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Abstract

Rumour detection on social media is an im-001
portant topic due to the challenges of misin-002
formation propagation and slow verification of003
misleading information. Most previous work004
focus on the response posts on social media, ig-005
noring the useful characteristics of involved006
users and their relations. In this paper, we007
propose a novel framework, Post-User Fusion008
Network (PESTO), which models the patterns009
of rumours from both post diffusion and user010
social networks. Specifically, we propose a011
novel Chronologically-masked Transformer ar-012
chitecture to model both temporal sequence013
and diffusion structure of rumours, and apply014
a Relational Graph Convolutional Network to015
model the social relations of involved users,016
with a fusion network based on self-attention017
mechanism to incorporate the two aspects. Ad-018
ditionally, two data augmentation techniques019
are leveraged to improve the robustness and020
accuracy of our models. Empirical results on021
several benchmarks show the superiority of the022
proposed method.023

1 Introduction024

Rumours, are unverified statements found in social025

media platforms, which can be damaging if they026

spread false information with social, economic and027

political impact (Del Vicario et al., 2016; Zubiaga028

et al., 2018). For instance: during the period of the029

U.S. 2016 presidential election, almost 529 differ-030

ent rumours about candidates were propagated on031

Facebook and Twitter which influenced voters’ atti-032

tudes (Jin et al., 2017). To this end, it is important033

for social network platforms to develop effective034

strategies to combat against fake news and rumours.035

Recognising misinformation from social media is036

challenging due to different sources of information037

required to gather in order to conduct an exten-038

sive analysis and reasoning on these sources. Early039

efforts to tackle rumour detection and misinforma-040

tion in social network platforms relied on manual041

verification from users or experts, however, this 042

kind of approach is inefficient due to the substan- 043

tial human effort and time to recognise a rumour 044

after it has emerged. In recent years, automatic 045

social context based rumour detection has attracted 046

increasing attention. This area of research utilizes 047

the collective wisdom of the social platforms by 048

extracting signals from comments and/or replies to- 049

wards a source claim (Ma et al., 2016, 2017, 2018; 050

Han et al., 2019; Kochkina et al., 2018; Yuan et al., 051

2019; Bian et al., 2020a; Khoo et al., 2020; Kochk- 052

ina and Liakata, 2020; Huang et al., 2019). The key 053

idea behind these work is that users from social me- 054

dia would contribute opinions, clues and evidence 055

for distinguishing between false and valid informa- 056

tion for rumour detection. Therefore, the content 057

of communication threads and the interaction be- 058

tween posts would be useful for rumour detection. 059

However, apart from the threads of responses, the 060

characteristics of the social network of users can 061

also provide important clues for inferring news ve- 062

racity. For example, eye-catching rumours usually 063

attract mostly bot accounts to spread, who tend to 064

follow many accounts but with few or no followers 065

(Gilani et al., 2019), such implicit patterns can also 066

support the veracity of a claim. Figure 1 is an ex- 067

ample of rumour spreading, showing that both post 068

diffusion patterns (e.g., stance in posts, responsive 069

structures) and user patterns (e.g., user credibility, 070

social network) provide crucial evidences for ru- 071

mour verification. Our aim is to propose a method 072

which can model the post diffusion and the user 073

social network jointly to detect social rumours. In 074

terms of post diffusion modeling, a typical line 075

of methods have exploited the characteristics of 076

diffusion structure, such as tree-structured RvNN 077

(Ma et al., 2018), Bi-GCN (Bian et al., 2020b)s 078

and DSL (Huang et al., 2019), but ignore the tem- 079

poral information and the implicit connections be- 080

tween posts. Sequence-based models such Recur- 081

rent neural networks (RNNs) (Ma et al., 2016), 082
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PLAN (Khoo et al., 2020) and DCM (Veyseh et al.,083

