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ABSTRACT

Federated learning enables collaborative model training across distributed clients
while preserving their data privacy. However, privacy leakage and data hetero-
geneity remain significant challenges in federated learning. On the one hand,
privacy leakage arises when the exposed information about client models dur-
ing the client-server communication is exploited to reconstruct sensitive data or
misuse client models, compromising both data and model privacy. On the other
hand, data heterogeneity limits the generalization capability of the global model
on clients, leading to suboptimal performance. Current approaches face a dilemma
that stringent privacy constraints degrade the model performance or incur sub-
stantial training overhead, while methods addressing data heterogeneity struggle
to provide strong privacy guarantees. In this work, to alleviate this dilemma, we
propose a novel and simple personalized federated learning method called Feder-
ated Anchor-Based LEarning (FABLE), which introduces private anchors during
local training. Specifically, clients select private anchors from local datasets to
perform an anchor-aware representation transformation, improving the adaptation
of the model to local tasks. More importantly, those private anchors not only pro-
vide dual privacy protection of data and model privacy, but also avoid significantly
computational/communicational overhead or performance sacrifice. Extensive ex-
periments on benchmark datasets under various settings validate the effectiveness
of the FABLE method in terms of the privacy protection and model performance.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017; Yang et al., 2019; Kairouz et al., 2021) has emerged
as a promising distributed machine learning framework, facilitating collaborative model training
without compromising client privacy. It accomplishes this by exchanging model information while
maintaining data locally. However, the effectiveness of FL is limited by two primary challenges (Li
et al., 2020a; Kairouz et al., 2021; Liu et al., 2024a), i.e., privacy leakage and data heterogeneity.

The first challenge in FL, privacy leakage, occurs during the communication between clients and
the server. Current studies (Zhu et al., 2019; Zhao et al., 2020) indicate that attackers can recon-
struct sensitive data from exposed model information, significantly undermining client data privacy.
Additionally, complete exposure of model information during communication can be easily abused
without consent (Shokri et al., 2017; Ye et al., 2022; Liu et al., 2023), compromising client model
privacy. Another major challenge, data heterogeneity across clients (Zhao et al., 2018; Zhu et al.,
2021; Li et al., 2022; Lu et al., 2024; Ye et al., 2024), occurs due to for example varying device con-
ditions and application scenarios. Such data heterogeneity induces substantial variations in locally
trained models, hindering global model convergence and resulting in suboptimal performance.

However, under resource constraints, existing studies usually face a dilemma between privacy
preservation and data heterogeneity. That is, on the one hand, typical privacy-preserving FL methods
(Wei et al., 2020; Truex et al., 2020; Zhang et al., 2020; Byrd & Polychroniadou, 2020; Kanagavelu
et al., 2020; Ma et al., 2022) offer stronger privacy guarantees by obfuscating model information dur-
ing client-server communication. However, they may degrade the model performance or introduce
significantly computational/communicational overhead, where data heterogeneity can even worsen
such situation. On the other hand, as an important solution for data heterogeneity, personalized fed-
erated learning (PFL) customizes personalized models for each client based on their task and device.
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Table 1: Comparison of privacy-preserving methods in federated learning across multiple key crite-
ria. The ✓ indicates a clear advantage, while ✗ denotes a clear disadvantage.

Data Privacy
Protection

Model Privacy
Protection

Performance
Retention

Data
Heterogeneity

Computation & Communication
Overhead

FedAvg ✗ ✗ ✓ ✗ ✓

Differential Privacy ✓ ✗ ✗ ✗ ✓
Homomorphic Encryption ✓ ✓ ✓ ✗ ✗

Secure Multi-Party Computation ✓ ✓ ✗ ✗ ✗

FABLE ✓ ✓ ✓ ✓ ✓

Nevertheless, most PFL methods (Fallah et al., 2020; Dinh et al., 2020; Li et al., 2021b; Wu et al.,
2021; Tan et al., 2022a;b; Zhang et al., 2022; Lin et al., 2022; Qu et al., 2023; Ghari & Shen, 2024;
Liu et al., 2024b; Li et al., 2025; Zhang et al., 2025; Zheng et al., 2025) provide limited privacy
protection, typically ensuring only the data locality.

To kill two birds with one stone, building on model-splitting-based PFL (Arivazhagan et al., 2019;
Liang et al., 2020; Collins et al., 2021; Luo et al., 2021; Shang et al., 2022; Xu et al., 2023; Zhang
et al., 2023c;a; Yang et al., 2024), we propose a novel and simple FL method called Federated
Anchor-Based LEarning (FABLE), which incorporates private anchors during local training. Those
anchors offer personalized privacy protection, bridging the gap between robust privacy preservation
and enhanced model performance. Specifically, each client selects private anchors from its local
dataset without sharing them externally. Then, clients conduct anchor-aware representation trans-
formations using those anchors to perform client-specific coordinate transformations on the shared
representation space among client models. This transformation can effectively tailor personalized
models to their local tasks, improving the model performance under the data heterogeneity. Ad-
ditionally, we introduce a linear transformation in the anchor-aware representation transformation,
stabilizing the model training and enhancing the model performance.

More importantly, we investigate the effect of private anchors and show that they can provide privacy
guarantees at both the data and model levels. Firstly, the introduction of private anchors during local
training is equivalent to applying a private anchor-dependent transformation on the original gradi-
ents, thereby reducing the risk of recovering sensitive data in gradient inversion attacks. Secondly,
we demonstrate that even if attackers obtain the entire model, its performance will be exception-
ally poor without private anchors. Thus, private anchors can act as secret keys to protect the model
privacy. We compare FABLE with the existing privacy-preserving methods in the Table 1.

We conduct extensive experiments to validate FABLE on various computer vision and natural lan-
guage datasets under homogeneous and heterogeneous data distributions across clients. The results
show that the proposed FABLE method generalizes well across different tasks and achieves compa-
rable performance to competitive baselines. Moreover, empirical evaluations show that the proposed
FABLE method could protect both data privacy and model privacy effectively.

In summary, the contributions of this work are three-fold. (1) We propose the FABLE method by
introducing private anchors, simultaneously addressing both the privacy leakage and data hetero-
geneity. (2) The proposed FABLE method provides dual privacy protection through private an-
chors, safeguarding both data and model privacy without introducing significant computational and
communicational overhead or performance degradation. (3) We validate the effectiveness of FA-
BLE through extensive experimentation, demonstrating improvements in model performance across
multiple datasets with various settings. Furthermore, we verify that FABLE enhances the privacy
protection at both the data and model levels under different attack scenarios.

