces to use them and score them by LLMs. These traces achieve perfect scores (all
achieve maximum 2), showing strong alignment with human judgments.

Sensitivity and inter-rater LLM agreement. Our LLM-as-a-Judge results in Tab. 2, Tab. 4, and
Fig. 2 are consistent across two distinct poker environments (Leduc and Limit Hold’em), indicating
that the judge is not domain-sensitive.

To further assess inter-rater agreement, we re-evaluate ToolPoker’s Limit Hold’em reasoning traces
using GPT-5 as the judge (instead of the GPT-4.1-mini judge used in the main paper). All settings
follow Section 5.3. The results are reported in Tab. 6. From the table, we observe close agreement
between the two judge models, validating the robustness of our evaluation and reducing concerns
about prompt sensitivity or model-specific bias.

Table 6: Inter-rater agreement: LLM-as-a-Judge scores (0–2) on ToolPoker’s reasoning traces in
Limit Texas Hold’em. We compare the original judge (GPT-4.1-mini) with another judge (GPT-5).

Method HR FA AC Avg.

GPT-5 1.94 1.89 1.90 1.91
GPT-4.1-mini 1.93 1.92 1.94 1.94
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D FULL DETAILS OF BC-RIRL

D.1 FULL DETAILS OF REGRET-INSPIRED RL FINE-TUNING

While BC helps LLMs imitate expert play, its limited dataset size and imitation-based nature make
it insufficient for professional-level performance. As an initial attempt to refine policies beyond
imitation, we explore a regret-inspired reinforcement learning (RIRL) framework. Prior approaches
in both traditional RL (Heinrich & Silver, 2016; Zhao et al., 2022) and LLM-based RL (Guo et al.,
2025) typically rely on outcome-based rewards (e.g., win/loss). However, in poker, especially in
multi-round games such as Leduc Hold’em and Texas Hold’em—these sparse and noisy signals fail
to capture the contribution of individual actions. To address this, we experiment with a step-level
regret-guided reward that leverages signals from a pre-trained CFR solver, aligning fine-tuning with
the principle that minimizing cumulative regret drives convergence to the Nash equilibrium.

Regret-guided Reward Design. Inspired by our analysis in Sec. 3.2, which highlights CFR as
the state-of-the-art algorithm for approaching Nash equilibrium in imperfect-information games,
we explore optimizing LLMs through regret minimization. Our key idea is to compute cumulative
regrets with CFR and transform them into fine-grained reward signals that estimate each action’s
contribution. For a policy πθ as player i, the cumulative regret of action ati at time t is defined as:

rt(a
t
i) = rt−1(a

t
i) + It(a

t
i), It(a

t
i) = u(σ

at
i

t , σ
−at

i
t )− u(σt), (6)

where σt denotes the strategy profile at time t, σ−i
t is the opponents’ strategy, u(σt) the expected

utility under σt, and u(σ
at
i

t , σ−i
t ) is the utility when player i deviates to action ati. The instantaneous

regret It(ati) measures how much better or worse ati performs relative to the current mixture strategy,
while Rt(a

t
i) aggregates this over time. To compare actions within the same decision point, we

normalize regrets into a relative reward signal:

R(at
i) =

Rt(a
t
i)− mean({rt(aj)}|A|

j=1)

Fnorm({rt(aj)}|A|
j=1)

, (7)

where Fnorm denotes a normalization factor, chosen as the standard deviation in our implementation.

Fine-tuning Objective. Based on this signal, we fine-tune LLM policy via PPO (Schulman et al.,
2017) with the following clipped RL objective:

LPPO(θ) = −Ex∼Ds,y∼πold(·|x)[
min

(
πθ(y|x)
πold(y|x)

A, clip
(

πθ(y|x)
πold(y|x)

, 1− ϵ, 1 + ϵ

))
− βDKL(πθ(·|c)||πref (y|x))

]
,

(8)

where πθ and πold denote the current and previous policy models, respectively. ϵ is the clipping-
related hyperparameter. πref is the reference policy that regularizes πθ update via a KL-divergence
penalty, measured and weighted by DKL and β, respectively. Generalized Advantage Estimation
(GAE) (Schulman et al., 2015) is used as the advantage estimate A. x denotes the input samples
drawn from D, which is composed of trajectories generated by the current policy πθ. y is the
generated outputs via policy LLMs πθ(·|x). The procedures of trajectory collection are detailed in
Appendix D.4.

D.2 FULL DETAILS OF COMPARISON RESULTS

We evaluate whether BC-RIRL improves LLMs’ poker performance by fine-tuning Qwen2.5-7B
and comparing against both traditional methods and vanilla LLMs. Results in Kuhn and Leduc
Hold’em are reported in Tab. 3. We highlight three key findings: (i) All RL-based fine-tuning vari-
ants improve performance in Kuhn Poker. This suggests that both outcome-based and regret-guided
feedback provide useful learning signals in simple environments with limited strategy space. (ii)
BC-RIRL surpasses direct prompting and BC-SPRL in Leduc Hold’em, though it still trails tradi-
tional algorithms such as CFR+. For example, BC-RIRL gains 17.0 chips against GPT-4.1-mini,
while still losing 34.0 chips against CFR+. This indicates that regret-guided dense feedback is more
effective than sparse outcome-based rewards in complex tasks, but is sufficient to reach equilibrium-
level play. (iii) Pure RIRL without the BC stage does not yield improvements in Leduc Hold’em. For
instance, BC-RIRL and BC-SPRL gain +17.0 and −64.5 chips against GPT-4.1-mini, respectively.
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This underscores the importance of BC in establishing a strong foundation of expert-like reasoning
before RL fine-tuning.

