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Abstract
Long-context models (LCMs) have shown great
potential in processing long sequences, with re-
search showing they can accurately locate token-
level salient information. Yet, the generation per-
formance of these LCMs is far from satisfactory
and might result in misaligned responses, such as
hallucinations. To enhance the generation capabil-
ity, existing works have investigated the effects of
data size and quality for both pre-training and in-
struction tuning stages. Though achieving mean-
ingful improvement, previous methods fall short
in either effectiveness or efficiency. In this paper,
we introduce LOGO, an efficient and effective
training strategy that first introduces preference
optimization for long-context alignment. LOGO
consists of a reference-free preference optimiza-
tion strategy and a corresponding efficient data
synthesis process. By training with only 0.3B
data on a single 8×A800 GPU machine for 16
hours, LOGO allows the Llama-3-8B-Instruct-
80K model to achieve comparable performance
with GPT-4 in real-world long-context tasks while
preserving the model’s original capabilities on
other tasks, e.g., language modeling and MMLU.
Besides, LOGO can also scale the models’ context
window size while enhancing their performance.

1. Introduction
Processing long input sequences is a fundamental capabil-
ity for Large Language Models (LLMs) nowadays, with a
few models being able to process context lengths exceed-
ing millions of tokens (Team et al., 2024; MiniMax et al.,
2025). This capability unlocks the potential of LLMs for
novel tasks and cutting-edge applications, such as high-
resolution image processing (Tian et al., 2024) and long
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video understanding (Weng et al., 2025). Additionally, long-
context models (LCMs) eliminate the need for complex
toolchains and intricate workflows, e.g., RAG (Yu et al.,
2024), that were previously required to address context-
length constraints (Ravaut et al., 2024), facilitating tasks
such as long-document summarization (Laban et al., 2024)
and project code analysis (Zhu et al., 2024).

Yet, recent studies have pointed out that open-source LCMs
failed to achieve satisfactory performance in real-world or
complex synthetic long-context tasks, where LCMs might
produce misaligned results, such as instruction unfollowing
and hallucinations (Tang et al., 2024; Zhang et al., 2024a).
To mitigate the above issues, the open-source community
has made significant strides, primarily focusing on building
and scaling up high-quality synthetic data to post-tune the
models (Wu et al., 2024a; Bai et al., 2024; Fu et al., 2024;
Li et al., 2024). These efforts, as shown in figure 1, have led
to notable improvements but still fall short in terms of either
effectiveness or efficiency. For instance, the Llama-3.1-8B-
128K model (AI@Meta, 2024a), trained on over 800B long-
instruction data, still underperforms the Llama-3-8B-80K
model (Zhang et al., 2024b), which was post-trained with
only 1.5B high-quality data. However, the Llama-3-8B-80K
model shows only slight improvement over the backbone
and still lags far behind closed-source models like GPT-4.

To investigate the reasons behind LCMs generating mis-
aligned outputs, we visualized the information retrieval ca-
pability (reflected by Retrieval Score) and the generation
capability (reflected by Recall Score) of different LCMs
on a synthetic retrieval task1. As shown in figure 1(b), we
can observe a minimal difference among the retrieval scores
of various LCMs, but a large difference in their generation
performance. This suggests that while LCMs are adept at
identifying key information within long contexts, they
struggle to effectively utilize the retrieval information for
generation. The underlying cause might stem from the fact
that these methods primarily focus on optimizing the train-
ing data for the Supervised Fine-Tuning (SFT) stage, which
aims to enhance the adherence of LCMs to long instructions

1Retrieval capability is reflected through the recall score of
salient tokens located by retrieval heads (Wu et al., 2024b). We
calculate the average recall score across the top-10 retrieval heads.
A higher retrieval score indicates that the LCM can retrieve more
critical information. Details are shown in Appendix A.
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Figure 1. (a) Performance of widely-used LCMs on real-world long-context tasks, where some LCMs feature large context window size
but relatively poor performance; (b) Retrieval score (information retrieval ability) and Recall score (generation ability) of LCMs on the
synthetic retrieval long-context task (multi-value NIAH); (c) Long-context (pre-)training data size for each LCM.

but lack further preference-alignment training to further
calibrate the model’s outputs. Additionally, given that the
sequence length of the context is typically much longer
than the prediction portion, the feedback signal during the
SFT stage, i.e., cross-entropy loss, from the prediction is
often overshadowed by that from the context. Thus, merely
optimizing LCMs with inadequate SFT data is insufficient.

In this paper, we propose LOGO, an efficient and effective
Long cOntext aliGnment training strategy based on prefer-
ence Optimization that is suitable for both context window
scaling and long-context alignment. Two key components
are involved in LOGO: (1) an efficient preference data syn-
thesis pipeline tailored for long-context scenarios, and (2)
a long-context preference optimization training objective.
It is worth noting that training with long sequences is a
memory-intensive task (Dao, 2023) and the DPO algorithm
also has a high GPU memory demand. Thereby, LOGO
adopts a reference-free training objective and the positional
indices synthesis method (Zhu et al., 2023) to overcome the
GPU memory-bound and improve the training efficiency.

By training with LOGO, LCMs can achieve significant im-
provements in real-world tasks and gain moderate improve-
ments in synthetic and language modeling tasks, as well as
maintaining good performance on the short-context tasks,
e.g., MMLU (Hendrycks et al., 2020). As shown in fig-
ure 1(a), our Llama-3-8B-LOGO significantly outperforms

GPT3.5-Turbo in real-world tasks and approaches the per-
formance of some top closed-source models like GPT-4.
Additionally, LOGO can also benefit the context window
scaling stage of short-context LLMs such as Llama-2-7B-
Chat-4K (Touvron et al., 2023), where we can extend their
context window size up to 8 times (e.g.,32K context window
size for Llama-2-7B-Chat-4K) and simultaneously enhanc-
ing their performance substantially.

2. Related Work
2.1. Context Window Scaling and Long-context

Alignment

Two steps are essential for empowering LLMs with the abil-
ity to handle long-context tasks: 1) context scaling, which
expands the limited context window size to support long-
context tasks, e.g., from 8k to 128k; and 2) long-context
alignment, which ensures that LCMs can follow long in-
structions. Currently, the open-source community mainly
focuses on the former, primarily by (1) post-training models
on long instruction data (Chen et al., 2023b; Xiong et al.,
2023; Fu et al., 2024; Zhang et al., 2024b), (2) devising
novel model architectures (Yang et al., 2023; Zhang, 2024;
Tworkowski et al., 2024), and (3) modifying positional en-
coding (Peng et al., 2023a; Chen et al., 2023a; Jin et al.,
2024) to extend the context window of LLMs. However,
current works (Tang et al., 2024; Hsieh et al., 2024; Zhang
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et al., 2024a; You et al., 2024) indicated that LCMs still
underperform in long-context tasks, frequently manifesting
issues such as hallucinations and failure to follow instruc-
tions, despite possessing large context window size. To mit-
igate this issue, Bai et al. (2024); Wu et al. (2024a); Chen
et al. (2024) proposed to align the LCMs in long-context
scenarios by synthesizing long-dependency instruction data
to fine-tune the models. Some LLMs are even pre-trained
with massive long instruction data (Jiang et al., 2023; Dubey
et al., 2024; Abdin et al., 2024). Yet, despite numerous
attempts that have been made to improve the data quality
and quantity, the performance of open-source LCMs still
lies far behind close-source LCMs. In this work, we tackle
the above challenge by rethinking the long-context training
objective. We introduce an efficient long-context preference
optimization training strategy, i.e., LOGO. With a small
amount of data and computational resources, LOGO can
significantly enhance the model performance of LCMs.