2 RELATED WORK

Privacy in Federated Learning. The basic privacy protection mechanism in FL (McMahan et al.,
2017) is the model-information-based communication, thereby avoiding the need to share raw data.
However, privacy risks arise from the model information exposed during communication, which
could be exploited to reconstruct sensitive data (Zhu et al., 2019; Zhao et al., 2020) or leak details
about local models (Shokri et al., 2017; Ye et al., 2022; Liu et al., 2023), posing risks to both data
and model privacy. Although several advanced privacy-preserving techniques, including differential
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privacy (Wei et al., 2020; Truex et al., 2020), homomorphic encryption (Zhang et al., 2020; Ma
et al., 2022), and secure multi-party computation (Byrd & Polychroniadou, 2020; Kanagavelu et al.,
2020), have been integrated into FL to boost the strength of privacy protection, they typically de-
grade the performance or impose substantial computation/communication overhead. In this work,
we introduce private anchors to provide simultaneous protection for both data and model privacy,
thereby preserving both the efficiency and effectiveness.

Data Heterogeneity in Federated Learning. Data heterogeneity is a well-known challenge in FL.
As an important solution, Personalized Federated Learning (PFL) (Fallah et al., 2020; Dinh et al.,
2020; Li et al., 2021b; Wu et al., 2021; Tan et al., 2022a;b; Zhang et al., 2022; Lin et al., 2022; Qu
et al., 2023; Xu et al., 2023; Ghari & Shen, 2024; Li et al., 2025; Zhang et al., 2025; Zheng et al.,
2025) allows each client to tailor a local model to its own task. Existing PFL algorithms leverage
meta-learning (Fallah et al., 2020), regularization (Dinh et al., 2020; Li et al., 2021b; Ghari & Shen,
2024), knowledge distillation (Wu et al., 2021; Tan et al., 2022a;b), and model splitting (Arivazhagan
et al., 2019; Liang et al., 2020; Collins et al., 2021; Luo et al., 2021; Shang et al., 2022; Xu et al.,
2023; Zhang et al., 2023c;a; Yang et al., 2024; Liu et al., 2024b), and have demonstrated consistent
performance gains.

In this work, we focus on the model-splitting-based PFL, which meets both generalization and per-
sonalized requirements by dividing models into the public and private components. By exchanging
only the public components between clients and the server, this approach significantly reduces com-
munication overhead and increases the difficulty for the attacker to recover private data. However,
existing research mainly emphasizes performance optimization under data heterogeneity, with lim-
ited exploration of privacy protection mechanisms. To fill this gap, our work amis to improve the
model performance while maintaining strong privacy guarantees via private anchors.

Anchors in Machine Learning. Anchors act as reference landmarks to establish a latent represen-
tation (Norelli et al., 2023; Cannistraci et al., 2023; Crisostomi et al., 2023; Maiorca et al., 2023;
Moschella et al., 2023; Cannistraci et al., 2024) and they can be compact yet representative raw data
or embeddings. Anchors have emerged as an effective solution of mitigating data heterogeneity in
FL (Huang et al., 2024; Zhou et al., 2024; Ye et al., 2023; Dai et al., 2024; Qiu et al., 2024) by
stabilizing local training and accelerating global convergence. Unlike those methods that broadcast
anchors or their representations, FABLE ensures that private anchors remain exclusively on clients,
thereby simultaneously preserving data and model privacy. Moreover, our proposed anchor strategy
improves the model accuracy in heterogeneous data distributions while avoiding the performance
degradation commonly associated with strong privacy constraints.

3 PRELIMINARY

FL enables decentralized clients to collaboratively train a global model under the orchestration of a
central server without exchanging raw data. In FL, each client k ∈ {1, · · · ,K} trains a local model
fk(θ) parameterized with θk on its own dataset Dk consisting of nk samples by minimizing a local
objective function Lk(Dk; θ). Then the goal is to obtain a global model θ∗G for all clients.

Typical FL preserves privacy by transmitting the model information without exposing raw data dur-
ing collaborative training. However, existing studies (Zhu et al., 2019) reveal that the sensitive data
can be recovered by analyzing model gradients exchanged during the communication. Specifically,
attackers leverage the gradient G(θk) from client k to reconstruct private samples (x, y) ∈ Dk by

min
(x′,y′)

∥∇θkLk((x
′, y′); θk)− G(θk)∥

2
, (1)

where G(θ) denotes the operator to obtain the gradient for parameters θ, ∥ · ∥ denotes the ℓ2 norm
of a vector, and (x′, y′) denotes the reconstruction of one sample and its label. In addition to data
leakage, model parameter exposure (Shokri et al., 2017) threatens the intellectual property of each
client, i.e., model privacy. That is, during the communication between clients and the server, local
model parameters θk are fully visible, increasing susceptibility to unauthorized exploitation by third
parties. Consequently, ensuring robust protection of both the data and model privacy in clients
remains a critical challenge to the secure deployment of FL.

Another challenge of FL is data heterogeneity, which significantly impacts the optimization and
convergence of the collaborative training process. PFL mitigates this issue by tailoring a model
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Figure 1: The pipeline of FABLE. Each client maintains a set of fixed personalized anchors which
remain unchanged throughout the FL process. Then clients perform client-specific representation
transformations by leveraging anchors during local training to transform the original representations
into a unique latent space. And clients only exchange the encoders with the server in communication.

θ∗k to each client k rather than seeking a single global model θ∗G optimal for all clients. In this
work, we focus on model-splitting-based PFL, where the model of client k is decomposed into a
public encoder g(θgk) : X 7→ Rd, whose parameters could be exposed to the server, and a private
decoder h(θhk ) : Rd 7→ Y. By limiting the information exposed (i.e., only {θgk}Kk=1) during the
communication, model-splitting-based PFL not only reduces communication costs but also mitigates
the leakage of privacy to a certain extent. Additionally, public encoder capture global knowledge
during the collaborative training, whereas private decoders learn personalized knowledge for each
client, thereby improving the model performance under both IID and Non-IID settings.

4 METHODOLOGY

4.1 ANCHOR-AWARE REPRESENTATION TRANSFORMATION

Building on model-splitting-based PFL, we propose Anchor-aware Representation Transformation,
which introduces anchors Ak to perform a client-specific coordinate system transformation Tk for
each client, thus providing a personalized privacy protection by obfuscating the model information.