2019) flatten the tree structure and arrange posts in084

chronological order. They overcome some limita-085

tions of tree models but underexploit the diffusion086

structure. For this sake, in the paper, we propose087

a Chronologically-masked Transformer architec-088

ture, which integrates both temporal and structural089

information to effectively model the rumour dif-090

fusion patterns. In terms of user network model-091

ing, many off-the-shelf graph neural networks such092

as Graph Convolutional Network (GCN) (Kipf093

and Welling, 2016), GraphSAGE (Hamilton et al.,094

2017), Graph Attention Network (GAT) (Velivck-095

ović et al., 2017), Relational Graph Convolutional096

Network (RGCN) (Schlichtkrull et al., 2018) can097

be leveraged. Considering that A-follow-B and098

A-followed-by-B are different relations, we adopt099

RGCN for user network representation. In order100

to fuse the information in two aspect, we propose101

to use a self-attention layer for final information102

aggregation. Since many existing rumour detec-103

tion datasets are in small scale, we propose two104

data augmentation techniques: Connection drop-105

ping and Sub-conversation training to assist model106

training. We name the entire architecture as Post-107

User Fusion Network (PESTO). Our experimental108

evaluation shows PESTO improves performance109

over previous approaches. The contributions of our110

work are as follows:111

- We propose a Chronologically-masked Trans-112

former architecture to model the post diffu-113

sion patterns of rumours, with both temporal114

and structural information considered.115

- We leverage a Relational Graph Convolu-116

tional Network to represent the user so-117

cial network, and integrate it with the118

chronologically-masked Transformer via a119

Fusion network based on self-attention.120

- We propose two data augmentation tech-121

niques: Connection dropping and Sub-122

conversation training, to reduce overfitting,123

making our model more robust and stable.124

2 Related Work125

Existing detection approaches of fake claims can be126

generally categories into three groups based on the127

information utilized: (i) the content of the claim,128

(ii) knowledge from trustworthy sources and (iii)129

social response to the claim. Our work in this pa-130

per falls into the last group, which exploits social131

Figure 1: An example of a rumour spreading on Twitter
platform. The blue lines denote responsive relations and
the orange lines denote following relations. The mali-
cious account is the initial spreader of the fake news.
The normal respondents tend to query, oppose or com-
ment on the news, but the malicious accounts/bots are
likely to target the people with many followers and reply
them with links of low-credibility content to get a lot of
visibility. Besides, they tend to follow the spreaders but
few users follow them. In summary, the diffusion pat-
terns of rumours and the involved user patterns implies
the veracity of claims.

replies and the involved user network to detect ru- 132

mours. In this section, we briefly introduce each 133

group of work. 134

Content-based Detection: This line of stud- 135

ies studied specific linguistic cues such as verb 136

quantity, word classes, word length, pronouns, non- 137

objectivity (Rubin and Lukoianova, 2015; Feng 138

et al., 2012; Potthast et al., 2017). These features 139

are useful to detect satires or onion news, but might 140

be unique to domains or topics. 141

Knowledge-based Detection: Fact checking 142

websites such as politifact.com and snope.com 143

leverage manual verification to debunk fake news 144

or rumours, but fail to match the rapid emergence 145

rate of misinformation nowadays. Automated fact 146

checking techniques rely on truthworthy sources 147

such as Wikipedia, but they might not work for 148

latest news without evidences. 149

Social Response-based Detection Social re- 150

sponse information such as reply contents and prop- 151

agation structures have been shown to be particu- 152

larly useful for classifying rumours. Ma et al. (Ma 153

et al., 2017) uses tree kernel to capture the similar- 154

ity of propagation trees by counting their similar 155

sub-structures in order to identify different types 156
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of rumours on Twitter. Ma et al. (Ma et al., 2018)157

