
Proceedings of Machine Learning Research – Under Review:1–10, 2022 Full Paper – MIDL 2022

CAD-RADS Scoring using Deep Learning and Task-Specific
Centerline Labeling

Felix Denzinger1,2 felix.denzinger@fau.de
1 Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
2 Siemens Healthcare GmbH, Computed Tomography, Forchheim, Germany

Michael Wels2

Oliver Taubmann2

Mehmet A. Gülsün2
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Abstract

With coronary artery disease (CAD) persisting to be one of the leading causes of death
worldwide, interest in supporting physicians with algorithms to speed up and improve
diagnosis is high. In clinical practice, the severeness of CAD is often assessed with a
coronary CT angiography (CCTA) scan and manually graded with the CAD-Reporting and
Data System (CAD-RADS) score. The clinical questions this score assesses are whether
patients have CAD or not (rule-out) and whether they have severe CAD or not (hold-out).
In this work, we reach new state-of-the-art performance for automatic CAD-RADS scoring.
We propose using severity-based label encoding, test time augmentation (TTA) and model
ensembling for a task-specific deep learning architecture. Furthermore, we introduce a novel
task- and model-specific, heuristic coronary segment labeling, which subdivides coronary
trees into consistent parts across patients. It is fast, robust, and easy to implement. We
were able to raise the previously reported area under the receiver operating characteristic
curve (AUC) from 0.914 to 0.942 in the rule-out and from 0.921 to 0.950 in the hold-out
task respectively.

Keywords: Coronary Artery Disease, Coronary CT Angiography, Deep Learning, Ensem-
bling, CAD-RADS, Coronary Artery Labeling

1. Introduction

Worldwide, coronary artery disease (CAD) still is the leading cause of death (Roth et al.,
2020), thus impacting the lives of many. Therefore, developing algorithms to support physi-
cians with the diagnosis is of high interest. These algorithms may serve as a second reader
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to ensure that no aspect is missed or to point the physician to areas of interest, thus speed-
ing up the workflow.
CAD is predominantly linked to atherosclerotic plaque deposits aggregating within the
vessel wall (Fuster et al., 1992). The degree of vessel narrowing – also called stenosis –
caused by such a plaque deposit is an essential piece of information regarding patient risk
and can be obtained using a coronary CT angiography (CCTA) scan. To report findings,
assess patients’ general condition, and to guide the clinical workflow the coronary artery
disease-reporting and diagnosis system (CAD-RADS) score was introduced (Cury et al.,
2016). This score is usually determined through a manual assessment by a human reader
scoring the whole coronary vessel tree. It consists of six grades ranging from 0 to 5, where 0
refers to “no CAD present”, 1-2 to “non-obstructive CAD present” and 3-5 to “obstructive
CAD present”, with a rising severeness within this grouping. Hence, primary clinical ques-
tions of interest are whether patients do have CAD or not (rule-out) and whether they suffer
from obstructive CAD and therefore should undergo further (invasive) assessment including
potential immediate revascularization or not (hold-out). However, this manual grading is
time-consuming and reader/experience dependent (Razek et al., 2018; Maroules et al., 2018;
Hu et al., 2021). Therefore, introducing decision support algorithms for this task is of high
interest.As related work regarding this task is sparse, we discuss work on the related task
of predicting severe stenosis degree. Algorithms performing this task can be divided into
lesion-wise, and branch-wise.Lesion-wise algorithms focus mainly on the task of detecting
and (separately) scoring one or multiple plaque deposits within the whole coronary vessel
tree. Most of these approaches work on multi-planar reformatted (MPR) volumes created
by interpolating orthogonal planes for each vessel centerline point. Commonly, these ap-
proaches are based on recurrent convolutional neural networks (RCNN) (Zreik et al., 2018;
Denzinger et al., 2019; Ma et al., 2021). For these, a series of overlapping cubes along the
centerline dimension is used, from which spatial features are extracted using a 3D convolu-
tional neural network (CNN) at each position. The resulting feature sequence is analyzed
using a recurrent neural network (RNN) (Zreik et al., 2018) or combined using a trans-
former module (Ma et al., 2021). A branch-wise approach presented by (Candemir et al.,
2020) utilizes a 3D CNN which takes whole coronary branches in MPR format as inputs.
Disadvantages of both lesion- and branch-wise approaches are that errors on lesion-/branch-
level are directly propagated to patient-level and that only local information is included in
the network prediction. A case-wise CAD severity score is the Agatston score (Agatston
et al., 1990), which in principle assesses the overall calcified plaque burden of a patient from
non-contrast CT scans. This score can also be determined using machine learning methods
(Wolterink et al., 2014; Lessmann et al., 2017; Cano-Espinosa et al., 2018). Our group re-
cently proposed a case-wise approach to determine the CAD-RADS score (Denzinger et al.,
2020b). It uses a hierarchical data representation of the whole coronary tree based on its
anatomical sub-segments. For each of these sub-segments, features are extracted from the
MPR volume stack with a CNN and combined with a global max pooling layer to pre-
dict the case-wise score. Based on the architecture and concepts presented in our previous
work (Denzinger et al., 2020b), we present a more robust, streamlined and reproducible
pipeline. Specifically, to ease reproducibility and simplify the pre-processing pipeline of our
work we propose an architecture- and task-specific heuristic centerline labeling. Moreover,
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we are leveraging the use of a severity-based label encoding, test time augmentation (TTA),
model ensembling and reduced input dimensionality.