At initialization, each client independently random selects a set of anchors Ak = {aki }
|Ak|
i=1 from

its local dataset Dk. Throughout federated learning process, these anchors remain fixed and undis-
closed. After each global updated, each client updates its encoder gk(θ

g
k) with the global encoder

gG(θ
g
G) as the initial starting point, and uses it to encode the private data x, while the anchors

complete the personalized decoding in combination with local decoder h(θhk ) as

Encoder : zx = gk(x; θ
g
k),

Decoder : ŷ = hk(Tk(zx;Ak); θ
h
k ).

(2)

Specifically, we apply a client-specific coordinate system transformation Tk on zx to obtain private
representation rxk by calculating the similarity between x and anchors Ak as

rxk = Tk(zx;Ak) =
(

sim(gk(x), gk(a
k
1)), . . . , sim(gk(x), gk(a

k
|Ak|))

)
, (3)

4
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where the cosine similarity is used, i.e., sim(u, v) = uT v
||u||||v|| , ensuring angle-based invariance and

geometric robustness. We use the transformed representation rxk as input to a private decoder h(θhk )
in client k, and train the whole model using the cross-entropy loss. During backpropagation, only the
data representations gk(x) are utilized to update the encoder, while anchor representations gk(ai)
remain static to maintain the training stability. During the inference, clients apply the global encoder
with their fixed local anchors to make predictions.

Despite the geometric invariances offered by cosine similarity, the inherent loss of scale information
may limit the performance. To address this issue, we propose an additional linear scaling transfor-
mation parameterized by a matrix Wk as

r̂xk = Wkr
x
k . (4)

where Wk is locally trained and not externally shared. This transformation corrects scale disparities
and enhances personalized performance.

4.2 PRIVACY ANALYSIS

Data privacy. As a classic attack method in FL, Deep Leakage from Gradient (DLG) (Zhu et al.,
2019) can reconstruct sensitive data by using the model gradient of clients in the communication.

In the model-splitting-based PFL, clients only upload the updated gradient of the local encoder
G(θgk), so the attacker’s optimization objective is changed to:

min
(x′,y′)

∥∥∥∇θg
k
Lk((x

′, y′); θgk)− G(θgk)
∥∥∥2 . (5)

Model-splitting-based PFL reduces the information exposed compared with basic FL in the commu-
nication as shown in Eq. (1), and increases the difficulty for attackers to recover private data.

Built on model-splitting-based PFL, FABLE introduces a client-specific privacy mechanism, which
employs a set of private anchors Ak to perform a personalized coordinate system transformation
Tk on the latent representation zx. During the backpropagation stage, this transformation results
in a corresponding private anchor-dependent transformation Fk being applied to the gradient θgk.
Consequently, the optimization objective for an attacker is modified as follows:

min
(x′,y′)

∥∥∥∇θg
k
Lk((x

′, y′); θgk)−Fk(G(θgk);Ak)
∥∥∥2 , (6)

where Fk is modulated by the private anchors Ak, which are inaccessible to an adversary. The
shared gradient Fk(G(θgk);Ak) therefore represents an entangled mapping of the private data x and
the client-specific anchors Ak. Without knowledge of these anchors, inverting the gradient to recover
the original data becomes a severely ill-posed problem. Therefore, FABLE provides a robust privacy
enhancement that augments the structural defenses inherent in model-splitting-based PFL.

Model privacy. For the sake of simplicity, we discuss model privacy about transmitting the full
model. While FABLE will expose less information than FedAvg (McMahan et al., 2017)during
communication, a more secure privacy protection is implemented based on the following analysis.

In FABLE, clients control the permission of the model via the private anchors. Therefore, the model
prediction is only available when the complete model including anchors is available. Without these
anchors, the model’s predictions degenerate to the level of random guessing and the attacker cannot
obtain authentic model outputs:

fk(x) =

{
hk(Tk(gk(x);Ak)), if Ak is available,
Random Guess, if Ak is not available.

(7)

The anchor-based privacy protection mechanism significantly enhancing privacy at the model output
level, thereby diminishes the effectiveness of membership inference attack (MIA) (Shokri et al.,
2017). Consequently, this mechanism in the proposed FABLE method robustly safeguards the model
privacy, preserving the intellectual property rights of clients.

Therefore, by introducing anchors, FABLE further provides additional guarantees on both the data
and model privacy at a negligible computational and communication cost. For more detailed analy-
sis, please refer to Section A in the appendix.
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Table 2: Performance comparison of various methods. The best results are highlighted in bold, and
the second-best results are underlined.

CIFAR 10 CIFAR 100 Sogou News AG News
IID Non-IID IID Non-IID IID Non-IID IID Non-IID

Local 61.23±0.23 92.20±0.10 26.27±0.36 63.95±0.25 93.19±0.04 98.24±0.03 83.15±0.38 96.68±0.02

FedAvg 83.60±0.34 90.36±0.63 58.55±0.18 50.92±0.22 94.19±0.13 91.37±0.04 91.46±0.15 86.10±0.36
FedProx 85.21±0.08 89.32±1.25 59.17±0.19 56.21±0.39 94.32±0.04 92.66±0.46 91.59±0.16 89.85±0.36

SCAFFOLD 81.91±0.23 87.73±0.36 56.28±0.36 57.41±0.34 94.29±0.01 93.12±0.15 88.75±0.11 86.93±0.79
MOON 83.60±0.21 89.76±0.16 58.50±0.14 50.96±0.57 94.27±0.04 89.78±0.23 91.55±0.14 86.88±0.13

FedPer 82.70±0.30 91.46±0.08 48.05±1.14 72.85±0.20 95.07±0.07 98.43±0.03 90.60±0.18 97.45±0.10
Ditto 83.87±0.14 87.96±0.42 58.61±0.27 71.14±0.46 94.26±0.05 97.77±0.33 91.61±0.12 96.65±0.07

FedALA 83.62±0.31 92.94±1.30 58.69±0.23 67.58±0.29 94.91±0.09 98.43±0.02 91.36±0.09 97.64±0.05
GPFL 79.99±0.65 88.99±0.43 48.48±0.79 70.27±0.45 94.95±0.03 98.37±0.07 91.69±0.07 97.67±0.01

FedDBE 77.27±0.11 91.60±0.56 49.06±0.30 64.34±0.65 94.68±0.07 98.41±0.01 91.93±0.12 93.55±0.06
FedAS 78.82±0.07 89.35±1.05 54.66±1.19 68.17±1.18 95.02±0.06 98.37±0.03 91.79±0.24 97.36±0.04

FABLE 85.45±0.26 93.78±0.11 57.15±0.04 70.73±0.40 94.99±0.04 98.39±0.02 91.42±0.16 97.43±0.08
FABLE w/ linear 85.90±0.10 94.34±0.35 59.91±0.09 73.25±0.06 95.26±0.03 98.46±0.03 91.95±0.19 97.95±0.03

5 EXPERIMENT

5.1 EXPERIMENT SETUP

Datasets and Models. For computer vision tasks, we investigate image classification on the CIFAR-
10 and CIFAR-100 datasets (Krizhevsky et al., 2009) with the ResNet18 and ResNet34 models (He
et al., 2016), respectively. For the nature language processing tasks, we use the text classification
including the AG News and Sogou News datasets (Zhang et al., 2015), employing a two-layer trans-
former model (Vaswani et al., 2017) with 512-dimensional embeddings.