make use of tree-structured recursive neural net-158

work to model the propagation tree, and informa-159

tion from different nodes is aggregated recursively160

in either a bottom-up or a top-down manner. Bian et161

al. (Bian et al., 2020a) also propose a bi-directional162

graph model named Bi-GCN to explore both prop-163

agation and aggregation patterns by operating on164

both top-down and bottom-up propagation of ru-165

mours. However, the focus in these works is on166

using the static tree structure of Tweet propagation,167

ignoring the temporal order and implicit connec-168

tions between posts. For this sake, Veyseh et al.169

(Veyseh et al., 2019) and Khoo et al. (Khoo et al.,170

2020) propose to apply self-attention mechanism171

(Vaswani et al., 2017) to model implicit connec-172

tions, but their direct usage of self-attention does173

not consider the propagation and aggregation char-174

acteristic of news conversation and underexploit175

the explicit diffusion structure. All of previous176

work do not take user networks into consideration,177

which provides important evidences for detection178

(Yang et al., 2019; Shu et al., 2019).179

3 Preliminaries180

3.1 Problem Statement181

We define rumour detection as predicting the182

label (e.g., Rumour or Non-rumour) of a source183

post on social media, given all its respond-184

ing posts and the response relations between185

them. A rumour detection dataset is a set of186

threads: T = {T1, T2, ...T|T|}, where Ti =187

{pi1, pi2, ...piMi
, ui1, u

i
2, ...u

i
Ni
, GP

i , G
U
i , G

UP
i } is188

the i-th event, where Mi and Ni denotes the189

number of posts and involved users in Ti respec-190

tively, pij denotes the j-th post and uik denotes191

the k-th user. pi1 is the source post and others are192

corresponding retweeted posts or responsive posts193

in chronological order. GP
i is the propagation194

structure of posts. Specifically, GP
i is defined as a195

graph ⟨V P
i , EP

i ⟩, where V P
i = {pi1, pi2, ..., piMi

},196

and EP
i = {ePi(st)|s, t = 1, ...,Mi} that repre-197

sents the set of edges from responsive posts to198

responded posts. Likewise, GU
i is defined as a199

graph ⟨V U
i , EU

i ⟩, where V U
i = {ui1, ui2, ...uiNi

}.200

and EU
i = {eUi(st)|s, t = 1, 2, ..., Ni} repre-201

sents the set of edges from users to the users202

they follow. GUP
i = {V U

i ∪ V P
i , EUP

i }203

is the user-publish-post graph, where204

EUP
i = {eUP

i(st)|s = 1, ..., Ni, t = 1, ...,Mi}205

denotes the set of edges from users to the posts206

they published. Each event Ti is associated with a 207

ground-truth label yi ∈ {F, T} (i.e., False Rumour 208

or True Rumour). In certain cases, the dataset 209

contains four fine-grained class {N,F, T, U} (i.e., 210

Non-rumour, False Rumour, True Rumour and 211

Unverified Rumour). We formulate this task as a 212

supervised classification problem, which aims at 213

learning a classifier f from labeled events, that is 214

f : Ti → yi. 215

3.2 Architecture of Transformer 216

The Transformer model (Vaswani et al., 2017) 217

employs an encoder-decoder architecture, consist- 218

ing of stacked encoder and decoder layers. Each 219

encoder layer consists of two sub-layers: a self- 220

attention layer and a position-wise feed-forward 221

network. The self-attention layer employs h at- 222

tention heads. Each attention head operates on 223

the same input sequence X = (x1, ...,xn) of n 224

elements where xi ∈ Rd, and computes a new se- 225

quence Z = (z1, ..., zn) of the same length where 226

zi ∈ Rdk . To be specific, each xi is firstly linearly 227

transformed into a query vector, a key vector and a 228

value vector: 229

qi = WQxi,ki = WKxi,vi = WV xi, (1) 230

where WK ,WQ,WV ∈ Rdk×d are layer-specific 231

trainable parameter matrices. Then, each element 232

zi is computed as the weighted sum of vj : 233

zi =
n∑

j=1

exp(eij)∑n
k=1 exp(eik)