2. Data

Data is provided from a single site with CCTA scans acquired with the same scanner type.
The number of patients (and samples) included is 2,902 with a fixed split of 1,926 used for
training and 976 for testing. Within the test set, 131 patients have no CAD, 499 patients
have non-obstructive CAD and 346 patients have obstructive CAD. The pre-processing is
conducted as follows: after extracting the coronary centerlines using the method of (Zheng
et al., 2013), MPR image stacks are extracted by interpolating planes orthogonal to the
centerlines with a spacing of (0.33×0.33) mm2 and a field of view (FOV) of 12×12 mm2 for
each centerline point with centerline points placed 0.25 mm apart. For these MPR image
stacks, the Hounsfield unit (HU) value range is clipped to lie between −300 HU and 1,024
HU with the resulting values being rescaled to a value range between 0 and 1.

3. Methods

3.1. Architecture

An overview of the used deep learning architecture is presented in Fig. 1, including an
explanation of the individual steps.

3.2. Proposed Extensions

As the input for this network is either one or two orthogonal longitudinal views cut from
the MPR volume stack at a specific angle α for each subsegment (cf. Fig. 1), the informa-
tion used to predict the CAD-RADS score may vary. Therefore, the prediction may not
be consistent with different angles, which it should be, given that for all angles the same
biological information should be assessed. Our group showed in previous work (Denzinger
et al., 2020a) that this problem can be partly solved by adding a second orthogonal view
which still leaves some leeway for suboptimal angles especially when only one angle is con-
sidered during inference. To overcome this we leverage TTA averaging predictions for 16
views extracted for equally distributed angles between [0, π] with the same angle for all
segments. As the whole vessel information should be covered with this strategy, we addi-
tionally evaluate whether a single longitudinal view instead of two orthogonal longitudinal
views suffices. Also, we propose to use model ensembling to lower uncertainty introduced
by the network training converging to different local optima. In our prior work (Denzinger
et al., 2020b), the prediction of the CAD-RADS score is transformed from a classification to
a regression task and the network trained with a mean squared error (MSE) loss. This leads
to all classes being weighted equally and the loss not depending on the individual class and
how well this class has been learned already. To address this we suggest to use the following
label encoding (Niu et al., 2016): yki = 1 if i ≤ k, yki = 0 otherwise. Therefore, label
vectors yk belonging to class k are created, with i denoting the index of the entry in the
label vector (e.g. CAD-RADS 2 is encoded as (1,1,1,0,0,0)). With this, we transform the
regression task to a multi-label problem, which enables the use of a cross-entropy loss with
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Figure 1: Overview of the architecture. For each labeled subsegment an MPR volume stack
is computed and for one arbitrary angle α around the centerline, a longitudinal
slice or two orthogonal longitudinal slices are extracted. The slices of all seg-
ments are fed into the same 2D CNN. The resulting feature representation is
further processed by a multi-layer perceptron (MLP) for each segment to classify
the stenosis grade and globally max pooled. The global feature representation
is fed into two MLPs predicting the overall calcification (denoted as Calc and
determined as a binned version of the Agatston score according to (Rumberger
and Kaufman, 2003)) and the CAD-RADS grade. The output of the network is
either one scalar value in case of regression or 5-6 sigmoidal outputs in case the
labels are encoded as described in Section. 3.2.