2.2. Direct Preference Optimization

Direct Preference Optimization (DPO) (Rafailov et al.,
2024) is a widely adopted RLHF algorithm (Ouyang et al.,
2022) that aims to align models with human preferences.
Compared to other reinforcement learning methods, e.g.,
PPO (Schulman et al., 2017), DPO can achieve strong per-
formance while eliminating the need for a separate reward
model. Different from Supervised Fine-Tuning (SFT) which
models to align with ground truth at the token level, DPO up-
dates model parameters based on discrete evaluation scores.
Specifically, DPO guides the model to “reject” misaligned
responses and “accept” preferred responses with differently
assigned prediction scores. Significant efforts have been
made to improve the DPO, such as RSO (Liu et al., 2023),
CPO (Xu et al., 2024), TPO (Saeidi et al., 2024), and
ORPO (Hong et al., 2024). Compared to short-context
tasks, obtaining DPO data for long-context tasks is consid-
erably more challenging due to the absence of open-source
evaluation models designed for long-context tasks and the
complexities involved in manual annotation. Thereby, we
propose an efficient and theoretically guaranteed method for
long-context DPO data synthesis.

3. Methodology
3.1. Background

Direct Preference Optimization Given prompt x, DPO
aims to maximize the likelihood of a chosen response yw
over a rejected one yl, thereby preventing the model from
generating undesired content. There are three essential mod-
ules in DPO: one frozen reference model and one trainable
policy model for calculating the DPO loss jointly, and one
evaluation strategy (or evaluation model) for distinguishing
between yw and yl. SimPO (Meng et al., 2024) is an im-

proved variant of DPO, which employs an implicit reward
formulation that directly aligns with the generation met-
ric, e.g., PPL, thereby eliminating the need for a reference
model. The training objective of SimPO can be written as:

LSim(πθ) = −E(x,yw,yl)

[
log σ

(
β

|yw|
log πθ(yw|x)

− β

|yl|
log πθ(yl|x)− γ

)]
,

(1)

where πθ is the policy model, β (scaling of the reward differ-
ence) and γ (target reward margin) are the hyper-parameters
to separate the preferred and dis-preferred responses.

Positional Indices Synthesis Transformer-based models
rely on positional indices to identify the relative position
of each token (Raffel et al., 2020). One efficient method to
extending the model’s input context length is to adjust the
positional indices, simulating long-sequence inputs with-
out modifying the actual input sequence (Press et al., 2021;
Ruoss et al., 2023). By default, the positional indices of a
sequence of length K are P(K) = {0, 1, · · · ,K − 1}. To
extend the sequence length from K to K ′, we can syn-
thesize the positional indices: PB(K

′) = {0 + b0, 1 +
b1, · · · ,K − 1 + bK−1}, where B indicates the positional
bias {b0, b1, · · · , bK−1} applied to each original position
index and K−1+bK−1 = K ′. To ensure effectiveness, the
synthesis of position indices should achieve a uniform dis-
tribution of relative distances within the extended sequence
length [0,K ′] and cover as many of the extended positional
indices as possible (Wu et al., 2024a).

3.2. Long-context alignment with LOGO

3.2.1. TRAINING DATA SYNTHESIS OF LOGO

Given the challenges of preference data synthesis for
long-context tasks, we begin by presenting the process
of LOGO’s preference data synthesis. For each long-
context sample, we can format it as a triplet {Q, C, P},
where Q, C, and P represent the question, the reference
long-context, and the model prediction, respectively. As
shown in Fig. 2, we first divide C into equal-length chunks
{C1, C2, · · · , Cn}. Then, three steps are involved: (1) Im-
portance Scoring with Automatic Evaluator, (2) Preference
Data Synthesis, and (3) Positional Indices Synthesis.

Importance Scoring with Automatic Evaluator To con-
struct preference data in the long-context scenario, an ef-
ficient method is to guide the model to respond based on
contexts with varying degrees of influence on the outcome.
More concretely, to construct the chosen data, we only pro-
vide the model with context relevant to the question, thus
enhancing the fidelity of the model’s output by reducing
contextual interference (Shi et al., 2023). Conversely, we
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Figure 2. Training data synthesis process of LOGO, where we guide the model to generate preference data based on the detected critical
segments within the long context and apply a positional synthesis strategy to “extend the sequence length”.

utilize irrelevant context or reduce key information to guide
the model in generating misaligned content like hallucina-
tions. To find the relevant chunks Ci within the context,
we utilize an automatic evaluator Eval(·) to measure the
“contribution” of each chunk Ci to the question Q. Specif-
ically, we identify all the entities within a chunk Ci and
calculate the overlapping entities between each Ci and Q,
where a greater overlap indicates a higher influence of Ci

to Q. Thereby, we can efficiently assign importance scores
sS = {s1, s2, · · · , sn} to all the chunks.

Preference Data Synthesis Let N represent the number
of chunks within a context, we define a threshold δ to filter
the critical chunks. Specifically, chunks C>δ scoring above
δ are considered as critical chunks while chunks C<δ scor-
ing below δ are considered as irreverent chunks. Then, we
combine Q and C>δ for model to generate correct prediction
Pchosen, and adjust the ratio of chunks sampled from C>δ

and C<δ for model to generate wrong predictions Prejected.

It is worth noting that the open-source community currently
lacks effective methods to effectively identify models’ mis-
aligned outputs for the long-context tasks, which poses a
great challenge for selecting chosen and rejected samples in
preference data synthesis2. Therefore, instead of construct-
ing one rejected sample with a specific error pattern,
we can expand the rejected space to push the model
away from a range of possible wrong predictions. Specif-
ically, we construct Prejected based on two misaligned er-
ror patterns: (1) model generation based on all irrelevant
chunks (C<δ), and (2) model generation based on partially

2We analyze the method of utilizing GPT-4 as an evaluation
model and show some misalignment cases in Appendix B.

relevant chunks (C<δ∪C>δ). Subsequently, the constructed
Pchosen and Prejected share the same context C′, which is
constructed from all the chunks in C>δ and partial chunks in
C<δ . Finally, one LOGO training sample can be written as(
{Q, C′, Pchosen}, {Q, C′, P

(i)
rejected}Mi=1

)
, where M is the

rejected sample number in equation 4.

Positional Indices Synthesis Given that each preference
data includes (M + 1) instances, with one chosen sample
and M rejected samples, a long context length of |C′| can
easily lead to GPU out of memory (even with 80GB mem-
ory). To address this, we employ a positional encoding
synthesis strategy. By assigning different synthetic posi-
tional indices to each chunk, we can simulate long-sequence
input with just short context (Wu et al., 2024a). Specifically,
to ensure that the synthetic positional indices do not disrupt
the semantic structure of short context, the positional indices
within each chunk should be continuous, while indices be-
tween adjacent chunks can be discrete, i.e., omitting certain
positional indices (as shown in sub-Fig. ③ in Fig. 2). Given
N equal-length chunks within each sample3, to achieve
a uniform distribution of relative distance within the ex-
panded context length [0,K ′), each positional bias term
bi ∈ B should be sampled from a uniform distribution. The
synthetic positional indices can be written as:

{
PB(K) = {i+ bi}k−1

i=0 ,

where bi ∼ U(1, (i mod |Ci|)× (K ′ −K)/N),
(2)

3Since the length of question Q and prediction P are much
shorter compared to the long context C, we can ignore the length
of Q and P for simplicity.
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where (i mod |Ci|) indicates the chunk index where the cur-
rent positional index i resides, and (K ′ −K)/N represents
the expansion size for each chunk.

We provide a theoretical guarantee that the synthetic po-
sitions can cover all possible scenarios given an adequate
amount of data. Further details on the positional synthesis
process are provided in Appendix E.

3.2.2. TRAINING OBJECTIVE OF LOGO

The training objective of LOGO can be written as:

LLOGO(πθ) = L(πθ) + λE(x,yw) log πθ(yw|x)), (3)

where L(πθ) is the preference optimization term, λ is the
hyper-parameter, and E(x,yw) log πθ(yw|x)) is the SFT reg-
ularization term4.