Baselines. We compare our methods against a variety of competitive baselines for local learning,
traditional FL, and personalized FL. Specially, Local learning trains one model per client without
any cross-client communication. For traditional FL, we consider FedAvg (McMahan et al., 2017),
SCAFFOLD (Karimireddy et al., 2020), MOON (Li et al., 2021a), and FedProx (Li et al., 2020b),
which aim to achieve a generalized global model. Additionally, we examine personalized FL meth-
ods, such as FedPer (Arivazhagan et al., 2019), Ditto (Li et al., 2021b), FedALA (Zhang et al.,
2023c), GPFL (Zhang et al., 2023b), FedDBE (Zhang et al., 2023a), and FedAS (Yang et al., 2024),
which customize a model for each client.

Implementation Details. In experiments, we use 20 clients and allow each client participating in
every communication round. To ensure a fair comparison, the number of anchors in FABLE equals
the feature dimension 512 for both vision and language encoders, with the network architecture
unchanged. Anchor points for our method are selected via a randomized strategy within each client’s
local dataset. More details is presented in Appendix B.1.

5.2 RESULTS

We report the performance of various FL methods in Table 2. We expanded the experimental se-
tups to include more clients and a wider range of non-IID distributions, and result is shown in
Append B.2. Under the IID setting, the Local method consistently yields the lowest performance
due to the absence of inter-client collaboration and overfits on the local training dataset. In contrast,
traditional FL algorithms exhibit strong performance, benefiting from collaborative training across
clients. PFL methods tailor the model to each client, their average performance improvement over
FedAvg is marginal and occasionally even inferior. Under Non-IID setting, the Local method be-
comes more competitive, as it fully adapts to each client’s specific task. Meanwhile, traditional FL
methods experience notable performance degradation due to client drift caused by heterogeneous
data distributions. PFL methods demonstrate increased robustness in this setting.

Vanilla FABLE already outperforms or matches all baselines across most scenarios, regardless of
the data heterogeneity, indicating its strong balance between generalization and personalization.
Furthermore, the linear variant of FABLE consistently enhances the performance of vanilla FABLE,
highlighting the benefit of integrating linear transformations to improve client-specific adaptation.
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(a) Original (b) FedAvg (c) FedAvg w/ DP (d) FedPer (e) FABLE

Figure 2: Visualization of reconstructed images using DLG attack in different methods.

5.3 ANALYSIS ON PRIVACY PROTECTION

Data Privacy. To evaluate the data privacy protection of FABLE, we conduct experiments on the
CIFAR-10 dataset using a modified ResNet18 as described in the original DLG method (Zhu et al.,
2019). We measure the data privacy protection by Peak Signal-to-Noise Ratio (PSNR) of recon-
structed images from DLG attacks. The results are reported in Table 3 and Figure 2.

As shown in Table 3, FedAvg exposes the full model gradients during communication, rendering
it highly vulnerable to adversarial reconstruction of private data. Integrating differential privacy
with FedAvg mitigates this vulnerability by introducing noise, while comes with a significant drop
in model performance. FedPer increases the complexity for adversaries attempting to reconstruct
sensitive data by reducing the exposure information during communication. It provides the stronger
privacy guarantees compared to FedAvg, while still maintaining competitive model performance.
However, FedPer does not alter the gradient information associated with the shared encoder, then
adversaries may still approximate the uploaded encoder gradients and partially reconstruct private
client data as presented in Figure 2. Based on model-splitting-based PFL, FABLE further advances
privacy protection by introducing anchors. The results show that FABLE not only outperforms
existing baselines in privacy preservation but also achieves superior accuracy, effectively bridging
the gap between privacy and performance in federated learning.

Table 3: Comparison of different methods us-
ing modified ResNet18 on CIFAR-10 in terms
of model utility and data privacy protection.
The best results are highlighted in bold, and the
second-best results are underlined.

Test Accuracy (%) PSNR

FedAvg 74.76±1.25 21.04±2.10
FedAvg w/ DP 59.94±2.29 13.83±0.49

FedPer 73.90±0.52 16.37±0.90

FABLE 80.87±1.13 14.81±0.90

Table 4: Comparison of different methods using
ResNet18 on CIFAR-10 in terms of model utility
and model privacy protection. The best results are
highlighted in bold, and the second-best results
are underlined.

Test Accuracy (%) MIA Accuracy (%)

FedAvg 83.60±0.34 66.12±0.76
FedAvg w/ DP 77.58±0.09 59.65±0.87

FedPer 82.70±0.30 56.60± 0.90

FABLE 85.45±0.26 53.97±0.66

Model privacy. In this section, we evaluate the impact of anchor availability on model performance
during inference, with the result presented in Figure 3. We observe that even with complete access
to model parameters, the absence of anchors during the inference phase results in a significant per-
formance drop, approaching random guessing in some scenarios. Therefore, we propose leveraging
anchors as secret keys, preserving model performance and improves model privacy by preventing
unauthorized inference during deployment.

7
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Figure 3: Impact of anchor availability on model inference accuracy evaluated.

To further evaluate the privacy protection strength of FABLE, we conduct Membership Inference
Attacks (MIA) (Shokri et al., 2017) on CIFAR-10 using ResNet18, and show the result in Table 4.
As illustrated in Table 4, FedAvg exposes the entire model, enabling adversaries to train effective
shadow models for membership inference. In contrast, FedAvg combined with differential privacy
introduces noise to the model outputs, mitigating attack success but at the expense of notable perfor-
mance degradation. FedPer, which only transmits encoder during communication, reduces the at-
tacker’s confidence by limiting access to sensitive model representations. FABLE further enhances
privacy protection by ensuring clients do not share anchor. Even with full model access, adver-
saries are restricted to unreliable outputs, significantly reducing the accuracy of MIA. These results
demonstrate that FABLE effectively achieves model-level privacy protection without compromising
utility. Furthermore, we conduct additional experiments to explore the impact of different anchor
counts on the trade-off between privacy and model accuracy in Append B.4.