vj (2) 234

and eij is the unnormalized attention score com- 235

puted via a compatibility function, e.g., Scaled dot 236

product, that compares qi and ki, using: 237

eij =
qT
i kj√
dk

. (3) 238

Note that all these parameter matrices, 239

WQ,WK ,WV , are unique for each atten- 240

tion head. Then, the outputs of all the attention 241

heads are concatenated. Finally, the concatenated 242

vector is fed to a parameterized linear transfor- 243

mation to obtain the output of the self-attention 244

sublayer: 245

ẑi = WO Concat(z1i , ..., z
h
i ). (4) 246

Finally, a position-wise feed-forward network is 247

used to produce the output node embeddings z̃i: 248

z̃i = FFN(ẑi) = W2σ(W1ẑi + b1) + b2, (5) 249

where, W1,W2,b1,b2 are parameters, σ is the 250

non-linear function. 251
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Figure 2: The architecture of PESTO. The left bottom
part is the Chronologically-masked Transformer archi-
tecture, the right bottom part is the user network model-
ing architecture, with connection dropping mechanism
applied to both parts. The upper part of the architecture
is the fusion network for aggregation of the two views.

4 Methodology252

4.1 Overview of Model Architecture253

In this section, we introduce our proposed Post-254

User Fusion Network (PESTO). The core idea of255

PESTO is to learn discriminative representations256

for both post propagation tree and the user social257

network respectively, and then fuse them based258

on self-attention mechanism. The overall archi-259

tecture of the proposed model is illustrated in Fig-260

ure 2. Our model consists of four major parts: 1)261

Posts/User Feature Encoder, which encodes the262

text and meta features of a post/user into a dense263

vector. 2) Chronologically-masked Transformer,264

which learns the representation of the post tree. 3)265

Relational Graph Convolutional Network, which266

learns the representations of the user-follow net-267

work. 4) Fusion Network based on Self-Attention,268

which learns the global representation of post-user269

pairs.270

4.2 Post/User Feature Encoder271

Each post/user node contains two types of features:272

text features which are short sequences of words x273

and meta features m (e.g., follower count, follow-274

ing count, retweet count, etc). For each post, the275

text features are the post content, which contains276

Table 1: Detailed meta features of post and user nodes

Type Feature name Example

Post

Post type 0/1/2*

Retweet Count 10
Reply Count 10
Like Count 10
Quote Count 10
Created time 1501143981
Sentiment Score 0.8

User

is_verified 1
Following Count 100
Followers Count 1000
Tweet Count 1000
List Count 10
Account created time 1458483921
Description length 20

* 0 denotes tweet, 1 denotes retweet, 2 denotes reply.

distinctive patterns such as exaggerated expressions 277

or negative stance, and for each user, the text fea- 278

tures are the user description, which contains some 279

bot-like flags or political stance that implies the 280

credibility of users. We use the same encoder ar- 281

chitecture to represent both post and user nodes. 282

There are many methods to represent texts in ru- 283

mour detection, such as TF-IDF (Aizawa, 2003), 284

Convolutional Neural Network (CNN) (Kalchbren- 285

ner et al., 2014), LSTM (Hochreiter and Schmidhu- 286

ber, 1997), Transformer (Vaswani et al., 2017) and 287

BERT (Wolf et al., 2019). In our work, we apply 288

word embeddings with CNN as our textual feature 289

extractor, which shows the best performance and 290

efficiency in our experiments. Specifically, we first 291

embed each word in the text into a k−dimensional 292

dense semantic representation using public pre- 293

trained word vector Glove (Pennington et al., 2014). 294

Then, a convolutional layer with window sizes of 295

2, 3, 4 is applied, followed by a max-pooling layer 296

to obtain the final text representation hx. After that, 297

we concatenate hx and m and use a linear layer 298

to obtain the final representation of the node. For 299

event Ti, we obtain the feature representation of all 300

posts Pi = {pi
1,p

i
2, ...p

i
Mi

}, and representation of 301

all users Ui = {ui
1,u

i
2, ...,u

i
Ni
}. We discard the 302

superscript i in the following sections for simplic- 303

ity. 304

4.3 Chronologically-masked Transformer for 305

Representation of Post Diffusion Tree 306

Many post tree modeling methods such as tree- 307

structured RvNN (Ma et al., 2018), Bi-GCN (Bian 308

et al., 2020b)s and DSL (Huang et al., 2019) at- 309

tempt to learn the representation of post diffusion 310
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(a)