As mentioned above, we expanded the rejected sample space
to address the issue of lacking long-context evaluation mod-
els. Consequently, we guide the model to simultaneously
reject multiple potential rejected samples to construct the
preference loss objective. Thus, L(πθ) can be written as:

L(πθ) = −E
(x,yw,y

(1···M)
l )

[
log σ

(
β

|yw|
log πθ(yw|x)

− β

M |yl|

M∑
j=1

log πθ(y
(j)
l |x)− γ

)]
,

(4)

where M is the number of rejected samples, and the remain-
ing terms are consistent with those defined in equation 1.

It is worth noting that L(πθ) is also free of the reference
model and more aligned with the generation tasks5, which
is efficient for long-context training. We have theoreti-
cally proven that L(πθ) has a small generalization error and
shows a reliable model performance on the unseen data in
Appendix C and conduct the convergence property analysis
from the gradient perspective in Appendix D.

4. Experiment
4.1. Settings

Training Dataset Construction We construct the syn-
thetic datasets based on two corpora: (1) 4,000 instances
sampled from long-llm-data (Zhang et al., 2024b), which
includes reference contexts from multiple domains (e.g.,
biography, paper, etc.) and questions generated by GPT-4,
covering tasks such as Single-Detail QA, Multi-Detail QA,

4The regularization term serves two key purposes: (1) to pre-
vent reward hacking (Yuan et al., 2024; Hong et al., 2024), and (2)
to ensure that the policy model πθ maintains its original capabili-
ties acquired through SFT/pre-training without drifting away.

5Since L(πθ) is similar to the SimPO loss function.

and Summarization; (2) 2,000 instances sampled from Red-
Pajama (Computer, 2023) to mitigate forgetting, where we
prompt the open-source LCM Qwen2-70B-Instruct (Yang
et al., 2024) to generate questions for each instance. Then,
we split each instance into equal-length chunks, with each
chunk containing 512 tokens. To construct preference and
dis-preference data, we use the spaCy model6, a named
entity recognition (NER) model that can identify all the
entities within a context, as the evaluator Eval(·). We use
the number of overlapping entities between each chunk Ci

and the question Q as the importance score. We set the
threshold δ as 6, chunk number N as 16, and |Ci| = 512.
For positional indices synthesis, we adopt two different
sampling strategies on positional bias B to ensure that all
positional indices are uniformly covered and maintain the
semantic structure of the context. Finally, we have a total
number of 12,000 training samples, with a total data size of
approximately 12,000×512×16×3≈0.3B tokens.

Training Details To validate the effectiveness of our
method while controlling experimental costs, we use the
efficient fine-tuning method LoRA (Hu et al., 2021), which
fine-tunes only the attention and token embedding modules.
We set M as 2 in equation 4. Due to the positional indices
synthesis, LOGO can potentially scale the context window
size and ensure alignment in long-context tasks simulta-
neously. To demonstrate the effectiveness of LOGO, we
experiment with two types of models: (1) Short-context
Models (SCMs) including Llama-2-7B-Chat (Touvron et al.,
2023) and Llama-3-8B-Instruct (AI@Meta, 2024b), which
own context lengths of 4K and 8K, respectively; and
(2) Long-context Models (LCMs), including Llama3-8B-
Instruct-80K (Zhang et al., 2024b), Llama-2-7B-Instruct-
80K (Fu et al., 2024) and Mistral-Instruct-7B-V0.2 (Jiang
et al., 2023), which inherently have long context windows.
For SCMs, we scale the context windows to 8 times their
original context length. We set λ = 0.1 in Eq. 3 and search
the hyper-parameters of equation 4 based on (Meng et al.,
2024) for different models, where β = 10, γ = 3 for Llama-
3-8B-based model, β = 2.5, γ = 0.25 for Mistral-Instruct-
7B-V0.2-based model, and β = 3, γ = 0.6 for Llama-2-7B-
based model. More training details are in Appendix F.

Evaluation and Task Selection We assess the LOGO
training strategy across real-world long-context tasks and
the synthetic retrieval task. Additionally, to explore the
impact of LOGO training for short-context tasks, we evalu-
ate models on MMLU (Hendrycks et al., 2020) and Truth-
fulQA (Lin et al., 2021) tasks. For a comprehensive com-
parison, we evaluate LOGO against existing widely-used
methods from two perspectives: (1) direct context window
scaling, including YaRN (Peng et al., 2023a), PoSE (Zhu

6https://spacy.io/usage/models
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Table 1. Evaluation results on LongBench benchmark. We comprehensively compare LOGO with different strategies, including Training-
Free (Free), SFT and DPO. The comparison is also conducted under two settings: (1) context window scaling on SCMs and (2)
long-context alignment on LCMs. LOGO achieves the best performance under all the settings.

Models Type S-Doc QA M-Doc QA Summ Few-shot Synthetic Avg.

GPT-3.5-Turbo-16K - 39.8 38.7 26.5 67.1 37.8 42.0
GPT-4 - 45.1 55.0 28.3 72.3 41.8 48.5
LongChat-v1.5-7B-32k - 28.7 20.6 26.7 60.0 15.8 30.4
LLama-3.1-8B-Instruct-128K - 23.9 15.8 28.9 69.8 57.5 39.2

Results on SCMs (scaling ×8 context window)

Llama-3-8B-Instruct-8K - 39.3 36.2 24.8 63.5 39.9 40.7
+ YaRN-64K (Peng et al., 2023b) Free 38.0 36.6 27.4 61.7 40.9 40.9
+ PoSE-64K (Zhu et al., 2023) SFT 34.9 31.4 18.7 59.3 44.2 37.7
+ LOGO-64K DPO 39.8 36.7 28.8 65.4 49.0 43.9

Llama-2-7B-Chat-4K - 24.9 22.6 24.7 60.0 5.9 27.6
+ Data-Engineering-80K (Fu et al., 2024) SFT 26.9 23.8 21.3 65.0 7.9 29.0
+ LOGO-32K DPO 26.7 23.3 26.3 63.1 11.1 30.1

Results on LCMs (preserving original context window)

Llama-3-8B-Instruct-80K - 43.0 39.8 22.2 64.3 46.3 42.3
+ LongLoRA (Chen et al., 2023b) SFT 39.3 36.2 26.8 63.5 48.0 42.8
+ SimPO (Meng et al., 2024) DPO 43.2 40.7 23.5 66.7 48.4 44.5
+ LOGO-80K DPO 44.0 41.2 28.1 68.6 53.0 47.0

Llama-2-7B-64K - 28.3 33.2 13.4 62.3 6.1 28.7
+ LongAlign (Bai et al., 2024) SFT 29.9 32.7 26.5 63.8 16.5 33.9
+ LOGO-64K DPO 33.6 28.0 29.4 65.1 24.5 36.1

Mistral-Instruct-7B-V0.2-32K - 31.7 30.6 16.7 58.4 17.9 31.1
+ FILM-32K (An et al., 2024) SFT 37.9 34.9 25.3 64.7 31.2 38.8
+ LOGO-32K DPO 38.3 37.6 26.1 67.0 31.5 40.1

et al., 2023) and data-engineering (Fu et al., 2024); and (2)
long-context alignment, including LongLoRA (Chen et al.,
2023b), LongAlign (Bai et al., 2024), and FILM (An et al.,
2024). Due to space limitation, we report more experi-
mental results, including model performance on language
modeling task, results of scaling to longer context window
size, and more short-context tasks in Appendix G.