sigmoidal predictions. During inference the raw predictions are summed over all outputs to
get a cumulative probability and binned according to (Denzinger et al., 2020b).

3.3. Centerline Labeling

Furthermore, in the pipeline described in Reference (Denzinger et al., 2020b), the coronary
tree was subdivided using the method proposed by (Gülsün et al., 2014) and the resulting
segments were interpolated to one common length. With this a reasonable input to the
network is obtained which may, however, yield obscured segments. Moreover, the extracted
coronary tree usually exhibits more centerlines than defined in literature, since also small
side branches are found by the centerline extraction algorithm of (Zheng et al., 2013).
Furthermore, distal parts are usually less important and if a stenosis is present there it has
less influence on thrombus formation or myocardial ischemia. Therefore, these should not
necessarily have an impact on network prediction. Furthermore, even if the segment labels
determined with the method of (Gülsün et al., 2014) are anatomically correct – which is
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Figure 2: Centerlines before (top) and after (bottom) labeling. Note that centerline points
inside the aorta originate from our data format and do not need to be labeled.
Detected centerlines include the proximal, mid and distal part of the right coro-
nary artery RCA (RCAprox, RCAmid and RCAdist), the left main segment (LM),
the proximal, mid and distal part of the left artery descending (LAD) and left
circumflex artery (CX) named LADprox, LADmid, LADdist and CXprox, CXdist,
CXOM2, respectively, and the obtuse marginal (OM) artery of the CX CXOM1

and the diagonal segment of the LAD, LADD1.

not always guaranteed – the segment image information is not directly transferable between
patients due to the different segment lengths and potentially different supplied heart regions.
We therefore propose an heuristic centerline labeling approach to solve previously mentioned
problems with following notation 1: let C be a set of centerlines C consisting of centerline
points c ∈ R3. c0 is the first point of each centerline, which in our centerline format is always
the center of the aorta with the first centerline points connecting the center of the aorta
with the respective ostia. All centerlines end at their respective most distal point cnc . This
format leads to high redundancy in the centerlines with proximal parts often overlapping.
An example of this and the abbreviations for the different segments are included in Fig. 2.
Our heuristic pipeline is defined as follows: the set of centerlines can be subdivided into
left Cl and right Cr centerlines by looking at their world coordinate direction starting
from the center of the aorta. If hypothetically a different centerline-extraction algorithm
outputs centerlines starting from the ostia, this initial step could be skipped. For the right
centerline tree the longest segment C∗

r is selected and, starting from the ostium, three
subsequent segments of length 32 mm each are labelled as RCAprox, RCAmid and RCAdist,
while the remaining vessel is excluded. For the left coronary tree, the bifurcation point cb
between the LAD and CX needs to be determined first. We detect cb as the point where
the centerlines of the left tree split most frequently. The LM is consequently labeled as
the segment between the left ostium and cb. From cb we calculate the directions of all
centerlines containing this point as cb+10 − cb. If there are two unique directions, the
rightmost centerlines with this direction are defined as the LAD branch and the leftmost as

1. Code available at https://github.com/fdenz/HeuristicCLLabeling
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the CX branch. If there are three unique directions the branch between the others is labeled
as RAMUS intermedius, which does not exist for all patients. The longest centerlines C∗

LAD

and C∗
CX of the LAD and CX are divided into LADprox, LADmid, LADdist and CXprox,

CXdist, CXOM2 respectively to obtain segments of lengths 32 mm. Furthermore, for LAD
and CX the centerlines C

′
LAD and C

′
CX which have the longest non-overlapping part to C∗

LAD

and C∗
CX are selected. The 32 mm segments starting from the bifurcation between C

