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ABSTRACT

Industrial recommendation systems (RS) rely on the multi-stage pipeline to balance
effectiveness and efficiency when delivering items from a vast corpus to users.
Existing RS benchmark datasets primarily focus on the exposure space, where
novel RS algorithms are trained and evaluated. However, when these algorithms
transition to real-world industrial RS, they face a critical challenge: handling
unexposed items—a significantly larger space than the exposed one. This dis-
crepancy profoundly impacts their practical performance. Additionally, these
algorithms often overlook the intricate interplay between multiple RS stages, result-
ing in suboptimal overall system performance. To address this issue, we introduce
RecFlow—an industrial full-flow recommendation dataset designed to bridge the
gap between offline RS benchmarks and the real online environment. Unlike exist-
ing datasets, RecFlow includes samples not only from the exposure space but also
unexposed items filtered at each stage of the RS funnel. Our dataset comprises 38M
interactions from 42K users across nearly 9M items with additional 1.9B stage
samples collected from 9.3M online requests over 37 days and spanning 6 stages.
Leveraging the RecFlow dataset, we conduct courageous exploration experiments,
showcasing its potential in designing new algorithms to enhance effectiveness by
incorporating stage-specific samples. Some of these algorithms have already been
deployed online, consistently yielding significant gains. We propose RecFlow as the
first comprehensive benchmark dataset for the RS community, supporting research
on designing algorithms at any stage, study of selection bias, debiased algorithms,
multi-stage consistency and optimality, multi-task recommendation, and user be-
havior modeling. The RecFlow dataset, along with the corresponding source code,
is publicly available at https://github.com/RecFlow-ICLR/RecFlow.
The dataset is licensed under CC-BY-NC-SA-4.0 International License.

1 INTRODUCTION

Recommendation systems (RS) play a pivotal role in modern web and mobile applications that handle
vast amounts of information. Their primary objective is to deliver personalized recommendations from
an extensive corpus of items, based on estimated user preferences. To meet stringent online latency
requirements, industrial RS predominantly employs a multi-stage funnel-like pipeline (Covington
et al., 2016), striking a balance between effectiveness and efficiency. Substantial efforts have been
devoted to designing algorithms within this system, aiming to enhance its effectiveness as measured
by user feedback on selected items. A typical multi-stage RS consists of successive stages: retrieval
→ pre-ranking → ranking → re-ranking. During online serving, the retrieval stage (Hidasi et al.,
2015; Kang & McAuley, 2018; Zhu et al., 2018) retrieves thousands of preferred items from the
entire corpus. The pre-ranking stage (Huang et al., 2013; Wang et al., 2020) filters out less favorable
items from the retrieved set, forwarding hundreds of more promising items to the ranking stage. In
turn, the ranking stage (Cheng et al., 2016; Zhou et al., 2018; Bian et al., 2022) selects the most
appealing items from this refined set. Finally, the re-ranking (Pei et al., 2019; Bello et al., 2018) stage
determines the final items to be displayed, considering both diversity and business objectives. Notably,
as we progress through the stages, the model complexity tends to increase, incorporating additional
features and interleaving them at shallow layers of deep neural network models. Importantly, the
latter three stages typically learn from the exposure space, which captures actual user feedback (both
positive and negative) on the displayed items.
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While the mature industrial RS paradigm performs adequately, it still faces two significant short-
comings. First, a discrepancy exists between the data distribution in the training space and that in
the serving space (Qin et al., 2022). The former corresponds to the exposed space, while the latter
primarily resides in the unexposed space. This discrepancy, which we refer to as the distribution shift
problem, poses challenges. For instance, consider the pre-ranking model (Wang et al., 2020): it must
score thousands of items, yet only a few of these items are exposed to users and stored as training
data in each request. Most of the remaining samples have not been exposed even once. Consequently,
a pre-ranking model trained solely on the exposure space may inaccurately predict preferences in the
retrieved space, leading to suboptimal recommendations (Wei et al., 2024). Similar issues arise in
the ranking and re-ranking stages. Second, there is a discrepancy between the learning and serving
environments. Although models at different stages are learned and evaluated separately, they must
collaborate as a cohesive system to meet user preferences. Insufficient knowledge about other stages
during the learning process can result in suboptimal performance when these learned models serve
online. For example, the online performance of a retrieval algorithm not only depends on its own
characteristics but is also influenced by subsequent stages. Incorporating knowledge from these
subsequent stages can potentially enhance the retrieval algorithm’s performance (Ding et al., 2019;
Lou et al., 2022; Zheng et al., 2024).

As we are aware, large-scale datasets serve as the bedrock for advancing various machine learning
algorithms. For instance, ImageNet (Deng et al., 2009) has significantly contributed to computer
vision, while GLUE (Wang et al., 2018) has played a crucial role in natural language processing.
However, in the RS domain, existing RS datasets (Harper & Konstan, 2015; Ni et al., 2019; Asghar,
2016; Zhu et al., 2018; Yuan et al., 2022; Gao et al., 2022a;b; Sun et al., 2023)—though instrumental
in fueling RS research—have a limitation: they are exclusively collected from the exposure space.
Consequently, these datasets cannot fully capture the true dynamics of online recommendation
services. Moreover, this inherent bias prevents them from effectively addressing the discrepancy
between training and serving in RS.