4.2. Performance on Long-context Tasks

Results on Real-world Long-context Tasks We evaluate
the LOGO performance on LongBench (Bai et al., 2023), a
comprehensive benchmark suite encompassing 16 distinct
datasets spread across 6 task categories, including Single
Document QA (S-Doc QA), Multi-Document QA (M-Doc
QA), Summarization (Summ), Few-shot, Synthetic, and
Code. It is worth noting that we exclude the Code category
since the code testing data primarily involves contexts of just
around 4,000 tokens and our training data does not cover this
domain. As shown in table 1, where we can observe that: (1)
LOGO achieves the best performance among all the sub-
tasks . Specifically, for SCMs, LOGO outperforms both
training-free and fine-tuning methods. Although these meth-
ods can potentially extend the context window of SCMs,
they significantly impair performance on real-world long-

context tasks. For instance, PoSE causes the Llama3-8B-
Instruct model to drop around 3 points on average compared
to the baseline, with particularly notable declines in perfor-
mance on the summarization tasks. For LCMs, LOGO can
significantly improve model performance, with all LCMs
showing varying degrees of improvement, e.g., Llama-3-
8B-Instruct-80K model shows an average 5-point improve-
ment compared to the baseline, whereas the instruct tuning
method tends to restrict even a well-performing LLMs to
a limited performance bottleneck; (2) Compared to other
methods, LOGO demonstrates significant improvement
in information-intensive tasks, which require the model to
gather information from various parts of the context. Specif-
ically, in summarization and synthetic tasks, LCMs trained
with LOGO achieve an improvement of at least 5 points.

Evaluation Results on Synthetic Retrieval Task To in-
vestigate whether the LOGO training strategy affects the
information retrieval capabilities of LCMs, we conduct a
Needle-in-a-Haystack (NIAH) testing (gkamradt, 2023). As
shown in figure 3, we can find that LOGO can scale the con-
text window for SCMs (left group) and does not adversely af-
fect the original context window size of LCMs (right group).
We can also observe that the original LCMs (middle group)
and those trained with LOGO (right group) share similar

6
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Figure 3. Results of the NIAH testing, where green and red indicate a successful and a failure recall, respectively. The test covers context
lengths from 8K to 88K with incremental intervals of 0.5K. The needle is positioned at varying depths.

patterns, i.e., similar shades of color, yet LOGO improves
performance in areas where the original LCMs fail. This
indicates that LOGO does not compromise the inherent capa-
bilities of LCMs but rather enhances their original weakness.
We can also find that Llama-3-8B-8K model demonstrates
superior context scaling results compared to Llama-2-7B-
4K. This can be attributed to the larger RoPE base value
of Llama-3-8B-8K (500,000) compared to that of Llama-2-
7B-4K (10,000), which has been shown to facilitate context
window scaling effectiveness (Su et al., 2023).

4.3. Performance on Short-context Tasks

MMLU (Hendrycks et al., 2020) and TruthfulQA (Lin et al.,
2021) are two representative short-context tasks that assess
LLMs’ foundational capabilities. As shown in Fig. 4, we
find that LOGO not only preserves the LLM’s inherent
capabilities on short-context tasks but also demonstrates
improvements. This is because LOGO aims to teach the
model to generate responses based on the context rather than
fabricating results (such as producing hallucinations), which
is equally applicable to short-context tasks. We can also find
that scaling context length with LOGO yields better results
than instruction tuning. For instance, in TruthfulQA task,
Llama-3-8B-Instruct-80K shows significant performance
degradation compared to our Llama-3-8B-LOGO. Such a
phenomenon indicates a high “alignment tax” paid from
instruction tuning (Fu et al., 2023).

5. Ablation Study
We analyze the impact of various hyper-parameters in the
LOGO training objective in Sec. 5.1 and discuss the influ-
ence of positional indices synthesis in Sec. 5.2. We mainly
utilize the Llama-3-8B-Instruct-80K model for the exper-
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Figure 4. Model performance on short-context tasks, where the
LOGO training objective can preserve the backbone model capa-
bility while long-context SFT might impair the model performance
on short-context tasks.

iment, as it exhibits strong baseline performance across
a wide range of tasks. The ablation study focuses on real-
world tasks, reporting the average score on LongBench (LB),
and evaluates language modeling performance by calculat-
ing the perplexity (PPL) score on the PG19 test set (Rae
et al., 2019a) with a context length of 64K. Due to space
limitation, we put the detailed analysis between the LOGO
and the SFT training strategies in Appendix H and highlight
the efficiency superiority of LOGO training in Appendix I.

5.1. Analysis of LOGO Training Objective

Effect of SFT Regularization Term λ To investigate the
impact of SFT regularization term in equation 3, we adjust
the value of λ from 0.0 to 1.0. As shown in figure 5(a), we
present a scatter plot visualizing the model’s performance
under different λ settings. We observe that increasing λ
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Figure 5. (a) Comparison among different settings on the language modeling task (PPL) and real-world tasks (Avg. score on LB); (b)
Reward difference distribution under different M settings; (c) Training GPU memory consumption of different settings.

allows the model to achieve a lower PPL score, while the
change of λ value have a minimal impact on performance
for real-world tasks. For example, for the three sets of
experimental results at (M = 2, λ = 0.1, Ctx. = 8K),
(M = 2, λ = 0.5, Ctx. = 8K), and (M = 2, λ =
1.0, Ctx. = 8K), we can observe that as λ gradually in-
creases, the PPL score decreases significantly by nearly 3.5
points, whereas the average score on LongBench differs
by only around 1.5 points. This indicates that LOGO is
robust to the SFT regularization term, and incorporating it
can enhance the model’s language modeling capability.

Impact of the Rejected Samples Number We experi-
ment with different rejected sample numbers M = {1, 2, 3}
in equation 3. Specifically, when M equals 1, the LOGO
Objective degenerates into the SimPO objective. As shown
in figure 5(a), for real-world tasks, more rejected sam-
ples can enhance the model capability; while for the lan-
guage modeling task, it slightly affects the model per-
formance. We also visualize the learned reward margin
r(x, yw) − 1

M

∑M
i=1 r(x, y

(i)
l ) under various M values in

figure 5(b). We can observe that using a larger M can
flatten the distribution and make it easier for the model to
distinguish between preference and rejected samples as the
gap between r(x, yw) and 1

M

∑M
i=1 r(x, y

(i)
l ) gradually in-

creases with larger M . This is because increasing M can
cover more samples with various misalignment patterns.
However, as illustrated in figure 5(c), increasing the value
of M presents a challenge, as it may exceed GPU mem-
ory constraints. It is worth noting that striking a balance
between computational efficiency and performance gains

is crucial. We extend the LOGO with more rejected sam-
ples by applying the context parallelism strategy, i.e., ring-
attention (Liu et al., 2024), and provide a detailed analysis
of this computation-performance trade-off in Appendix I.

5.2. Analysis of Positional Indices Synthesis

Positional Indices Synthesis aims to simulate longer se-
quence lengths by synthesizing positional indices while
keeping the original input tokens unchanged. To assess
the impact of different synthetic lengths on training perfor-
mance, we consider two settings for synthetic data length:
extending from a real input length of 4K to a target length of
64K (Ctx. = 4K) and from a real input length of 8K to a
target length of 64K (Ctx. = 8K). We keep the chunk size
|Ci| constant and set the number of chunks as 8 and 16 for
the two respective settings. As shown in figure 5(a), short-
context synthetic data length significantly diminishes the
model’s performance on both the language modeling task
and real-world tasks (data point (M = 2, λ = 0.1,Ctx . =
4K) versus data point (M = 2, λ = 0.1,Ctx . = 8K)), but
can still overcome the instruction tuning method (42.8 aver-
age score on LongBench) and effectively reduces the GPU
memory requirement during training (figure 5(c)). This
is because when the original context length is relatively
small (4K), it requires scaling up by a larger factor (16 times)
to reach the desired context length (64K). With the same
amount of data, some positional indices may be missed or
infrequently activated, thereby affecting performance.
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6. Conclusion
In this paper, we find that commonly used training ap-
proaches for LCMs, i.e., SFT with a limited amount of
data, may degrade the model’s generation capabilities, lead-
ing to misaligned outputs. To mitigate this issue, we pro-
pose LOGO, a novel and efficient preference optimization
strategy for both context window scaling and long-context
alignment. We tackle the challenge of data scarcity in long-
context preference optimization by introducing a Positional
Indices Synthesis strategy for long-context preference data
synthesis. Additionally, we design an efficient and effective
preference optimization objective tailored for long-context
alignment. With a single 8×A800 GPU machine and just 16
hours of training, LCMs can a achieve significant improve-
ment in long-context tasks while preserving their inherent
capabilities with the LOGO training strategy. Theoretical
analysis and comprehensive experiments across various set-
tings have validated the effectiveness of our method.

