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Abstract

Our work addresses hyperspectral reconstruction from
RGB images by identifying and mitigating a significant gap
between synthetic and real-world data. Methods mostly
rely on synthetic RGB data generated from hyperspectral
datasets, which we show generalizes poorly to real-world
camera inputs. To bridge this gap, we propose a novel
training framework that leverages accessible real-world
datasets containing RGB images with color charts and il-
lumination measurements. Our mixed-supervision strat-
egy, which is adaptable to existing state-of-the-art models,
combines explicit supervision in regions with known spec-
tra and physics-based self-regularization techniques across
entire images. In particular, sparse supervision is pro-
vided on color chart patches with measured spectral ground
truth, serving as reliable anchors to guide learning across
the full image. We further strengthen reconstruction qual-
ity through two complementary regularizations to propa-
gate spectral constraints across the entire image: a self-
supervised RGB to RGB loss that enforces physically plau-
sible reconstructions, and a relighting consistency loss that
provides per-pixel target in the hyperspectral domain. Ex-
periments using the MST++ backbone on the BeyondRGB
dataset demonstrate a substantial improvement in angular
error (from 18.91° to 5.52°) compared to models trained on
synthetic data. This work offers a practical, accessible path
toward robust real-world spectral reconstruction, moving
beyond the reliance on synthetic data.

*The supplemental material can be found at https://github.
com/shirawerman/Spectra-without-Spectra

1. Introduction

Hyperspectral (HS) imaging captures detailed spectral
data for precise material identification, classification, and
anomaly detection, benefiting applications like environ-
mental monitoring, agriculture, and medical diagnostics.
However, HS sensors are costly, require calibration, and
have slow acquisition rates, limiting dynamic scene capture.
In contrast, fast and accessible RGB imaging has driven re-
search in spectral reconstruction to recover HS data from
RGB images. These techniques derive a pixel-to-pixel map-
ping that maps each pixel value from the RGB domain to
the HS domain. Given the ill-posed nature of the prob-
lem, early methods used prior knowledge, while recent deep
learning approaches improve accuracy through data-driven
techniques.

The NTIRE HS Reconstruction Challenges datasets [4–
6] have become benchmarks for spectral reconstruction
methods, providing synthetically generated, pixel-aligned
RGB-HS image pairs. The published datasets and the
NTIRE challenge have facilitated and inspired the advance-
ment of numerous spectral reconstruction algorithms, both
supervised and unsupervised, as it provides a valuable re-
source for training and evaluating these methods. How-
ever, recent works identify a gap between synthetic and
real-world data. Models trained on spatially low-resolution
synthesized RGB images struggle with high-resolution real-
world imagery [8], and limited HS dataset variety hinders
generalization to complex scenes [11]. Our experimental
results strongly support this, showing performance degra-
dation when models trained on synthetic data are applied to
mobile camera RGB images.

In this work we aim to challenge the current practice and
answer the question: Can real RGB camera data be used for
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Figure 1. Top- the components of our method utilizing a dataset with color charts as reference GT. The input is a RAW RGB image and
the output an HS image. In the middle component we compare the color chart patches to the GT measured values. In the top component
we pass the network’s output through the camera’s filter response function to compare to the original input. In the bottom component we
reconstruct two images from the same scene, comparing one with the relighted version of the second. Bottom- supervised training scheme:
fully supervised method on RGB images synthesized from HS images.

spectral reconstruction and reduce the domain gap? Diverg-
ing from conventional approaches, we propose leveraging
known spectral information found in RGB images. With the
publication of BeyondRGB [14] this has become possible.
In BeyondRGB, originally published for tasks such as white
balance and illumination spectrum estimation, each image
includes a color chart of type X-Rite ColorChecker Classic
with measurable reflectance and an illumination measure-
ment, providing spectral information for specific image re-
gions. This approach is more accessible and cost-effective
than traditional HS data collection. While it still requires
a spectrum measuring device and color charts, these in-
struments are significantly more affordable than HS cam-
eras. Moreover, it diminishes the need for simulations and
abridges the domain gap.