To address this issue, we propose RecFlow, an industrial large-scale full-flow dataset collected from
the real industrial RS. The industrial RS’s multi-stage funnel-like pipeline encompasses the following
stages: retrieval, pre-ranking, coarse ranking, ranking, re-ranking, and edge ranking. Unlike all
previous RS benchmarks, RecFlow samples representative unexposed items from each stage of the
funnel in a single request, alongside all the exposed items. The inclusion of full-stage samples in each
request provides several merits: (1) By recording items from the serving space, RecFlow enables
the study of how to alleviate the discrepancy between training and serving for specific stages during
both the learning and evaluation processes (Qin et al., 2022). (2) RecFlow also records the stage
information for different stage samples, facilitating research on joint modeling of multiple stages,
such as stage consistency or optimal multi-stage RS (Zheng et al., 2024). (3) The positive and negative
samples from the exposure space are suitable for classical click-through rate prediction or sequential
recommendation tasks (Zhou et al., 2018; Kang & McAuley, 2018). (4) RecFlow stores multiple
types of positive feedback (e.g., effective view, long view, like, follow, share, comment), supporting
research on multi-task recommendation (Ma et al., 2018a; Zhao et al., 2019; Tang et al., 2020; Liu
et al., 2023). (5) Information about video duration and playing time for each exposure video allows
the study of learning through implicit feedback, such as predicting playing time (Covington et al.,
2016; Lin et al., 2023). (6) RecFlow includes a request identifier feature, which can contribute to
studying the re-ranking problem (Pei et al., 2019; Bello et al., 2018). (7) Timestamps for each sample
enable the aggregation of user feedback in chronological order, facilitating the study of user behavior
sequence modeling algorithms (Zhou et al., 2018; 2019; Chang et al., 2023; Hou et al., 2023). (8)
RecFlow incorporates context, user, and video features beyond identity features (e.g., user ID and
video ID), making it suitable for context-based recommendation (Huang et al., 2019; Wang et al.,
2022). (9) The rich information recorded about RS and user feedback allows the construction of
more accurate RS simulators or user models in feed scenarios (Shi et al., 2019; Zhao et al., 2023).
(10) Rich stage data may help estimate selection bias more accurately and design better unbiased
algorithms (Chen et al., 2023). Furthermore, RecFlow is a large-scale dataset, containing 38 million
exposure samples and 1.9 billion stage samples, ensuring the credibility of algorithm improvements
based on its data.

Given these characteristics, RecFlow can be utilized across a broad spectrum of RS algorithms. In
this paper, we primarily conduct pioneering experiments to explore its potential in each stage of
the RS funnel. In the retrieval stage, we investigate the effectiveness of using filtered videos from
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Figure 1: The overall collection process of RecFLow.

each stage as hard negative samples and explore the interplay between retrieval and subsequent
stages. For the coarse ranking stage, we leverage corresponding stage samples to address the
distribution shift problem and model mutual effects between stages. Motivated by existing works, we
explore how to exploit stage samples for designing auxiliary ranking tasks and behavior sequence
modeling algorithms to improve classical AUC metrics. Similar exploration experiments are also
conducted for the ranking stage. Notably, RecFlow also introduces a new recall metric to assess the
performance of different methods based on stage samples to mitigate the gap between training and
serving environment. To the best of our knowledge, RecFlow is the first RS dataset containing stage
samples. It stands as one of the largest and most comprehensive datasets for RS, covering nearly all
recommendation tasks. We have made the dataset and source codes publicly available to promote
reproducibility and advance RS research.

2 DATASET CHARACTERISTIC

2.1 COLLECTION

RecFlow is the first RS dataset containing intermediate filtered videos of each stage in the industrial
RS funnel. The multi-stage funnel-like pipeline of the industrial RS contains six stages including
retrieval → pre-ranking → coarse ranking → ranking → re-ranking → edge ranking. The
number of videos output at each stage is 8000 → 3000 → 500 → 120 → 10 → 6. We collect
the online request logs from January 13 to February 18, 2024. The collection process is as follows.
We randomly sample 42K seed users on January 12, 2024, and store each recommendation request
of the seed users since January 13, 2024. As shown in Figure 1, we sample some filtered videos
from each stage but adopt a stage-wise strategy. From January 13 to February 04, 2024, which is
called the 1st period, we sample 10 filtered videos of the pre-ranking stage named pre-rank neg, 10
filtered videos of the coarse ranking stage named coarse neg, top 10 ranking videos as rank pos, 10
sampling filtered videos after the 120-th re-ranking video as rank neg in the ranking stage, top 10
re-ranking videos as rerank pos and 10 sampling filtered videos after the 80-th re-ranking video as
rerank neg in the re-ranking stage, and the user’s various feedbacks on the exposed videos. Note that
the recommendation scenario is feeds-style, the user can only watch one video on the screen. So the 6
output videos of the RS may not all be exposed to the user because the user can leave the APP at any
time. We define the realshow field to identify whether the user has watched the video. From February
05 to February 18, 2024, which is called the 2nd period, we expand the amount of stage samples. Both
the pre-ranking neg and the coarse neg go up to 40. For the ranking, re-ranking, and edge ranking
stages, we save all the videos that appear in these stages. We still obtain the rank pos, rank neg,
rerank pos, rerank neg, and realshow under the same stage-wise strategy as the previous period. We
collect stage samples in this way considering the storage pressure and information integrity. The 2nd
period has more complete stage information compared to the 1st period, which gives the researchers
more choices to further process the dataset based on their needs. We sample 10/40 filtered videos
from the pre-ranking and coarse ranking stages because keeping all of the filtered videos has huge
storage pressure. Besides, the videos filtered by the first three stages are less important. For the latter
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Table 1: Detail quantity information of various aspects in RecFlow.
#Stage Sample #Request #Users #Realshow videos #All videos

1st Period 352,120,401 6,062,348 38,193 5,984,924 30,305,725
2nd Period 1,572,217,303 3,308,233 35,073 3,627,694 55,665,503

Total 1,924,337,704 9,370,581 42,472 8,773,147 82,216,301

#Realshow #Like #Long view #Effective view #Follow

1st Period 24,523,473 1,027,013 5,853,054 9,343,776 69,495
2nd Period 13,721,842 618,158 3,111,439 5,063,751 37,558

Total 38,245,315 1,645,171 8,964,493 14,407,527 107,053

#Forward #Comment #Prerank neg #coarse neg #Rank pos

1st Period 45,966 175,896 60,623,480 60,623,480 60,624,430
2nd Period 23,769 114,741 132,329,320 132,329,320 33,082,330

Total 69,735 290,637 192,952,800 192,952,800 93,706,760

#Rank neg #Rank #Rerank pos #Rerank neg #Re-rank

1st Period 60,624,012 121,248,442 60,624,613 60,623,606 121,248,219
2nd Period 33,082,330 1,307,558,663 33,082,330 33,082,330 1,307,558,663

Total 93,706,342 1,428,807,105 93,706,943 93,705,936 1,428,806,882

three stages, we keep the information integrity of the stage possibly. The videos appearing in these
stages are closer to the user’s preference and have a small scale.