5.4 ABLATION STUDY

We conduct an ablation study to investigate the impact of the number of anchors on the model
performance. Additionally, we introduce a linear transformation to other baselines and evaluate its
influence alongside our proposed approach. Furthermore, we compare the impact of different anchor
selection strategies. We show the results in Tables 5, 6 and 7.

Table 5: Evaluation of model performance with varying numbers of anchors. The best results are
highlighted in bold, and the second-best results are underlined.

Anchors Numbers 128 256 512 1024
IID Non-IID IID Non-IID IID Non-IID IID Non-IID

CIFAR-10 FABLE 85.29±0.15 92.78±0.06 85.38±0.06 93.32±0.08 85.45±0.26 93.78±0.11 85.12±0.26 93.78±0.09
FABLE w/ linear 85.73±0.08 93.47±0.16 85.80±0.10 93.64±0.19 85.90±0.10 94.34±0.35 85.96±0.06 94.36±0.04

CIFAR-100 FABLE 56.49±0.28 67.82±0.24 56.89±0.25 69.27±0.45 57.15±0.04 70.73±0.40 56.70±0.23 71.98±0.35
FABLE w/ linear 59.24±0.18 70.43±0.23 59.61±0.09 72.46±0.20 59.91±0.09 73.25±0.06 59.96±0.17 73.63±0.34

The Effect of Anchors Number. As illustrated in Table 5, the overall performance of the model
improves as the anchors number increases. However, when the anchors number increases from 512
to 1024, the performance gains are minimal and even slightly degraded in some cases. The dimen-
sionality of the transformed representation space is directly correlated with the number of anchors.
When the anchors number increases, enabling the model to capture richer representations in the
higher dimensional space. Nevertheless, when anchors number surpasses a certain threshold, which
introduces noise in the high-dimensional space, affecting the model’s discriminative capability.

The Effect of Linear Transformation. In Table 5, we also observe that adding a linear transforma-
tion layer stabilizes the model’s performance compared to the original transformation, particularly
when the number of anchors is large. This mapping acts as a dimensionality optimization step, mit-
igating noise interference. As a result, the model not only maintains stable performance but also
benefits from the enhanced expressiveness of the transformed representation space.
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Table 6: Performance comparison of different methods with and without linear transformation. The
values in parentheses represent the performance change introduced by the linear transformation.

CIFAR-10 CIFAR-100
IID Non-IID IID Non-IID

FedAvg 83.60±0.34 90.36±0.63 58.55±0.18 50.92±0.22
w/ linear 74.70±0.73(-8.90 ↓) 90.88±0.09(+0.52 ↑) 49.52±0.26(-9.03 ↓) 55.65±0.06(+4.73 ↑)

FedPer 82.70±0.30 91.46±0.08 48.05±1.14 72.85±0.20
w/ linear 74.98±1.09(-7.72 ↓) 91.90±0.09(+0.44 ↑) 47.55±0.15(-0.50 ↓) 73.03±0.16(+0.18 ↑)

FABLE 85.45±0.26 93.78±0.11 57.15±0.04 70.73±0.40
w/ linear 85.90±0.10(+0.45 ↑) 94.34±0.35(+0.56 ↑) 59.91±0.09(+2.76 ↑) 73.25±0.06 (+2.52 ↑)

Additionally, as shown in Table 6, other baselines benefit from linear transformation in Non-IID
setting, but experience performance degradation under IID settings, possibly due to the distortion
introduced by added transformation layers. FABLE effectively integrates the linear transformation
with its anchor-aware representation, maintaining robustness under IID and Non-IID settings. The
results suggest that the linear transformation in FABLE not only enriches feature representation but
also mitigates the scale mismatch introduced by anchor-aware representation transformation.

Table 7: Performance comparison of different anchor selection strategies. The best results are high-
lighted in bold, and the second-best results are underlined.

CIFAR-10 CIFAR-100
IID Non-IID IID Non-IID

fps FABLE 85.31±0.09 93.82±0.12 58.54±0.12 70.84±0.10
FABLE w/ linear 85.92±0.02 94.43±0.11 59.67±0.32 73.26±0.17

k-means FABLE 85.15±0.21 93.82±0.29 58.78±0.49 70.89±0.26
FABLE w/ linear 85.85±0.27 94.54±0.26 59.90±0.35 73.14±0.02

random FABLE 85.45±0.26 93.78±0.11 57.15±0.04 70.73±0.40
FABLE w/ linear 85.90±0.10 94.34±0.35 59.91±0.09 73.25±0.06

The Effect of Anchor Selection Strategy. Illustrated in the Table 7, in addition to random selec-
tion, we introduce two new strategies for anchor selection: farthest point sampling (fps), where we
select anchors based on the farthest points from each other, and k-means clustering, where we select
anchors closest to the centroids of k clusters and k is equal to the number of anchors. We can see
that the performance of different anchor selection strategies is quite comparable. We believe that
random sampling is the most practical strategy as it does not require additional computation for the
selection process and still yields competitive performance.

6 CONCLUSION

In this paper, we propose Federated Anchor-Based LEarning (FABLE) to addresses the dual chal-
lenges of privacy leakage and data heterogeneity in Federated Learning. By leveraging anchors as
secret keys, FABLE performs client-specific coordinate transformations on the original represen-
tation spaces, which provides personalized protection for data and models while enhancing model
adaptability to local tasks. To mitigate the impact of scale normalization introduced during represen-
tation transformation, we further incorporate an additional linear transformation, which stabilizes
model training and improves overall performance. Experimental results demonstrate that FABLE
maintains competitive model accuracy and offers dual privacy guarantees for both data and model
privacy. We believe FABLE offers a new perspective on privacy-preserving personalized federated
learning that can be extended to real-world applications.

9
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have carefully considered the broader impacts and believe that this work poses no foreseeable risks
of harm while contributing to the development of privacy-preserving machine learning.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide a comprehensive description of our
methodology and experimental setup. The proposed Federated Anchor-Based LEarning (FABLE)
algorithm, including the anchor-aware representation transformation and the optional linear scaling,
is detailed in Section 4. Our full experimental setup, including the datasets, model architectures,
and data partitioning strategies for both IID and Non-IID settings, is described in Section 5.1 and
expanded upon in Appendix B.1. Crucial implementation details, such as the number of clients,
communication rounds, local training epochs, batch sizes, and all hyperparameters for our method
and the baselines, are also provided in Appendix B.1. During the reviewing process, the source code
is supplied anonymously as part of the supplementary materials. Additionally, upon the acceptance
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A PRIVACY ANALYSIS

Data Privacy. To understand the strength of data privacy protection of different federated learning
(FL) methods under DLG attack (Zhu et al., 2019), we analyze the corresponding gradient informa-
tion in the communication process of various methods.