To further assess whether BC-RIRL enhances reasoning quality, we adopt the LLM-as-a-Judge pro-
tocol from Sec. 3.3 and compute three reasoning-trace scores. Results in Leduc Hold’em and Limit
Texas Hold’em are reported in Tab. 4, with additional case studies provided in Appendix F.1. Two
findings are observed: (i) RIRL consistently surpasses the baselines on HR and AC. For example,
BC-RIRL fine-tuned on Qwen2.5-7B reaches 1.93 HR and 1.90 AC in Leduc Hold’em, outperform-
ing the strongest vanilla LLM, o4-mini, which achieves 1.80 HR and 1.85 AC. This shows that
BC-RIRL effectively mitigates heuristic reasoning flaws and reduces the knowing–doing gap. (ii)
RIRL yields only marginal improvements in FA. For instance, in Limit Texas Hold’em, BC-RIRL
achieves 1.12 FA, only slightly higher than vanilla Qwen2.5-7B (0.87 FA) and still far behind o4-
mini (1.65 FA). Together with the case studies, these results indicate that while BC-RIRL improves
strategic reasoning and action–reasoning alignment, factual misunderstandings remain a notable
challenge.

D.3 ADDITIONAL DETAILS OF BEHAVIOR CLONING

We provide the BC data construct prompt template, which is shown in Tab. 18. GPT-5-mini is used
as the target model for annotation. The detailed actions and other auxiliary quantities (e.g., winning
probability and hand range) are obtained from a pre-trained CFR solver, equity calculator and other
tools. These tools are implemented in Python.

D.4 TRAJECTORY COLLECTION PROCEDURE

To collect trajectories for RL fine-tuning, we adopt an on-policy setting where the LLM policy
competes against a random agent. At each iteration, the LLM plays a batch of N games against the
random agent (N = 64 in our setting). The LLM’s actions from each round are stored as individual
data samples. Formally, for an LLM policy πθ with partial observation oti and action history ht

i at
time step t, a sample is represented as (oti, h

t
i, a

t
i), where ati is the chosen action of player i. After

each batch, the collected trajectories are used to fine-tune the LLM policy πθ, producing an updated
policy π′

θ that is then used for subsequent data collection.

D.5 IMPLEMENTATION DETAILS OF BC-RIRL

In the behavior cloning stage, we construct 5, 000 data samples with both reasoning traces and
actions for behavior cloning. Specifically, to generate actions, we use CFR+ Tammelin (2014) to
compete against a random player that randomly selects actions from the action space, and extract the
actions from CFR+ as the ground-truth actions. The GPT-5-mini is then used to generate reasoning
traces of these actions, where the prompt is provided in Appendix D.3. In the RL stage, we set
Qwen2.5-7B-Instruct as the base model for fine-tuning.

E METHODOLOGY OF SPRL

Inspired by traditional RL in imperfect-information games (Heinrich & Silver, 2016; Zhang et al.,
2024), we conduct δ-uniform self-play by letting a single policy LLM πθ play both sides. In each
round, we (i) clone the current policy to obtain a fixed opponent πθ̄; (ii) sample N self-play games
between πθ(· | f(ot1)) and πθ̄(· | f(ot2)), alternating positions and random seeds, to collect trajec-
tories Tθ; (iii) update πθ with RL on Tθ for δ steps while keeping πθ̄ fixed; and (iv) refresh πθ̄ with
the latest πθ to start the next cycle.

Fine-tuning Objective. To fine-tune LLMs via RL, we then formulate the RL objective function as
follows:

max
θ

Ex∼Ds,y∼πθ(·|x)
[rϕ(x, y)]− βDKL[πθ(y|x)||πref (y|x)], (9)

where πθ is the policy LLM being trained. πref is the reference LLM (typically the initial pretrained
LLM) that regularizes the policy update via a KL-divergence penalty, measured and weighted by
DKL and β, respectively. x denotes the input samples drawn from Ds, which is composed of
trajectories generated by the current policy πθ in a self-play setting. y represents the generated
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outputs via policy LLMs πθ(·|x). In this paper, we choose a commonly used Proximal Policy
Optimization (PPO) (Schulman et al., 2017) as the backbone RL algorithm, which optimizes LLMs
by maximizing the following objective:

LPPO(θ) = −Ex∼Ds,y∼πold(·|x)[
min

(
πθ(y|x)
πold(y|x)

Aadv, clip

(
πθ(y|x)
πold(y|x)

, 1− ϵ, 1 + ϵ

)
Aadv

)
− βDKL(πθ(·|c)||πref (y|x))

]
,

(10)

where πθ and πold denote the current and previous policy models, respectively. ϵ is the clipping-
related hyperparameter. The advantage estimate Aadv is computed using Generalized Advantage
Estimation (GAE) (Schulman et al., 2015). We also investigate the performance of other commonly
used RL algorithms, such as GRPO Shao et al. (2024).

Reward Design. Poker is a sequential decision-making task with multiple turns. The reward for
player i at time step t is defined as the discounted cumulative return from t until the end of the game:

Rt
i =

T∑
k=t

γ k−trki , (11)

where γ ∈ (0, 1] is the discount factor balancing immediate and long-term outcomes. Because
players only observe payoffs after a hand is completed, the task is characterized by sparse rewards:
intermediate steps yield rki = 0, while the terminal step provides rTi . We consider two types of
terminal signals: (i) binary outcome reward, where rTi = 1 if the player wins the hand and rTi = 0
otherwise; and (ii) normalized earnings reward, where rTi = cearn/cinit, with cearn the final net chip
gain (or loss) and cinit the initial chip count.

F ADDITIONAL DETAILS OF INITIAL ATTEMPT IN SEC. 4

F.1 CASE STUDIES OF BC-RIRL

We present case studies of Qwen2.5-7B fine-tuned with BC-RIRL in Leduc Hold’em (Tab. 19 and
Tab. 20). The results show that after fine-tuning, the model can produce reasoning traces that re-
semble those of professional players. However, closer inspection reveals persistent factual misun-
derstandings. For example, the model claims that calling is the optimal CFR action, even though the
prompt explicitly states that calling is not a legal move. This supports our conclusion in Sec. 4.3:
while BC-RIRL improves action–reasoning consistency and professional-style imitation, factual in-
accuracies remain a significant challenge, highlighting the limitations of BC-RIRL.

G ADDITIONAL DETAIL OF ToolPoker

G.1 TIR ROLLOUT PROMPT TEMPLATE

The TIR rollout prompt template for poker is provided in Tab. 21.