Using this dataset, we develop a mixed-supervised deep
learning framework for spectral reconstruction from RAW
RGB images. We adopt the state-of-the-art MST++ archi-
tecture [7] as our backbone to demonstrate that our per-
formance gains stem from the training methodology and
data utilization rather than architectural changes. Our train-
ing approach integrates direct sparse supervision in re-
gions with known spectra and incorporates two regulariza-
tion techniques applied across all image pixels. Evaluation
shows our method achieves a 5.52 angular error compared
to 18.91 for fully supervised learning on synthesized RGB
data. We also demonstrate the technique’s extensibility to
multispectral (MS) images available in BeyondRGB.

Our main contributions include:

1. A training framework for leveraging real-world RGB



data in spectral reconstruction, simplifying data collec-
tion and mitigating domain shift.

2. Demonstration of the failure of synthetic-data-trained
models on real-world inputs.

3. A set of physical regularization losses (RGB consistency
and Relighting consistency) that enable effective training
with only sparse (chart-based) spectral supervision.

2. Related Work

In recent years, various approaches have been proposed for
spectral reconstruction from RGB images. Early spectral
reconstruction methods relied on data priors. Arad and
Ben-Shahar [3] utilized sparse representation with a global
dictionary of hyperspectral signals, while Aeschbacher et
al. [1] developed local dictionaries. Subsequent improve-
ments included spatial constraints [13] and Gaussian pro-
cesses [2].

Prior-based methods face limitations in generalization
across diverse scenarios and show sensitivity to noise and
sensor-specific artifacts. Recent work has shifted toward
data-driven approaches. Initial CNN-based models [18, 25,
27, 31, 36] evolved to include physical constraints [21]
and attention mechanisms [16, 17, 26, 35]. Notable ad-
vances include MST++ [7], which won the NTIRE 2022
spectral reconstruction challenge [6] by using spectral-wise
multi-head self-attention to effectively model inter-spectral
correlations. The MST++ architecture consists of multi-
ple single-stage spectral-wise transformers arranged in a U-
shaped structure to extract multi-resolution contextual in-
formation. Alternative approaches explore implicit neural
representations [32], different domains for reconstruction
[10, 28], and specialized architectures [29, 30]. Most meth-
ods train on synthetic RGB data derived from hyperspec-
tral datasets such as ICVL [3], CAVE [33], Harvard [9] and
the datasets published in the NTIRE spectral reconstruction
challenges [4–6]. Detailed information can be found in the
supplementary material.

To address the scarcity of hyperspectral data, unsuper-
vised techniques have emerged [8, 12, 19, 34, 38]. Li et
al. [19] introduced MFormer with dual spectral-wise multi-
head attention and a mask-guided band augmentation mod-
ule. However, these methods still rely on evaluation on
simulated data, so an appropriate evaluation dataset is lack-
ing. Previous studies on spectral reflectance estimation have
focused on reconstructing the spectral properties of stan-
dard color samples. Among these, some have demonstrated
reflectance reconstruction on color chart patches, but pri-
marily under standard illuminations and at limited scale
[8, 20, 22, 23, 37]. Unlike these approaches focused on
reflectance values, our work aims to recover the recorded
light spectrum, which varies with illumination conditions.

3. Method

3.1. Problem Formulation
We rely on the common single illumination image forma-
tion model:

Ik(x, y) =

∫
Λ

R(x, y;λ)L(λ)fk(λ)dλ k ∈ {R,G,B}
(1)

Here, (x, y) represent the spatial coordinates of a given
pixel and k denotes the channel (R, G or B) in the image
I . R is the scene reflectance and L is the scene’s illumi-
nant. The system response function for the kth channel
is denoted as fk(λ). The parameter λ corresponds to the
observed wavelength of light and the integration domain Λ
encompasses the wavelengths where the camera exhibits a
non-negligible response.

Our objective is to recover the discrete spectral value
S in each pixel (x, y). Our measurements are between
400nm-700nm with 10nm gaps, so after discretization of
the wavelength domain, S is equal to:

S(x, y;λ) = R(x, y;λ)L(λ), λ = 400 + 10j,

j ∈ {0, 1, 2, . . . , 30}. (2)

3.2. Datasets
We use a real RGB camera dataset with known spectral
information derived from color charts. Additionally, we
present results on a synthetic dataset and demonstrate that
supervised methods trained on synthetic data struggle to
generalize to real-world scenarios.