Impact Statement
This paper introduces a novel Long-cOntext aliGnment
strategy via preference Optimization, LOGO. Currently,
the long-context model community primarily relies on us-
ing larger amounts of pre-training data during the context
window scaling phase and fine-tuning models with existing
mixed long-text instruction data for long-context alignment.
However, the benefits of the above approach remain limited.
The field still lacks open-source and effective methods for
long-context alignment, particularly in the areas of long-
preference data synthesis and the development of efficient
alignment training objectives. In this paper, during the
preference data construction phase, there still remains a sig-
nificant challenge due to the absence of suitable evaluation
models to assess whether the outputs of LCMs are accurate
or contain hallucinations. While utilizing higher-quality
datasets, such as those created through manual annotation,
could improve outcomes, we acknowledge this as an area
for further improvement. As an academic paper, we have
demonstrated the generalizability of our method through
comprehensive experiments and theoretical proofs. We hope
that this work will provide valuable insights to the open-
source long-context model community, raise awareness of
the importance of long-context alignment, and inspire future
research with broader societal and technical impacts.
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A. Details of Preliminary Experiments
In this section, we illustrate the details of the preliminary studies in section 1, including the experimental settings, task
definitions, and the retrieval score calculation.

Experimental Settings In figure 1(a) and figure 1(b), we evaluate the model performance on the subsets in LongBench (Bai
et al., 2023), including Single Document QA, Multi-Document QA, Summarization, and Few-shot tasks. For each long-
context model, we utilize the same official instructions to guide the model prediction.

Multi-values Needle-in-a-Haystack In figure 1(c), we calculate the retrieval score on the Multi-values Needle-in-a-
Haystack dataset, which requires LCMs to recall multiple values within the context. We provide an example in figure 6:

Multi-values Needle-in-a-Haystack

Context:
... context ...
The best thing to do in San Francisco is to eat a sandwich and sit in Dolores Park.
... context ...
The best thing to do in New York is to eat a sandwich and visit the Statue of Liberty.
... context ...

Question:
What is the single best thing to do in both San Francisco and New York?

Ground Truth: (preference)
eat a sandwich

Figure 6. Demonstration of Multi-values Needle-in-a-Haystack testing sample.

The formal definition of the task is as follows: Given n questions vq and its corresponding answers K = {vkj}nj=1 (the
needle), we insert K in a synthetic context c (the haystack) at random position index ranges P = {vpi}ni=1. We then require
the models to answer q based on the haystack with the inserted needle. It is worth noting that q and K are unique and
irrelevant to the context, ensuring that if an answer is correctly generated, it is indeed copied from the context, not from the
model’s internal knowledge.

Calculation of Retrieval Score Based on Wu et al. (2024b), we define the retrieval score as the recall score of salient
tokens located by retrieval heads. To enhance comprehension, we manage to utilize familiar symbols and definitions that
align closely with previous research. Specifically, denote the current token being generated during the auto-regressive
decoding process as x, and the attention score of a head as a ∈ R|c|. In the task of Multi-values Needle-in-a-Haystack, an
attention head h is denoted as a retrieval head if it meets the following criteria:

• x ∈ ki, where ki ∈ K and x is a token within any one of the needle sentences in K.

• cj = x, j = argmax(a), j ∈ pi, pi ∈ P , i.e., the input token that receives the highest attention probability by this
head is a token within any one of the needle in K and is the same token as the currently generated token.

Let gh be the set containing all copy tokens (also can be viewed as the located tokens) and pasted by a given head h, we
define:

Retrieval score for head h =
|gh ∩ ki|

|ki|
, (5)

It is worth noting that the retrieval score represents a token-level recall rate of the most attended tokens by an attention head.
After obtaining the retrieval score for each head, we start by filtering out the non-retrieval heads by setting the threshold at
0.1. This means that if a head performs copy-paste 10% of the time or more, it will be considered a retrieval head. Then, we
calculate the retrieval head score by averaging the scores of the top 10 attention heads from the remaining retrieval heads.
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Single
Document
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Multi
Document
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Task
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Critical Context
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Q: What are the occupations of Rachel and Monica in Friends currently ?
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Correct
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[Entity_1] [Answer_1] [Entity_2] [Answer_2]Pred: Rachel is a paleontologist; Monica is a chef
Pred: Rachel is a nurse; Monica is a teacher … [Entity_1] [Answer_1] [Entity_2] [Answer_2]

Misalignment (Hallucination)

Figure 7. Demonstration and statistical analysis of different error patterns in long context tasks, where we have the following definitions
of misalignment: (1) Instruction Unfollow: The entities in the model’s prediction are different from the entities in the question; (2)
Hallucination: The entities in the prediction overlaps with the entities in the question, but the answer is incorrect.

B. Design of LOGO Training Objective and Error Pattern Definition in LCMs
Misaligned predictions generated from LCMs can be specifically categorized into two types: failing to follow instructions
and generating hallucinations. In figure 7, we illustrate these two error patterns. Specifically, we define different error
patterns by utilizing the degree of overlap between entities in the responses and the questions, along with specific templates:

• Instruction Unfollow: the entities in the model’s responses do not overlap with the entities in the question.
• Hallucination: there is a partial intersection of entities between the model’s responses and the question, and the entities

in the response coincide with the main subject of the question.

It is worth mentioning that merely utilizing Named Entity Recognition (NER) models and rule-based methods proves
inadequate for identifying these patterns. Instead, a more robust evaluation involving strong LLMs such as GPT-4 or human
assessment is required to accurately identify these patterns. Consequently, in the design of the LOGO training objective, we
do not confine to constructing cases with specific error patterns. Therefore, instead of finding one rejected sample with a
specific error pattern, we can expand the rejected space to push the model away from a range of possible rejected samples.

C. Error Bound Analysis
In this section, we analyze the error bound of the LOGO loss function (equation 4):

LLOGO(πθ) = −E
(x,yw,y

(1···M)
l )

log σ
 β

|yw|
log πθ(yw|x)−

β

M |yl|

M∑
j=1

log πθ(y
(j)
l |x)− γ

 ,

Explanation of the Components in LOGO

• Sigmoid Function: The sigmoid function σ(z) = 1
1+e−z maps real-valued inputs to the range (0, 1), and the

log-sigmoid function log σ(z) encourages large positive values of z.
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• Model Probabilities: πθ(yw|x) is the probability of the preferred response given input x, and πθ(y
(j)
l |x) is the

probability of the dis-preferred response.

• Scaling Factors β
|yw| and β

M |yl| aim to normalize the log-probabilities by the lengths of the responses to account for
varying lengths and scale the contribution using β. γ is a margin hyper-parameter to ensure that the difference between
preferred and dis-preferred responses exceeds a certain threshold.

The LOGO function aims to maximize the difference between the (normalized) log-probabilities of the preferred response
and the average of the dis-preferred responses beyond a margin γ. Specifically, it encourages:

β

|yw|
log πθ(yw|x)−

β

M |yl|

M∑
j=1

log πθ(y
(j)
l |x) ≥ γ.

To analyze the error bound, we can proceed by considering the following steps:

1. Bounding the Loss Function

• Upper Bound: Since log σ(z) ≤ 0 for all real z, the negative log-sigmoid loss − log σ(z) ≥ 0.