(b)
Figure 3: Illustration of diffusion trees. The blue lines
denote responsive relations, and the orange lines denotes
implicit relations

tree from two directions: Top-down (Propagation)311

and Bottom-up (Aggregation) as illustrated in Fig-312

ure 3(a), to capture structural and semantic features.313

However, as illustrated in Figure 3(b), each user314

is often able to observe and respond to all existing315

posts at the time of writing a post in the conver-316

sation, while this lines of methods ignore the im-317

plicit interactions between unconnected posts, as318

well as the important temporal order. Therefore,319

we propose a Chronological-masked Transformer320

to model both temporal and structural characteris-321

tics of post diffusion. Specifically, we propose a322

chronologically-masked self-attention mechanism,323

which models the Top-down information spreading324

and Bottom-up aggregation separately in each layer325

based on the chronological order, and involves the326

diffusion tree structure into attention calculation via327

extra learnable position parameters. In the multi-328

head self-attention layers of standard Transformer329

(Vaswani et al., 2017), the state in i-th position330

can attend to any other position in the whole se-331

quence, here we propose to adopt a chronologically-332

masking mechanism to inject the structure of both333

propagation and aggregation into multi-head self-334

attention mechanism (Vaswani et al., 2017). Specif-335

ically, As illustrated in the left bottom part of Fig-336

ure 2, we first divide the heads in each self-attention337

layer into two groups: propagation heads and ag-338

gregation heads. For propagation heads, we restrict339

the head representation to only aggregate informa-340

tion from all position j with (j ⩽ i) when calculat-341

ing the output embedding at position i. Likewise, 342

for aggregation heads, we mask the attention score 343

from position j with (j < i) for position i. The 344

weighted sum of values at positions i for propa- 345

gation heads and aggregation heads are computed 346

as: 347

zpi =

Mi∑
j=i

expeij∑Mi
k=i expeik

vj , (6) 348

zai =
i∑

j=0

expeij∑j
k=0 expeik

vj (7) 349

, Furthermore, since the masking mechanism only 350

utilizes the chronological information, in order to 351

involve explicit spreading structure (i.e., the tree 352

structure), we modify the calculation of attention 353

score in Equation 3 to a structure-aware version as 354

follows: 355

eij =
qT
i kj + αϕ(i,j)√

dk
, (8) 356

where αϕ(i,j) is a learnable scalar indexed by 357

ϕ(i, j), and shared across all layers. ϕ(i, j) is the 358

relative position between post i and post j: 359

ϕ(i, j) =


di − dj pi is the parent of pj
dj − di + dmax pi is the child of pj
0 i = j

2dmax in different branches
(9) 360

, where di denotes the depth of post i in the spread- 361

ing tree and dmax is the maximum depth. Through 362

the learnable position parameters, the attention 363

score can capture the meaningful structural infor- 364

mation between post i and post j. 365

The final representation at position i before the 366

FFN layer is the concatenation of all head presen- 367

tation, denoted as: 368

ẑi = WOConcat(zpi,1, ..., z
p
i,np

, zai,1, ..., z
a
i,na

)
(10) 369

, where np,na denote the number of propagation 370

heads and aggregation heads, WO is trainable pa- 371

rameters. Given input feature matrix of all posts P, 372

we obtain P̂ = {p̂1, p̂2, ...p̂M} after the represen- 373

tation of the Chronologically-masked Transformer 374

Network. 375

4.4 User Network Representation 376

We introduce our representation module for user 377

social network in this section. Given the represen- 378

tation of all users U = {u1,u2, ...,uN} and the 379
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adjacent matrix AU of user-follow relation set EU ,380

we attempt to learn a structure-aware representa-381

tion for each node in the following graph. Since382

the followers and followings describe two sepa-383

rate aspects of a user’s characteristics, we consider384

neighbours of the two categories separately. Specif-385

ically, we generate the user-followed adjacent ma-386

trix AU ′ = AU⊤. We also generate the symmet-387

ric friendship adjacent matrix AU ′′ = AU ·AU ′.388

Given the three adjacent matrices and node fea-389

tures, we adopt RGCN (Schlichtkrull et al., 2018)390

to represent the graph. The feature update equation391

can be formulated as follows:392

h
(t+1)
i = σ(

∑
r∈R

∑
j∈N r

i

1

|N r
i |
W(t)

r h
(t)
j +W

(t)
rooth

(t)
i )