2.2 FEATURES

The formation of each instance in RecFlow is {request id, request timestamp, user id, device id,
age, gender, province, video id, author id, category level one, category level two, upload type,
upload timestamp, duration, realshow, rerank pos, rerank neg, rank pos, rank neg, coarse neg,
pre-rank neg, rank index, rerank index, playing time, effective view, long view, like, follow, forward,
comment}. realshow indicates whether the user has watched the video. The same procedure is applied
to the other * pos/neg fields. For example, when the video ranks top 10 in the ranking stage, then
the rank pos is set to 1 otherwise 0. To reserve the original industrial RS information, we also retain
the ranking position of each video in the ranking and reranking stages through the rank index and
rerank index fields respectively. We record seven types of positive feedback that reflect the user’s
varying degrees of preference towards videos. playing time is the time the user spends watching the
video. The other features’ details are in the subsection Feature Description A.1 of Appendix.

2.3 ANALYSIS

In this section, we conduct a basic statistical analysis to show RecFlow’s characteristics. We collect
9 million requests. It has 38 million exposure samples and 1.9 billion stage samples (including
exposure samples). Among these samples, there are 42K users, 8.7 million exposed videos, and 82
million videos. Nearly 89% of videos are not exposed. This new character does not exist in existing
RS datasets. During the first period, the quantity of each defined stage’s samples is about 60 million.
Stage samples are 14.8x larger than exposed samples. The difference between stage samples and
exposure samples has increased to 236 times in the 2nd period. The huge quantity difference is the
foundation for studying the distribution shift problem. The detailed quantities of the dataset are shown
in Table 1. Figure 3, whose horizontal axis represents the range of the number of videos interacted by
users and the vertical axis shows the number and percentage of users within that range, illustrates
that the frequency of users exhibits a long-tail distribution. In Figure 4, the horizontal axis represents
the logarithm of the frequency of video appearances, while the vertical axis shows the video quantity
corresponding to that frequency. The left chart only includes videos marked as realshow with 1,
which are the exposed videos, while the right chart includes videos from all stages. It shows the
frequency of videos in exposure space and all stages’ space respectively. The left chart shows that
exposure video frequency follows long-tail distribution. The right chart reveals that video frequency
in all stages also obeys the long-tail distribution, which is not observed in previous datasets.
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Figure 4: Video Distribution.

2.4 COMPARISON

We state the characteristics of existing recommendation datasets to demonstrate the uniqueness
of RecFlow. MovieLens (Harper & Konstan, 2015) contains the user’s rating data for movies.
Amazon (Ni et al., 2019) dataset contains the user’s review information on the product. Yelp (Asghar,
2016) is a dataset for location recommendation. The three datasets only contain the user’s single type
of positive feedback. Taobao (Zhu et al., 2018), an e-commerce dataset, has four types of the user’s
positive feedback. Tenrec (Yuan et al., 2022) is a comprehensive recommendation dataset that has the
characteristic of multiple types of the user’s feedback from four different recommendation scenarios.
KuaiRec (Gao et al., 2022a) is a full-observed video recommedation datatse. KuaiRand (Gao et al.,
2022b) is an unbiased sequential video recommendation dataset with randomly exposed videos.
KuaiSAR (Sun et al., 2023) is a unified search and recommendation dataset. The three datasets are
opened for dedicated research problems. RecFlow differs from those datasets because of the existence
of samples from each recommendation stage. Table 8 in the subsection Dataset Comparison A.2 of
Appendix gives a detailed comparison between RecFlow and existing recommendation datasets.

2.5 USER CONSENT AND PRIVACY PROTECTION

We only collect interaction data from the user who has made his/her personal information publicly
(like user id, age, gender, province, etc), and this public information allows for some level of data
sharing, according to the privacy policy that users voluntarily agreed to when they signed up for
an account. Besides, we anonymize all features that contain personal information. In detail, we
anonymize each feature ID by adding the raw ID value with a random large integer first and remapping
it to a new ID through the Hash algorithm. It can not know who is the person in the real world from the
anonymous data. The General Data Protection Regulation of the European Union has confirmed that
”personal information that has been anonymized does not belong to personal information. Therefore,
personal information that has been anonymized does not have the corresponding personal information
compliance obligations, and companies can freely process it without the consent of individuals.”
Thus, our open-source dataset meets legal requirements.

We have anonymized all features which contain personal information including request id, user id,
device id, age, gender, province, video id, author id, category level one, category level two, and
upload type. We first anonymize each feature ID by adding the raw ID value with a random large
integer and then remapping it to a new ID through the Hash algorithm. Note that each raw ID
value owns a unique larger integer. The rest features are stage labels and the user’s feedback labels,
which are not related to privacy. Anonymizing data with random noise and the Hash algorithm
satisfies the privacy protection requirements of the law of the European Union. The way of RecFlow’s
anonymization is more strict than previous public recommendation datasets including Amazon (Ni
et al., 2019), Taobao (Zhu et al., 2018), KuaiRec (Gao et al., 2022a), and Tenrec (Yuan et al., 2022).
We add random large integer noise before the Hash algorithm and others not. It is nearly impossible
to recover raw personal information such as who is the person in the real world from anonymous data.
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3 EXPERIMENTS

We explore how to utilize stage samples to alleviate distribution shift and distill knowledge of
subsequent stages for improving RS’s performance. We focus on the typical retrieval, coarse ranking,
and ranking stages. For each stage, we briefly introduce its duty and existing learning paradigm. Then
we state the motivation and the ways of exploiting stage samples. Finally, we report the experiment
results and analysis. We run all experiments five times with Pytorch (Imambi et al., 2021) on Nvidia
32G V100. We report the average result and standard deviation. For all methods and all experiments,
we train the neural models for only one epoch and there is no early stopping. Thus, all methods are
compared fairly. There are two reasons for only one epoch. First, all online recommendation models
of the industrial RS are trained by one epoch. We keep consistency with the online configuration.
Second, there exists one-epoch phenomenon (Zhang et al., 2022) of training recommendation model
which indicates that multi-epoch training does not bring improvement.

3.1 RETRIEVAL

Retrieval is the first stage of the industrial RS. It aims at retrieving thousands of videos that the user
potentially prefers from the 100 million scale video corpus. Given the large candidate pool, the
retrieval stage mostly adopts the lightweight two-tower model together with approximate nearest
neighbor search to retrieve items quickly. To ensure that the user’s preferred videos are obtained,
the retrieval models usually learn with positive feedback videos as positive samples and randomly
sampling videos as negative samples. We choose SASRec (Kang & McAuley, 2018) with one head
and one layer for exploration experiments. We apply the effective view videos as positive samples
and randomly sample 200 videos as negative samples for each positive. To keep consistency with the
real industrial RS’s online learning mode, we train SASRec with the first 36 days’ data day by day.
The data of the last day is for evaluation. We utilize the standard top-N ranking metrics including hit
Recall@K and NDCG@K. K is set to 100, 500, 1000. The feature is the user’s 50 past effective view
videos. We apply embedding for the video id feature and set the embedding dimension to 8. The
batch size is 4, 096 and the learning rate is 1e− 1. BPR (Rendle et al., 2012) is the loss function and
Adam (Kingma & Ba, 2014) is used for optimization.