• Lower Bound: The function − log σ(z) increases without bound as z → −∞, leading to potentially infinite loss
values. However, in practice, model probabilities πθ(y|x) are bounded below by a small positive value due to numerical
stability (e.g., using softmax outputs and adding a small ϵ).

2. Assuming Bounded Log-Probabilities Let’s assume that there exists a constant C > 0 such that:

− log πθ(y|x) ≤ C, ∀y, x, θ.

This assumption is reasonable since πθ(y|x) ≥ ϵ > 0 for numerical stability.

3. Bounding z Given the boundedness of − log πθ(y|x):∣∣∣∣ β

|yw|
log πθ(yw|x)

∣∣∣∣ ≤ βC

|yw|
,

∣∣∣∣∣∣ β

M |yl|

M∑
j=1

log πθ(y
(j)
l |x)

∣∣∣∣∣∣ ≤ βC

|yl|
.

Thus, z is bounded:

|z| ≤ β

(
C

|yw|
+

C

|yl|

)
+ |γ|.

4. Lipschitz Continuity of the Loss Function The function − log σ(z) is Lipschitz continuous with Lipschitz constant
L = 1

4 since: ∣∣∣∣ ddz (− log σ(z))

∣∣∣∣ = ∣∣∣∣ e−z

1 + e−z

∣∣∣∣ = 1

1 + ez
≤ 1

2
, ∀z ∈ R.

5. Applying Concentration Inequalities Since the loss function is Lipschitz continuous and the losses are bounded, we
can apply concentration inequality, i.e., McDiarmid’s Inequality, to bound the difference between the empirical loss and the
expected loss.

Let {(xi, yw,i, y
(1···M)
l,i )}Ni=1 be N i.i.d. samples. Define the empirical loss:

L̂LOGO(πθ) =
1

N

N∑
i=1

[− log σ (zi)] ,
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where zi is the z corresponding to the i-th sample.

McDiarmid’s Inequality states that for all ϵ > 0:

P
(
LLOGO(πθ)− L̂LOGO(πθ) ≥ ϵ

)
≤ exp

(
−2Nϵ2∑N

i=1 c
2
i

)
,

where ci is the maximum change in the loss function due to the replacement of the i-th sample.

6. Determining the Bounded Differences ci Since the loss function change is bounded due to the boundedness of z and
the Lipschitz continuity:

ci =
1

2
· |znew,i − zold,i| ,

where znew,i and zold,i are the values of z before and after the change in the i-th sample.

Given the boundedness of log πθ(y|x) and the response lengths, we have a finite ci.

7. Bounding the Generalization Error Using the inequality, we can bound the probability that the empirical loss deviates
from the expected loss by more than ϵ:

P
(∣∣∣LLOGO(πθ)− L̂LOGO(πθ)

∣∣∣ ≥ ϵ
)
≤ 2 exp

(
−2Nϵ2∑N

i=1 c
2
i

)
.

This inequality provides a high-probability bound on the generalization error—the difference between the expected loss and
the empirical loss decreases as N increases.

8. Error Bound in Terms of Sample Size and Variability The error bound depends on:

• Sample Size N : Larger N leads to tighter bounds.

• Variability ci: Smaller ci (less variability in the loss function) leads to tighter bounds.

Takeaway Based on the above analysis, we can get:

• To achieve a small generalization error, we need a sufficiently large sample size N . In this paper, there are 0.3B
tokens (6,000 samples) for training, which is enough for convergence.

• Ensuring that the model probabilities πθ(y|x) do not assign extremely low probabilities (avoiding numerical instabilities)
to keep the loss function bounded and the ci small. This is achieved by adopting the strong LLMs (e.g., Llama-3)
for training.

This analysis assures that with sufficient data and proper control of the model probabilities and response lengths, the loss
function LLOGO(πθ) will have a small generalization error, leading to reliable model performance on unseen data.

D. Convergence Property of LOGO from Gradient Analysis Perspective
In this section, we analyze the convergence property of the LOGO training objective from the gradient analysis perspective.
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D.1. Gradient Analysis

We first compare the gradient among three training objectives, i.e., DPO, SimPO, and LOGO. The gradient of those three
training objectives can be written as:

∇θLDPO(πθ) = −βE(x,yw,yl)∼D

dθ ·
∇θ log πθ(yw|x)︸ ︷︷ ︸

increase likelihood on yw

− ∇θ log πθ(yl|x)︸ ︷︷ ︸
decrease likelihood on yl


 ,

∇θLSimPO(πθ) = −βE(x,yw,yl)∼D

sθ ·
 1

|yw|
∇θ log πθ(yw|x)︸ ︷︷ ︸

increase likelihood on yw

− 1

|yl|
∇θ log πθ(yl|x)︸ ︷︷ ︸

decrease likelihood on yl


 ,

LLOGO(πθ) = −E
(x,yw,y

(1...M)
l

)∼D

lθ ·


1

|yw|
log πθ(yw|x)︸ ︷︷ ︸

increase likelihood on yw

− 1

M |yl|

M∑
j=1

log πθ(y
(j)
l |x)︸ ︷︷ ︸

decrease likelihood on y
(1,··· ,M)
l



 .

(6)

where

dθ = σ

(
β log

πθ(yl|x)
πref(yl|x)

− β log
πθ(yw|x)
πref(yw|x)

)
,

sθ = σ

(
β

|yl|
log πθ(yl|x)−

β

|yw|
log πθ(yw|x) + γ

)
,

lθ = σ

(
β

M |yl|

M∑
j=1

log πθ(y
(j)
l |x)− β

|yw|
log πθ(yw|x) + γ

)
.

(7)

In terms of gradient weight computation, SimPO and LOGO are similar in that they do not rely on a reference model.
Instead, both methods calculate gradient weights based on the policy model itself. On the one hand, for both SimPO and
LOGO training objectives, weight sθ is higher for samples where the model incorrectly assigns a higher likelihood to the
dis-preferred output yl or y(1···M)

l , thereby focusing on correcting the model’s mistakes. On the other hand, by considering
multiple negative samples y(1,··· ,M)

l , LOGO enriches the learning signal of rejected samples. This approach allows the
model to learn a more comprehensive representation of undesirable outputs, improving its ability to reject a broader
range of negative samples and helping the model to learn more patterns.

D.2. Convergence Properties

The combination of self-contained gradient weights and length normalization in LOGO promotes stable convergence.
Since lθ focuses on the policy model’s own mispredictions without relying on a reference model, the learning process can
adapt more freely based on the actual data, potentially leading to faster and more robust convergence. Besides, the use of
a logistic loss function with a margin parameter γ introduces non-linearity to the optimization problem. While the inclusion
of multiple negative samples y(j)l can provide a richer learning signal, and the length normalization helps in maintaining
balanced updates, which can aid in convergence.
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(b) Sparse Chunk Positional Indices Synthesis

Figure 8. Illustration of positional indices synthesis process, where the original context length is 19, and we extend it to a context length
of 43. It is noteworthy that one batch in the figure corresponds to one training sample of LOGO, which contains one preference instance
and several rejected samples.
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E. Positional Indices Synthesis
E.1. Theoretical Guarantee of Positional Indices Synthesis

The theoretical guarantees for the position synthesis method can be equated to understanding why Relative Position
Encodings (RPE) are effective. Existing works (Shaw et al., 2018; Zhu et al., 2023; Wu et al., 2024a) have already
demonstrated that using positional indices synthesis can significantly improve training efficiency. Simply put, for the
Transformer model, the model learns (j − i), i.e., the difference between two positional indices, to understand the relative
position information between any two tokens. The context window scaling can be interpreted as the model’s tendency
to learn information about larger (j − i) values. Referring to the mathematical formulation of RoPE, the attention
mechanism can be expressed as follows:

Attni,j =

(
QKT + f(I, j)

)
V

√
d

where Q, K, and V are the query, key, and value hidden states, respectively.