(11)393

where N r
i denotes the set of neighbor indices of394

node i under relation r ∈ R, with corresponding395

adjacent matrix Ar ∈ {AU ,AU ′,AU ′′}, W(t)
r is396

the parameter matrix of relation r in layer t, W(t)
root397

is the parameter matrix of target node. After the398

transformation of multiple RGCN layers, we ob-399

tain the structure-aware representation of all users:400

Û = {û1, û2, ...ûN}.401

4.5 Post-User Fusion Network402

Once we have obtain the representation of posts403

and users denoted as P̂i and Ûi for event Ti, we404

fuse the information of posts and users via a fusion405

network. According to user-publish-post graph406

GUP
i , We first concatenate the hidden vectors of407

m-th post and n-th user, if n-th user is the author408

of m-th post. Note that a user can write multiple409

posts but a post only has one author. Therefore,410

we obtain the fused representation matrix Hi =411

{hi
1,h

i
2, ...,h

i
Mi

}, where hi
j = Concat(p̂i

j , û
i
u(j)),412

where u(j) denotes the index of user who is the413

author of j-th post. In order to capture the seman-414

tic relations between the fused post-user pairs, we415

further use a self-attention layer to obtain the final416

representation of all post-user pairs, denoted by417

Ĥ = {ĥ1, ĥ2, ..., ĥM}. Afterwards, a mean pool-418

ing layer is applied to obtain the aggregated rep-419

resentation c, followed by several fully-connected420

layers and a Softmax layer to get the vector of prob-421

abilities for all classes. We train all the parameters422

in the Network by minizing the cross-entropy of the423

prediction and ground truth labels over the entire424

dataset T .425

Table 2: Statistics of the datasets

Statistic Twitter15 Twitter16 PolitiFact GossipCop
# of posts 331,612 204,820 130872 880640
# of user 276,663 173,487 89238 568482
# of events 1490 818 574 6880
# of True rumors 374 205 \ \
# of False rumors 370 205 231 2313
# of Unverified rumors 374 203 \ \
# of Non-rumors 372 205 343 4567
Avg. # of posts / event 223 251 228 128
Max # of posts / event 1,768 2,765 3294 1038
Min # of posts / event 55 81 32 12

4.6 Data Augmentation Mechanism 426

Since existing datasets for rumour detection are 427

mostly in small scale, overfitting is a serious is- 428

sue in this domain. For this sake, we use two data 429

augmentation mechanism to mitigate this problem: 430

Connection dropping and Sub-conversation train- 431

ing. 432

- Connection dropping: We adopt two ver- 433

sions of Connection dropping operation for 434

the user graph and post graph. For user graph, 435

we apply the same strategy as (Bian et al., 436

2020a): supposing the total number of edges 437

in the user following graph AU is NU and the 438

dropping rate is pu, then the adjacency ma- 439

trix with edge dropping is ÃU = AU −AU
drop, 440

where AU
drop is the matrix constructed using 441

NU × pu edges randomly sampled from AU . 442

The edge dropping operation is performed 443

before input AU into each RGCN layer, and 444

the AU ′, AU ′′ are calculated based on ÃU . 445

For post spreading tree, since we learn all 446

implicit correlation between posts using self- 447

attention, we propose to use an attention drop- 448

ping mechanism, which randomly set the at- 449

tention score before Softmax as −inf with 450

rate pp. 451

- Sub-conversation training: In order to 452

improve the robustness and early-detection 453

capability of our model, we adopt a sub- 454

conversation training technique. To be spe- 455

cific, we randomly set a time threshold tearly, 456

with tmin < tearly < tlast for each event 457

during training, where tmin is the minimum 458

detection time and tlast is the time of the last 459

tweet in the event. The posts after the time 460

is removed, so does the corresponding users. 461

This technique enables models to learn invari- 462

ant features during the whole life cycle of a 463

event. 464
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5 Experimental Results465