3.1.1 HARD NEGATIVE MINING

Recent research (Zhang et al., 2013; Rendle & Freudenthaler, 2014; Lian et al., 2020) have shown
hard negative mining usually not only accelerates the convergence but also improves the model
accuracy for the retrieval model. The hard negative samples are those videos that are similar to the
positive videos but uninteresting to the user. The multi-stage RS pipeline aims at estimating the
user’s preference. Videos that fail to be exposed to the user during the pipeline are similar to the
displayed positive video but very likely less attractive to the user. Thus, we think the unexposed stage
samples indeed satisfy the definition of hard negative samples. We conduct experiments to explore
the effectiveness of the stage samples as hard negative samples. In the experiments, we replace some
randomly sampling easy negative samples with the same number of hard negative stage samples. The
total number of negative videos for each positive video is 200.

We have the following findings from the result in Table 2. (1) Applying filtered videos from each
stage as hard negatives all gains performance improvement on the Recall/NDCG metric. (2) As the K
in Recall/NDCG@K becomes smaller, the performance improvement becomes better. For example,
when we add 1 pre-rank neg as hard negative, the relative promotion of Recall@100, 500, 100 are
24.7%, 18.2%, 9.2% respectively, and the relative promotion of NDCG@100, 500, 100 are 28.3%,
20.7%, 12.6% respectively. (3) The hard negative video from rerank pos outperforms than the other
stages. We think that videos from rerank pos are negative samples of appropriate difficulty. We also
vary the number of hard negative samples to observe the changes in the effectiveness. The experiment
result and analysis are in the subsection A.3 of Appendix.

3.1.2 INTERPLAY BETWEEN RETRIEVAL AND SUBSEQUENT STAGES

The most important characteristic of industrial RS is the multi-stage. Every stage has its duty and
mature paradigm. The goal of each stage is consistent, which is to fit the user’s preference. Although
models of all stages aim at fitting the user’s preference, they can not capture the user’s preference

6
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Table 2: Recall(R) and NDCG(N) results (mean ± std) obtained by using a single different stage
sample as the hard negative sample during the retrieval stage, with units of %. The best and baseline
results are based on the paired t-test at the significance level 5%.

Hard Negative Type R@100 N@100 R@500 N@500 R@1000 N@1000

Baseline 0.461±0.085 0.099±0.085 1.593±0.229 0.241±0.045 2.685±0.186 0.356±0.040
Prerank neg 0.575±0.095 0.127±0.028 1.883±0.170 0.291±0.030 2.931±0.142 0.401±0.030
Coarse neg 0.555±0.066 0.121±0.021 1.729±0.152 0.267±0.033 2.758±0.169 0.376±0.035
Rank neg 0.462±0.126 0.094±0.030 1.695±0.230 0.249±0.043 2.733±0.221 0.359±0.042
Rank pos 0.648±0.074 0.134±0.017 1.794±0.187 0.277±0.028 2.737±0.173 0.376±0.025

Rerank neg 0.577±0.091 0.119±0.019 1.804±0.208 0.274±0.034 2.724±0.242 0.371±0.036
Rerank pos 0.687±0.087 0.144±0.018 1.889±0.108 0.295±0.021 2.892±0.105 0.401±0.020

Exposure neg 0.603±0.093 0.137±0.016 1.860±0.207 0.295±0.032 2.902±0.221 0.405±0.033

Table 3: Recall(R) and NDCG(N) results (mean ± std) obtained by using a single different stage
sample as the cascade sample during the retrieval stage, with units of %. The best and baseline results
are based on the paired t-test at the significance level 5%.

Cascade Type R@100 N@100 R@500 N@500 R@1000 N@1000

Baseline 0.461±0.085 0.099±0.085 1.593±0.229 0.241±0.045 2.685±0.186 0.356±0.040
Prerank neg 0.677±0.061 0.167±0.041 2.268±0.129 0.367±0.048 3.446±0.111 0.492±0.042
Coarse neg 0.665±0.120 0.163±0.045 2.253±0.052 0.361±0.037 3.371±0.090 0.479±0.038
Rank neg 0.704±0.150 0.173±0.049 2.282±0.250 0.373±0.055 3.410±0.203 0.491±0.052
Rank pos 0.685±0.094 0.151±0.025 2.191±0.085 0.340±0.023 3.346±0.078 0.462±0.019

Rerank neg 0.707±0.083 0.163±0.024 2.273±0.121 0.359±0.024 3.338±0.083 0.471±0.022
Rerank pos 0.795±0.108 0.176±0.025 2.263±0.078 0.361±0.017 3.394±0.048 0.480±0.016

Exposure neg 0.692±0.071 0.156±0.028 2.150±0.108 0.340±0.033 3.266±0.183 0.458±0.036
FS-LTR 0.803±0.095 0.215±0.027 2.466±0.090 0.425±0.029 3.606±0.060 0.545±0.024

perfectly. Few people focus on the interplay between stages. The academic researchers lack available
datasets and the industrial engineers only devote effort to the assigned stage. (Zheng et al., 2024) has
pointed out that there are two factors influencing the video’s exposure and the user’s feedback. First,
it is the user’s preference on the video. Second, it is the preference of the subsequent stage towards
the video. For example, one video that the user likes is retrieved during the retrieving stage but is
filtered out by the ranking model due to its imperfect preference estimation ability. This video is
inefficient for the whole RS because it can not be exposed to the user at all. The optimal solution for
the model of each stage is to select videos that satisfy the preference of the user and subsequent stages
simultaneously. FS-LTR (Zheng et al., 2024) has proposed the Generalized Probability Ranking
Principle (GPRP) to prove the solution proposed above is optimal theoretically. We implement
FS-LTR in this section to see its effectiveness. The user’s preference can be learned from the positive
feedback samples and randomly sampling negative samples. In order to learn the preference of
subsequent stages, we introduce additional ranking loss which forces the logits of samples from high-
priority stages to be bigger than the logits of samples from low-priority stages. The priority of stages
are {positive:6, exposure neg:5, rerank pos:4, rank pos:4, rerank neg:3, rank neg:3, corase neg:2,
pre-rank neg:1, random neg:0}. Exposure neg represents the video that has been exposed to the
user (realshow=1) but obtains negative feedback. This definition of priority applies throughout the
paper. We always keep one positive sample with 200 negative samples. We first introduce the stage
preference one stage once by replacing random negatives with stage samples with BPR loss as Eq( 1):

LFS-LTR =

N∑
i=1

∑
j∈{k:pk<pi}

BPR(oi, oj) (1)

where N equals 200, pi(k) represents the priority level of sample i(k), and pk < pi means the priority
level of sample k is lower than sample i.