To perform the length extrapolation, one only needs to consider how to make (j − i) larger. The conventional approach is to
increase the sequence length to enlarge the value of (j − i), with each token corresponding to an absolute i and j value. As
for position synthesis, it only needs to consider changing the values of i and j without altering the actual sequence length.

A potential issue is that some position indices may be missing in the positional synthesis method, and we illustrate how we
compensate for the missing relative positions in the below section.

E.2. Implementation Details of Positional Indices Synthesis

We visualize the positional indices synthesis process in figure 8. Specifically, to ensure that the synthesized positional
indices do not disrupt the original text’s semantic structure while maximizing the extended context size, we employ two
different strategies for positional bias B: Continuous Chunk Positional Indices Synthesis (figure 8(a)) and Sparse Chunk
Positional Indices Synthesis (figure 8(b)). For Continuous Chunk Positional Indices Synthesis, the positional bias within
the same chunk is consistent. For instance, in the first chunk C0, the positional bias {b0, b1, · · · , b|Ci|} are the same value
sampled from distribution U(1, (K − k)/N).

2K4K 8K 16K 32K 64K

PPL explosionPPL explosionPPL
explosion

Figure 9. Evaluation results of language modeling task. The solid
and dashed curves represent the PPL of the baselines and LOGO.

This ensures that the semantic structure within the chunk
remains intact but can lead to sparse synthesized posi-
tional indices, as there will be significant gaps between
the positional indices among different chunks. Thereby,
we propose Sparse Chunk Positional Indices Synthesis
to fill these gaps, where each positional bias bi is sam-
pled uniformly according to Equ. 2. Considering that
Sparse Chunk Positional Indices Synthesis might disrupt
the semantic structure of the text, we set the ratio of data
for Continuous Chunk Positional Indices Synthesis and
Sparse Chunk Positional Indices Synthesis to 9:1 in actual
deployment.

F. LOGO Training and Evaluation Details
To accelerate the training process and save GPU memory,
we adopt DeepSpeed Zero 3 (Aminabadi et al., 2022). All
the experiments are conducted on a 8×A800 (80GB) GPU
machine, and all the training experiments are completed
within 16 hours. We train all the models for two epochs,
amounting to a total throughput of 0.3B * 2 = 0.6B tokens.
The best model checkpoint is then selected based on per-
formance on the validation set. For the training of the
baseline, we followed the corresponding baseline settings.
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Figure 10. Model performance on short-context tasks, including MMLU, TruthfulQA, and ARC.

When testing on LongBench, we used the officially recommended context length of 32K (Bai et al., 2023), truncating any
input sequence that exceeds this length.

G. More Experimental Results of LOGO
G.1. Evaluation Results on Language Modeling Task

We test the language modeling capability of LCMs by calculating the Perplexity (PPL) on the Gutenberg (PG-19) testing
set (Rae et al., 2019b), with context lengths ranging from 2K to 64K. Considering that extremely long context lengths can
cause the PPL calculation to exceed GPU memory, we apply the sliding window approach proposed by Press et al. (2021).
As depicted in figure 9, for LCMs, such as Llama-3-8B-Instruct-80K and Llama-2-7B-Instruct-80K, using LOGO does not
compromise the language modeling capability since the solid line (PPL of the backbone model) and the dashed line (PPL
of LOGO) almost completely overlap. In the case of SCMs, such as the Llama-3-8B-Instruct-8K model, LOGO not only
effectively scales the context window size of baseline models (the purple dotted curve versus the purple solid curve) but also
achieves a lower PPL score compared to the SFT method since the yellow dotted curve (PPL of Llama-3-8B-Instruct-LOGO)
is much lower than the blue solid curve (PPL of Llama-3-8B-Instruct-80K).

G.2. Evaluation Results on Short-context tasks

Apart from the model results on MMLU (Hendrycks et al., 2020) and TruthfulQA (Lin et al., 2021), we also experiment
with ARC (Hard and Easy) (Clark et al., 2018). The model performance is shown in figure 10, which is consistent with the
conclusions presented in the main text.

G.3. Scaling to Longer Context Window Size

We scale the context window size of the Llama-3-8B-Instruct-80K model from 80K to 256K and report the model
performance in Table 2. Specifically, for longer context lengths, using only 0.3B tokens is insufficient to cover all position
indices. Therefore, we expand the dataset size as the context length increases. We can observe that as we scale the context
window size with more data, the model’s performance also improves.

H. Comparison between SFT and LOGO
As shown in figure 11, we illustrate the impact of SFT (with two loss calculation strategies following (Xiong et al., 2023))
and LOGO on the model’s generation and understanding performance throughout the training process. We plot the trends of
retrieval score (understanding ability) and recall score (generation ability) along the training progress. We can observe that
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Table 2. Model performance when scaling to longer context window size.
Model Tokens S-Doc QA M-Doc QA Summ Few-shot Synthetic Avg.

Yi-6B-200K - 39.1 25.1 33.8 25.6 56.6 36.0

Llama-3-8B-Instruct-LOGO-80K 0.3B 44.0 41.2 28.1 68.6 53.0 47.0
Llama-3-8B-Instruct-LOGO-128K 1.2B 43.8 40.9 28.0 68.6 52.6 46.8
Llama-3-8B-Instruct-LOGO-256K 4.8B 44.9 42.6 29.8 69.4 53.9 48.1

Training Steps Training Steps Training Steps

Pe
rf
or
m
an
ce

Model Performance wtih Long Instruction Tuning (SFT)
Real Training Length: 50K; Testing Length: 64K

Model Performance with LOGO
Real Training Length: 8K ; Testing Length: 64K

(a) Context Loss + Prediction Loss (b) Prediction Loss (c) LOGO Loss

Figure 11. Comparison between SFT and LOGO training strategies on the synthetic retrieval task.

applying SFT loss to the entire sequence leads to a gradual decline in the LCM’s understanding ability, accompanied by
performance fluctuations; while applying SFT loss solely to the prediction portion shows no significant improvement in
model performance. Nevertheless, applying LOGO can steer LCMs away from misaligned samples, thereby enhancing
the recall score. Simultaneously, it improves comprehension abilities, enabling the model to retrieve more key information
within the context.

I. Trade-off between Training Computation and Model Performance
In this section, we present the trade-offs between computational efficiency and performance gains across different long-
context alignment strategies. Specifically, we employed ring attention (Liu et al., 2024), a context-parallel approach, to
implement training strategies for longer input sequences. We compared the following four strategies: (1) direct SFT training
with the maximum input length supported by 80GB GPU memory (64K); (2) SFT combined with ring attention to train
on longer sequences (128K); (3) our LOGO method; and (4) the LOGO method extended to longer training sequences
in combination with ring attention. As shown in Table 3, we observe that extending the context length during training
leads to slight performance improvements but comes at the cost of longer training times and reduced data throughput. For
example, compared to LOGO, LOGO with Ring Attention achieves a 0.9-point improvement in performance. However, the
throughput on 8 GPUs is only half of the original training setup (since we set the context-parallel size as 2), resulting in a
total training time of 30 hours. Thereby, we believe that utilizing a position synthesis strategy to process more diverse data
within 30 hours would likely yield better results while maintaining a more affordable resource consumption.

J. Case Study of LOGO Data
In this section, we provide the training samples built based on the LOGO training data construction pipeline as illustrated in
Sec. 3.2.1. We present the training samples in figure 12, figure 13, figure 14, and figure 15, where the training data exhibits
different error patterns (misalignments) in their rejected samples.
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Table 3. Training resource statistics among different settings. For ring attention (denote with *), we set context parallel size as 2, i.e.,
every 2 GPUs share 1 training sample.