G.2 TIR BC REASONING DATASET CURATION

To construct high-quality TIR data without incurring prohibitive annotation cost, instead of building
a TIR reasoning-augmented dataset from scratch, we build an automated pipeline to programmati-
cally augments the reasoning dataset from Sec. 4.1 with standardized tool invocation templates (e.g.,
<tool></tool>) and execution outputs (e.g., <output></output>). A detailed example of
the appended tool invocation templates is provided in Tab. 22.

G.3 REWARD DESIGN

Our hybrid reward function contain the following components:

• Answer reward: This reward enforces the alignment of LLMs’ final action with the GTO-
guarantee action from the CFR solver. Formally, given an LLM policy πθ as the player i with
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Algorithm 1 Fine-tuning Algorithm of ToolPoker for TIR.

Input: Policy model πθ, old policy πold, task dataset Dt, masking function M
for each training iteration do

for each task x in Dt do
Sample ground-truth GTO action â of x
Sample a rollout y from πold for x:
Initialize reasoning chain
while not end of episode do

Generate next segment: <think> or <tool>
if tool is invoked then

Interact with external poker solvers, obtain <output>
Append output to reasoning chain

end if
end while
Extract model-predicted action a from final response p
Compute the composite reward R(a, â, p)

Compute GAE advantages Â for y
Apply loss masking M to exclude tool output tokens
Compute PPO loss LPPO in Eq. 10 and update πθ

end for
end for

partial observation oti and action history ht
i at time step t, the answer reward is denoted as:

Ranswer(a
t
i, â

t
i) =

{
1, if is equivalent(ati, â

t
i),

−1, otherwise,
(12)

where ati and âti denote πθ’s predicted action and CFR solver’s action at time step t.
is equivalent(·) checks whether the model’s final action matches the CFR solver’s action
as the ground-truth action.

• Format reward: Rformat(ρ
t
i) ∈ {0, 1}, which evaluates whether the reasoning

trace follows the required structured schema with special tokens in the correct or-
der: reasoning <think></think>, tool calling <tool></tool>, feedback output
<output></output>, and final action <answer></answer>.

• Tool execution reward: Rtool(ρ
t
i) = Toolsuc/Tooltot, which measures the fraction of successful

tool calls in the reasoning trace, encouraging the model to invoke external tools effectively and
integrate their outputs into subsequent reasoning.

G.4 RL FINE-TUNING ALGORITHM FOR TIR

Alg. 1 summarizes the fine-tuning procedure of ToolPoker for enabling TIR in poker. Given a task
dataset Dt, where construction details are in Appendix G.5, the algorithm proceeds as follows.

For each task x ∈ Dt with a corresponding ground-truth action â from a CFR solver, we first obtain
G rollouts y from the old policy πold. Each rollout is generated step by step, where the model pro-
duces either a <think> segment (internal reasoning) or a <tool> call. If a tool is invoked, the
model interacts with the external poker solver, retrieves the <output>, and appends it to the rea-
soning chain. This iterative process continues until the end of the episode. At the end of the rollout,
we extract the model-predicted action a from the final response p. A composite reward R(a, â, p)
is then computed, combining answer accuracy, reasoning format, and tool-execution quality (see
Appendix G.3). Using this reward, we estimate advantages Â with Generalized Advantage Estima-
tion (GAE) (Schulman et al., 2015). To ensure tool outputs do not dominate training, we apply a
masking function M that excludes solver outputs from the loss. Finally, we compute the PPO loss
LPPO (Eq. 8) and update the policy πθ.

Through this iterative process, the model learns not only to query solvers for GTO-consistent actions
and other auxiliary quantities but also to integrate solver outputs into coherent reasoning traces,
thereby aligning action selection with rigorous game-theoretic principles.
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G.5 IMPLEMENTATION DETAILS

We follow existing works (Feng et al., 2025a; Jin et al., 2025) to train ToolPoker with the
VeRL (Sheng et al., 2024) framework. For RL fine-tuning, based on the existing work (Wang et al.,
2025), we build an automated pipeline to curate an action-only dataset with 400, 000 samples for
both Leduc Hold’em and Limit Texas Hold’em. Specifically, we use a pretrained CFR solver to
compete against a random agent and collect the game states and actions of CFR to build such a
dataset. Note that

Qwen2.5-7B-Instruct model is the base model. The max response length is set as 8, 192 tokens. The
rollout model’s temperature is 0.7 and top-p is 0.6. For behavior cloning, we curate a TIR dataset
with 5, 000 samples with both actions and tool-integrated reasoning traces. During RL fine-tuning,
the rollout batch size is set to 64, and the mini update size is 16. An AdamW optimizer is utilized
with an initial learning rate 1e− 6.

G.6 ADDITIONAL DISCUSSION

Generalization without solvers. In realistic settings, external tools may be unavailable or only
intermittently accessible. To examine this, we ablate ToolPoker by removing RL fine-tuning and
retaining only BC (Sec. 5.3). This variant shows weaker tool-use capability than full ToolPoker, and
under intermittent tool access we find that HR and AC remain relatively high while FA degrades first.
These results suggest that ToolPoker internalizes core strategic structures (e.g., range-based reason-
ing and mixed strategies), while solvers primarily supply precise numerical quantities—supporting
our view that LLMs provide the reasoning framework whereas external tools ensure the accuracy of
game-theoretic computations.

G.7 COMPARISON WITH EXISTING TOOL-USE FRAMEWORK

G.7.1 RELATION TO EXISTING TOOL-USE FRAMEWORK

While ToolPoker follows the general “LLM + tools” paradigm, it is designed specifically for
imperfect-information poker games with game-theoretic principles, whereas prior frameworks focus
on general tasks (e.g., math, QA, web search). This difference leads to several important challenges
that make existing methods difficult to directly apply.