3.2.1. Dataset with Color Charts
Recently, a dataset with RGB and multispectral data has
been published [14] dubbed BeyondRGB. The images span
from lab scenes, and natural scenes including indoors and
outdoors scenes, resulting in 1680 images with a wide range
of spectra values. See figure 2 a-c for examples. For each
image in the dataset there is an illumination measurement
and a version with the X-Rite ColorChecker Classic. The
lab sub dataset is composed of 13 scenes each recorded un-
der 93 different illuminations. The RGB images were cap-
tured with a Samsung Galaxy S21 Plus SM-G996B camera
and saved in RAW format without any further processing.
For our method we use the RAW images after demosaicing,
to minimize the impact on image colors and prevent distor-
tion in spectral reconstruction.

The BeyondRGB dataset published the single illumina-
tion value of each image and we obtained the reflectance
values of the X-Rite ColorChecker Classic present in the
images. To derive the ground truth spectra, we multiply the
measured reflectance values with the given single illumina-
tion value captured. These patch measurements multiplied



by illuminations are used as the ground truth in our train-
ing scheme. Unlike synthetic HS and RGB pairs where the
RGB data is derived from the HS image, here the ground
truth values were obtained independently of the input im-
age, so the intensity of the color chart patches in the ground
truth are unrelated to the intensity of the pixels in the RGB
images. This is because the input is significantly influenced
by the exposure set during capturing and the camera’s sen-
sitivity to light. To address the intensity issue, we normalize
the ground truth values by the intensities in the RGB image
I , like so:

Hcc(x, y;λ) =
Scc(x, y;λ)||I(x, y)||1

||f · Scc(x, y)||1
. (3)

Where Scc(x, y) = Rcc(x, y)Lcc(x, y) is the derived spec-
trum in a pixel (x, y) in a color chart patch and Hcc is the
final target value.

If we apply the filter response functions f on Hcc and
compute the L1 norm we’ll get:

∥f ·Hcc(x, y;λ)∥1 =

∥∥∥∥f · Scc(x, y;λ) ∥I(x, y)∥1
∥f · Scc(x, y)∥1

∥∥∥∥
1

= ∥I(x, y)∥1. (4)

ensuring that mapping the GT values to RGB preserves both
the pixel’s intensity scale and the expected RGB ratios. Our
primary metric and training loss is SAM (eq. 9) which is
scaleless, making manual scale adjustments relatively in-
significant.

We computed the filter response functions fk for the
camera used in the dataset by conducting an optimization
process on the BeyondRGB lab images. A more detailed
explanation can be found in the supplementary material.

The BeyondRGB dataset comprises multispectral im-
ages captured with a low-cost, 16-filter prototype camera
designed for mobile use [15, 24]. While the wide, overlap-
ping filters make the images non-hyperspectral, they still of-
fer higher spectral resolution than RGB. We compare spec-
tral reconstruction performance using both RGB and MS
data from this dataset. Computing the filters and the GT
intensities for the MS data was done in the same ways de-
scribed above, which extend naturally to 16 channels. We
used a simplistic approach to demosaic the MS data by di-
rectly rearranging the raw data into a multispectral cube.

3.2.2. Evaluation Dataset
For out of distribution images, we photographed five images
of the Digital ColorChecker SG with the Samsung Galaxy
S21 Plus (figure 2 d), to show the reconstruction accuracy
on unseen color patches. The images were taken under nat-
ural lightings indoors and outdoors. The illuminations and
patches’ reflectance values were measured with an X-Rite
I1Pro 3 Plus spectrophotometer.

Figure 2. a-c. Examples from the BeyondRGB dataset. d. Exam-
ple of an image of the Digital ColorChecker SG captured by us for
out-of-distribution evaluation.