We have the following findings from experiment results in Table 3. (1) FS-LTR gains performance
enhancement when introducing the sample of each stage respectively compared to the baseline. (2)
Under the same negative setting, FS-LTR can achieve better results compared with the results of
hard negative mining in Table 2. (3) As the K of Recall@K becomes smaller, the performance
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improvement becomes better. For example, when we add 1 pre-rank neg as hard negative, the relative
promotion of Recall@100, 500, 100 are 46.8%, 42.4%, 28.3% respectively. NDCG@K holds the
same trends. We also try to introduce multiple samples from more stages gradually to investigate the
effectiveness of modeling more subsequent stages’ preferences in subsection A.4 of Appendix.

3.2 COARSE RANKING

Coarse ranking receives favorable videos from the pre-ranking stage and filters less favorable videos
to fulfill its duty. As the candidate videos are more similar and not easy to distinguish, coarse ranking
models take more feature fields as input and use a more complex neural network to ensure their
modeling capacity. However, there are 3, 000 videos to be scored in our scenario, the two-tower
structure is still the best choice. We take DSSM (Huang et al., 2013) as the coarse ranking model.
The Multi-layer Perceptron (MLP) of the user and video towers in DSSM are set to be [128, 64, 32].
Existing coarse ranking models are almost learned on the exposure of positive and negative samples.
AUC (Area Under the Curve) on the testing exposure samples is employed to assess the algorithm’s
performance. Effective view is the learning signal. Following the retrieval experiment, data from
the first 36 days is for training and the last day’s data is for evaluation. The feature fields include
user id, device id, age, gender, province, video id, author id, category level one, category level two,
upload type, upload timestamp, request timestamp. The upload timestamp and request timestamp
are divided into the week, day, hour feature fields. Besides, we add the user’s past 50 effective videos
as the behavior sequence. We process effective behavior sequences through mean pooling. We apply
embedding for all the feature fields and set the embedding dimension to 8. The batch size is 1, 024
and the learning rate is 1e− 2. Binary Cross Entropy is the loss and Adam is used for optimization.
We also utilize the stage samples to explore the auxiliary ranking task and user behavior sequence
modeling in the coarse ranking model, both of which boost the AUC metric greatly. The methods
together with the experiment results and analysis are in subsections A.5 and A.6 of Appendix.

3.2.1 DATA DISTRIBUTION SHIFT

Data distribution shift is a longstanding problem in RS. Due to the absence of datasets containing
stage samples, few works (Ma et al., 2018b; Qin et al., 2022) focus on the problem in the coarse
ranking stage. The coarse ranking model is trained based on the exposed samples which contains 6
videos at most but has to score 3, 000 videos in each request. The data distribution between training
and testing exists huge inconsistency. What’s worse, the AUC metric evaluated on the exposure space
for guiding the offline algorithm’s optimization is inconsistent with the online scenario (Song et al.,
2022; Zhang et al., 2023b). The collected stage samples make the evaluation space more consistent
with the online situation. Following (Zhang et al., 2023b), we apply the Recall@K metric which is
consistent with the effect of online business. Because we saved all the videos in the ranking stage on
February 18, 2024, the candidate set for calculating the Recall@K and NDCG@K is composed of the
videos in the ranking stage together with videos of coarse neg. We set K to 100, 200. We also report
the classical AUC metric. We try to directly supplement the stage samples as extra negative samples
into the training data. Although it’s possible to introduce false negative videos, this still can reduce
the difference in data distribution between training and testing largely. However, supplementing
extra negative samples increases the machine overload. Thus, we show the relationship between the
performance and the quantity of the additional negative samples.

We have the following conclusions from the result in Table 4. (1) Supplementing stage videos as
extra negative samples can largely enhance the Recall and NDCG metric. The improvement can be
attributed to the consistency of data distribution between training and testing. (2) When increasing
the quantity of extra negative samples, the improvement becomes greater. And introducing partial or
all videos from all corresponding stages gains the best results. This indicates the more consistent
data distribution between training and testing, the more improvement. (3) Introducing videos from
rank pos and rerank pos gains light enhancement compared to coarse/rank/rerank neg. We think that
there are false negative samples that mislead the model’s learning. (4) The classical AUC metric has
opposite trends. After adding extra negative samples, the gap between the training data distribution
and the data distribution of exposure space for evaluating AUC enlarges. As we mentioned in the
retrieval section, there exist hardness level among different stage samples. Expanding negatives
degrades the model’s ability to distinguish hard negatives (exposed un-effective view samples) but
enhances the capability of recognizing less hard negatives (videos from stages).
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Table 4: The result (mean ± std) of using different stages’ samples as extra negatives for Coarse
Ranking. The best and baseline results are based on the paired t-test at the significance level 5%.

Neg Type #N AUC LogLoss Recall@100 NDCG@100 Recall@200 NDCG@200

Baseline - 0.718±0.001 0.592±0.003 0.271±0.027 0.059±0.027 0.535±0.009 0.096±0.003

Coarse neg 1 0.705±0.002 0.608±0.006 0.321±0.012 0.072±0.027 0.597±0.038 0.111±0.003
10 0.633±0.016 0.773±0.018 0.392±0.012 0.088±0.004 0.668±0.007 0.126±0.003

Rank neg 1 0.704±0.002 0.615±0.004 0.353±0.013 0.079±0.003 0.638±0.004 0.118±0.002
10 0.618±0.016 0.825±0.027 0.454±0.011 0.102±0.005 0.726±0.005 0.140±0.004

Rank pos 1 0.704±0.001 0.603±0.001 0.275±0.027 0.061±0.004 0.557±0.005 0.100±0.001
10 0.623±0.020 0.769±0.003 0.290±0.002 0.069±0.004 0.591±0.019 0.111±0.004