In the standard FL scenario (McMahan et al., 2017), each client k computes the gradient based on
its local dataset and communicates the complete gradient G(θk):

G(θk) = ∇θkLk(hk(gk(x)); y) (8)

This gradient fully captures the local data characteristics, making it vulnerable to DLG attacks,
where attackers optimize to match gradients directly and reconstruct the original data.

In model-splitting-based personalized federated learning (PFL), clients partition the model into a
public encoder gk parameterized by θgk and a private encoder hk parameterized by θhk , where θk =

[θgk; θ
h
k ]. Clients only communicate the gradient of the public encoder:

G(θgk) = ∇θg
k
Lk(hk(gk(x)); y)

=
∂Lk

∂gk(x)
· ∂gk(x)

∂θgk
.

(9)

Unlike standard FL, this approach only partially exposes gradient information, thus theoretically
limiting the efficacy of DLG attacks.

In FABLE, the anchor representation remains fixed during local training, and gradient updates to the
public encoder occur without backpropagation through anchor representations. Consequently, this
anchor-aware transformation introduces additional obfuscation into the gradient information, which
is equivalent to a client-specific linear mapping Fk:

GFABLE(θ
g
k) = ∇θg

k
Lk(hk(Tk(gk(x);Ak); y)

=
∂Lk

∂rxk

∂Tk(gk(x), gk(Ak))

∂gk(x)︸ ︷︷ ︸
Fk

∂gk(x)

∂θgk

= Fk(G(θgk);Ak)

(10)

This formulation effectively conceals the original encoder gradientG(θgk). In FABLE, the gra-
dient visible to an attacker GFABLE(θ

g
k) is not the original gradient but a transformed version,

Fk(G(θgk);Ak). This transformation is dependent on the private anchors Ak which are known only
to the client. As a result, the search space for a potential attack is drastically expanded. An adver-
sary must now attempt to simultaneously infer not only the private data sample (x′, y′) but also the
entire set of anchor data points Ak. Given that the anchors are randomly selected from the client’s
local dataset, the space of potential combinations is combinatorially vast, rendering a brute-force or
gradient-based search for Ak computationally infeasible. Consequently, any single observed gradi-
ent GFABLE(θ

g
k) could correspond to a multitude of different data and anchor pairs (x,Ak), which

confounds the attacker’s optimization process. Therefore, FABLE based on the inherent structural
defense of model-splitting based PFL, provides powerful privacy protection measures.

Model Privacy. Membership inference attacks (MIA) (Shokri et al., 2017) aims to determine
whether a given data sample is part of a client’s private training dataset. Specifically, given an
input (x, y), the adversary estimates the probability that this sample belongs to the client dataset Dk

using:
P ((x, y) ∈ Dk) = fattack((x, y)). (11)

The attacker model fattack is trained on the dataset X , which is constructed based on the outputs of the
target model to distinguish between member and non-member samples. This process relies heavily
on the availability of accurate model predictions, highlighting the importance of safeguarding the
informativeness of these outputs.

FABLE introduces a cryptographic-style mechanism for output regulation, while only clients k pos-
sess the private anchor Ak can compute valid predictions using the complete model fk. In the
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Figure 4: Comparative of privacy protection in classical FL and FABLE. The above panel shows that
attackers can exploit model to reconstruct private data, and misuse local models without permission
in classical FL. The below panel presents FABLE integrates anchors as secret keys to perform client-
specific feature transformation. It not only renders gradient inversion attacks ineffective but also
prevents unauthorized model exploitation, ensuring robust protection of both data and model privacy.

absence of Ak, the model’s output fk(x) degenerates into randomized responses. As the attack
model’s training data X is derived from these outputs, the absence of Ak ensures that the predic-
tions for member and non-member samples become indistinguishable. This injects significant noise
into X , severely degrading the performance of the attack model fattack and collapsing the separa-
bility required for successful membership inference.

This anchor-conditioned inference pipeline introduces a privacy-preserving inductive bias. It means
that only authorized prediction pathways yield meaningful outputs, while unauthorized ones result
in randomized behavior despite full parameter access. As a result, FABLE offers robust protection
against inference attacks by mitigating output-level leakage. Furthermore, it safeguards the intellec-
tual property of deployed models by rendering unauthorized usage functionally ineffective.

In summary, FABLE enhances both data-level and model-level privacy without compromising utility
for legitimate clients, who retain exclusive access to their private anchors Ak. The comparative
advantages of FABLE over traditional FL in terms of privacy protection are illustrated in Figure 4.

B EXPERIMENT

B.1 EXPERIMENT SETUP.

Datasets and Models. We evaluate our method on a diverse set of datasets spanning both image
and text classification tasks:

• CIFAR-10: The dataset comprises 60,000 images of size 32×32 pixels, evenly distributed
across 10 distinct classes. It is divided into 50,000 training and 10,000 test images.

• CIFAR-100: An extension of CIFAR-10, CIFAR-100 also includes 60,000 32×32 images,
but spans 100 fine-grained categories. The data is split into 50,000 training and 10,000 test
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samples. Each image is annotated with both fine and coarse labels; in our experiments, we
utilize the fine labels for model training.

• AG News: A benchmark dataset for topic classification, AG News contains 120,000 train-
ing and 7,600 testing samples, each comprising a news headline and a brief description.
The articles are categorized into four topics.

• Sogou News: This is a large-scale Chinese news classification dataset, including 90,000
training and 12,000 test samples, labeled across five categories. Each sample consists of a
Mandarin-language headline and body text.

These datasets enable a comprehensive evaluation of our method under both IID and Non-IID set-
tings, allowing us to assess the model’s generalization and adaptability across multiple modalities.

We simulate the FL environment under both IID and Non-IID settings. In the IID setting, each
client receives an equal-sized, class-balanced shard sampled uniformly from the entire dataset. In
the Non-IID setting, we sample data from datasets using the Dirichlet distribution (Lin et al., 2020),
denoted as Dir(β). Specifically, we sample qc,i ∼ Dir(β) and allocate qc,i proportion of samples
with label c to client i, where β = 0.1 for all tasks. To simulate a typical FL scenario, where data is
only available on clients, we randomly split the local data on each client into 80% for training and
20% for testing, and report all results on the test data.