Training Strategy Memory/GPU Bsz/GPU Total Throughput
(8 GPUs)

Actual Training
Length

Training Time
(2,000 steps)

Real-world
Task

Language
Modeling

SFT 80GB 1 8 samples 64K 14h 43.2 6.6
SFT + Ring Attention 45GB 1 4 samples* 128K 24h 44.3 6.6
LOGO + Ring Attention 69GB 3 12 samples* 64K 30h 47.7 9.8
LOGO 64GB 3 24 samples 12K 16h 47.0 10.4

Case Study 1

Context:
... context ...
If class time is used to allow students to apply what they have learned in cooperation with their peers, then the Flipped
Classroom Model encourages collaboration, inquiry, and problem solving.
... context ...

Question:
Why is it important for teachers to use student-centered activities in the flipped classroom model?

Ground Truth: (preference)
To encourage communication, inquiry, research, problem solving, and collaboration.

Wrong Prediction1: (Instruction Unfollowing)
How can teachers create student-centered learning experiences in the classroom? What are some possible challenges in
creating student-centered learning experiences in the classroom?

Wrong Prediction2: (Hallucination)
Blended learning in action: A practical guide toward sustainable change. Corwin. Please note that you need to have at
least a basic subscription to access the full text of the references...

Figure 12. LOGO training samples: case1.

K. Error Analysis of Model Response
We conduct an error analysis on the results generated from different models, as illustrated in Figures 16∼ 20. Specifically, we
focus on comparing the generated results from three models: Llama-2-LOGO, PoSE (Zhu et al., 2023), and LongAlign (Bai
et al., 2024), all of which commenced training based on the Llama-2-Chat model (Touvron et al., 2023). As demonstrated in
the cases, we mark irrelevant content with wavy lines and relevant content with underlines. Our analysis reveals that LOGO
can generate accurate responses without being influenced by distracting information. In contrast, the other two methods
(PoSE and LongAlign) are susceptible to interference from irrelevant information, which leads to wrong outputs.
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Case Study 2

Context:
... context ...
As always in quantum physics, the joint measurement on Alice’s two photons, concerning their relative state, produces a
truly random result, just one among several possibilities.
... context ...
Alice’s joint measurement thus produces a random result. Depending on this result, Bob’s photon will always produce
the result that the initial photon would have produced if it had been measured in the same direction, or else it will
produce the opposite result to the one that would have been produced by the initial photon.
... context ...

Question:
What is the significance of the energy correlation between the two infrared photons?

Ground Truth: (preference)
If one photon has an energy above the average, the other photon will necessarily have an energy below the average.

Wrong Prediction1: (Instruction Unfollowing)
Bell’s game is a theoretical game where two players, Alice and Bob, make independent choices of the polarization state
of two photons before measuring the correlations between their polarizations...

Wrong Prediction2: (Instruction Unfollowing)
None, since there is no mention of energy correlation between two infrared photons in the provided context. The context
only discusses quantum nonlocality, Bellś game, and quantum teleportation....

Figure 13. LOGO training samples: case2.

Case Study 3

Context:
... context ...
What is the slope of the line containing points (2, –3) and (4, 3)? slope = 3
... context ...
A slope that goes from low to high is positive. A slope that goes from high to low is negative. A slope that goes straight
across is 0.
... context ...

Question:
What is the slope of the line containing points (2, –3) and (4, 3)?

Ground Truth: (preference)
3

Wrong Prediction1: (Instruction Unfollowing)
Do you want to solve it step by step?

Wrong Prediction2: (Hallucination)
The question can be interpreted as the difference in y-values divided by the difference in x-values. That is, let y1 = –3
and y2 = 3. Then x1 = 2 and x2 = 4. The slope is: = 6

Figure 14. LOGO training samples: case3.

23



LOGO — Long cOntext aliGnment via efficient preference Optimization

Case Study 4

Context:
... context ...
And then there was no more speaking of the old lady, the house with the candle and the woman who was like a candle
until, in the last train, they were nearly home.
... context ...

Question:
Why does the narrator stop asking his father about the grapes and the grape-vine?

Ground Truth: (preference)
Because of the unpleasant encounter with the old lady at the house.

Wrong Prediction1: (Hallucination)
The narrator stops asking his father about the grapes and the grape-vine because his father is not responding to the
questions. The narrator is trying to learn about the grape-vine and its whereabouts but his father is not willing to provide
any information...

Wrong Prediction2: (Hallucination)
Blended learning in action: Because his fatherś eyes seemed to fill with water and he began to speak in a small voice. At
the same time, the narrator himself felt like his heart had been ”torn in half.”...

Figure 15. LOGO training samples: case4.
Error Analysis 1

Context:
... context ...
AEM outpoerforms both LEM and DPEMM by 6.5 and 1.7 respectively in F-measure on the FSD dataset, and 4.4 and
3.7 in F-measure on the Twitter dataset. We can also observe that apart from K-means, all the approaches perform worse
on the Twitter dataset compared to FSD, possibly due to the limited size of the Twitter dataset.
... context ...

Question: What baseline approaches does this approach out-perform?

Ground Truth: K-means, LEM, DPEMM.

LOGO (Ours): AEM outperforms both LEM and DPEMM.

LongAlign: The proposed approach outperforms the baseline approaches on all three datasets.

PoSE-YaRN-96k: LEM and DPEMM.

Figure 16. Error analysis of responses from different models.
Error Analysis 2

Context:
... context ...
Larkin I. Smith Larkin Irvin Smith (June 26, 1944 – August 13, 1989) was an American Congressman from Mississippi
serving for seven months until he was killed in a plane crash in Perry County, Mississippi in 1989. Smith was born in
Poplarville, Mississippi to Nona Orene Bounds and her husband Hezekiah K. Smith.
... context ...

Question: In which county was Larkin I. Smith born?

Ground Truth: Pearl River County, Mississippi.

LOGO (Ours): Pearl River County, Mississippi.

LongAlign: Poplarville, Mississippi.

PoSE-YaRN-96k: Pearl River County.

Figure 17. Error analysis of responses from different models.
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Error Analysis 3

Context:
... context ...
Locked On (novel) Locked On is a techno-thriller novel written by Tom Clancy and Mark Greaney released on December
13, 2011.
... context ... In 1832, Fougeres lived in the rue de Navarin.
... context ...

Question: What type of media does Locked On and Tom Clancy have in common?

Ground Truth: Novel.

LOGO (Ours): Novel.

LongAlign: Book.

PoSE-YaRN-96k: Video games. Books. Film.

Figure 18. Error analysis of responses from different models.

Error Analysis 4

Context:
... context ...
Retired merchants; just now in love with art; have a country-house at Ville d’Avray, and ten or twelve thousand francs
a year.At the third sitting pere Vervelle mentioned a fine gallery of pictures which he had in his country-house at
Ville d’Avray–Rubens.
... context ...

Question: Where do Mr. and Mrs. Vervelle live?

Ground Truth: In a mansion in Ville-d’Avray.

LOGO (Ours): Ville d’Avray.

LongAlign: In the country.

PoSE-YaRN-96k: They live in the rue de Navarin.

Figure 19. Error analysis of responses from different models.

Error Analysis 5

Context:
... context ...
Thaddeus P. Mott...At the time of his death, he was also the last surviving son of the eminent surgeon Valentine
Mott...Upon his death in 1865, Mott was interred at Green-Wood Cemetery in Brooklyn, New York.
... context ...
Beaulieu-sur-Loire (French pronunciation:literally Beaulieu on Loire) is a commune in the Loiret department in north-
central France.
Two days later, Anthony Roberts was on the scene with a detachment of Philadelphia police.
... context ...

Question: Where was the place of death of Thaddeus P. Mott’s father?

Ground Truth: New York.

LOGO (Ours): New York.

LongAlign: Beaulieu-sur-Loire.

PoSE-YaRN-96k: Anthony Roberts.

Figure 20. Error analysis of responses from different models.
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