Rerank neg 1 0.702±0.001 0.616±0.005 0.337±0.007 0.076±0.001 0.605±0.002 0.113±0.001
10 0.608±0.021 0.821±0.019 0.380±0.014 0.084±0.003 0.673±0.004 0.125±0.003

Rerank pos 1 0.703±0.001 0.607±0.003 0.264±0.011 0.060±0.003 0.548±0.003 0.099±0.002
10 0.618±0.024 0.782±0.025 0.285±0.015 0.069±0.003 0.587±0.011 0.111±0.003

All 1 0.662±0.006 0.704±0.011 0.386±0.010 0.084±0.001 0.676±0.008 0.125±0.001
10 0.563±0.004 1.243±0.030 0.455±0.004 0.105±0.001 0.728±0.004 0.144±0.001

Table 5: The result (mean ± std) of interplay between Coarse Ranking and Subsequent Stages. The
best and baseline results are based on the paired t-test at the significance level 5%.

Method AUC LogLoss Recall@100 NDCG@100 Recall@200 NDCG@200

Baseline 0.718±0.001 0.592±0.003 0.271±0.027 0.059±0.027 0.535±0.009 0.096±(0.003
PositiveRank 0.554±0.005 1.040±0.051 0.457±0.001 0.112±0.001 0.723±0.002 0.149±0.001

FS-LTR 0.473±0.013 1.253±0.071 0.475±0.002 0.119±0.001 0.734±0.002 0.155±0.001

3.2.2 INTERPLAY BETWEEN COARSE RANKING AND SUBSEQUENT STAGES

FS-LTR is a general principle and is applicable in the coarse ranking stage. We implement FS-LTR
with samples of positive, exposure neg, rerank pos, rerank neg, rank pos, rank neg, coarse neg,
which is the inference space of the coarse ranking model. In order to apply the loss 1, we aggregate
samples of the same request into the same batch. We also add a contrast experiment PostiveRank,
in which we just make the logits of positive samples bigger than the logits of the other samples.
The result in Table 5 shows that FS-LTR can achieve the best performance on the Recall/NDCG. It
demonstrates the necessity of learning the preferences of both the user and the subsequent stages.

3.3 RANKING

Ranking is nearly the most important stage in the industrial multi-stage RS and has been studied
sufficiently. It determines the displayed items to the user. Its candidate video set is the output of the
coarse ranking stage. Given the importance and difficulty of the task, ranking model has the most
complex neural network structure and uses most feature fields. The time cost is acceptable because
it only needs to score 500 videos. We utilize DIN (Zhou et al., 2018) as the ranking model. The
architecture of DIN’s MLP is [128, 128, 32, 1]. Ranking model is also learned on the exposure space
and evaluates AUC on testing exposure samples. For the experiment settings, the ranking model
remains the same as the coarse ranking model. We also use the stage samples to explore the auxiliary
ranking task and user behavior sequence modeling in the ranking model, both of which improve the
classical AUC greatly. Detail of methods and experiments are in subsection A.7 and A.8 of Appendix.

3.3.1 DATA DISTRIBUTION SHIFT

The ranking model also suffers from the data distribution shift problem. In each request, there are
at most 6 exposure samples for training but 500 videos to be scored. The data distribution gap
between training and testing still exists. Fortunately, the inconsistency is not as serious as the coarse
ranking model. The exploration experiment setting for alleviating the data distribution shift problem
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Table 6: The result (mean ± std) of using different stages’ samples as extra negatives for Ranking.
The best and baseline results are based on the paired t-test at the significance level 5%.

Neg Type #N AUC LogLoss Recall@50 NDCG@50 Recall@100 NDCG@100

Baseline - 0.727±0.001 0.583±0.003 0.169±0.005 0.045±0.002 0.319±0.008 0.069±0.002

Rank neg 1 0.711±0.001 0.610±0.008 0.223±0.005 0.061±0.002 0.395±0.007 0.088±0.002
10 0.645±0.003 0.810±0.032 0.264± 0.012 0.074±0.004 0.454±0.014 0.105±0.005

Rank pos 1 0.711±0.001 0.604±0.008 0.176±0.005 0.047±0.001 0.327±0.010 0.072±0.002
10 0.653±0.002 0.724±0.029 0.185±0.009 0.049±0.003 0.331±0.015 0.073±0.003

Rerank neg 1 0.708±0.001 0.616±0.006 0.215±0.003 0.059±0.001 0.380±0.006 0.085±0.001
10 0.624±0.005 0.815±0.028 0.232±0.018 0.064±0.005 0.406±0.031 0.092±0.007

Rerank pos 1 0.711±0.002 0.608±0.006 0.170±0.012 0.045±0.003 0.319±0.019 0.069±0.004
10 0.646±0.002 0.782±0.033 0.183±0.016 0.048±0.005 0.335±0.009 0.073±0.003

All 1 0.675±0.003 0.697±0.010 0.234±0.005 0.064±0.002 0.411±0.004 0.093±0.002
10 0.602±0.005 1.076±0.049 0.278±0.027 0.078±0.007 0.467±0.038 0.108±0.009

Table 7: The result (mean ± std) of interplay between Ranking and Subsequent Stages. The best and
baseline results are based on the paired t-test at the significance level 5%.

Method AUC LogLoss R@50 N@50 R@100 N@100

Baseline 0.727±0.001 0.583±0.003 0.169±0.005 0.045±0.002 0.319±0.008 0.069±0.002
PositiveRank 0.564±0.003 1.466±0.313 0.309±0.016 0.093±0.006 0.506±0.014 0.125±0.006

FS-LTR 0.461±0.005 1.215±0.391 0.323±0.012 0.098±0.003 0.525±0.014 0.131±0.004

is the same as the coarse ranking model including motivation, method, and evaluation metrics. The
difference is that samples of coarse neg are excluded for training and evaluation because they are
not in the ranking model’s candidate video set. The result is shown in Table 6. We can find that the
more consistent the data distribution between training and testing, the Recall and NDCG gain more
improvement. Other conclusions are the same as coarse ranking and we don’t repeat them here.

3.3.2 INTERPLAY BETWEEN RANKING AND SUBSEQUENT STAGES

We also conduct FS-LTR in the ranking stage. The experiment settings are mostly the same as coarse
ranking except that training samples are from positive, exposure neg, rank neg, rank pos, rerank neg,
rerank pos, which is the inference space of the ranking model. PositiveRank serves as the contrast
purpose. The results are summarized in the Table 7 and conclusions are the same as coarse ranking.