Baselines. To comprehensively assess the performance of our approach, we compare it against
several representative federated learning (FL) and personalized federated learning (PFL) baselines:

• FedAvg (McMahan et al., 2017) : Averages client-side stochastic gradient updates to con-
struct a global model.

• SCAFFOLD (Karimireddy et al., 2020): Utilizes control variates at both server and client
levels to correct for client-drift caused by data heterogeneity, leading to more stable and
faster convergence.

• MOON (Li et al., 2021a): Leverages model-level contrastive learning to correct local train-
ing by maximizing the agreement between representations from the local model and the
global model, mitigating drift from non-IID data.

• FedProx (Li et al., 2020b): Enhances FedAvg by introducing a proximal term to address
data and system heterogeneity, improving convergence stability.

• FedPer (Arivazhagan et al., 2019): Employs model splitting by sharing a global encoder
while maintaining personalized decoders on each client, thereby preserving client-specific
characteristics.

• Ditto (Li et al., 2021b): A multi-task learning framework that learns both a personalized and
a global model for each client, using a regularization term to enforce consistency between
them, thereby inherently improving fairness and robustness.

• FedALA (Zhang et al., 2023c): Adapts model aggregation via learned element-wise mixing
weights, effectively capturing client preferences by interpolating between local and global
models.

• GPFL (Zhang et al., 2023b): Simultaneously learns global and personalized features on
each client by introducing a Conditional Valve (CoV) to create distinct routes for global
and personalized tasks, guided by shared Global Category Embeddings (GCE).

• FedDBE: Disentangles personalized biases from global knowledge using a memory module
and regularization term, promoting robust bi-directional knowledge transfer.

• FedAS (Yang et al., 2024): Addresses inconsistencies by using parameter-alignment to
infuse local knowledge into global parameters and client-synchronization, which leverages
the Fisher Information Matrix to down-weight contributions from under-trained clients.

For all methods, we report test accuracy as the primary evaluation metric. In local training and PFL
settings, we report the accuracy of the best-performing model across training epochs. For traditional
FL settings, we report the accuracy of the best single global model. Each experiment is repeated
three times using different random seeds, and we report the mean and standard deviation.
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Implement Details. The number of communication rounds is set to 500, and the local training
epoch is set to 1. During local training, we use a batch size of 64 for computer vision datasets and
256 for natural language processing tasks. The models are optimized using SGD with a momentum
of 0.9 and weight decay of 5e-4. We perform grid search over learning rates in the range [0.01, 1]
to select the optimal configuration for each baseline. A cosine learning rate scheduler is applied
throughout training. All experiments are implemented using PyTorch 2.0, based on PFLlib (Zhang
et al., 2023d), and are conducted on an NVIDIA 3090 GPU.

Table 8: Performance comparison of different methods with and without linear transformation under
diverse settings. The best results are highlighted in bold, and the second-best results are underlined.

CIFAR-10 CIFAR-100
IID Dir(0.5) Dir(0.01) IID Dir(0.5) Dir(0.01)

FedAvg 82.19±0.19 71.53±1.00 70.83±0.49 51.71±0.17 51.17±0.64 49.13±0.15
FedALA 82.36±0.21 82.29±0.93 85.16±0.35 51.58±1.14 52.42±0.77 72.69±0.30

GPFL 74.42±1.03 73.03±1.56 76.49±0.48 45.02±0.40 50.14±0.26 72.75±0.84
FedDBE 73.31±0.84 75.95±0.04 77.74±0.92 46.59±0.52 49.58±0.75 73.12±0.34
FedAS 78.39±1.53 80.16±1.17 84.26±0.46 49.08±0.57 52.45±0.49 70.80±0.70

FABLE 83.83±0.05 84.92±0.14 85.90±0.13 51.56±1.03 54.24±0.41 75.24±0.09
FABLE w/ linear 84.27±0.02 85.31±0.12 85.93±0.15 52.99±0.32 54.59±0.50 77.40±0.14

B.2 ADDITIONAL RESULT

To further validate the generalization of our method, we increase the client number to 50 and tested
multiple Dirichlet distributions: Dir(0.01) and Dir(0.5). Additionally, we simulated a real-world
scenario where only 10% of clients participate in each communication round. The result is shown
in Table 8. As the experimental results show, our method remains effective under those broader
settings, further demonstrating the general applicability of our approach.

B.3 ADAPTABILITY ANALYSIS

Table 9: Performance comparison of various aggregation methods combining with FABLE. The best
results are highlighted in bold, and the second-best results are underlined.

CIFAR 10 CIFAR 100 Sogou News AG News
IID Non-IID IID Non-IID IID Non-IID IID Non-IID

FABLE 85.45±0.26 93.78±0.11 57.15±0.04 70.73±0.40 94.99±0.04 98.39±0.02 91.42±0.16 97.43±0.08
FABLE w/ linear 85.90±0.10 94.34±0.35 59.91±0.09 73.25±0.06 95.26±0.03 98.46±0.03 91.95±0.19 97.95±0.03

SCAFFOLD 81.91±0.23 87.73±0.36 56.28±0.36 57.41±0.34 94.29±0.01 93.12±0.15 88.75±0.11 86.93±0.79
SCAFFOLD w/ FABLE 85.39±0.19 93.80±0.01 57.19±0.14 70.57±0.49 94.95±0.14 98.73±0.02 91.62±0.09 97.31±0.27

SCAFFOLD w/ FABLE & linear 85.93±0.10 94.21±0.11 59.80±0.23 73.09±0.14 94.97±0.03 98.76±0.02 92.20±0.12 97.38±0.04
FedALA 83.62±0.31 92.94±1.30 58.69±0.23 67.58±0.29 94.91±0.09 98.43±0.02 91.36±0.09 97.64±0.05

FedALA w/ FABLE 85.36±0.02 93.99±0.14 58.28±0.22 70.73±0.51 94.95±0.06 98.58±0.04 90.87±0.10 97.71±0.13
FedALA w/ FABLE & linear 85.75±0.04 94.11±0.08 59.71±0.38 73.13±0.08 95.05±0.03 98.60±0.03 91.90±0.03 97.73±0.07

FABLE focus on local training and remains orthogonal to server-side optimizations, enabling inte-
gration with classical federated aggregation strategies. In the main text, we integrate FABLE with
the conventional FedAvg (McMahan et al., 2017). To further explore the adaptability, we integrate
the FABLE anchor mechanism with SCAFFOLD (Karimireddy et al., 2020) and FedALA (Zhang
et al., 2023c). The result is shown in Table 9. According to the results, we can see that aggregation
strategies combing with FABLE shows improvements over origin origin performance across most
data distributions, with notable gains in non-IID settings. It demonstrates the generalizability and
flexibility of FABLE when combined with other aggregate methods. In future work, we hope to
integrate FABLE with advanced server-side optimization techniques to further explore the balance
between privacy protection and model performance.