3.2.3. Simulative RGB Dataset
In this work, we show the disparity between synthetic data
and real data by showing results on the ARAD 1K HS
dataset from NTIRE2022 [6]. ARAD 1K, consists of 1000
HS images along with their RGB counterpart. The dataset
mainly comprises outdoor scenes under natural illumina-
tions captured with an HS camera. It covers spectral bands
between 400–700 nm with a 10 nm spectral resolution, re-
sulting in 31 spectral bands. To generate RGB-HS pairs, an
RGB filter response function was applied to the 31-band HS
data, producing a three-channel RGB image. To enhance
realism, the simulation incorporates a noise model and ap-
plies basic image signal processing. We synthesize our own
RGB data with the measured RGB camera filter response to
match the RGB images we use for the rest of our experi-
ments. In addition, we add shot noise in different scales.

3.3. Architecture and Objective Functions
The backbone of our method is the MST++ network [7], a
state-of-the-art spectral reconstruction model that won the
NTIRE 2022 challenge. MST++ is a Transformer-based ar-
chitecture that effectively captures non-local spectral corre-
lations. We adopt this architecture without modification to
demonstrate that our contribution lies in the training frame-
work—specifically, the ability to train on real-world RGB
images with sparse supervision—rather than in architectural
novelty.

Our main objective function is the supervised loss on the
ColorChecker patches. In addition, we employ two regular-
ization functions that are applied on all pixels in the image.
See figure 1.We reconstruct the image with the network to
obtain Ỹ and then re-scale the output similarly to eq. 3, this
normalization is differentiable and we apply the loss func-
tions on the rescaled reconstructed image, Y :

Y (x, y;λ) =
Ỹ (x, y;λ)||I(x, y)||1

||f · Ỹ (x, y)||1
. (5)

The supervised loss Lsup is applied to all pixels in the
color chart patches, comparing them to the target values
specified in eq. 3. For this loss, we use the spectral angle
mapper (SAM), as defined in eq. 9.

The self-supervised loss guarantees that the reconstruc-
tion is physically plausible, ensuring the recovered spectra



accurately reproduce the original RGB values when down-
sampled using the filter response function f . Let I be the
input image, and Y as in eq. 5, then the self-supervised loss
is equal to:

Lself(Y ) = floss(I, f · Y ). (6)

Where floss can be any loss, in practice we use a weighted
combination of LSAM and L1.

To add a per-pixel regularization in the HS domain, we
devise the relighting consistency regularization. For two
images of the same scene in the lab sub-dataset, the re-
flectance values are identical, while the illuminations dif-
fer. So for two hyperspectral images of the same scene
S1 = RsceneL1 and S2 = RsceneL2 we can derive that
S2 = S1·L2

L1
. Our relighting consistency relies on this con-

cept. Let Y1 and Y2 be the reconstruction of two images of
the same scene, then:

Lrelighting(Y1, Y2) = floss

(
Y1 · L2

L1
, Y2

)
. (7)

In each iteration during training, we randomly pick pairs
from the lab scenes and apply Lrelighting. The other losses
are applied on all images in the dataset, including the lab
images and natural environment images. In our ablation
study (Sec. 4), when we disable the relighting consistency
loss (i.e., γ = 0), the network is still trained on the ex-
act same set of images, including the multiple illumination
pairs available in the lab dataset. This ensures that any per-
formance drop is observed solely due to the removal of the
physical consistency constraint (Eq. 7) and not due to a re-
duction in training data diversity or quantity.

The overall loss function is a weighted combination of
the above objective functions:

Ltotal = α · Lsup(Y,H) + β · Lself(Y ) + γ · Lrelighting(Y1, Y2)

= α · LSAM(Y,H)

+ β1 · L1(I, fY ) + β2 · LSAM(I, fY )

+ γ1 · L1

(
Y1L2

L1
, Y2

)
+ γ2 · LSAM

(
Y1L2

L1
, Y2

)
.

(8)

3.4. Implementation Details and Experiment Set-
tings

For efficiency, we downsample input RGB images by
4. During training, we randomize patch sizes (128×128,
256×256, 512×512, and full size - 756×1008 for RGB im-
ages and 484×646 for MS images) to improve performance
across various scales. During inference we input the full
image. We use a batch of size 16 with the Adam opti-
mizer (learning-rate = 0.001, β1 = 0.9, β2 = 0.999) for
200 epochs on an NVIDIA RTX H100 GPU. Loss function
weights are set empirically to α = 1, β1 = 25, β2 =
0.75, γ1 = 25 and γ2 = 0.3.