Task difference: game-theoretic reasoning. Prior TIR methods (Yao et al., 2022; Schick et al.,
2023; Feng et al., 2025a) typically aim to obtain factual answers or execute deterministic API calls.
In contrast, ToolPoker targets strategic reasoning in games where (i) the agent must reason under
imperfect information, and optimal play requires Nash-equilibrium (GTO) reasoning, and (ii) expla-
nations must reflect game-theoretic principles rather than surface-level logic. This setting requires
multi-step strategic reasoning that goes substantially beyond previous tool-use scenarios.

Existing frameworks cannot be directly adapted. Unstable interleaved reasoning and tool use.
Poker reasoning requires LLMs to generate game-theoretic explanations while coordinating multiple
solver calls for diverse quantities (e.g., actions, equities, ranges). Directly applying a ReTool-style
framework (Feng et al., 2025a) to teach LLMs to invoke multiple tools during reasoning would
(i) force the model to call and integrate several specialized solvers for each hand, (ii) introduce
error propagation from tool calls across multi-step game-theoretic reasoning trajectories, and (iii)
lead to inaccurate explanations and degraded gameplay. High data cost. Toolformer-style ap-
proaches (Schick et al., 2023) usually require large-scale reasoning traces augmented with solver
calls to fine-tune LLMs. For game-theoretic reasoning tasks, generating such traces demands ex-
pensive LLM annotation and careful domain-specific tool invocation, making it prohibitively costly
to scale to expert-level poker play.

ToolPoker: a design specifically addressing these challenges. To overcome these issues,
ToolPoker introduces two key design choices. Equilibrium-oriented simplified interface. Rather
than asking the LLM to orchestrate multiple tools, ToolPoker consolidates all solver functionalities
into a single API call that returns GTO actions as well as auxiliary quantities (e.g., equities, strate-
gic ranges, hand distributions). This equilibrium-oriented interface stabilizes TIR–RL training and
allows the LLM to focus on producing accurate, professional-level reasoning instead of managing
complex tool orchestration. Low-cost, expert-level TIR dataset. Instead of relying on a large-scale
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reasoning dataset, ToolPoker deliberately constructs a small curated expert reasoning dataset aligned
with game-theoretic principles, and augments it with tool-calling templates and solver outputs. This
provides a cost-efficient way to perform behavior cloning from expert-level play, followed by rein-
forcement learning fine-tuning.

G.7.2 EMPIRICAL COMPARISON WITH RETOOL

We then empirically compare ToolPoker with ReTool Feng et al. (2025a) to validate the effectiveness
of ToolPoker in our poker games with imperfect information. Specifically, we implement ReTool
in Leduc Hold’em (same solver, same backbone LLM). We modify our BC dataset following the
original ReTool protocol to teach the model to call multiple poker tools during reasoning, and keep
the RL stage consistent with ReTool.

We compare both methods under the same settings as Section 5.3 using Qwen2.5-7B-Instruct.
Gameplay and Reasoning results are shown in Tab. 7 and 8, respectively. These results show that
while ReTool improves over prompting-only LLMs, ToolPoker achieves higher gameplay perfor-
mance and expert-level reasoning quality, demonstrating the advantages of our simple but effective
design in ToolPoker for game-theoretic reasoning tasks.

Table 7: Gameplay comparison results of ToolPoker and ReTool in Leduc Hold’em. Qwen2.5-7B-
Instruct is the backbone model.

NFSP DQN DMC CFR+ Avg.

Vanilla LLM −57.5 −93.0 −73.0 −68.5 −73.0
ReTool +5.5 +8.5 −4.0 −8.0 +0.5
ToolPoker +11.5 +18.0 +1.0 −3.0 +6.8

Table 8: Reasoning quality comparison results of ToolPoker and ReTool in Leduc Hold’em.
Qwen2.5-7B-Instruct is the backbone model.

Method HR FA AC Avg.

Vanilla LLM 0.95 0.86 1.68 1.16
ReTool 1.84 1.65 1.88 1.79
ToolPoker 1.96 1.95 1.91 1.94

G.8 IMPACT OF REWARD COMPONENT IN R

To study the contribution of each component in the composite reward, we implement three ablative
variants of ToolPoker in Leduc Hold’em (Qwen2.5-7B-Instruct backbone), each removing one com-
ponent from the composite reward in Eq. 4. All other settings follow Section 5.3. We report both
gameplay performance and reasoning quality in Table 9 and 10. From these tables, we observe:

• Ranswer is the main driver of improvement. Removing it will make reasoning traces and final
decisions less tightly aligned with solvers’ outputs (e.g., GTO-consistent action), leading to worse
gameplay performance and reasoning quality (e.g, AC).

• Rformat mainly stabilizes format and structure, with a smaller but positive effect on performance.
Removing Rformat keeps gameplay competitive.

• Rtool benefits reliable tool use. Removing it leads to a slight drop in gameplay performance and
FA/AC scores.

G.9 REWARD VISUALIZATION

We plot the per-component reward trajectories of ToolPoker in Leduc Hold’em in Fig. 3. Qwen2.5-
7B-Instruct is the backbone model. From the figure, we can observe:
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Table 9: Gameplay performance of ToolPoker and ablations in Leduc Hold’em. Qwen2.5-7B-
Instruct is the backbone model.

NFSP DMC CFR+

ToolPoker/Ranswer −58.5 −72.0 −54.5
ToolPoker/Rformat +11.5 +1.0 −4.0
ToolPoker/Rtool +9.0 +0.5 −5.5
ToolPoker +11.5 +1.0 −3.0

Table 10: Reasoning quality metrics across ablations in Leduc Hold’em. Qwen2.5-7B-Instruct is
the backbone model.

Method HR FA AC Avg.

ToolPoker/Ranswer 1.89 1.08 1.45 1.58
ToolPoker/Rformat 1.95 1.95 1.91 1.94
ToolPoker/Rtool 1.95 1.89 1.87 1.90
ToolPoker 1.96 1.95 1.91 1.94

• Rformat and Rtool rapidly approach near 1, indicating that the model can learn to produce correct
formats and tool invocation quickly.

• Ranswer gradually increases over training with some variance but no signs of instability or col-
lapse.
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Figure 3: Reward visualization of ToolPoker in Leduc Hold’em. Qwen2.5-7B-Instruct is the back-
bone model. (a) is the overall composite reward R, (b)-(d) shows the Ranswer, Rformat and Rtool,
respectively.