′
LAD /

C
′
CX and C∗

LAD / C∗
CX respectively are labeled as LADD1 and CXOM1. As the described

heuristic approach does not aim to be absolutely anatomically correct and relies only on
a small set of rules, it is consistent by design. Furthermore, it extracts segments of the
same length, which eases the network training when it compares the segments of different
patients. On the other hand, bifurcations do not only occur on the start and end of the
segments, but also in the middle of the segment which leads to more diverse training data.
Also, and maybe most importantly, it is simple and fast (around 350ms with a Intel(R)
Xeon(R) CPU E5-2640 CPU).

3.4. Evaluation

For the evaluation, we keep our test set fixed while splitting our training data into five
parts of approximately equal size in a stratified manner. We then use four of these parts
as training and one as a validation set for five folds with the best model for each training
with respect to the validation CAD-RADS score loss saved for evaluation. This setting
is repeated five times for different seeds and splits for a total of 25 trained models for all
configurations. Further hyperparameters were a stochastic gradient descent optimizer with
a learning rate of 0.007/0.0007 for the label encoding/regression task respectively and a
momentum of 0.99. We evaluate our different additions in form of an incremental study.
First, the centerline labeling of the original approach is replaced with the one described
in the section above. As the prediction of the network depends on the angle selected we
will include the average results over all angles, the initial angle, and the angle with the
retrospectively highest performance. Next, we use TTA taking the mean prediction over 16
angles equally distributed between [0, π] with the same angle applied to all segments. This
is followed by ensembling models and taking either the average prediction over the five folds
of one seed or all 25 models. Finally, the label encoding is added, before testing whether a
single view suffices.

4. Results and Discussion

As we have an ordinal classification task and are able to adapt the threshold depending
on the desired ratio of sensitivity and specificity, we consider the area under the receiver
operating curve (AUC) to be the most important metric. In general, we can see an incre-
mental increase in performance with each improvement for the clinical question of rule-out
(Table 1), hold-out (Table 2) and for predicting all six CAD-RADS grades (Table 3).
As we previously only reported the metrics for the views at a single angle in Reference (Den-
zinger et al., 2020b), it is hard to select which angle to choose for comparison. This task
is also impacted by the fact that results differ at different selected angles. When averaging
over all evaluated angles we get a mean AUC of 0.913 compared to 0.914 for the rule-out
and 0.933 compared to a baseline of 0.923 for the hold-out case. However, looking at the
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Config/Metric AUC ACC Sens Spec MCC

Baseline 0.914 0.888 0.532 0.945 0.504

+ TTA E1 LE 0 0.917±0.008 0.884±0.006 0.569±0.023 0.933±0.003 0.503±0.027

+ TTA E1 LE ∗ 0.917±0.008 0.886±0.008 0.574±0.031 0.934±0.004 0.508±0.036

+ TTA E1 LE ∀ 0.913±0.006 0.880±0.004 0.555±0.016 0.931±0.002 0.486±0.019

+ TTA E1 LE 0.924±0.005 0.887±0.007 0.578±0.026 0.935±0.004 0.512±0.030

+ TTA E5 LE 0.932±0.001 0.890±0.002 0.591±0.007 0.937±0.001 0.527±0.008

+ TTA E25 LE 0.934 0.891 0.595 0.937 0.533

+ TTA E25 LE 0.941 0.895 0.611 0.940 0.550

− TTA E25 LE 0.942 0.912 0.672 0.949 0.621

Table 1: Performance for the rule-out task for the different model configurations. Met-
rics are: the area under the receiver operating curve (AUC), accuracy (ACC),
sensitivity (Sens), specificity (Spec), and Matthews correlation coefficient (MCC).
“+/−” denotes whether two orthogonal or one single longitudinal view is fed into
the CNN, “TTA/TTA” whether TTA is used, “Ei” the number of models en-
sembled, “LE/LE” whether labels are encoded as described in Section. 3.2 and
“0/∗/∀” whether the views extracted for the first, retrospectively best or all eval-
uated angles were considered. Baseline refers to the results reported in Reference
(Denzinger et al., 2020b).