We use an 80/10/10 train/validation/test split on the Be-
yondRGB dataset. To demonstrate the network’s ability to
reconstruct colors without overfitting to specific color chart
patches or illuminations we devise two split strategies: (1)
illumination based split. We split the lab images based on
the illuminant, such that each sub-dataset contains unique
illuminations. Crucially, while the scenes in the lab are
static, splitting by unique illuminations ensures the network
cannot simply memorize the spectral response of a specific
scene under a specific light, testing its ability to general-
ize to new lighting conditions. The natural scenes are split
randomly, ensuring no overlap between scenes in train and
test sets. (2) Color chart patches split. Due to the limited
number of color patches (18) in the ColorChecker, a stan-
dard 80/10/10 split was not feasible. Instead, we randomly
mask out three patches from the training set and evaluate
performance on these three patches across all images in the
dataset. Hyper-parameters were selected using the valida-
tion set from the illumination-based split. All the reported
results are on the illumination test set, except when explic-
itly stated otherwise.

4. Experiments & Results

We evaluate accuracy and consistency using four measures:

X-Rite ColorChecker Classic. For regions with GT sig-
nals (color chart areas), we compare the HS reconstruction
to the derived HS targets (eq. 3), averaging across all patch
pixels in test images. Only one gray patch per chart is in-
cluded since gray patches under the same illuminant differ
only in scale.

Digital ColorChecker SG. We compare the reconstruc-
tion with the target values on our evaluation data (Digital
ColorChecker SG), including only one gray patch per chart.

Relighting Consistency. For lab images, we measure
the relighting consistency in the HS domain (eq. 7) between
randomly paired images of the same scene under different
illuminations.

RGB Reconstruction. To assess physical truthfulness,
we project outputs back to the low-dimensional spectral
space and compare with the input (eq. 6).

Our primary evaluation metric is the Spectral Angle
Mapper (SAM) defined in eq. 9, a widely used measure
in spectral analysis. SAM is often preferred over other dis-
tance measures for its insensitivity to signal intensity varia-
tions and focus on spectral signature shape. In addition, we
report the commonly used Mean Relative Absolute Error
(MRAE) and Root Mean Square Error (RMSE). We apply
these metrics after the rescaling mentioned in eq. 5. Let Y
and H be the values we want to compare, and N the number
of pixels we average over, then:



Figure 3. Reconstruction on the X-Rite ColorChecker Classic. The values shown are the mean of the reconstruction on the patch from an
indoor image. For the network trained with the patches split we show results on the patches from the test set: (0, 2), (1, 0), (1, 4).

Figure 4. Reconstruction on an example Digital ColorChecker SG image. The values shown are the mean of the reconstruction on the
patch.

SAM =
1

N

N∑
i=1

arccos

(
Y [i] ·H[i]

∥Y [i]∥ ∥H[i]∥

)
,

MRAE =
1

N

N∑
i=1

|Y [i]−H[i]|
H[i]

,

RMSE =

√√√√ 1

N

N∑
i=1

(
Y [i]−H[i]

)2
. (9)

4.1. Main Results

Numerical results can be seen in table 1. We show results
with the two data splits, results on MS data and for compar-
ison, results on the MST++ network trained in a supervised
manner on the ARAD 1K dataset. We also report the re-
sults of the unsupervised network MFormer trained in an



Method X-Rite ColorChecker Classic Relighting Consistency RGB Reconstruction Digital ColorChecker SG
SAM MRAE RMSE SAM MRAE RMSE SAM MRAE RMSE SAM MRAE RMSE

ARAD (sup.) 18.9 0.59 0.04 31.12 0.86 0.1 1.39 0.03 0.002 12.98 0.35 0.39
MFormer (unsup.) 29.7 1.02 0.06 36.36 0.47 0.13 0.11 0.003 0.0002 27.03 0.81 0.08
Ours - illum. split 5.52 0.15 0.01 7.16 1.3 0.03 0.97 0.02 0.002 7.36 0.19 0.02
Ours - MS data 2.33 0.07 0.008 7.27 1.15 0.02 4.95 0.07 0.03 - - -
Ours - patch split 8.82 0.18 0.015 5.99 1.26 0.03 0.94 0.02 0.002 9.03 0.23 0.025

Table 1. Results on BeyondRGB and our SG test set. For all metrics, lower is better. We highlight the best RGB to HS method on the test
set in the illumination split under the SAM metric, our scaleless and main evaluation method.