H IN-DEPTH ANALYSIS OF TOOLPOKER

H.1 TRANSFERABILITY & SCALABILITY

Extending to Other Imperfect-information Games. Although ToolPoker is empirically evaluated
on poker in the main paper, the framework itself is not poker-specific. We choose poker as our
primary testbed because it is a canonical benchmark for imperfect-information, game-theoretic rea-
soning: it has mature equilibrium solvers (e.g., CFR+), well-established evaluation protocols, and
is widely used in prior works (Guo et al., 2023; Wang et al., 2025; Zhuang et al., 2025; Duan et al.,
2024) to study strategic reasoning.

ToolPoker is architecturally game-agnostic and only requires access to a solver that, given a state
description, returns equilibrium quantities (e.g., optimal actions, values, strategy distributions). To
instantiate ToolPoker for another imperfect-information game, the required modifications are mini-
mal:

• Build solver API. In a new game, collect required solvers for game-theoretic reasoning, and build
a unified solver API that returns all supporting quantities from these solvers.

• State encoding. The game history, private information, and public observations of the new game
must be encoded into text suitable for the LLM and for the unified solver API.
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• TIR reasoning dataset construction. Similar to poker, we create a small-scale expert reasoning
dataset containing high-quality reasoning traces augmented with solver outputs. This teaches the
model how to read and interpret solver quantities and how to produce game-theoretic explanations.

• Two-stage training pipeline. We apply the same training procedure used in Section 5.2, which
contains SFT on the solver-augmented reasoning dataset, followed by RL fine-tuning with our
composite reward to refine tool-use behavior and action quality.

As an illustrative example, consider extending ToolPoker to an imperfect-information game,
Mahjong. We would:

• encode each player’s private hand, open melds, discards, and round context into text

• build an unified API such that the LLM can query this API to interface with external Mahjong
solver to obtain actions (e.g., discard, call) and other supporting quantities (e.g., shanten count,
tile-efficiency metrics, expected value, defensive risk), which are similar to equities and ranges in
poker

• build a small solver-augmented reasoning set grounding explanations in strategic principles of
Mahjong (e.g., tile efficiency, defense, hand value)

• apply the same two-stage training pipeline to finetune LLMs

Empirical Results of ToolPoker in Extending to Three-player Leduc Hold’em. To further
demonstrate scalability, we adapted ToolPoker to a three-player Limit Texas Hold’em. We fol-
low the steps above to fine-tune Qwen2.5-7B-Instruct using ToolPoker. We choose GPT-4.1-mini
and vanilla Qwen2.5-7B-Instruct as the opponents, and compare the gameplay performance of the
resulting model under the same settings in Section 5.3. The gameplay and reasoning quality results
are reported in Tab. 11 and 12.

Table 11: Gameplay performance comparison across models in 3-player Leduc Hold’em.

Qwen2.5-7B GPT-4.1-mini Qwen2.5-7BToolPoker

−36.7 +5.9 +30.8

Table 12: LM-as-a-Judge score (0-2) evaluating reasoning traces of various LLMs in 3-player Leduc
Hold’em.

Method HR FA AC Avg.

Qwen2.5-7B 0.93 0.88 1.60 1.14
GPT-4.1-mini 1.00 1.75 1.83 1.52
Qwen2.5-7BToolPoker 1.93 1.90 1.88 1.90

From these tables, we observe that ToolPoker consistently outperforms vanilla LLM across both
gameplay performance and expert-level reasoning scores in this new game, providing empirical
evidence that ToolPoker generalizes beyond poker to other imperfect-information domains.

H.2 ERROR ANALYSIS IN TOOLPOKER

In this subsection, we provide an in-depth error analysis of ToolPoker.

Error patterns discussion. As shown in Tab. 5, ToolPoker slightly underperforms CFR by 3 chips
per 100 games, while still achieving comparable overall gameplay. To better understand this phe-
nomenon, we conduct an error analysis and observe the following error patterns

• State mis-specification. The model may sometimes encode the game state (e.g., hand card, public
card) imperfectly before querying the solver, which can lead to suboptimal actions and quantities
from solvers.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

• Misalignment between solvers’ outputs and final actions. In some cases, the LLM may cor-
rectly receive solvers’ outputs (e.g., action) but does not faithfully follow them in the final answer.

Potential Mitigation. To mitigate these errors, we consider several potential methods:

• Additional faithfulness reward term: Inspired by recent work on faithful agentic search (Xu
et al., 2025), we can train a reward model to score how faithfully the reasoning aligns with solver
outputs, and use this as an auxiliary reward during RL fine-tune.

• Consistency-aware signal: Similarly, we can add an auxiliary reward during RL fine-tuning to
encourage correctly querying the external solvers with accurate states.

H.3 ROBUSTNESS OF TOOLPOKER

Robustness to noisy or human-style inputs. A natural question is how ToolPoker handles inputs
that deviate from clean CFR-style play, such as suboptimal, noisy, or human-generated trajectories.
Although our main experiments rely on solver-labeled data, we emphasize that ToolPoker is already
trained and evaluated in settings that include substantial off-equilibrium and non-expert behavior.

(i) Training already includes noisy, off-equilibrium states. As described in Appendix G.5, our RL
dataset is constructed by letting a pretrained CFR agent play against a random opponent in both
Leduc and Limit Texas Hold’em. We record all states but only use the CFR agent’s actions as labels.
Because the random agent frequently deviates from equilibrium play, the resulting trajectories con-
tain diverse and imperfect state distributions far from idealized CFR self-play. Thus, ToolPoker is
trained on a broad range of noisy, non-CFR game patterns rather than purely clean solver trajectories.

(ii) Evaluation already involves diverse, non-expert opponents. In online evaluation, ToolPoker
plays against several traditional imperfect-information algorithms (NFSP, DQN, DMC) and LLM-
based agents (e.g., prompting-only, BC+RIRL). These opponents generate highly variable and often
non-equilibrium strategies. ToolPoker’s consistent superiority across these settings demonstrates
that it does not overfit to synthetic solver traces and can robustly respond to suboptimal or noisy
play.