B.4 ANALYSIS ON PRIVACY PROTECTION

Data Privacy. We follow the experimental setup in Deep Leakage from Gradients (DLG) to eval-
uate the privacy risks under FABLE and other baselines. A modified version of ResNet-18 is em-
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(a) Original (b) FedAvg (c) FedAvg w/ DP (d) FedPer (e) FABLE

Figure 5: Visualization of reconstructed images using DLG attack in different federated learning
methods on CIFAR-10.

ployed for gradient leakage analysis. In this configuration, standard ReLU activations are replaced
with Sigmoid functions to ensure second-order differentiability. Furthermore, all stride operations
are removed to allow for finer-grained gradient updates. The optimization procedure utilizes the
L-BFGS algorithm, with a total of 300 iterations conducted on the CIFAR-10 dataset. Additional
visualization results are presented in Figure 5.

Table 10: Impact of anchor availability on model inference accuracy evaluated with different anchor
numbers. The best results are highlighted in bold, and the second-best results are underlined.

Anchors Numbers 128 256 512 1024
IID Non-IID IID Non-IID IID Non-IID IID Non-IID

CIFAR-10 75.70±1.57 81.87±0.61 75.55±1.02 81.61±0.19 74.94±0.78 80.78±0.52 74.46±0.93 78.90±0.28
CIFAR-100 56.76±0.17 67.13±0.93 56.20±0.31 66.42±1.21 55.96±0.38 66.10±0.43 54.99±0.43 65.76±0.49

Model Privacy. Our evaluation of model-level privacy follows the protocol outlined in MIA
(Shokri et al., 2017). Specifically, we adopt the original MIA formulation, where an attack model
is trained on the prediction outputs of shadow models, with each sample labeled as member or non-
member based on its inclusion in the client training dataset. The attack model is implemented as
a fully connected neural network and trained using stochastic gradient descent with cross-entropy
loss. A key distinction in our setup lies in the construction of the shadow models: rather than
training them from scratch, we exploit client-side model information exchanged during communi-
cation rounds. This approach provides a more realistic and practical threat model compared to the
conventional shadow model paradigm in MIA.
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(a) Cosine Similarity (b) CKA Similarity

Figure 6: Comparison of representation similarity between the global encoder and client-specific
local encoders across different FL methods on CIFAR-10 under the Non-IID setting. We measure the
alignment of learned representations using (a) Cosine similarity and (b) Centered Kernel Alignment
(CKA) similarity.

Table 11: Comparison of training overhead across different methods on CIFAR-10 and CIFAR-100.

CIFAR-10 CIFAR-100
Memory(MB) Time(s) Memory(MB) Time(s)

FedAvg 4508 34.20±1.40 7190 42.67±0.49
FedPer 4508 33.92±0.40 7190 42.22±0.72

FABLE w/ 128 Anchors 4494 34.78±0.50 7188 43.65±1.59
FABLE w/ 256 Anchors 4576 35.11±1.01 7252 44.13±2.15
FABLE w/ 512 Anchors 4620 35.21±1.92 7396 44.33±0.88

Besides,we conduct additional experiments to explore the impact of the number of anchors on model
privacy protection. We compare the impact of different numbers of anchors on the inference accu-
racy under the setting of model privacy in the original text, as shown in the Table 10. As observed
from the results, with the increase in the number of anchors, the performance of the model declines
slightly in terms of privacy. By controlling the number of anchors, we can find an trade-off between
privacy protection and model performance.

B.5 ANALYSIS ON REPRESENTATION ALIGNMENT

To evaluate the consistency of representations between the global and local encoders under heteroge-
neous data distributions, we conduct a representation alignment analysis. Specifically, we compute
the representations of CIFAR-10 using the global encoder and each client’s locally trained encoder
under the Non-IID setting, then measure their pairwise similarity. We employ two widely used
metrics including Cosine Similarity and Centered Kernel Alignment (CKA).

As shown in Figure 6, FABLE achieves the highest alignment scores across both similarity measures,
outperforming FedAvg (McMahan et al., 2017) and FedPer (Arivazhagan et al., 2019). These results
indicate that FABLE effectively mitigates the representation drift commonly observed in FL under
non-IID conditions. By improving alignment between local and global encoders, FABLE reduces
the risk of representation incompatibility during client local initialization phases. This leads to more
stable local training and alleviates performance degradation caused by heterogeneous client updates.

B.6 COMPLEXITY ANALYSIS

FABLE enhances data and model privacy by introducing anchor-aware representation transforma-
tions within a model-splitting-based PFL framework, while it incurs additional computational and
memory overhead compared to classical FL methods. Specifically, unlike FedAvg (McMahan et al.,
2017) and FedPer (Arivazhagan et al., 2019) which directly optimize the model via SGD on local
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data, FABLE requires an intermediate representation transformation step to align local representa-
tions with fixed anchors. This efficient transformation inevitably introduces a marginal increase in
training time.

Furthermore, to ensure anchor consistency across communication rounds, each client in FABLE
must retain the full anchor set locally throughout the entire training process. To avoid redundant
memory-to-GPU transfers at each round which would further increase the training cost, we choose
to store anchors directly, rather than merely caching their indices. This design choice introduces a
modest memory overhead, particularly as the number of anchors increases.

We quantitatively evaluate the global training cost under varying anchor number settings and com-
pare it with other baselines, as shown in Table 11. Although FABLE exhibits slightly increased
training time due to representation transformation, it achieves lower memory consumption with 128
anchors compared to FedAvg and FedPer. This reduction is attributed to the adaptive resizing of the
decoder’s input dimension, which decreases the number of model parameters when fewer anchors
are used. When scaling up to 256 or 512 anchors, the additional overhead remains marginal and
within acceptable practical limits. In real-world applications, the number of anchors can be flexibly
adjusted to strike a balance between privacy protection, model generalization, and system efficiency.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, we utilized Large Language Models (LLMs) as a writing
assistance tool. The role of the LLM was strictly limited to improving the language and readability
of the text. Specific applications included correcting grammatical errors, refining sentence structure
for clarity and flow, and polishing the overall prose.
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