Loss Components X-Rite ColorChecker Classic Relighting Consistency RGB Reconstruction Digital ColorChecker SG
Supervised Relighting Self-Loop SAM MRAE RMSE SAM MRAE RMSE SAM MRAE RMSE SAM MRAE RMSE

✓ 6.0 0.17 0.01 15.21 1.82 0.03 2.4 0.06 0.005 8.89 0.23 0.03
✓ ✓ 6.45 0.17 0.02 1.16 0.38 0.01 23.23 0.55 0.05 8.88 0.23 0.026
✓ ✓ 6.6 0.18 0.01 15.32 1.88 0.03 0.84 0.02 0.001 7.39 0.19 0.02
✓ ✓ ✓ 5.52 0.15 0.01 7.16 1.3 0.03 0.97 0.02 0.002 7.36 0.19 0.02

Table 2. Results when utilizing the different components in our method.

unsupervised manner on the BeyondRGB dataset.
Comparison Strategy: Our goal is to highlight the ef-

fectiveness of training on real-world data versus the stan-
dard practice of training on synthetic data. Therefore,
we compare our method (Real Data + Sparse Supervision)
against two established baselines: (1) ARAD (Supervised):
Represents the current state-of-the-art for supervised learn-
ing, but trained on synthetic data (as is standard). This com-
parison highlights the domain gap. (2) MFormer (Unsuper-
vised): Represents the best alternative when no dense spec-
tral labels are available, trained on the same real-world data.
This comparison highlights the value of our sparse supervi-
sion and consistency losses. While ARAD uses a different
training paradigm, it serves as the industry standard base-
line we aim to surpass by shifting the data focus.

For synthetic data from ARAD 1K, we introduced vary-
ing shot noise levels to better model real-world conditions
in BeyondRGB. However, noise intensity adjustments had
minimal impact on performance, indicating these simula-
tions don’t fully capture real photograph characteristics.
Results shown use NPE=100 (number of photo-electrons),
which yielded marginally better performance. Complete
noise level results are available in the supplementary ma-
terial. We used the published NTIRE 2022 challenge train-
validation split.

The error on the ARAD 1K validation set was 3.83◦.
However, as seen in table 1, the results on the X-Rite Col-
orChecker Classic are fairly high. This may suggest a do-
main gap arising from two possible causes: first, a mis-
match between the colors in the training set and those in
the BeyondRGB test set, highlighting a limitation of HS
datasets due to their restricted size and content. Second, the
synthetic RGB data may not accurately capture the cam-
era’s characteristics. From the results on the unsupervised
method, it is clear that having some pixels with supervised
ground truth provides an advantage over purely unsuper-

vised methods.
As expected, the method trained on MS data performs

best on the X-Rite ColorChecker Classic, as mapping from
16 channels to 31 channels is less complex than mapping
from 3 to 31 channels.

All modalities perform well on the RGB Reconstruction
measure, with the unsupervised method yielding the best re-
sults, as it was primarily trained with this loss. The strong
performance across all modalities can be attributed to the
fact that many spectral values in the high-dimensional space
map to the same RGB values in the lower-dimensional
space. The MS data, however, shows significantly higher er-
ror because its higher-dimensional space (with 16 channels)
is more sensitive to small differences, leading to a larger an-
gular error compared to lower-dimensional data like RGB,
which has only 3 channels.

We report results on the Digital ColorChecker SG test
set using all available RGB networks: the model trained
with the illumination split, the model trained with the patch
split, the model trained on synthetic data, and the unsuper-
vised model. Our networks achieve substantially better per-
formance than both existing supervised and unsupervised
methods. Furthermore, their performance is only slightly
below the obtained results on the X-Rite ColorChecker
Classic, demonstrating the method’s ability to generalize to
unseen color patches.