(iii) Why ToolPoker is expected to generalize to human gameplay. At inference time, ToolPoker
does not rely on imitation of historical actions. Instead, it queries the unified solver API to retrieve
equilibrium-oriented quantities (e.g., optimal action, equities, ranges) for the current state. Because
solver outputs depend only on the observed state—regardless of whether the trajectory arose from
CFR, heuristics, or human mistakes—ToolPoker can consistently anchor its reasoning to accurate
game-theoretic guidance. This design inherently promotes robustness to out-of-distribution human-
style inputs.

While we have not yet evaluated ToolPoker on real human gameplay, extending our assessment to
human or crowd-sourced datasets is an exciting direction for future work.

I DISCUSSION OF FUTURE WORKS

Our research paves the way for further exploration of TIR in more complex strategic settings, shifting
the focus beyond solely improving models’ internal policies. Future work may explore richer tool
ecosystems, multi-agent interactions, and principled frameworks for balancing internal reasoning
with external computation, ultimately advancing the development of reliable AI systems for high-
stakes decision making.

J LLM USAGE

We used an OpenAI LLM (GPT-5) as a writing and formatting assistant. In particular, it helped refine
grammar and phrasing, improve clarity, and suggest edits to figure/table captions and layout (e.g.,
column alignment, caption length, placement). The LLM did not contribute to research ideation,
experimental design, implementation, data analysis, or technical content beyond surface-level edits.
All outputs were reviewed and edited by the authors, who take full responsibility for the final text
and visuals.
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Table 13: Realistic Examples of Qwen2.5-3B-Instruct in playing Limit Texas Hold’em. It demon-
strates three limitations of LLMs in playing poker: (i) Heuristic reasoning; (ii) Factual Misunder-
standing; (iii) Knowing-Doing Gap. Errors identified during reasoning are highlighted in red.

Prompt

You are a professional poker player playing 2-handed limit-holdem Poker. The following will be a game
scenario and you need to make the optimal decision.

Here is a game summary:

In Limit Hold’em, each player receives exactly one private card, Small Blind and Big Blind ante 1 and 2
chips, respectively. Everyone started with 100 chips.

The player positions involved in this game are Small Blind, Big Blind.

In this hand:

Your position is Big Blind, and your holding is Your card: [’Two of Clubs’, ’Ten of Hearts’].

Community card: Not yet revealed
Current betting round: pre-flop
Current pot: 6 chips

Your admissible actions:

fold
call
raise

Now it is your turn to make a move.

To remind you, the current pot size is 6 chips, and you are in position Big Blind, and your holding is Your
card: [’Two of Clubs’, ’Ten of Hearts’].

Decide on an action from the admissible actions based on the strength of your hand on this board, your
position, and actions before you.

Your optimal action is:

Model Output by Qwen2.5-3B-Instruct

<think> Let’s analyze the situation:
1. Position and Pot Size: You are in the Big Blind position, which is a disadvantageous position as you are
forced to bet first. The pot size is 6 chips, and you have 50 chips in total, so you have a 90% stack to the pot.
2. Community Cards: The community cards are not yet revealed, so there is no information about the board
yet.
3. Your Hand: You have the ’Two of Clubs’ and ’Ten of Hearts’. This is a suited connector, which is a decent
hand. However, it is not a strong hand by itself, and it is vulnerable to a flush draw or a straight draw.
4. Opponent’s Hand: The opponent is in the Small Blind position, which is a more advantageous position as
they can see your bet and respond accordingly. They have 50 chips as well, so they have a 90% stack to the
pot.
5. Betting Rounds: This is the pre-flop round, and the only bet is the small blind. The big blind (you) is the
first to act.
6. Admissible Actions: You can fold, call, or raise. Given the above considerations, let’s evaluate the options:
- Fold: Folding would be a safe play if you believe your hand is not strong enough to compete with the
opponent’s potential hand. However, you have a decent hand, and the pot odds are favorable if you can get a
raise.
- Call: Calling would mean you are matching the small blind’s bet. This is a neutral play, but it doesn’t give
you any advantage or disadvantage.
- Raise: Raising would give you more information about your opponent’s hand. If they call, you can see
their hand and decide whether to continue or fold. If they fold, you win the pot with your hand. Considering
the strength of your hand and the pot odds, a raise is the optimal action. You can raise to 4 chips, which is
a reasonable amount to get your opponent to consider folding or calling. Therefore, the optimal action is to
raise. </think>
<answer>raise</answer>
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Table 14: Realistic Examples of GPT-4o in playing Limit Texas Hold’em. It demonstrates three
limitations of LLMs in playing poker: (i) Heuristic reasoning; (ii) Factual Misunderstanding. Errors
identified during reasoning are highlighted in red.

Prompt

You are a professional poker player playing 2-handed limit-holdem Poker. The following will be a game
scenario and you need to make the optimal decision.

Here is a game summary:

In Limit Hold’em, each player receives exactly one private card, Small Blind and Big Blind ante 1 and 2
chips, respectively. Everyone started with 100 chips.

The player positions involved in this game are Small Blind, Big Blind.

In this hand:

Your position is Small Blind, and your holding is Your card: [’King of Spades’, ’Ten of Clubs’].

Community card: Not yet revealed
Current betting round: pre-flop
Current pot: 3 chips

Your admissible actions:

fold
call
raise

Now it is your turn to make a move.

To remind you, the current pot size is 3 chips, and you are in position Small Blind, and your holding is Your
card: [’King of Spades’, ’Ten of Clubs’].

Decide on an action from the admissible actions based on the strength of your hand on this board, your
position, and actions before you.

Your optimal action is:

Model Output by GPT-4o

<think> In heads-up Limit Hold’em pre-flop, hand values are generally stronger than in full-ring games
because the range of hands played is wider and aggression is more frequent. The hand King-Ten offsuit is a
marginal hand. It is not a premium hand, but it is playable in heads-up situations, especially from the Small
Blind position where you have the advantage of acting first post-flop.