Config/Metric AUC ACC Sens Spec MCC

Baseline 0.923 0.860 0.891 0.802 0.692

+ TTA E1 LE 0 0.932±0.003 0.854±0.006 0.887±0.005 0.794±0.009 0.680±0.014

+ TTA E1 LE ∗ 0.937±0.004 0.860±0.007 0.892±0.005 0.803±0.009 0.695±0.015

+ TTA E1 LE ∀ 0.933±0.004 0.856±0.004 0.888±0.003 0.797±0.006 0.686±0.010

+ TTA E1 LE 0.940±0.004 0.861±0.005 0.893±0.003 0.804±0.007 0.697±0.011

+ TTA E5 LE 0.943±0.000 0.860±0.002 0.892±0.001 0.803±0.003 0.695±0.005

+ TTA E25 LE 0.943 0.861 0.892 0.803 0.696

+ TTA E25 LE 0.944 0.861 0.892 0.803 0.696

− TTA E25 LE 0.950 0.877 0.905 0.827 0.731

Table 2: Performance for the hold-out question for the different model configurations.
Abbreviations as in Table 1.

angle with the best overall performance or the initial angle as an example, the performance
is better than the baseline performance. This also nicely demonstrates why TTA is crucial.
With TTA, a clear improvement in general performance is observed. This is easily explained
by the fact that lesions cannot be missed by an unfortunate angle anymore. Ensembling
multiple models leads to another performance boost, with an obvious improvement in sta-
bility when observing the decrease in standard deviation as the metric. Our proposed label
encoding results in no improvement for the hold-out case, as the class balance is less severe
in this case. However, for the rule-out case, an improvement from an AUC of 0.934 to
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Config/Metric ACC Sens Spec MCC

Baseline 0.840 0.904 0.520 0.424

+ TTA E1 LE 0/∗ 0.839±0.005 0.904±0.003 0.518±0.017 0.422±0.021

+ TTA E1 LE ∀ 0.834±0.004 0.900±0.002 0.504±0.014 0.405±0.017

+ TTA E1 LE 0.841±0.005 0.904±0.003 0.522±0.017 0.426±0.020

+ TTA E5 LE 0.842±0.001 0.905±0.000 0.525±0.004 0.430±0.005

+ TTA E25 LE 0.844 0.906 0.532 0.438

+ TTA E25 LE 0.845 0.907 0.535 0.442

− TTA E25 LE 0.859 0.916 0.578 0.493

Table 3: Performance for the six-class problem averaged over all classes for the different
model configurations. Abbreviations as in Table 1.

0.941 is observed. This illustrates that this change improves differentiation of less frequent
classes. Finally, we tested decreasing the dimensionality by only having a single longitudinal
view combined with TTA for each segment as an input for the network. This yielded far
better results for all targets. A possible explanation for this may be the increased training
stability that we observed and that the same information is fed to the system due to TTA.
Moreover, beforehand the ordering of the two orthogonal longitudinal slices led to different
results as different features were extracted for each, which should not be of relevance for the
targets at hand. Especially the metrics for the six-class problem benefited the most from
this change.

5. Conclusion

In this paper, we improve the automatic deep learning-based assessment of patients regard-
ing the CAD-RADS score. We propose the use of TTA, model ensembling, task-specific
label encoding, and reduced model input dimensionality for this task. Moreover, we intro-
duce a novel task-specific heuristic centerline labeling approach, which by itself does neither
lead to improved nor worse performance. However, it is easy to implement and makes the
whole model pipeline easier to reproduce, while being theoretically more robust to technical
variations due to its heuristic nature. Overall, we improve previously reported performance
on the data set at hand: the accuracy for the six-class problem is increased to 0.859 from
0.840 and the AUC for the rule-out case to 0.942 from 0.914. For the hold-out case, we
were able to reach an AUC of 0.950 compared to a previously reported 0.923. Further steps
for this method are to apply it to data at different sites and/or scanner types.
Disclaimer: The methods and information here are based on research and are not com-
mercially available.
Acknowledgement: K.B. gratefully acknowledges the support of the project “Dhip cam-
pus - bavarian aim”.
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