In this section, we first compare the performance of466

our proposed PESTO method with several baseline467

models. Then, ablation studies are conducted to468

illustrate the impacts of each module. Afterwards,469

early detection performance is evaluated. Empir-470

ical results show the superiority of the proposed471

method.472

5.1 Experimental Setup473

We evaluate our proposed method on four publicly474

available Twitter datasets: Twitter15 and Twitter16475

(Ma et al., 2017), PolitiFact and GossipCop (Shu476

et al., 2020). The statistics are listed in Table 2.477

Since in the original datasets, each instance only478

contains the tweet propagation tree, we use Twitter479

academic API1 to search the corresponding user480

of each tweet and the following relations between481

users. Each source tweet is annotated with one of482

the four class labels, i.e., Non-rumour (N), False ru-483

mor (F), True rumor (T), and Unverified rumor (U).484

We compare our method with several baselines:485

- DTC (Castillo et al., 2011): A Decision Tree486

classifier based on various handcrafted fea-487

tures to obtain information credibility.488

- SVM-TS (Ma et al., 2017): A linear SVM489

classifier that utilizes handcraft features to490

construct time-series model.491

- SVM-TK (Ma et al., 2017): A SVM classifier492

with a tree kernel based on the propagation493

structure of rumours.494

- RvNN (Ma et al., 2018): A tree-structured495

recursive neural network with GRU units that496

learn the propagation structure497

- PPC_RNN+CNN (Liu and Wu, 2018): A498

model combining RNN and CNN, which499

learns the rumour representations through the500

characteristics of users in the rumour propa-501

gation path.502

- Bi-GCN (Bian et al., 2020a): A GCN-based503

rumour detection model using bi-directional504

propagation structure.505

- DCM (Veyseh et al., 2019): A rumour detec-506

tion model based on post-level self-attention507

mechanisom.508

- PESTO-U: A variant of PESTO, with the user509

network modeling part removed.510

1https://developer.twitter.com/en/products/twitter-
api/academic-research

Table 3: Overall results on Twitter15 and Twitter16

Twitter15
Method ACC N F T U
DTC 0.779 0.415 0.355 0.733 0.317
SVM-TS 0.544 0.796 0.472 0.404 0.483
SVM-TK 0.750 0.804 0.698 0.765 0.733
RvNN 0.723 0.682 0.758 0.821 0.654
PPC RNN+CNN 0.477 0.359 0.507 0.300 0.640
Bi-GCN 0.886 0.891 0.860 0.930 0.864
DCM 0.770 0.814 0.764 0.775 0.743
PUFM-U 0.895 0.897 0.896 0.888 0.900
PESTO 0.915 0.912 0.922 0.921 0.904

Twitter16
Method ACC N F T U
DTC 0.473 0.254 0.080 0.190 0.482
SVM-TS 0.574 0.755 0.420 0.571 0.526
SVM-TK 0.732 0.740 0.709 0.836 0.686
RvNN 0.737 0.662 0.743 0.835 0.708
PPC RNN+CNN 0.564 0.591 0.543 0.394 0.674
Bi-GCN 0.880 0.847 0.869 0.937 0.865
DCM 0.768 0.825 0.751 0.768 0.789
PESTO-U 0.891 0.906 0.891 0.890 0.875
PESTO 0.908 0.902 0.914 0.915 0.901

Table 4: Overall results on PolitiFact and GossipCop

Dataset PolitiFact GossipCop
Method ACC F1 ACC F1
DTC 0.753 0.749 0.772 0.769
SVM-TS 0.757 0.759 0.789 0.783
SVM-TK 0.731 0.721 0.753 0.745
RvNN 0.790 0.778 0.798 0.796
PPC RNN+CNN 0.744 0.760 0.776 0.776
Bi-GCN 0.821 0.819 0.811 0.802
DCM 0.812 0.810 0.810 0.809
PUFM-U 0.832 0.821 0.821 0.816
PESTO 0.845 0.836 0.834 0.831