Given that the pot is 3 chips (small blind 1 chip + big blind 2 chips), and it is pre-flop with no bets yet, one
might consider calling to see a flop. However, KT offsuit is not strong enough to profitably continue, and
defending too wide risks being exploited.

Raising here is not justified, as the hand lacks sufficient value and fold equity. Folding avoids marginal spots
and preserves chips for stronger hands.

Therefore, the optimal GTO decision is to call and see the flop.</think> <anwer>fold</answewr>
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Table 15: Heuristic Reasoning (HR) Judge Prompt.

HR Judge Prompt Template

You are a judge evaluating the factual correctness of an LLM’s reasoning in a poker decision.
You will be given:
(1) The game context (hand, position, pot size, betting round, etc.)
(2) The LLM’s reasoning text
(3) The LLM’s final action
(4) Objective equity analysis from an external tool (hand strength, win probability, Monte Carlo equity, etc.)
Your task:
- Identify if the reasoning shows reliance on *heuristics* (e.g., ”I feel strong,” ”I have a face card,” ”opponent
probably bluffing”) rather than *strategic/game-theoretic principles* (e.g., pot odds, equity calculation, Nash
equilibrium considerations).
- Score the reasoning on a 0–2 scale:
- 0 = Purely heuristic-driven (surface-level or intuitive analogies, no rigorous reasoning)
- 1 = Mixed (some heuristic reasoning, some strategic/game-theoretic reasoning)
- 2 = Principled (reasoning grounded mainly in sound game-theoretic or probabilistic principles)
Output format (JSON only):
{
“heuristic reasoning score”: 0 | 1 | 2,
“explanation”: “Brief explanation citing specific parts of the reasoning.”
}

Table 16: Factual Alignment (FA) Judge Prompt Template.

FA Judge Prompt

You are a judge evaluating the factual correctness of an LLM’s reasoning in a poker decision.
You will be given:
(1) The game context (hand, position, pot size, betting round, etc.)
(2) The LLM’s reasoning text
(3) The LLM’s final action
(4) Objective equity analysis from an external tool (win probability, hand range of both you and the opponent,
etc.)
Your task:
- Compare the LLM’s reasoning with the objective ground truth.
- Identify whether the reasoning contains factual misunderstandings, such as:

• Incorrect classification of hand strength (e.g., calling AA ”a weak hand”)
• Misstating probabilities or equity
• Incorrect statements about positions, betting order, pot size, or available actions
• Misinterpreting community cards, hole cards, or ranges

- Do not penalize the LLM for strategic differences (e.g., preferring raise vs. call), only for factual inaccura-
cies.
Scoring (0–2 scale):
- 0 = Major factual errors (core aspects wrong, e.g., misclassifying AA as weak, misstating betting order)
- 1 = Minor factual errors (some inaccuracies but overall interpretation mostly correct)
- 2 = Factually correct (no significant inaccuracies; reasoning aligns with objective equity and context)
Output format (JSON only):
{
“factual correctness score”: 0 | 1 | 2,
“explanation”: “Brief explanation citing specific parts of the reasoning.”
}
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Table 17: Action-reasoning Consistency Judge Prompt Template.

AC Judge Prompt

You are a judge evaluating the consistency between an LLM’s articulated reasoning and its final decision in
a poker hand.
You will be given:
(1) The poker state description (public cards, private cards, pot size, etc.)
(2) The LLM’s step-by-step reasoning text
(3) The LLM’s final action (fold, call, raise, etc.)
Your task:
- Determine whether the LLM’s reasoning logically implies the same action as its final decision.
- If the reasoning suggests one action (e.g., fold) but the final action differs (e.g., call or raise), this is a
”knowing–doing inconsistency.”
- If the reasoning and action align, mark it as ”consistent.”
Scoring (0–2 scale):
- 0 = Inconsistent — The reasoning clearly points to one action, but the final decision is different.
- 1 = Partially consistent — The reasoning is mixed, ambiguous, or suggests multiple options, with the final
action aligning with only part of the reasoning.
- 2 = Fully consistent — The reasoning unambiguously supports the final action and no contradictions are
present.
Output format (JSON only):
{
“factual correctness score”: 0 | 1 | 2,
“explanation”: “Brief explanation of why reasoning matches, partially matches, or mismatches the final
action.”
}
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Table 18: Behavior Cloning Dataset Construction Template.

AC Judge Prompt

You are an poker expert working on {game name} explaining optimal CFR-based play using rigorous game
theory. Your task is to generate reasoning traces to explain the action from CFR from the game-theoretic
perspective like professional poker players.

You will be given the following information:

Game: {game name}
Street: {state name};
Position: {position name};
Stack (remaining chips):
- my stack: {my stack},
- opponent stack: {opponent stack};
Pot (betted chips): {total pot}, my pot: {my pot}, opponent pot: {opponent pot};
Blinds/Antes: {antes};
Board/Public Card: {public card};
Action History: {action history};

My Winning Probability: {my equity}
Opponent’s Winning Probability: {opponent equity}

My Hand Histogram: {my hand his}
Opponent’s Hand Histogram: {opponent hand his}

Mix Action Strategy from CFR: {action dist}

<think>
1) Situation — Summarize current situation from my perspective, e.g., position, stack,
2) Range Estimatation - Explain the range estimation of my hand and opponent’s hand based on the hand
histogram, respectively. And compare them to see what range of hand do I continue with?
3) Board Fit — Explain how the board texture interacts with both ranges, and whether future cards are more
favorable for me or the opponent.
4) Hand Quality — Judge my hand’s strength given its equity compared to opponent’s hand, and also utilize
the hand histogram to estimate who holds more of the strongest possible combos.
5) Strategy Mix — We are given the action probabilities from CFR, explain the strategy that which action is
more likely to be taken to achieve equilibrium.
6) Stack Sizes/ Pot Size - Analyze the chips remaining and the pot size to see how much room there is to
maneuver.
7) Opponent strategy - Analyze the action history to predict what is my opponent’s strategy facing my bet.
8) Final Action - Based on the above analysis, explain the final action that I should take.
</think>

Be concrete, mathematical, and educational. Reference specific probabilities and regret values. Write clear
numbered steps (1–8)

Format your response as:
<think>
[Detailed step-by-step strategic analysis with specific numbers]
</think>
<answer> {expert action} </answer>
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Table 19: Case Study of BC-RIRL fine-tuned Qwen2.5-7B in Leduc Hold’em (Part I). Errors iden-
tified during reasoning are highlighted in red.