4 LIMITATIONS

RecFlow, while valuable in lots of recommendation research problems, also has its own drawbacks.
Understanding advantages and disadvantages is vital for ensuring accurate academic use. First, we
collect data from only one recommendation scenario which causes RecFlow can not be applied to the
multi/cross-domain recommendation. Second, RecFlow can’t advance the research of multimodal
recommendation because of lacking multimodal features such as text and image. On the other hand,
it needs more hardware resource cost because RecFlow contains 1,924,337,704 instances.

5 CONCLUSIONS

In this paper, we propose a new dataset called RecFlow. Unlike all previously published recommenda-
tion datasets, RecFlow captures information across the entire pipeline of an industrial recommendation
system. We believe this is highly valuable as it will provide researchers with unprecedented conve-
nience for studying multi-stage recommendations. We also conduct extensive preliminary experiments
using RecFlow in retrieval, coarse ranking, and ranking stages. The experimental results demonstrate
that utilizing stage samples indeed enhances recommendations.
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A APPENDIX

A.1 FEATURE DESCRIPTION

The request id identifies each recommendation request and request timestamp represents the time
when the recommendation request arises. Every user has a unique ID named user id. device id
means the device that initiates the recommendation request. We also provide the user’s profile
information including age, gender, province. Age is grouped into ten buckets. video id identifies
each video. author id represents the one who uploads the video. We also record the video’s
attributes involving category level one, category level two, upload type, upload timestamp, duration.
category level one, category level two are categories of the video, where category level one is the
coarse-grained category (e.g. sports, history, k-pop, etc.) and category level two indicates the
fine-grained category (e.g. UEFA Champions League, Ming Dynasty, BLACKPINK, etc). The
upload type and upload timestamp stand for the type of the video (e.g. micro-video, long-video,
picture, etc) and the time when the video was uploaded. duration is the video’s lasting time. Next, we
describe the fields identifying the stage information. The effective view and long view are the binary
features (0 and 1) defined according to business interest. long view is more strict than effective view.
like indicates whether the user clicks the ♡ button. follow means the user follows the video’s author.
forward represents the user sharing the video. comment stands for whether the user makes some text
review about the video. Note that the feedback values of the unexposed video are all set to 0. The
fields of request id, user id, device id, age, gender, province, video id, author id, category level one,
category level two, upload type are all have been anonymized ensuring the privacy protection.

A.2 DATASET COMPARISON

Table 8: The characteristic comparison of different recommendation datasets.
Dataset Stage

Sample
Type feedbacks #Users #Interac-

tions
True neg Req id

MovieLens-20M (Harper & Konstan,
2015)

✗ 1 138K 20M ✗ ✗

Amazon (Ni et al., 2019) ✗ 2 / 233M ✗ ✗
Yelp (Asghar, 2016) ✗ 1 1.9M 8M ✗ ✓
Taobao (Zhu et al., 2018) ✗ 4 987K 100M ✗ ✗
TenRec-QKV (Yuan et al., 2022) ✗ 4 5.0M 142M ✓ ✗
TenRec-QKA (Yuan et al., 2022) ✗ 6 1.3M 46M ✗ ✗
KuaiRec (Gao et al., 2022a) ✗ 1 7K 12M ✓ ✗
KuaiRand (Gao et al., 2022b) ✗ 6 27K 322M ✓ ✗
KuaiSAR (Sun et al., 2023) ✗ 9 26K 19M ✓ ✗

RecFlow ✓(1.9B) 7 42K 38M ✓ ✓

A.3 RETRIEVAL: THE EFFECT OF THE NUMBER OF HARD NEGATIVES IN RETRIEVAL STAGE

The result in Table 9 is the result of varying the number of hard negative samples from each stage.
We set the number to 2 and 10 for observation. (1) Increasing the number of hard negative videos
from prerank neg can further improve the performance but with diminishing marginal effect. (2)
For coarse neg, rank pos, rerank neg, rerank pos, exposure neg, adding videos from them as hard
negative samples degrades the performance. The closer the stage to the positive feedback, the more
degradation. The phenomenon demonstrates that there exists hardness level between videos from
different stages. The closer to the positive feedback the stage, the videos it contains are more difficult
for the retrieval model to distinguish. (3) When we increase the number of videos from rank neg from
1 to 2, the performance has somewhat boosted. However, it still suffers from a severe performance
drop when taking 10 rank neg hard negative videos. As pointed out in (He et al., 2014; Zhang et al.,
2023a), the ratio between easy and hard negatives has a critical influence on the performance. We
guess that harder negatives need more easy negatives and leave the hardness and ratio of hard negative
samples for further research.
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Table 9: Recall(R) and NDCG(N) results obtained by using 2 or 10 different stage sample as the hard
negative sample during the retrieval stage, with units of %.

HN Type #HN R@100 N@100 R@500 N@500 R@1000 N@1000

Baseline - 0.461 0.099 1.593 0.241 2.685 0.356

Prerank neg 2 0.474 0.108 1.664 0.257 2.574 0.352
10 0.457 0.101 1.515 0.236 2.319 0.321

Coarse neg 2 0.634 0.140 1.948 0.305 2.844 0.400
10 0.524 0.125 1.564 0.256 2.347 0.339

Rank neg 2 0.492 0.104 1.687 0.254 2.645 0.355
10 0.323 0.069 1.321 0.193 2.231 0.289

Rank pos 2 0.589 0.126 1.846 0.284 2.722 0.376
10 0.544 0.109 1.544 0.235 2.310 0.315

Rerank neg 2 0.606 0.120 1.849 0.277 2.831 0.381
10 0.336 0.070 1.186 0.176 2.032 0.265

Rerank pos 2 0.428 0.091 1.584 0.236 2.551 0.338
10 0.219 0.043 0.954 0.135 1.819 0.226

exposure neg 2 0.576 0.138 1.854 0.300 2.866 0.407
10 0.629 0.142 1.924 0.305 2.856 0.403

Table 10: Recall(R) and NDCG(N) results obtained by using different combinations of stage samples
as cascade samples during the retrieval stage, with units of %. CN-PN represents the use of coarse neg
and preran neg. R-CN-PN represents the use of exposure neg, coarse neg, and prerank neg. ALL
represents the use of all stage samples in the current request.