- PESTO: Our proposed PESTO, with all mod- 511

ules included. 512

5.2 Experimental Setup 513

In all experiments, we used the Glove 100d em- 514

beddings (Pennington et al., 2014) to represent 515

each token in a tweet or user profile. For the 516

chronologically-masked Transformer, the hidden 517

size is 128, the layer number is 4, the head number 518

is 8. For the RGCN Network, the layer number is 519

2, the hidden size is 128. The dropout rate of both 520

networks is 0.2, and the edge dropping rate is also 521

0.2. We use the Adam optimizer with 6000 warm 522

start-up steps. For all datasets, we evaluate the Ac- 523

curacy (Acc.) over all categories and F1 measure 524

(F1) on each class. 525
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5.3 Overall Performance526

Table 3 shows the performance of the proposed527

method and all the baselines on Twitter15 and Twit-528

ter16, respectively. First, it is apparent that all529

the deep learning methods outperform those us-530

ing handcrafted features significantly, showing that531

deep neural networks are able to learn better rep-532

resentations of rumours. Second, the proposed533

method and its variants outperform other deep534

learning methods in terms of all metrics, which535

indicates the superiority of PESTO. As for RvNN,536

it only uses the hidden feature vector of all the537

leaf nodes, which implies that it is heavily influ-538

enced by the information of latest posts. As for539

Bi-GCN, it only relies on the explicit responsive540

path, ignoring the implicit relations between posts.541

As for DCM, it simply use the self-attention layer542

without modification, ignoring the propagation and543

aggregation characteristics of rumours. PESTO-544

U outperforms previous methods, demonstrating545

the effectiveness of the proposed chronologically-546

masked self-attention architecture. PESTO has bet-547

ter performance compared with PESTO-U, indicat-548

ing the user following network contains valuable549

information for detection.550

(a) Twitter15 (b) Twitter16

Figure 4: The performance of the PESTO and its vari-
ants.

5.4 Ablation study551

To demonstrate the effectiveness of each module of552

PESTO, we conduct ablation analysis on Twitter15553

and Twitter16 in this section. We compare PESTO554

with its variants -M,-S,-R,-DC,-DS which repre-555

sent our model (1) without chronological Masking556

for post Transformer,(2) without Structure-aware557

attention for post Transformer,(3) with RGCN re-558

placed by GCN,(4) without Connection dropping559

and (5) Sub-conversation training. As illustrated560

in Table 4, each parts contribute to PESTO. The561

impacts of M and S show that involving intrinsic562

characteristic of the spreading tree improves the563

performance. RGCN is better than GCN for user 564

network modeling, indicating that treating user- 565

following network as directed graph retrains more 566

valuable information. The contribution of DC and 567

DS shows the importance of robust training. 568
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(a) Twitter15
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(b) Twitter16

Figure 5: The performance of early detection.

5.5 Early Rumour Detection 569

Detecting rumours at the early stage of propagation 570

is crucial to reduce the negative effects of rumours. 571

For the early detection task, we select a series of 572

detection deadlines and only utilize the posts re- 573

leased before the deadlines and the corresponding 574

induced user network to evaluate the performance 575

in terms of accuracy. Figure 5 shows the perfor- 576

mances of RvNN, Bi-GCN, DCM and our PESTO 577

model at various deadlines on Twitter15 and Twit- 578

ter16 datasets. We can find that the performance of 579

PESTO is stably superior to other models. 580

6 Conclusion 581

In this paper, we address the task of rumour detec- 582

tion with social contexts. A novel Post-User Fusion 583

Network (PESTO) is proposed to learn both post 584

propagation patterns and user network patterns in 585

a rumour event. To be specific, we model the post 586

diffusion patterns using a novel chronologically- 587

masked Transformer, and use RGCN to represent 588

the user social network, then a fusion module based 589

on self-attention is applied to integrate the two as- 590

pects. Experiments show that PESTO outperforms 591

state-of-the-art baselines significantly. 592
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