Prompt

You are an poker expert working on Leduc Hold’em (6 cards: 2J, 2Q, 2K in two suits) explaining optimal
CFR-based play using rigorous game theory. Your task is to generate reasoning traces to explain the action
from CFR from the game-theoretic perspective like professional poker players.

Leduc Hold’em is a simple two-player zero-sum imperfect-information poker game. The deck contains six
cards: two Jacks (J), two Queens (Q), and two Kings (K). One private card is dealt to each player, and one
card is placed aside unseen. There are two betting rounds: Pre-flop and Flop. In the Pre-flop stage, the
community card is unseen. And in the Flop stage, a single community card is then revealed. In each round,
the first player must bet or check. If a bet is made, the other player must call or fold or raise (up to one raise
per round). If one player raises, the other player can only call the raise or fold. All bets are of fixed size. At
showdown, a pair beats any high card; between high cards, K > Q > J.

Here is a game summary:

In unknown, each player receives exactly one private card, and small blind antes 1 chips and big blind
antes 2 chips. Everyone started with 100 chips. The player positions involved in this game are Small Blind,
Big Blind.

In this hand:

Your position is Small Blind, and your holding is Your card: Queen of Heart.

Community card: King of Spade
Current betting round: flop
Current pot: 4 chips

This is the historical action of the game:
Small Blind call; Big Blind check;

Your admissible actions:

fold
check
raise

Now it is your turn to make a move.

To remind you, the current pot size is 4 chips, and you are in position Small Blind, and your holding is Your
card: Queen of Heart.

Decide on an action from the admissible actions based on the strength of your hand on this board, your
position, and actions before you.

Your optimal action is:

Model Output by BC-RIRL fine-tuned Qwen2.5-7B-Instruct (Part I)

<think> 1) Situation & Game State:
- Position: Small Blind (SB)
- Current street: Flop
- Pot size: 4 chips (SB 1 + BB 2 + previous actions)
- Action history: SB called, BB checked
- Effective stacks: 98 chips behind for both players
- Your private card: Q♡
- Board card: K♠

2) Hand Quality and Board Interaction:
- You hold Q♡ while the board shows K♠.
- Your hand strength is currently just high card (Queen), with potential to improve to QQ.
- Because one King is already on the board, the chance opponent holds KK is reduced.
- Relative to the board, your equity is moderate but not strong.

3) Strategy Mixing & CFR Output:
- CFR equilibrium prescribes calling here with probability 1.0.
- Calling is the unique optimal action.
- Folding or raising has negative expected value.

continue in Tab. 20.
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Table 20: Case study of BC-RIRL fine-tuned Qwen2.5-7B in Leduc Hold’em (Part II), which is
continued from Tab. 19. Errors identified during reasoning are highlighted in red.

Model Output by BC-RIRL fine-tuned Qwen2.5-7B-Instruct (Part II)

4) Stack Sizes & Future Commitment:
- Pot-to-stack ratio is small (4 vs 98).
- A call costs very little and preserves flexibility.
- Raising would overcommit without justification.

5) Opponent Range Estimation:
- BB checked, capping their range to many weak hands and some traps.
- Against this range, equilibrium prefers a passive call.

6) Information Set & Regret Minimization:
- CFR regret tables show positive cumulative regret only for calling.
- Folding/raising have negative regret, thus dominated.

7) Conclusion:
- The optimal action is to call.
- This preserves equity and follows CFR equilibrium.

</think>
<answer>call</answer>

Table 21: TIR rollout structured prompt template.

TIR Rollout Prompt

You are a helpful AI Assistant that provides expert poker analysis. You are given a partial observation from
a player and admissible actions, you will need to provide the GTO action to win the game. You now have the
ability to invoke external poker solvers to obtain the GTO action and other auxiliary quantities (e.g., equity,
all players’ possible hand ranges, and the action distribution from CFR) during the reasoning. The tool calling
will be wrapped in <tool></tool>. The returned results will be wrapped in <output> </output> to
help provide precise game-theoretic reasoning with GTO final actions.

The reasoning process is wrapped in <think> </think> tags. The final action is wrapped in <answer>
</answer>.

Note that:
- To invoke poker solvers, please write one JSON command inside <tool> </tool> tags. Each command
should have a name and args key, with args being a dictionary.
- Example: <tool>solver(params name1 = params value1, ...)</tool>
- Tools expect specific JSON input formats . Do not make up tools or arguments that are not listed.
- After you have used the tools , you will see the tool outputs inside <output> </output> tags in the
same order from the system.

For example, uou can respond in the following format:
<think>[Reasoning process]</think> <tool>[Poker solver execution arguments]</tool>
<output>[Output of poker solver]</output> <think>[Reasoning process.]</think>
<answer>[Final action]</answer>.
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Table 22: Example of tool-integrated behavior cloning data

Structured Prompt

(omit the prompt description here)
Structured Output

<think>
1) Situation
- You are on the turn in Limit Hold’em acting from the Small Blind with stacks remaining 90 each and the
pot currently 20 (you and opponent have each contributed 10). The board is S3, SJ, HQ, SK (three spades:
3♠, J♠, K♠; also J–Q–K high cards).
- The Big Blind checked to you on the turn.

Let’s call poker solver to get GTO actions, equities and hand ranges. <\think>
<tool>solver(player_card=[’SQ’,’C7’], public_card=[’S3’,’SJ’,’HQ’,’SK’],
my_pot=6, opponent_pot = 6, my_raise_num=1, opponent_raise_num=1
legal_actions=[’raise’, ’fold’, ’check’])

<think> (omit reasoning process here) </think>
<answer>call</answer>
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