Cascade Type R@100 N@100 R@500 N@500 R@1000 N@1000

Baseline 0.461 0.099 1.593 0.241 2.685 0.356
CN-PN 0.803 0.215 2.466 0.425 3.606 0.545

EN-CN-PN 0.771 0.198 2.481 0.413 3.648 0.536
All 0.663 0.150 1.972 0.315 3.018 0.425

A.4 RETRIEVAL: MORE RESULT OF RETRIEVAL’S INTERPLAY EXPERIMENT

The result of Table 10 is the experiment of introducing samples from more different stages into the
FS-LTR. We can find that directly introducing samples from all stages is better than the baseline but is
not the best. The setting of CN-PN achieves the best in our exploration, which indicates that ranking
regularization between some priority levels may be unnecessary. We leave the in-depth exploration
for future research.

A.5 COARSE RANKING: AUXILIARY RANKING TASK

Increasing the ranking ability of the model trained with pointwise loss function (e.g. Click-through
Rate prediction model) by adding an auxiliary ranking task has gained much attention recently (Yan
et al., 2022; Bai et al., 2023; Sheng et al., 2023; Liu et al., 2024; Lin et al., 2024). The auxiliary
ranking task forces the logits of positive samples to be bigger than negative samples within the same

Table 11: The result of the auxiliary ranking task for the coarse ranking stage.
Method AUC LogLoss R@100 N@100 R@200 N@200

Baseline 0.718 0.592 0.271 0.059 0.535 0.096

w/ AuxLoss 0.721 0.588 0.287 0.061 0.541 0.096
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Table 12: The result of competitive relation modeling in UBM during coarse ranking stage.
Method AUC LogLoss R@100 N@100 R@200 N@200

Baseline 0.718 0.592 0.271 0.059 0.535 0.096

Competing Seq 0.722 0.588 0.293 0.064 0.574 0.103

batch or session through pairwise or listwise ranking loss. Inspired by these works, we propose a new
auxiliary ranking task by forcing the logits of positive samples bigger than the stage samples of the
same request. There is no ranking regularization on the negative samples. Note that the stage samples
are only for auxiliary loss. The total loss function is as Eq( 2).

L =
1

N

N∑
i=1

BCEWithLogit(oi, yi) + α ∗ 1

N+K

N+∑
j=1

K∑
jk=1

BPR(oj , ojk) (2)

where N is the batch size, N+ is the number of positive samples in the batch, jk represents the stage
sample within the same request as j, K is the size of stage samples, and o is the logit output by
DSSM. α is the weight of auxiliary ranking loss. In the experiment, we use all the stage samples from
coarse neg, rank neg, rank pos, rerank neg, rerank pos stages. The result in Table 11 shows that the
AUC increase by 0.002 and the Logloss decrease by 0.004, which is a significant improvement (Guo
et al., 2017). Recall and NDCG also gain improvement. The designed auxiliary ranking task promotes
both the classical and the newly proposed metrics, which demonstrates its effectiveness.

A.6 COARSE RANKING: USER BEHAVIOR SEQUENCE MODELING

Competitive relation modeling has been attracting attention in user behavior sequence modeling
(UBM) recently (Zheng et al., 2022; Hou et al., 2023; Fan et al., 2022; Li et al., 2023). Its motiva-
tion is that the user’s feedback on items is also influenced by the displayed context. For example,
if one user likes red T-shirts, he/she will click a pink T-shirt surrounded by items which he/she
is not interested in, but he/she will click the red T-shirt surrounded by pink, blue, and yellow
T-shirts. The competitive relation among displayed items has an impact on the user’s feedback.
There also exists competitive relation among the videos in the rerank/rank pos stages. These
videos compete for exposure to the user. Inspired by (Hou et al., 2023), we explore introducing
the competitive information in the stage samples into the UBM. For the user’s past effective view
videos S = [v1, v2, ..., v50], we regard 10 videos in the rank pos from the same request of each
effective view video in S as the competitive information. We represent the competitive relation as
C = [[v1,1, v1,2, ..., v1,10], [v2,1, v2,2, ..., v2,10], ..., [v50,1, v50,2, ..., v50,10]]. We apply the hierarchi-
cal attention algorithm to model the competitive relation. First, we perform target attention between
each effective view behavior vi and its competing context [vi,1, vi,2, ..., vi,10]. We will obtain the
refined competing behavior representation E = [c1, c2, ..., c50]. Then, we do mean pooling on E to
the user’s competitive relation aware interest competing interest. Table 12 shows the experiment
results. Both AUC and Logloss are improved significantly by 0.004. What’s more, Recall@100,200
and NDCG@100,200 also get better performance. The video competitive information in the rank pos
is a useful signal for UBM. The result indicates there exists a method that can improve both the
classical AUC/Logloss and the newly applied Recall/NDCG metric.

A.7 RANKING: AUXILIARY RANKING TASK

We also conduct the auxiliary ranking task in the ranking stage. The ranking loss is still Eq(2). The
stage samples used in the ranking loss come from rank neg, rank pos, rerank neg, rerank pos stages.
The results are summarized in the Table 13. We can draw findings the same with the auxiliary ranking
task of coarse ranking, which verifies the broad effectiveness of the auxiliary ranking loss based on
the stage samples.

A.8 RANKING: USER BEHAVIOR SEQUENCE MODELING

Competing modeling is also explored in the ranking stage. We still choose the videos in the rank pos
as the competing context. We change the modeling method and make it more suitable for DIN. After

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 13: The result of the auxiliary ranking task for the ranking stage.
Method AUC LogLoss R@50 N@50 R@100 N@100

Baseline 0.727 0.583 0.169 0.045 0.319 0.069

w/ AuxLoss 0.729 0.583 0.168 0.045 0.316 0.068

Table 14: The result of competitive relation modeling in UBM during ranking stage.
AUC LogLoss R@50 N@50 R@100 N@100

Baseline 0.727 0.583 0.169 0.045 0.319 0.069

Competing Seq 0.732 0.578 0.168 0.045 0.313 0.068

acquiring the refined competing behavior sequence representation E = [c1, c2, ..., c50], we perform
target attention between target video vtarget and E. Finally, we obtain the user’s competing-aware
interest competing interestt towards the target video vtarget. The result in Table 14 shows that
both the AUC and Logloss are improved by 0.005 but the Recall and NDCG have no change. The
result is not perfect as coarse ranking and it is worth exploring the modeling method continuously.
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