Visual results are presented in Figures 3, 4 and 5. We
showcase results from a sample image from the Beyon-
dRGB dataset and an image from the SG color chart dataset.
More samples from BeyondRGB are included in the supple-
mentary material. The displayed results correspond to our
network with the illumination split, our network with the
patches split, MST++ trained in a supervised manner on the
ARAD 1K dataset, and the MFormer network trained in an
unsupervised manner.



Figure 5. Depiction of the relighting consistency: we input an image to the four networks, relight the prediction, project back to camera
RGB and white balance with the new illumination. On the left is the white balanced image under the new illumination. The last column is
the RGB value of the projected reconstructions in the marked rectangle in the image.

Figure 3 illustrates the hyperspectral reconstruction for
color chart patches in an indoor image. The spectrum in
each patch represents the mean of the reconstructed patch,
compared to the GT, with all values normalized to have a
unit norm. These graphs clearly show that our reconstruc-
tion closely resembles the shape of the GT. For our net-
work trained with the patches split we only show results
on the patches from the test set, in positions: (0, 2), (1, 0)
and (1, 4). We can observe that the reconstruction of com-
pletely unseen patches by this method closely matches the
GT, highlighting the strong generalization capability of our
approach.

In figure 4 visual results of the reconstruction on our
evaluation dataset of the Digital ColorChecker SG are
shown. Most of the patches in the Digital ColorChecker SG
aren’t included in the X-Rite ColorChecker Classic where
there was a supervised loss in our method. Despite this, the
visual results show that the shapes of the reconstructions
from our two networks are very similar to the GT signals,
and our networks performs better than the supervised and
unsupervised methods.

Figure 5 depicts the relighting consistency. We take a
pair of images I1 and I2 of the same scene, pass I1 through
the spectral reconstruction model to generate Y1, and re-
light the predictions to L2. Then we project the relighted
prediction to the camera RGB space and white balance it
according to L2. The first image in each row is I2 after
white balance. On the right column we can see a zoom-in
of the RGB value in the marked pixel. The relighting error
impacts the projection, resulting in noticeable visual differ-
ences between the GT RGB values and those generated by
both the supervised and unsupervised methods.

4.2. Ablation Study

We validate the importance of each part of the objective
function (Eq. 8) in Table 2. The results show that the
reduction in error on the X-Rite ColorChecker Classic is

not achieved solely through supervised signals, but rather
through the combination of all components, emphasizing
their collective contribution to performance. Each regular-
ization term achieves its best performance when used to-
gether with the supervised signal. However, disabling one
regularization term causes a significant deterioration to that
loss. It is important to note that relighting is an additional
training signal, and all rows in the table are trained on the
same data. Finally, removing the self-loop component has
the strongest negative impact on the Digital ColorChecker
SG, comprising both indoor and outdoor lighting, suggest-
ing that this component plays a critical role in improving
generalization.

5. Conclusion and Limitations
In this paper, we demonstrate that RGB data generated syn-
thetically from HS images for spectral reconstruction does
not generalize effectively to real camera RGB data. This
finding underscores the limitations of relying solely on syn-
thetic datasets for training and evaluating models intended
for real-world spectral reconstruction.

To address this gap, we propose a novel approach utiliz-
ing regions in images where reflectance values are known
under controlled, measured illuminations, such as color
charts. Our deep learning model, equipped with a task-
specific loss, improves real-world spectral prediction. We
also introduce new metrics that assess accuracy where
ground truth is known, while ensuring plausible outputs
elsewhere.

Limitations: Our method currently relies on the pres-
ence of a color chart and measured illumination during
training, which limits data collection to scenes where these
can be inserted. However, this is significantly more acces-
sible than capturing full hyperspectral ground truth. Addi-
tionally, our evaluation focuses heavily on color chart accu-
racy due to the lack of dense spectral GT for real scenes. We
mitigate this by evaluating on the out-of-distribution Digital



ColorChecker SG, showing generalization beyond the train-
ing charts. Future work could explore cross-camera gener-
alization, as our current experiments are limited to a single
sensor.

Despite these limitations, our method has the poten-
tial to be used as a foundation model in the future. This
would enhance downstream tasks by offering robust pre-
trained representations adaptable to a variety of spectral
reconstruction challenges. Expanding datasets to cover
broader reflectance and lighting conditions will also be es-
sential for the advancement of real-world spectral recon-
struction.
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